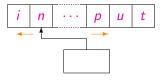
Two-Way Automata Making Choices Only at the Endmarkers

Viliam Geffert ¹ Bruno Guillon ² Giovanni Pighizzini ³

Department of Computer Science P. J. Šafárik University, Košice Slovakia

> ² Université Nice-Sophia Antipolis and École Normale Supérieure de Lyon France



³ Dipartimento di Informatica e Comunicazione Università degli Studi di Milano Italy

LATA 2012 - A Coruña, Spain - March 7, 2012

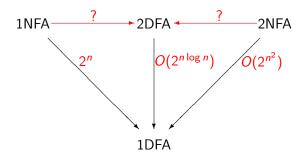
Finite State Automata

Base versions:

- one-way deterministic (1DFA)
- one-way nondeterministic (1NFA)

Possibile variants:

- two-way automata: input head moving forth and back
 - 2DFA
 - 2NFA
- alternating automata
- **...**

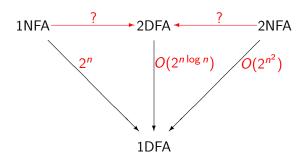

1DFA, 1NFA, 2DFA, 2NFA

What about the power of these models?

They share the same computational power, namely they characterize the class of *regular languages*, however...

...some of them are more succinct

Costs of the Optimal Simulations Between Automata



[Rabin&Scott '59, Shepardson '59, Meyer&Fischer '71, ...]

Question

How much the possibility of moving the input head forth and back is useful to eliminate the nondeterminism?

Costs of the Optimal Simulations Between Automata

Problem ([Sakoda&Sipser '78])

Do there exist polynomial simulations of

- ► 1NFAs by 2DFAs
- ▶ 2NFAs by 2DFAs?

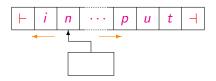
Conjecture

These simulations are not polynomial

Sakoda&Sipser Question: Upper and Lower Bounds

- Exponential upper bounds deriving from the simulations by 1DFAs
- ► Polynomial lower bounds for the cost *c*(*n*) of simulation of 1NFAs by 2DFAs:
 - $c(n) \in \Omega(\frac{n^2}{\log n})$ [Berman&Lingas '77]
 - $c(n) \in \Omega(n^2)$ [Chrobak '86]

Sakoda and Sipser Question


- Very difficult in its general form
- ▶ Not very encouraging obtained results:

Lower and upper bounds too far (Polynomial vs exponential)

► Hence:

Try to attack restricted versions of the problem!

Two-Way Automata: Few Technical Details

- ▶ Input surrounded by the endmarkers \vdash and \dashv
- $w \in \Sigma^*$ is accepted iff there is a computation
 - with input tape $\vdash w \dashv$
 - starting at the left endmarker ⊢ in the initial state
 - reaching a final state (on the left endmarker)

2NFAs vs 2DFAs: Restricted Versions

Previous works:

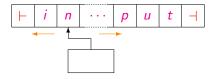
- (i) Restrictions on the *simulating* machines (i.e., resulting 2DFAs)
 - sweeping automata

[Sipser '80] [Hromkovič&Schnitger '03]

oblivious automata

[Hromkovic&3cillitger 03

"few reversal" automata


[Kapoutsis '11]

- (ii) Restrictions on the *languages*
 - unary regular languages [Geffert Mereghetti&Pighizzini '03]

In this work we use a different approach:

(iii) Restrictions on the simulated machines (i.e., given 2NFAs)

Outer Nondeterministic Automata (ONFAs)

In the paper, we consider the following model:

Definition

A two-way automaton is said to be *outer nondeterministic* iff nondeterministic choices are allowed *only* when the input head is scanning the endmarkers

Unary 2NFAs vs ONFAs

Normal Form for Unary 2NFAs [Geffert Mereghetti&Pighizzini '03]

- Nondeterministic choices only at the endmarkers
- Head reversals only at the endmarkers
- ▶ In each sweep the input length modulo one integer is counted

Outer Nondeterministic Automata

- No restrictions on the input alphabet
- ▶ No restrictions on *head reversals*
- Deterministic transitions on "real" input symbols
- Nondeterministic choices only at the endmarkers

Unary 2NFAs are a very restricted version of 2ONFAs!

▶ We extended to 20NFAs previous results on unary 2NFAs

Outer nondeterministic automata (ONFAs): tools

Main tool: procedure reach(p, q)

- Checks the existence of a computation segment
 - from the left endmarker in the state p
 - to the left endmarker in the state q
 - not visiting the left endmarker in between

Accepting computation:

sequence of states $q_0, q_1, ..., q_f$ visited at the left endmarker:

- q₀ initial state
- ▶ for i = 1, ..., f reach $(q_{i-1}, q_i) = true$
- q_f final state

Outer nondeterministic automata (ONFAs): tools

- ► How to deal with loops?
- ► Two kinds of loops:
 - loops visiting the endmarkers
 - loops inside the "real" input

Loops visiting the endmarkers

- ► Loops involving endmarkers can contain nondeterministic choices
- ▶ If a computation visits the left endmarker twice in the same state *q* then there is a shorter "equivalent" computation
- ▶ We can consider only computations visiting the left endmarker < #Q times</p>

Loops inside the "real" input

Procedure reach(p, q):

- ▶ "Backward search" from q to p
- ► In this way loops are avoided
- ▶ Finite control with a *linear number of states*

The technique:

 Introduced by Sipser for the complementation of space bounded Turing machines

[Sipser '80]

- Modified for the complementation of 2DFAs [Geffert Mereghetti&Pighizzini '07]
- Extended in our paper to 2ONFAs

Results

- (i) Subexponential simulation of 2ONFAs by 2DFAs Verify that q_f is reachable from q_0 by visiting the left endmarker $\leq \#Q$ times (divide-and-conquere algorithm)
- (ii) Polynomial complementation of 2ONFAs Inductive counting argument
- (iii) Polynomial simulation of 20NFAs by 2DFAs under the condition L = NL
 Reduction to graph accessibility problem
- (iv) Polynomial simulation of 20NFAs by unambiguous 20NFAs Reduction to graph accessibility problem combined with $NL/poly \subseteq UL$ [Reinhardt&Allender '00]

Results: Alternating Case (20NFAs)

At the endmarkers, universal and existential states are allowed

- (v) Polynomial simulation of 2OAFAs by 2DFAs under L = P
- (vi) Polynomial simulation of 2OAFAs by 2NFAs under NL = PFor both:

Reduction to the Alternating Graph Accessibility Problem

Final Remarks

- ▶ We extended several results from the unary to the general case for 20NFAs
- ▶ In the unary case, restricting the nondeterminism to the endmarkers does not significantly change the size of 2NFAs (normal form)
- ► In the general case, is there some "simple way" to restrict the nondeterminism?
- ▶ Does it is possible to extend our results to some wider class of 2NFAs?
- ▶ Interesting connections with complexity theory:
 - Results connected with classical complexity questions
 - Proof techniques derived from space complexity