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» State complexity

1D C 1IN one-way automata

,
2D = 2N two-way automata



Two-Way Automata

» The input head can be moved in both directions
» They recognize only regular language

» They can be smaller than one-way automata

Technical detail:

» Input surrounded by the endmarkers - and



An Example

Ly, = (a+ b)*a(a + b)"1

\
$34,b,34,b,

a, b

» INFA: h+ 1 states
» 1DFA: 2h states
» 2DFA: h+ 2 states
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L € 2D iff Ipolynomial p s.t.
each Ly is solved by a 2DFA of size p(h)

» 1D, 1IN, 2N ...

Example

Ly, = (a+ b)*a(a + b)"—1 L= (Lp)p>1:
» INFA: h+ 1 states = L€ 1IN
» 1DFA: 2" states = L ¢ 1D

» 2DFA: h + 2 states = L e€2D C2N
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The Question of Sakoda and Sipser

Problem ([Sakoda&Sipser '78])

Do there exist polynomial simulations of
» 1NFAs by 2DFAs
» 2NFAs by 2DFAs ?

Conjecture

Both simulations are not polynomial!
i.e., IN # 2D and 2N # 2D



Two-Way Automata versus Logarithmic Space

Theorem ([Berman&Lingas '77])

If L = NL then

for every s-state o-symbol 2NFA

there is a poly(so)-state 2DFA

which agrees with it on all inputs of length < s



Two-Way Automata versus Logarithmic Space

Theorem ([Berman&Lingas '77])

If L = NL then

for every s-state o-symbol 2NFA

there is a poly(so)-state 2DFA

which agrees with it on all inputs of length < s

/

Theorem ([Geffert&P '11])
If L = NL then

for every s-state unary 2NFA
there is an equivalent
poly(s)-state 2DFA



Two-Way Automata versus Logarithmic Space

L/poly: Nonuniform Deterministic Logspace

> L/poly
class of languages accepted by deterministic logspace machines
with a polynomial advice

yes
X logspace /

hi
machine \no

a(]x|)
Problem
L/poly O NL 7
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Two-Way Automata versus Logarithmic Space

Theorem ([Berman&Lingas'77])

If L = NL then

for every s-state o-symbol 2NFA
there is a poly(so)-state 2DFA
which agrees with it on all inputs of length < s

/

Theorem ([Geffert&P '11])
If L = NL then

for every s-state unary 2NFA
there is an equivalent
poly(s)-state 2DFA

N\

Theorem ([Kapoutsis '11])
L/poly D NL iff

for every s-state o-symbol 2NFA
there is a poly(s)-state 2DFA
which agrees with it on all inputs
of length <'s
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2N/unary := only unary inputs 2N/poly := only short inputs

Theorem ([Geffert&P '11]) Theorem ([Kapoutsis '11])

L = NL = 2D D 2N/unary L/poly D NL < 2D D 2N/poly
l

» What about the weaker
hypothesis L/poly O NL?

» What about the converse
of this statement?

In this work:
L/poly © NL < 2D D 2N/unary



Two-Way Automata versus Logarithmic Space

2N/unary := only unary inputs 2N/poly := only short inputs
Theorem ([Geffert&P '11]) Theorem ([Kapoutsis '11])
L = NL = 2D D 2N/unary L/poly D NL < 2D D 2N/poly
|
Furthermore:

> Investigation of
the common

behavior
In this work: N unary/short
L/poly 2 NL < 2D D 2N/unary » Characterizations

of L/poly vs NL



Ist Tool: Outer Nondeterministic Automata (20FA)

Nondeterministic choices are possible
only when the head is scanning the endmarkers

Lemma

For every s-state 2NFA and integer |
there is a poly(sl)-state 20FA which
agrees with it

on all inputs of length <'|



Ist Tool: Outer Nondeterministic Automata (20FA)

Nondeterministic choices are possible
only when the head is scanning the endmarkers

Lemma ([Geffert et al. '03])

For every s-state unary 2NFA
there is an equivalent
poly(s)-state 20FA

Lemma

For every s-state 2NFA and integer |
there is a poly(sl)-state 20FA which
agrees with it

on all inputs of length </
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2nd Tool: The Graph Accessibility Problem

GAP:
» Given G = (V, E) an oriented graph, s, t € V
» Decide whether or not G contains a path from s to t

Theorem ([Jones '75])

GAP is complete for NL = GAP e LiffL=NL
(under logspace reductions)

GAP;,Z
» GAP restricted to graphs with vertex set V}, ={0,...,h—1}

We show that (GAP,) € 2D iff

2D D 2N iff
under suitable encodings = 2 2N/unary I
he family (GAP.) i | 2D D 2N/poly iff
the family ( ) is complete L/poly O NL

for 2N/unary and 2N/poly
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Binary Encoding: The Family BGAP

> G:(Vh,E), with Vh:{O,...,h—l}
» Binary encoding of G:

(G), € {0, 1}h2 standard encoding of the adjacency matrix

» BGAP, := {(G)2 | G has a path from 0 to h — 1}

» 2NFA recognizing BGAP,:

m input: x € {0, 1}’12 output: x € BGAP, 7
m Nondeterministic choices only on the left endmarker
m O(h®) states

Lemma
BGAP € 20



Reductions

Two-Way Deterministic Transducer (2DFT)

> L= (Lp)nh>1, £ = (L})n>1

» “Small” reduction:
L <sm L iff each L}, reduces to L},
via “small” 2DFTs with “short” outputs
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BGAP and Characterizations

Theorem

BGAP is
2N/poly-complete
20-complete

under <¢my,

Lemma

2D is closed under <.,

Standard machine composition

th

T

f(x)

M

/yes
\no




BGAP and Characterizations

Theorem Lemma

BGAP is 2D is closed under <.,
2N/poly-complete
20-complete

under <¢my,

Hence the following statements are equivalent:

2D > BGAP

/N

2D D 2N/poly 2D D20
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Unary Encoding: The Family UGAP

» K}, := complete directed graph with
vertex set V, ={0,...,h—1}

» With each edge (i,;) we associate
a different prime number py; )
» A subgraph G = (Vj, E) of Ky is
encoded by the string a™¢, where
B mg = 3-11.17-37-43
mg = H P(ij) B
(i))eE = 892551

> Graph Kj(m): 3 edge (i,)) iff p(;j) divides m
» UGAP, := {a™ | Ki(m) has a path from 0 to h — 1}

Lemma
UGAP € 20
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Prime Reductions

’F‘i‘n‘ ~‘p‘u‘t‘4‘ » Producing a unary output a”
could require too many states!

T » OQutput: a list z; - - - z; of prime
powers factorizing m

’ © ‘ u ‘ t ‘p ‘ u ‘ t ‘ » “Small” prime reduction <,

Machine composition

X /yes
T Z1 0 Zk M \no

» Unary 2DFAs can be modified to read prime encodings

» This allows to prove that 2D is closed under <,
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UGAP and Characterizations

Lemma Theorem

2D is closed under <sm, UGAP is
2N/unary-complete
20-complete
under =g

Hence the following statements are equivalent:

2D > BGAP 2D > UGAP
2D D 2N/poly 2D 220 2D D 2N/unary
(a)
L/poly © NL

(a) [Kapoutsis '11]



Directions for Further Investigations

» Characterizations in terms of two-way automata
of uniform L vs NL

» Comparison of two-way automata on unary vs short inputs

» Use of the reductions introduced in the paper for other
purposes



Thank you for your attention!
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