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Two-Way Automata

` i n p u t. . . a
6� -

I The input head can be moved in both directions
I They recognize only regular language
I They can be smaller than one-way automata

Technical detail:
I Input surrounded by the endmarkers ` and a



An Example

Lh = (a + b)∗a(a + b)h−1

����
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q1 ����
q2 ����

q3 ����
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-a -a, b -a, b -a, b

�
�
�
-

a, b

I 1NFA: h + 1 states
I 1DFA: 2h states
I 2DFA: h + 2 states
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The Question of Sakoda and Sipser

Problem ([Sakoda&Sipser ’78])
Do there exist polynomial simulations of

I 1NFAs by 2DFAs
I 2NFAs by 2DFAs ?

Conjecture

Both simulations are not polynomial!
i.e., 1N 6= 2D and 2N 6= 2D
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Two-Way Automata versus Logarithmic Space
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for every s-state σ-symbol 2NFA
there is a poly(sσ)-state 2DFA
which agrees with it on all inputs of length ≤ s

↙
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Two-Way Automata versus Logarithmic Space
L/poly: Nonuniform Deterministic Logspace

I L/poly
class of languages accepted by deterministic logspace machines
with a polynomial advice

x - �
��*

yes

H
HHjno

α(|x |)

-
logspace
machine

Problem
L/poly ⊇ NL ?
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Two-Way Automata versus Logarithmic Space

2N/unary := only unary inputs
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↓
I What about the weaker
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2N/poly := only short inputs

Theorem ([Kapoutsis ’11])
L/poly ⊇ NL⇔ 2D ⊇ 2N/poly

In this work:
L/poly ⊇ NL⇔ 2D ⊇ 2N/unary

→

↓
Furthermore:

I Investigation of
the common
behavior
unary/short

I Characterizations
of L/poly vs NL



Two-Way Automata versus Logarithmic Space

2N/unary := only unary inputs

Theorem ([Geffert&P ’11])
L = NL⇒ 2D ⊇ 2N/unary

↓
I What about the weaker

hypothesis L/poly ⊇ NL?
I What about the converse

of this statement?

2N/poly := only short inputs

Theorem ([Kapoutsis ’11])
L/poly ⊇ NL⇔ 2D ⊇ 2N/poly

In this work:
L/poly ⊇ NL⇔ 2D ⊇ 2N/unary

→

↓
Furthermore:

I Investigation of
the common
behavior
unary/short

I Characterizations
of L/poly vs NL



Two-Way Automata versus Logarithmic Space

2N/unary := only unary inputs

Theorem ([Geffert&P ’11])
L = NL⇒ 2D ⊇ 2N/unary

↓
I What about the weaker

hypothesis L/poly ⊇ NL?
I What about the converse

of this statement?

2N/poly := only short inputs

Theorem ([Kapoutsis ’11])
L/poly ⊇ NL⇔ 2D ⊇ 2N/poly

In this work:
L/poly ⊇ NL⇔ 2D ⊇ 2N/unary

→

↓
Furthermore:

I Investigation of
the common
behavior
unary/short

I Characterizations
of L/poly vs NL



Two-Way Automata versus Logarithmic Space

2N/unary := only unary inputs

Theorem ([Geffert&P ’11])
L = NL⇒ 2D ⊇ 2N/unary

↓
I What about the weaker

hypothesis L/poly ⊇ NL?
I What about the converse

of this statement?

2N/poly := only short inputs

Theorem ([Kapoutsis ’11])
L/poly ⊇ NL⇔ 2D ⊇ 2N/poly

In this work:
L/poly ⊇ NL⇔ 2D ⊇ 2N/unary

→

↓
Furthermore:

I Investigation of
the common
behavior
unary/short

I Characterizations
of L/poly vs NL



1st Tool: Outer Nondeterministic Automata (2OFA)

` i n p u t. . . a
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Nondeterministic choices are possible
only when the head is scanning the endmarkers

Lemma ([Geffert et al. ’03])
For every s-state unary 2NFA
there is an equivalent
poly(s)-state 2OFA

Lemma
For every s-state 2NFA and integer l
there is a poly(sl)-state 2OFA which
agrees with it
on all inputs of length ≤ l
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2nd Tool: The Graph Accessibility Problem

GAP:
I Given G = (V ,E ) an oriented graph, s, t ∈ V
I Decide whether or not G contains a path from s to t

Theorem ([Jones ’75])
GAP is complete for NL
(under logspace reductions)

⇒

GAP ∈ L iff L = NL

GAPh:
I GAP restricted to graphs with vertex set Vh = {0, . . . , h − 1}

We show that
under suitable encodings
the family (GAPh) is complete
for 2N/unary and 2N/poly

⇒
(GAPh) ∈ 2D iff

2D ⊇ 2N/unary iff
2D ⊇ 2N/poly iff

L/poly ⊇ NL
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Binary Encoding: The Family BGAP

I G = (Vh,E ), with Vh = {0, . . . , h − 1}

I Binary encoding of G :

〈G 〉2 ∈ {0, 1}h
2
standard encoding of the adjacency matrix

I BGAPh := {〈G 〉2 | G has a path from 0 to h − 1}

I 2NFA recognizing BGAPh:
input: x ∈ {0, 1}h

2
output: x ∈ BGAPh ?

Nondeterministic choices only on the left endmarker
O(h3) states

Lemma
BGAP ∈ 2O
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Reductions

Two-Way Deterministic Transducer (2DFT)

` i n p u t. . . a
6� -

o u t p u t . . .
?

-

I L = (Lh)h≥1, L′ = (L′h)h≥1

I “Small” reduction:
L ≤sm L′ iff each Lh reduces to L′h

via “small” 2DFTs with “short” outputs



BGAP and Characterizations

Theorem
BGAP is
2N/poly-complete
2O-complete

under ≤sm

Lemma
2D is closed under ≤sm

Hence the following statements are equivalent:

2D 3 BGAP
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Unary Encoding: The Family UGAP

I Kh := complete directed graph with
vertex set Vh = {0, . . . , h − 1}

I With each edge (i , j) we associate
a different prime number p(i ,j)

I A subgraph G = (Vh,E ) of Kh is
encoded by the string amG , where

mG =
∏

(i ,j)∈E

p(i ,j)
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Machine composition

-x
T z1 · · · zk

- M �
��*yes

HHHjno

I Unary 2DFAs can be modified to read prime encodings
I This allows to prove that 2D is closed under �sm



UGAP and Characterizations
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Directions for Further Investigations

I Characterizations in terms of two-way automata
of uniform L vs NL

I Comparison of two-way automata on unary vs short inputs

I Use of the reductions introduced in the paper for other
purposes



Thank you for your attention!


	Motivations
	The Question of Sakoda and Sipser
	Technical part

