Parikh's Theorem and Descriptional Complexity

Giovanna J. Lavado and Giovanni Pighizzini

Dipartimento di Informatica e Comunicazione Università degli Studi di Milano

SOFSEM 2012 Špindlerův Mlýn, Czech Republic January 21–27, 2012

Parikh's Image

- $ightharpoonup \Sigma = \{a_1, \ldots, a_m\}$ alphabet of m symbols
- ▶ Parikh's map $\psi : \Sigma^* \to \mathbb{N}^m$:

$$\psi(w) = (|w|_{a_1}, |w|_{a_2}, \dots, |w|_{a_m})$$

for each string $w \in \Sigma^*$

- w' and w'' are Parikh equivalent iff $\psi(w') = \psi(w'')$ (in symbols $w' =_{\pi} w''$)
- ▶ Parikh's image of a language $L \subseteq \Sigma^*$:

$$\psi(L) = \{ \psi(w) \mid w \in L \}$$

▶ L' and L'' are Parikh equivalent iff $\psi(L') = \psi(L'')$ (in symbols $L' =_{\pi} L''$)

Parikh's Theorem

Theorem ([Parikh '66])

The Parikh image of a context-free language is a semilinear set, i.e, each context-free language is Parikh equivalent to a regular language

Example:

►
$$L = \{a^n b^n \mid n \ge 0\}$$

► $R = (ab)^*$ $\psi(L) = \psi(R) = \{(n, n) \mid n \ge 0\}$

Different proofs after the original one of Parikh, e.g.

- ▶ [Goldstine '77]: a simplified proof
- ► [Aceto&Ésik&Ingólfsdóttir '02]: an equational proof
- **.** . . .

Purpose of the Work

Recent works investigating *complexity aspects* of Parikh's Theorem:

- ► [Kopczyński&To'10]: size of the "semilinear descriptions" of Parikh images of languages defined by NFAs and by CFGs
- [Esparza&Ganty&Kiefer&Luttenberger '11]:
 - new proof of Parikh's Theorem
 - solution to the problem below in the case of nondeterministic automata

Problem

Given a CFG G compare the size of G with the sizes of finite automata accepting languages that are Parikh equivalent to L(G)

Our aim is to study the same problem for deterministic automata

Why this Problem?

- ▶ We came to this problem from the investigation of automata over a one letter alphabet
- ➤ Costs in states of optimal simulations between different variant unary automata (one-way/two-way, deterministic/nondeterministic) [Chrobak '86, Mereghetti&Pighizzini '01]
- Context-free languages over a unary terminal alphabet are regular [Ginsburg&Rice '62]
- ► The regularity of unary CFLs is also a corollary of Parikh's Theorem
- Hence, unary PDAs and unary CFGs can be transformed into finite automata

Size: Descriptional Complexity Measures

- ► Finite Automata number of states
- Context-Free Grammars number of variables after converting into Chomsky Normal Form [Gruska '73]

Unary Context-Free Languages

Theorem ([Pighizzini&Shallit&Wang '02])

For each unary CFG in Chomsky normal form with h variables there are

- ▶ an equivalent NFA with at most $2^{2h-1} + 1$ states
- ▶ an equivalent DFA with less than 2^{h²} states

Both bounds are tight

Can we extend this result to larger alphabets?

- The class of CLFs is larger than the class of regular: we cannot have a result of exactly the same form!
- However, we can ask about the number of states of DFAs or NFAs Parikh equivalent to the given grammar

Upper and Lower Bounds

Problem

Given a CFG G compare the size of G with the sizes of finite automata accepting languages that are Parikh equivalent to L(G)

Nondeterministic automata (number of states wrt s, size of G)

Upper bound:

- 2^{2O(s²)} (implicit construction from classical proof of Parikh's Th.)
- O(4^s) [Esparza&Ganty&Kiefer&Luttenberger '11]

Lower bound: $\Omega(2^s)$

Upper and Lower Bounds

Problem

Given a CFG G compare the size of G with the sizes of finite automata accepting languages that are Parikh equivalent to L(G)

```
Deterministic automata (number of states wrt s, size of G)
```

Upper bound: $2^{O(4^s)}$ (subset construction)

Lower bound: 2^{s^2} (from the unary case)

Is it possible to reduce the gap between the upper and the lower bound?

We reduced the upper bound to $2^{s^{O(1)}}$ in the following cases:

▶ bounded context-free languages i.e, context-free subsets of $a_1^* a_2^* \dots a_m^* \ (m \ge 2)$

First Contribution: Bounded Context-Free Languages

Theorem

- $\triangleright \Sigma = \{a_1, a_2, \dots, a_m\}$ fixed alphabet
- ▶ G grammar in Chomsky normal form with h variables s.t. $L(G) \subseteq a_1^* a_2^* \dots a_m^*$

There exists a DFA A with at most $2^{h^{O(1)}}$ states s.t. $L(G) =_{\pi} L(A)$

First Contribution: Proof Outline

$$\Sigma = \{a_1, a_2, \ldots, a_m\}$$

Restriction to strongly bounded grammars

$$G = (V, \Sigma, P, S)$$
 is strongly bounded iff
for all $A \in V$, there are $i \leq j$ s.t.
 $L_A = \{x \in \Sigma^* \mid A \stackrel{\star}{\Rightarrow} x\} \subseteq a_i^+ a_{i+1}^* \cdots a_{j-1}^* a_j^+$

- ▶ $A \in V$ is said to be unary iff $L_A \subseteq a_i^+$ for some iin this case L_A is accepted by a DFA with $< 2^{h^2}$ states

 [Pighizzini&Shallit&Wang '02]
- ▶ The use of nonunary variables is very restricted: If $S \stackrel{*}{\Rightarrow} \alpha$ then α contains $\leq m-1$ nonunary variables Hence a finite control of size $O(h^{m-1})$ can keep track of them

Example $\Sigma = \{a, b, c\}$

- ► Unary variables: A, A', B, B', C, C'
- $L_S, L_Y \subseteq a^+b^*c^+$
- $ightharpoonup L_Z, L_{Z'} \subseteq a^+b^+$
- $ightharpoonup L_W, L_{W'} \subseteq b^+c^+$

Example $\Sigma = \{a, b, c\}$

Our automaton recognizes

$$a^2baba^2b^2c^3b^2$$

by simulating a particular derivation from S

$$S \stackrel{*}{\Rightarrow} a^2 Z'W$$

$$\stackrel{*}{\Rightarrow} a^2 ZbW$$

$$\stackrel{*}{\Rightarrow} a^2 a Z'bW$$

$$\stackrel{*}{\Rightarrow} a^3 AbW$$

$$\stackrel{*}{\Rightarrow} a^3 a^2 b^2 W$$

$$\stackrel{*}{\Rightarrow} a^5 b^2 b^2 W'$$

$$\stackrel{*}{\Rightarrow} a^5 b^4 B c^3$$

$$\stackrel{*}{\Rightarrow} a^5 b^4 b^2 c^3$$

$$= a^5 b^6 c^3$$

$$= \pi a^2 baba^2 b^2 c^3 b^2$$

First Contribution: Proof Outline

- ► This derivation process is simulated by an automaton which tests the matching between generated terminals and input symbols
- At each step the automaton needs to remember at most $\#\Sigma 1$ variables
- ▶ The process is nondeterministic
- ▶ It can be implemented using $O(h^{\#\Sigma-1})$ states
- ▶ Hence, a deterministic control can be implemented with 2^{poly(h)} states
- The "unary parts" can be simulated within the same state bound

Second Contribution: Binary Context-Free Languages

Theorem

Let G grammar in Chomsky normal form with h variables with a binary terminal alphabet.

Then there is a DFA A with at most $2^{h^{O(1)}}$ states s.t. $L(A) =_{\pi} L(G)$

The proof relies the following results:

Lemma ([Kopczyński&To'10])

For G as in the theorem, it holds that $\psi(L(G)) = \bigcup_{i \in I} Z_i$ where:

- ▶ I is a set of indices with $\#I = O(h^2)$
- $Z_i = \bigcup_{\alpha_0 \in W_i} \{ \alpha_0 + \alpha_{1,i} n + \alpha_{2,i} m \mid n, m \ge 0 \}$
- ▶ $W_i \subseteq \mathbb{N}^2$ is finite
- ▶ integers in W_i , $\alpha_{1,i}$, $\alpha_{2,i}$ do not exceed 2^{h^c} , where c > 0

From sets Z_i it is possible to derive "small" DFAs and, by standard constructions, the DFA A s.t. $L(A) =_{\pi} L(G)$

Optimality

- ► For each CFG in Chomsky normal form with *h* variables we provided a Parikh equivalent DFA with 2^{hO(1)} states in the following cases:
 - bounded languages
 - binary languages
- ► This upper bound cannot be reduced (consequence of the unary case)

Open Questions

Is it possible to extend these results to all context-free languages?

- ▶ Bounded case crucial argument: it is enough to remember $\#\Sigma 1$ variables
- ▶ Binary case the main lemma does not hold for alphabets with ≥ 3 letters

Other questions:

- What about word bounded CFLs? i.e., subsets of w₁*w₂*...w_m*, where each w_i is a string
- ▶ In our construction the cost is double exponential in the size of the alphabet: state whether or not this is optimal