Two-way Unary Automata versus Logarithmic Space

Giovanni Pighizzini

Dipartimento di Informatica e Comunicazione Università degli Studi di Milano

> LIAFA - Paris December 9th, 2011

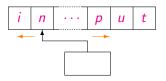
Preliminaries

The Question of Sakoda and Sipser

The Unary Case and the Relationships with L $\stackrel{?}{=}$ NL

Conclusion

Finite State Automata



Base version:

one-way deterministic finite automata (1DFA)

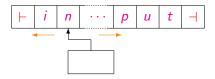
- one-way input tape
- deterministic transitions

Possibile variants allowing:

- nondeterministic transitions
 - one-way nondeterministic finite automata (1NFA)
- input head moving forth and back
 - two-way deterministic finite automata (2DFA)
 - two-way nondeterministic finite automata (2NFA)
- alternation

• ...

Two-Way Automata: Technical Details



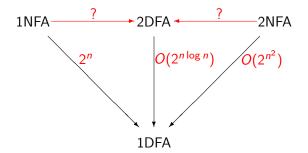
- \blacktriangleright Input surrounded by the endmarkers \vdash and \dashv
- ▶ $w \in \Sigma^*$ is accepted iff there is a computation
 - with input tape $\vdash w \dashv$
 - starting at the left endmarker \vdash in the initial state
 - reaching a final state

What about the power of these models?

They share the same computational power, namely they characterize the class of *regular languages*, however...

...some of them are more succinct

Costs of the Optimal Simulations Between Automata

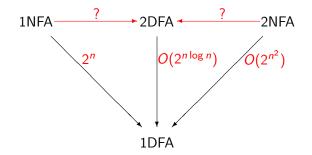


[Rabin&Scott '59, Shepardson '59, Meyer&Fischer '71, ...]

Question

How much the possibility of moving the input head forth and back is useful to eliminate the nondeterminism?

Costs of the Optimal Simulations Between Automata



Problem ([Sakoda&Sipser '78])

Do there exist polynomial simulations of

INFAs by 2DFAs

2NFAs by 2DFAs ?

Conjecture

These simulations are not polynomial

Exponential upper bounds

deriving from the simulations of 1NFAs and 2NFAs by 1DFAs

Polynomial lower bounds

for the cost c(n) of simulation of 1NFAs by 2DFAs:

•
$$c(n) \in \Omega(\frac{n^2}{\log n})$$
 [Berman&Lingas '77]

•
$$c(n) \in \Omega(n^2)$$
 [Chrobak '86]

- Very difficult in its general form
- Not very encouraging obtained results:

Lower and upper bounds too far (Polynomial vs exponential)

Hence:

Try to attack restricted versions of the problem!

(i) Restrictions on the resulting machines (2DFAs)

- sweeping automata
- oblivious automata
- "few reversal" automata
- (ii) Restrictions on the languages
 - unary regular languages

[Sipser '80] [Hromkovič&Schnitger '03] [Kapoutsis '11]

[Geffert Mereghetti&P '03]

- (iii) Restrictions on the starting machines (2NFAs)
 - outer nondeterministic automata

[Geffert Guillon&P '11]

1NFAs vs 2DFAs? Solved!

The cost is O(n²)
 [Chrobak '86]

2NFAs vs 2DFAs? It looks hard!

- Subexponential but superpolynomial upper bound e^{O(ln² n)} [Geffert Mereghetti&P '03]
- Connection with the open question L [?] NL [Geffert&P '10, Kapoutsis&P '11]

Logspace Classes and Graph Accessibility Problem

- L: class of languages accepted in logarithmic space by *deterministic* machines
- NL: class of languages accepted in logarithmic space by *nondeterministic* machines

Graph Accessibility Problem GAP

- Given G = (V, E) oriented graph, $s, t \in V$
- Decide whether or not G contains a path from s to t

Theorem ([Jones '75]) GAP *is complete for* NL *(under logspace reductions)*

 \Rightarrow GAP \in L iff L = NL

Problem

 $I \stackrel{?}{=} NI$

 $\label{eq:model} \begin{array}{l} \mbox{More in general, } \mathsf{GAP} \in \mathcal{C} \mbox{ implies } \mathcal{C} \supseteq \mathsf{NL} \\ \mbox{for each class } \mathcal{C} \mbox{ closed under logspace reductions} \end{array}$

Polynomial Deterministic Conditional Simulation

Under the hypothesis L = NL, the cost in states of the conversion of unary 2NFAs into 2DFAs is polynomial [Geffert&P'10]

Outline of the proof

- Let A be an n-state unary 2NFA
- We describe a reduction from L(A) to GAP
 - i.e, from each string a^m we compute a graph G(m) s.t.

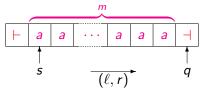
$$a^m \in L(A) \iff G(m) \in \mathsf{GAP}$$

Under the hypothesis L = NL
 we use this reduction to build a 2DFA equivalent to A,
 with a number of states polynomial in n

We convert unary 2NFAs in a normal form:

- Afixed unary 2NFAn states \Downarrow Conversion into Normal FormM2NFA almost equivalent to A $N \le 2n + 2$ states
- L(M) and L(A) can differ only on strings of length $\leq 5n^2$
- ▶ The computation of *M* is a sequence of traversals of the input
- The states used in each traversal form a deterministic loop
- Nondeterministic choices possible only at the endmarkers
- M has exactly one final state q_F
- q_F can be reached only at the left endmarker

Describing *M* Computations



Traversal of the input a^m

- starts from the leftmost input symbol in a state s
- moves at each step to the right
- finally reaches the right endmarker in a state q

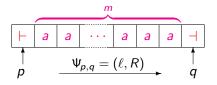
Then:

- s and q must belong to a same deterministic loop
- q depends on m mod ℓ , where ℓ is the length of the loop

IDEA: Associate with (s, q), the pair of integers (ℓ, r) s.t.

there is a traversal of a^m from s to $q \iff m \mod \ell = r$

Describing M Computations



However a traversal starts on the left endmarker

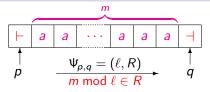
- we consider states p such that $p \xrightarrow{\vdash} s$
- actually, we associate the pair (ℓ, r) with (p, q).

How many pairs (ℓ, r) can be associated with the same (p, q)?

• q belongs to a deterministic loop: only one possible ℓ

on the left endmarker nondeterministic moves are possible:
 p → s' and p → s", for different s', s" in the same loop of q, produce different remainders r: a set of possible remainders
 With (p, q) we associate Ψ_{p,q} = (ℓ, R), where R ⊆ {0,..., ℓ − 1}
 Similar argument for traversals from right to left

Describing M Computations



By summarizing:

Lemma

For all states p, q, input a^m , the automaton M

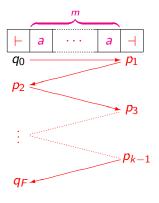
- starting from one endmarker in the state p
- can reach the opposite endmarker in the state q
- without any visit of the endmarkers in between

if and only if

•
$$\Psi_{p,q} = (\ell, R)$$
 and $m \mod \ell \in R$

A finite automaton $A_{p,q}$ with $\ell \leq N$ states can test the existence of the traversal from p to q

An Accepting Computation



$m \mod \ell_1 \in R_1$	$\Psi_{q_0,p_1}=(\ell_1,R_1)$
$m \mod \ell_2 \in R_2$	$\Psi_{p_1,p_2}=(\ell_2,R_2)$
$m \mod \ell_3 \in R_3$	$\Psi_{p_2,p_3}=(\ell_3,R_3)$
:	:
$m \mod \ell_k \in R_k$	$\Psi_{p_{k-1},q_F} = (\ell_k, R_k)$

For each accepting computation all these conditions are satified

Conversely:

► Each sequence of states q₀ = p₁, p₂,..., p_{k-1}, p_k = q_F
 s.t. m mod ℓ_i ∈ R_i (i = 1,..., k)
 describes an accepting computation for a^m

r

r

r

r

With each input a^m we associate the graph G(m) = (Q, E(m)), s.t.

 $(p,q) \in E(m)$ iff $m \mod \ell \in R$, where $\Psi_{p,q} = (\ell, R)$

namely

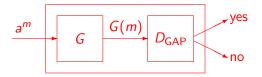
G(m) contains the edge (p, q) if and only if there is a traversal from p to q on input a^m

Lemma

 $a^m \in L(M)$ iff G(m) contains a path from q_0 to q_F

Hence this gives a reduction from L(M) to GAP

- Suppose L = NL
- Let D_{GAP} be a logspace bounded deterministic machine solving GAP
- On input a^m, compute G(m) and give the resulting graph as input to D_{GAP}
- ▶ This decides whether or not $a^m \in L(M)$

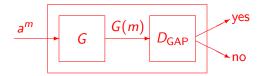


• The graph G(m) has N vertices, the number of states of M

- D_{GAP} uses space O(log N)
- M is fixed. Hence N is constant, independent on the input a^m The worktape of D_{GAP} can be encoded in a finite control using a number of states polynomial in N
- The graph G(m) can be represented with N^2 bits

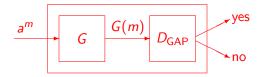
Representing the graph in a finite control would require exponentially many states

▶ To avoid this we compute input bits for D_{GAP} "on demand"



We define a unary 2DFA M' equivalent to M

- ► *M*′ keeps in its finite control:
 - The input head position of D_{GAP}
 - The worktape content of *D*_{GAP}
 - The finite control of *D*_{GAP}
- This uses a number of states polynomial in N



We define a unary 2DFA M' equivalent to M

- On input a^m , M' simulates D_{GAP} on input G(m)
- ▶ Input bits for D_{GAP} are the entries of G(m) adjacency matrix
- Each time D_{GAP} needs an input bit, a subroutine $A_{p,q}$ is called
- Each A_{p,q} uses no more than N states
- Considering all possible (p, q), this part uses at most N^3 states

Summing Up... (under L = NL)

We described the following simulation:

- M is almost equivalent to the original 2NFA A
- ▶ Hence, *M'* is *almost equivalent* to *A*
- Possible differences for input length $\leq 5n^2$
- They can be fixed in a preliminary scan $(5n^2 + 2 \text{ more states})$
- The resulting automaton has polynomially many states

```
Α
      given unary 2NFA
                                                          n states
\downarrow
                                    Conversion into Normal Form
Μ
      almost equivalent to A
                                              N < 2n + 2 states
\Downarrow
                                         Deterministic Simulation
M'
      2DFA equivalent to M
                                                  poly(N) states
         Preliminary scan to accept/reject inputs of length < 5n^2
\Downarrow
                          then simulation of M' for longer inputs
M''
      2DFA equivalent to A
                                                   poly(n) states
```

Theorem ([Geffert&P'10])

If L = NL then each n-state unary 2NFA can be simulated by an equivalent 2DFA with poly(n) many states

Hence, proving the Sakoda&Sipser conjecture for unary 2NFAs would separate L and NL

What about the converse?

Later...

First we discuss a similar construction to make unary 2NFAs unambiguous

(Nonuniform) Unambiguous Logspace

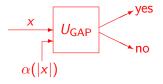
Theorem ([Reinhardt&Allender '00]) NL \subseteq UL/poly

UL/poly

class of languages accepted by *unambiguous* logspace machines with a *polynomial advice*, i.e.,

- ▶ A sequence of strings $\{\alpha(n) \mid n \ge 0\}$ of polynomial length
- With each input string x, the machine also receives the advice string α(|x|)

Corollary GAP \in UL/poly



Making Unary 2NFAs Unambiguous

Theorem ([Geffert&P'10])

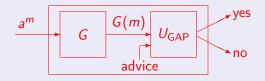
Each n-state unary 2NFA can be simulated by an equivalent unambiguous 2NFA with poly(n) many states

Proof.

- Similar to the polynomial deterministic conditional simulation
- Hypothetical machine D_{GAP} replaced with U_{GAP} and advice

Given a 2NFA the size of G(m) (input of U_{GAP}) is fixed

- Hence the advice is fixed (i.e., it does not depend on a^m)
- Advice encoded in the hardware of the simulating machine



Polynomial Deterministic Conditional Simulation

If L = NL then each *n*-state unary 2NFA can be simulated by an equivalent 2DFA with poly(n) many states

What about the converse?

Polynomial Deterministic Conditional Simulation

Since $L \subseteq NL$ is known, the statement can be written as:

If $L \supseteq NL$ then each n-state unary 2NFA can be simulated by an equivalent 2DFA with poly(n) many states

- Ch. Kapoutsis observed that the proof does not use the uniformity of L
- Hence L can be replaced by L/poly

If L/poly \supseteq NL then each n-state unary 2NFA can be simulated by an equivalent 2DFA with poly(n) many states

- Since L ⊆ L/poly, the assumption is weaker So the last statement is stronger
- We can prove the converse using GAP:

If the simulation of unary 2NFAs by 2DFAs is polynomial in states then there is a deterministic logspace machine with a polynomial advice which solves GAP

Solving GAP with Two-Way Automata Binary Encoding: Languages BGAP

- Let n be a fixed integer
- GAP_n denotes GAP restricted to graphs with vertex set $V_n = \{0, \dots, n-1\}$
- The binary encoding of a graph G = (V_n, E) is the standard encoding of its adjacency matrix, i.e., a string ⟨G⟩₂ = x₁x₂ ··· x_{n²} ∈ {0,1}^{n²}

with
$$x_{i \cdot n+j+1} = 1$$
 if and only if $(i, j) \in E$

► BGAP_n := { $\langle G \rangle_2 | G$ has a path from 0 to n-1} = { $\langle G \rangle_2 | G \in GAP_n$ } Standard nondeterministic algorithm solving graph accessibility

 $i \leftarrow 0$ // input head on the left endmarker while $i \neq n-1$ do guess $j \neq i$ // try the edge (i,j)move to the input cell $i \cdot n + j + 1$ if the input symbol is 0 then reject // $(i,j) \notin E$ move the input head to the left endmarker $i \leftarrow j$ endwhile accept

• Implementation using $O(n^3)$ states

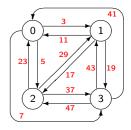
Solving GAP with Two-Way Automata Unary Encoding: Languages UGAP

- K_n := complete directed graph with vertex set V_n = {0,..., n − 1}
- With each edge (i, j) we associate the prime number p_(i,j) = p_{i·n+j+1}
- A subgraph $G = (V_n, E)$ of K_n is encoded by the number

$$m_G = \prod_{(i,j)\in E} p_{(i,j)}$$

and by the string $\langle G
angle_1 = a^{m_G}$

- Conversely, a string a^m denotes the graph $K_n(m)$ which contains the edge (i,j) iff $p_{(i,j)}$ divides m. Then $G = K_n(m_G)$
- UGAP_n := { $a^m | K_n(m)$ has a path from 0 to n-1}



Solving GAP with Two-Way Automata Unary Encoding: Languages UGAP

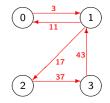
- K_n := complete directed graph with vertex set V_n = {0,..., n − 1}
- With each edge (i, j) we associate the prime number p_(i,j) = p_{i·n+j+1}
- ► A subgraph G = (V_n, E) of K_n is encoded by the number

$$m_G = \prod_{(i,j)\in E} p_{(i,j)}$$

 $m_G = 3 \cdot 11 \cdot 17 \cdot 37 \cdot 43$ = 892551

and by the string $\langle G \rangle_1 = a^{m_G}$

- ► Conversely, a string a^m denotes the graph K_n(m) which contains the edge (i,j) iff p_(i,j) divides m. Then G = K_n(m_G)
- UGAP_n := $\{a^m \mid K_n(m) \text{ has a path from 0 to } n-1\}$



Solving GAP with Two-Way Automata Recognizing UGAP,

Unary version of the algorithm for $BGAP_n$

```
i \leftarrow 0 // input head on the left endmarker

while i \neq n-1 do

guess j \neq i // try the edge (i,j)

scan the input string counting modulo p_{(i,j)}

if reminder \neq 0 then reject // (i,j) \notin E

move the input head to the left endmarker

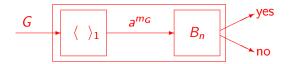
i \leftarrow j

endwhile

accept
```

• Implementation using $O(n^4 \log n)$ states

Solving GAP with Two-Way Automata Outline of the Construction



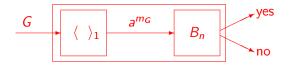
- Suppose the conversion of unary 2NFAs into 2DFAs is polynomial
- Let B_n be a 2DFA with poly(n) states recognizing UGAP_n
- ▶ Given a graph G = (V_n, E), compute its unary encoding a^{mg} and give it as input to B_n
- This decides whether or not $G \in GAP$

Solving GAP with Two-Way Automata Outline of the Construction



- Our goal:
 - a deterministic machine
 - working in logarithmic space
 - using a polynomial advice
- The input is the graph G, hence its size is n^2
- The size of B_n is polynomial in n
- However representing a^{m_G} would require too much space
- Hence, we use a different strategy to represent m_G

Solving GAP with Two-Way Automata Outline of the Construction



Next steps

1. A different representation of m_G :

prime encoding of input lengths

- 2. Replacing unary 2DFA inputs by prime encodings
- 3. Combining these things together to obtain a (nonuniform) logspace deterministic machine solving GAP

Prime Encodings

Given an integer m:

- $m = p_{j_1}^{\alpha_1} \cdot p_{j_2}^{\alpha_2} \cdots p_{j_k}^{\alpha_k}$ decomposition as product of prime powers
- A prime encoding of m is a string

 $#z_1#z_2\cdots #z_k$

where z_1, z_2, \ldots, z_k encode in an *arbitrary order* $p_{i_1}^{\alpha_1}, p_{i_2}^{\alpha_2}, \ldots, p_{i_k}^{\alpha_k}$

For simplicity:

▶ The factor *z_i* can be seen also as a number

• Hence,
$$m = z_1 \cdot z_2 \cdots z_k$$

Given an integer m:

- $m = p_{i_1}^{\alpha_1} \cdot p_{i_2}^{\alpha_2} \cdots p_{i_k}^{\alpha_k}$ decomposition as product of prime powers
- A prime encoding of m is a string

 $#z_1#z_2\cdots #z_k$

where z_1, z_2, \ldots, z_k encode in an *arbitrary order* $p_{i_1}^{\alpha_1}, p_{i_2}^{\alpha_2}, \ldots, p_{i_k}^{\alpha_k}$

Given a graph $G = (V_n, E)$:

• A prime encoding of $m_G = \prod_{(i,j)\in E} p_{(i,j)}$

is a list of all primes $p_{(i,j)}$ associated with the edges of G

 It can be computed in logarithmic space by a deterministic transducer T whose input is the adjacency matrix of G Given an s-state unary 2DFA B, we build an "equivalent' 2DFA B':

B' inputs represent prime encodings of B inputs

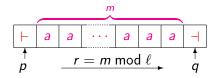
- First, we replace B by a 2DFA M with O(s) states s.t.
 - M is sweeping
 - in each traversal M counts the input length modulo a number ℓ
 - L(B) and L(M) can be differ on strings of length $< s_0 \in O(s)$
- On a prime encoding of an integer m, B' works in two phases:
 - 1. B' checks if the input is "short", i.e., $m < s_0$
 - 2. otherwise, B' on its input simulates M on a^m
- The number of states of B' is polynomial in s

Replacing Unary 2DFA Inputs by Prime Encodings Phase 1: Detecting Short Inputs

Given

- a^m , input of B
- $\#z_1 \# z_2 \cdots \# z_k$, input of B', prime encoding of m
- For each $t < s_0$, B' checks if m = t:
 - B' checks if each z_i is a factor t
 - B' checks if each prime power in the factorization of t is encoded by some z_i
- If m = t for some t < s₀ then the simulation stops, accepting or rejecting according to a finite table
- This phase is implemented using $O(s \cdot \log^2 s)$ states

Replacing Unary 2DFA Inputs by Prime Encodings Phase 2: Simulating the 2DFA *M* on Long Inputs

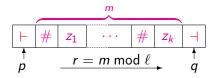


In a sweep:

- *M* counts the input length modulo an integer ℓ
- The value of ℓ depends only on the starting state p
- The ending state q depends on p and on $r = m \mod \ell$

B' simulates the same sweep on input $\#z_1 \# z_2 \cdots \# z_k$, a prime encoding of m

Replacing Unary 2DFA Inputs by Prime Encodings Phase 2: Simulating the 2DFA *M* on Long Inputs



Since $m = z_1 \cdot z_2 \cdots z_k$:

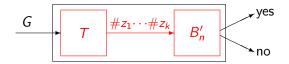
 $m \mod \ell = ((\cdots ((z_1 \mod \ell) \cdot z_2) \mod \ell \cdots) \cdot z_k) \mod \ell$

r is obtained using the following iteration:

 $\begin{array}{l} r \leftarrow 1 \\ \text{while there is a next factor } \#z \text{ do} \\ r \leftarrow (r \cdot z) \mod \ell \end{array}$

- The state q is derived from p and r
- ▶ All this phase can be implemented using $O(s^2)$ states

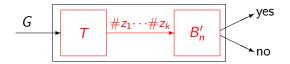
Solving GAP with Two-Way Automata Combining All Together



We replace:

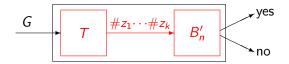
- The machine which computes $m_G = \langle G \rangle_1$ by a logspace transducer T which outputs a prime encoding of m_G
- The unary 2DFA B_n by an "equivalent" 2DFA B'_n working on prime encodings
- The resulting machine still decides whether $G \in GAP_n$
- ► The symbols of #z₁···#z_k are computed "on the fly", by restarting T each time B'_n needs them

Solving GAP with Two-Way Automata Combining All Together



- B'_n has number of states polyomial in n
- T works in space O(log n)
- Hence the resulting machine works in logarithmic space
- However, we did not provided B'_n is a constructive way
 - The existence of B'_n follows from the hypothesis that the simulation of unary 2NFAs by 2DFAs is polynomial
- Hence the machine is nonuniform
 - B'_n is the advice

Solving GAP with Two-Way Automata Combining All Together



Since GAP is complete for NL we obtain:

Theorem

If each n-state unary 2NFA can be simulated by a 2DFA with a polynomial number of states then L/poly \supseteq NL

Two-way Automata Characterizations of L/poly versus NL

2D: families of languages accepted by 2DFAs of polynomial size
2N: families of languages accepted by 2NFAs of polynomial size
2N/poly: restriction of 2N to *instances of polynomial length*2N/unary: restriction of 2N to *unary instances*

```
Theorem ([Kapoutsis '11, Kapoutsis&P '11])
The following statements are equivalent:

L/poly ⊇ NL
2D ⊇ 2N/poly
2D ⊇ 2N/unary
2D ∋ BGAP
```

5. $2D \ni UGAP$

- The question of Sakoda and Sipser is very challenging
- In the investigation of restricted versions many interesting and not artificial models have been considered
- The results obtained for restricted versions of the problem, even if they do not solve the full problem, are nontrivial and, in many cases, very deep
- Strong connections with open questions in structural complexity
- Many times techniques used in space complexity can be adapted for the investigation of automata and vice versa