
Two-way Unary Automata versus
Logarithmic Space

Giovanni Pighizzini

Dipartimento di Informatica e Comunicazione
Università degli Studi di Milano

LIAFA - Paris
December 9th, 2011

Outline

Preliminaries

The Question of Sakoda and Sipser

The Unary Case and the Relationships with L ?
= NL

Conclusion

Finite State Automata

i n p u t. . .

6 -�

Base version:
one-way deterministic finite automata (1DFA)

I one-way input tape
I deterministic transitions

Possibile variants allowing:
I nondeterministic transitions

one-way nondeterministic finite automata (1NFA)
I input head moving forth and back

two-way deterministic finite automata (2DFA)
two-way nondeterministic finite automata (2NFA)

I alternation
I ...

Two-Way Automata: Technical Details

` i n p u t. . . a
6� -

I Input surrounded by the endmarkers ` and a
I w ∈ Σ∗ is accepted iff there is a computation

with input tape ` w a
starting at the left endmarker ` in the initial state
reaching a final state

1DFA, 1NFA, 2DFA, 2NFA

What about the power of these models?

They share the same computational power, namely they
characterize the class of regular languages, however...

...some of them are more succinct

Costs of the Optimal Simulations Between Automata

1DFA

1NFA 2DFA 2NFA

@
@
@
@
@
@
@R ?

�
�

�
�

�
�
�	

2n O(2n log n) O(2n2
)

-? � ?

[Rabin&Scott ’59, Shepardson ’59, Meyer&Fischer ’71, . . .]

Question

How much the possibility of moving the input head
forth and back is useful to eliminate the nondeterminism?

Costs of the Optimal Simulations Between Automata

1DFA

1NFA 2DFA 2NFA

@
@
@
@
@
@
@R ?

�
�

�
�

�
�
�	

2n O(2n log n) O(2n2
)

-? � ?

Problem ([Sakoda&Sipser ’78])
Do there exist polynomial simulations of

I 1NFAs by 2DFAs
I 2NFAs by 2DFAs ?

Conjecture

These simulations
are not polynomial

Sakoda&Sipser Question: Upper and Lower Bounds

I Exponential upper bounds
deriving from the simulations of 1NFAs and 2NFAs by 1DFAs

I Polynomial lower bounds
for the cost c(n) of simulation of 1NFAs by 2DFAs:

c(n) ∈ Ω(n2

log n) [Berman&Lingas ’77]
c(n) ∈ Ω(n2) [Chrobak ’86]

Sakoda and Sipser Question

I Very difficult in its general form
I Not very encouraging obtained results:

Lower and upper bounds too far
(Polynomial vs exponential)

I Hence:
Try to attack restricted versions of the problem!

2NFAs vs 2DFAs: Restricted Versions

(i) Restrictions on the resulting machines (2DFAs)
I sweeping automata [Sipser ’80]
I oblivious automata [Hromkovič&Schnitger ’03]
I “few reversal” automata [Kapoutsis ’11]

(ii) Restrictions on the languages
I unary regular languages [GeffertMereghetti&P ’03]

(iii) Restrictions on the starting machines (2NFAs)
I outer nondeterministic automata [Geffert Guillon&P ’11]

The Unary Case: #Σ = 1

1NFAs vs 2DFAs? Solved!
I The cost is O(n2)

[Chrobak ’86]

2NFAs vs 2DFAs? It looks hard!
I Subexponential but superpolynomial upper bound eO(ln2 n)

[GeffertMereghetti&P ’03]

I Connection with the open question L ?
= NL

[Geffert&P ’10, Kapoutsis&P ’11]

Logspace Classes and Graph Accessibility Problem

L: class of languages accepted in logarithmic space
by deterministic machines

NL: class of languages accepted in logarithmic space
by nondeterministic machines

Problem
L ?

= NL

Graph Accessibility Problem GAP
I Given G = (V ,E) oriented graph, s, t ∈ V
I Decide whether or not G contains a path from s to t

Theorem ([Jones ’75])
GAP is complete for NL
(under logspace reductions)

⇒ GAP ∈ L iff L = NL

More in general, GAP ∈ C implies C ⊇ NL
for each class C closed under logspace reductions

Polynomial Deterministic Conditional Simulation

Under the hypothesis L = NL, the cost in states of the
conversion of unary 2NFAs into 2DFAs is polynomial

[Geffert&P ’10]

Outline of the proof

I Let A be an n-state unary 2NFA
I We describe a reduction from L(A) to GAP

i.e, from each string am we compute a graph G (m) s.t.

am ∈ L(A) ⇐⇒ G (m) ∈ GAP

I Under the hypothesis L = NL
we use this reduction to build a 2DFA equivalent to A,
with a number of states polynomial in n

Polynomial Deterministic Conditional Simulation

We convert unary 2NFAs in a normal form:

A fixed unary 2NFA n states
⇓ Conversion into Normal Form
M 2NFA almost equivalent to A N ≤ 2n + 2 states

I L(M) and L(A) can differ only on strings of length ≤ 5n2

I The computation of M is a sequence of traversals of the input
I The states used in each traversal form a deterministic loop
I Nondeterministic choices possible only at the endmarkers
I M has exactly one final state qF

I qF can be reached only at the left endmarker

Describing M Computations

` a a a a a. . . a

s
6

q
6

-
(`, r)

m︷ ︸︸ ︷

Traversal of the input am

I starts from the leftmost input symbol in a state s
I moves at each step to the right
I finally reaches the right endmarker in a state q

Then:
I s and q must belong to a same deterministic loop
I q depends on m mod `, where ` is the length of the loop

IDEA: Associate with (s, q), the pair of integers (`, r) s.t.

there is a traversal of am from s to q ⇐⇒ m mod ` = r

Describing M Computations

` a a a a a. . . a
6
p q

6
-Ψp,q = (`,R)

m︷ ︸︸ ︷

However a traversal starts on the left endmarker
I we consider states p such that p `→ s
I actually, we associate the pair (`, r) with (p, q).

How many pairs (`, r) can be associated with the same (p, q)?
I q belongs to a deterministic loop: only one possible `
I on the left endmarker nondeterministic moves are possible:

p `→ s ′ and p `→ s ′′, for different s ′, s ′′ in the same loop of q,
produce different remainders r : a set of possible remainders

With (p, q) we associate Ψp,q = (`,R), where R ⊆ {0, . . . , `− 1}

Similar argument for traversals from right to left

Describing M Computations

` a a a a a. . . a
6
p q

6
-Ψp,q = (`,R)

m mod ` ∈ R

m︷ ︸︸ ︷

By summarizing:

Lemma
For all states p, q, input am, the automaton M

I starting from one endmarker in the state p
I can reach the opposite endmarker in the state q
I without any visit of the endmarkers in between

if and only if

I Ψp,q = (`,R) and m mod ` ∈ R

A finite automaton Ap,q with ` ≤ N states can test the existence of
the traversal from p to q

An Accepting Computation

` a a. . . a

m︷ ︸︸ ︷
q0 - p1�������9p2 XXXXXXXz p3

...
pk−1�������9qF

m mod `1∈ R1 Ψq0,p1 = (`1,R1)

m mod `2 ∈ R2 Ψp1,p2 = (`2,R2)

m mod `3 ∈ R3 Ψp2,p3 = (`3,R3)

...
...

m mod `k ∈ Rk Ψpk−1,qF = (`k ,Rk)

For each accepting computation
all these conditions are satified

Conversely:
I Each sequence of states q0 = p1, p2, . . . , pk−1, pk = qF

s.t. m mod `i ∈ Ri (i = 1, . . . , k)
describes an accepting computation for am

Reducing Membership for L(M) to GAP

With each input am we associate the graph G (m) = (Q,E (m)), s.t.

(p, q) ∈ E (m) iff m mod ` ∈ R, where Ψp,q = (`,R)

namely

G (m) contains the edge (p, q) if and only if
there is a traversal from p to q on input am

Lemma
am ∈ L(M) iff G (m) contains a path from q0 to qF

Hence this gives a reduction from L(M) to GAP

Deterministic simulation

-am

G
G (m)

- DGAP
�
��*

yes

H
HHjno

I Suppose L = NL
I Let DGAP be a logspace bounded deterministic machine

solving GAP
I On input am, compute G (m) and give the resulting graph as

input to DGAP

I This decides whether or not am ∈ L(M)

Deterministic simulation

-am

G
G (m)

- DGAP
�
��*

yes

H
HHjno

I The graph G (m) has N vertices, the number of states of M
I DGAP uses space O(logN)

I M is fixed. Hence N is constant, independent on the input am

The worktape of DGAP can be encoded in a finite
control using a number of states polynomial in N

I The graph G (m) can be represented with N2 bits

Representing the graph in a finite control would
require exponentially many states

I To avoid this we compute input bits for DGAP “on demand”

Deterministic simulation

-am

G
G (m)

- DGAP
�
��*

yes

H
HHjno

We define a unary 2DFA M ′ equivalent to M

I M ′ keeps in its finite control:
The input head position of DGAP
The worktape content of DGAP
The finite control of DGAP

I This uses a number of states polynomial in N

Deterministic simulation

-am

G
G (m)

- DGAP
�
��*

yes

H
HHjno

We define a unary 2DFA M ′ equivalent to M
I On input am, M ′ simulates DGAP on input G (m)

I Input bits for DGAP are the entries of G (m) adjacency matrix
I Each time DGAP needs an input bit, a subroutine Ap,q is called
I Each Ap,q uses no more than N states
I Considering all possible (p, q), this part uses at most N3 states

Summing Up... (under L = NL)

We described the following simulation:

I M is almost equivalent to the original 2NFA A
I Hence, M ′ is almost equivalent to A
I Possible differences for input length ≤ 5n2

I They can be fixed in a preliminary scan (5n2 + 2 more states)
I The resulting automaton has polynomially many states

A given unary 2NFA n states
⇓ Conversion into Normal Form
M almost equivalent to A N ≤ 2n + 2 states
⇓ Deterministic Simulation
M ′ 2DFA equivalent to M poly(N) states

Preliminary scan to accept/reject inputs of length ≤ 5n2
⇓

then simulation of M ′ for longer inputs
M ′′ 2DFA equivalent to A poly(n) states

Polynomial Deterministic Conditional Simulation

Theorem ([Geffert&P ’10])
If L = NL then each n-state unary 2NFA can be simulated by an
equivalent 2DFA with poly(n) many states

Hence, proving the Sakoda&Sipser conjecture for unary
2NFAs would separate L and NL

What about the converse?

Later...

First we discuss a similar construction to make unary 2NFAs
unambiguous

(Nonuniform) Unambiguous Logspace

Theorem ([Reinhardt&Allender ’00])
NL ⊆ UL/poly

I UL/poly
class of languages accepted by unambiguous logspace
machines with a polynomial advice, i.e.,

I A sequence of strings {α(n) | n ≥ 0} of polynomial length
I With each input string x , the machine also receives

the advice string α(|x |)

Corollary

GAP ∈ UL/poly

x - �
��*

yes

HHHjno
α(|x |)

-
UGAP

Making Unary 2NFAs Unambiguous

Theorem ([Geffert&P ’10])
Each n-state unary 2NFA can be simulated by an equivalent
unambiguous 2NFA with poly(n) many states

Proof.

I Similar to the polynomial deterministic conditional simulation
I Hypothetical machine DGAP replaced with UGAP and advice

Given a 2NFA the size of G (m) (input of UGAP) is fixed
I Hence the advice is fixed (i.e., it does not depend on am)
I Advice encoded in the hardware of the simulating machine

-am

G
G (m)

-

DGAP

UGAP
��
�*yes

HHHjno
advice

-

Polynomial Deterministic Conditional Simulation

If L = NL then each n-state unary 2NFA can be simulated by an
equivalent 2DFA with poly(n) many states

What about the converse?

Polynomial Deterministic Conditional Simulation

I Since L ⊆ NL is known, the statement can be written as:

If L ⊇ NL then each n-state unary 2NFA can be simulated by
an equivalent 2DFA with poly(n) many states

I Ch. Kapoutsis observed that the proof does not use the
uniformity of L

I Hence L can be replaced by L/poly

If L/poly ⊇ NL then each n-state unary 2NFA can be simulated
by an equivalent 2DFA with poly(n) many states

I Since L ⊆ L/poly, the assumption is weaker
So the last statement is stronger

I We can prove the converse using GAP:
If the simulation of unary 2NFAs by 2DFAs is polynomial in
states then there is a deterministic logspace machine with a
polynomial advice which solves GAP

Solving GAP with Two-Way Automata
Binary Encoding: Languages BGAP

I Let n be a fixed integer
I GAPn denotes GAP restricted to graphs with vertex set

Vn = {0, . . . , n − 1}
I The binary encoding of a graph G = (Vn,E)

is the standard encoding of its adjacency matrix, i.e., a string
〈G 〉2 = x1x2 · · · xn2 ∈ {0, 1}n

2

with xi·n+j+1 = 1 if and only if (i , j) ∈ E

I BGAPn := {〈G 〉2 | G has a path from 0 to n − 1}
= {〈G 〉2 | G ∈ GAPn}

Solving GAP with Two-Way Automata
Recognizing BGAPn

Standard nondeterministic algorithm solving graph accessibility

i ← 0 // input head on the left endmarker
while i 6= n − 1 do

guess j 6= i // try the edge (i , j)
move to the input cell i · n + j + 1
if the input symbol is 0 then reject // (i , j) /∈ E
move the input head to the left endmarker
i ← j

endwhile
accept

I Implementation using O(n3) states

Solving GAP with Two-Way Automata
Unary Encoding: Languages UGAP

I Kn := complete directed graph with
vertex set Vn = {0, . . . , n − 1}

I With each edge (i , j) we associate
the prime number p(i ,j) = pi ·n+j+1

I A subgraph G = (Vn,E) of Kn is
encoded by the number

mG =
∏

(i ,j)∈E

p(i ,j)

and by the string 〈G 〉1 = amG

�
��
2 �
��

3

�
��
0 �
��

1

-

-
�

6�
�

�
�	

-
�

-
�

6

?

6

?�
�
�
���
�

�
�	

�

�
6

�

�
?

11

3

47

37

43 19
23 5

29

17

7

41

mG = 3·11·17·37·43
= 892551

I Conversely, a string am denotes the graph Kn(m) which
contains the edge (i , j) iff p(i ,j) divides m. Then G = Kn(mG)

I UGAPn := {am | Kn(m) has a path from 0 to n − 1}

Solving GAP with Two-Way Automata
Unary Encoding: Languages UGAP

I Kn := complete directed graph with
vertex set Vn = {0, . . . , n − 1}

I With each edge (i , j) we associate
the prime number p(i ,j) = pi ·n+j+1

I A subgraph G = (Vn,E) of Kn is
encoded by the number

mG =
∏

(i ,j)∈E

p(i ,j)

and by the string 〈G 〉1 = amG

�
��
2 �
��

3

�
��
0 �
��

1

-

-
�

6�
�

�
�	

-
�

-
�

6

?

6

?�
�
�
���
�

�
�	

�

�
6

�

�
?

11

3

47

37

43

19
23 5

29

17

7

41

mG = 3·11·17·37·43
= 892551

I Conversely, a string am denotes the graph Kn(m) which
contains the edge (i , j) iff p(i ,j) divides m. Then G = Kn(mG)

I UGAPn := {am | Kn(m) has a path from 0 to n − 1}

Solving GAP with Two-Way Automata
Recognizing UGAPn

Unary version of the algorithm for BGAPn

i ← 0 // input head on the left endmarker
while i 6= n − 1 do

guess j 6= i // try the edge (i , j)
scan the input string counting modulo p(i ,j)
if reminder 6= 0 then reject // (i , j) /∈ E
move the input head to the left endmarker
i ← j

endwhile
accept

I Implementation using O(n4 log n) states

Solving GAP with Two-Way Automata
Outline of the Construction

-G 〈 〉1
amG

- Bn
��
�*yes

HHHjno

I Suppose the conversion of unary 2NFAs into 2DFAs is
polynomial

I Let Bn be a 2DFA with poly(n) states recognizing UGAPn

I Given a graph G = (Vn,E), compute its unary encoding amG

and give it as input to Bn

I This decides whether or not G ∈ GAP

Solving GAP with Two-Way Automata
Outline of the Construction

-G 〈 〉1
amG

- Bn
��
�*yes

HHHjno

I Our goal:
a deterministic machine
working in logarithmic space
using a polynomial advice

I The input is the graph G , hence its size is n2

I The size of Bn is polynomial in n
I However representing amG would require too much space
I Hence, we use a different strategy to represent mG

Solving GAP with Two-Way Automata
Outline of the Construction

-G 〈 〉1
amG

- Bn
��
�*yes

HHHjno

Next steps
1. A different representation of mG :

prime encoding of input lengths
2. Replacing unary 2DFA inputs by prime encodings
3. Combining these things together to obtain a (nonuniform)

logspace deterministic machine solving GAP

Prime Encodings

and Graphs

Given an integer m:
I m = pα1

i1 ·p
α2
i2 · · ·p

αk
ik

decomposition as product of prime powers
I A prime encoding of m is a string

#z1#z2 · · ·#zk
where z1, z2, . . . , zk encode in an arbitrary order
pα1
i1 , p

α2
i2 , . . . , p

αk
ik

For simplicity:
I The factor zi can be seen also as a number
I Hence, m = z1 · z2 · · · zk

Prime Encodings and Graphs

Given an integer m:
I m = pα1

i1 ·p
α2
i2 · · ·p

αk
ik

decomposition as product of prime powers
I A prime encoding of m is a string

#z1#z2 · · ·#zk
where z1, z2, . . . , zk encode in an arbitrary order
pα1
i1 , p

α2
i2 , . . . , p

αk
ik

Given a graph G = (Vn,E):
I A prime encoding of mG =

∏
(i ,j)∈E

p(i ,j)

is a list of all primes p(i ,j) associated with the edges of G
I It can be computed in logarithmic space

by a deterministic transducer T
whose input is the adjacency matrix of G

Replacing Unary 2DFA Inputs by Prime Encodings

Given an s-state unary 2DFA B , we build an “equivalent’ 2DFA B ′:

B ′ inputs represent prime encodings of B inputs

I First, we replace B by a 2DFA M with O(s) states s.t.
I M is sweeping
I in each traversal M counts the input length modulo a number `
I L(B) and L(M) can be differ on strings of length < s0 ∈ O(s)

I On a prime encoding of an integer m, B ′ works in two phases:
1. B ′ checks if the input is “short”, i.e., m < s0
2. otherwise, B ′ on its input simulates M on am

I The number of states of B ′ is polynomial in s

Replacing Unary 2DFA Inputs by Prime Encodings
Phase 1: Detecting Short Inputs

I Given
am, input of B
#z1#z2 · · ·#zk , input of B ′, prime encoding of m

I For each t < s0, B ′ checks if m = t:
B ′ checks if each zi is a factor t
B ′ checks if each prime power in the factorization of t is
encoded by some zi

I If m = t for some t < s0 then the simulation stops,
accepting or rejecting according to a finite table

I This phase is implemented using O(s ·log2s) states

Replacing Unary 2DFA Inputs by Prime Encodings
Phase 2: Simulating the 2DFA M on Long Inputs

` a a a a a. . . a
6
p q

6r = m mod `-

m︷ ︸︸ ︷

In a sweep:
I M counts the input length modulo an integer `
I The value of ` depends only on the starting state p
I The ending state q depends on p and on r = m mod `

B ′ simulates the same sweep on input #z1#z2 · · ·#zk ,
a prime encoding of m

Replacing Unary 2DFA Inputs by Prime Encodings
Phase 2: Simulating the 2DFA M on Long Inputs

` # z1 # zk. . . a
6
p q

6r = m mod `-

m︷ ︸︸ ︷

I Since m = z1 · z2 · · · zk :

m mod ` = ((· · · ((z1 mod `) · z2) mod ` · · ·) · zk) mod `

I r is obtained using the following iteration:
r ← 1
while there is a next factor #z do

r ← (r · z) mod `
I The state q is derived from p and r
I All this phase can be implemented using O(s2) states

Solving GAP with Two-Way Automata
Combining All Together

-G

〈 〉1

T

amG

#z1· · ·#zk-

Bn

B ′n
��
�*yes

HHHjno

I We replace:
The machine which computes mG = 〈G 〉1 by a logspace
transducer T which outputs a prime encoding of mG
The unary 2DFA Bn by an “equivalent” 2DFA B ′n working on
prime encodings

I The resulting machine still decides whether G ∈ GAPn

I The symbols of #z1· · ·#zk are computed “on the fly”,
by restarting T each time B ′n needs them

Solving GAP with Two-Way Automata
Combining All Together

-G

〈 〉1

T

amG

#z1· · ·#zk-

Bn

B ′n
��
�*yes

HHHjno

I B ′n has number of states polyomial in n
I T works in space O(log n)

I Hence the resulting machine works in logarithmic space
I However, we did not provided B ′n is a constructive way

The existence of B ′n follows from the hypothesis that the
simulation of unary 2NFAs by 2DFAs is polynomial

I Hence the machine is nonuniform
B ′n is the advice

Solving GAP with Two-Way Automata
Combining All Together

-G

〈 〉1

T

amG

#z1· · ·#zk-

Bn

B ′n
��
�*yes

HHHjno

Since GAP is complete for NL we obtain:

Theorem
If each n-state unary 2NFA can be simulated by a 2DFA with a
polynomial number of states then L/poly ⊇ NL

Two-way Automata Characterizations of L/poly versus NL

2D: families of languages accepted by 2DFAs of polynomial size
2N: families of languages accepted by 2NFAs of polynomial size

2N/poly: restriction of 2N to instances of polynomial length
2N/unary: restriction of 2N to unary instances

Theorem ([Kapoutsis ’11, Kapoutsis&P ’11])
The following statements are equivalent:
1. L/poly ⊇ NL
2. 2D ⊇ 2N/poly
3. 2D ⊇ 2N/unary
4. 2D 3 BGAP
5. 2D 3 UGAP

Final Remarks

I The question of Sakoda and Sipser is very challenging

I In the investigation of restricted versions many interesting and
not artificial models have been considered

I The results obtained for restricted versions of the problem,
even if they do not solve the full problem, are nontrivial
and, in many cases, very deep

I Strong connections with open questions in structural
complexity

I Many times techniques used in space complexity can be
adapted for the investigation of automata and vice versa

	Preliminaries
	The Question of Sakoda and Sipser
	The Unary Case and the Relationships with L=?NL
	Conclusion

