
Descriptional Complexity and Regular Languages

Giovanni Pighizzini

Dipartimento di Informatica e Comunicazione
Università degli Studi di Milano

Université Nice Sophia Antipolis – May 19, 2011

Outline

Introduction: What is Descriptional Complexity?

The Question of Sakoda and Sipser

Unary Automata

Sadoka&Sipser Question vs L ?
= NL

Context-Free Grammars vs Regular Languages

Conclusion

A Classical Example:
Deterministic vs Nondeterministic Automata

Formal language point of view:
I The class of languages recognized by NFAs coincides with the

class of languages recognized by DFAs

Descriptional complexity point of view:
I Each n-state NFA can be simulated by a DFA with 2n states

[Rabin&Scott ’59]
I For each integer n there exists a language Ln s.t.:

I Ln is accepted by an n-state NFA
I the minimum DFA for Ln requires 2n states

[Meyer&Fischer ’71]
I Hence:

The exact cost, in terms of states, of the simulation
of NFAs by DFAs is 2n

Descriptional Complexity

Given
I C, a class of languages
I S, a formal system (e.g., class of devices, class of grammars,...)

able to represent all the languages in C

What is the size of the representations of the languages in C
by the system S?

Descriptional complexity compares different descriptions of a same
class of languages:

I given S ′, another formal system able to represent all the
languages in C:

Find the relationships between the sizes of the
representations in the system S and in the system S ′

of the languages belonging to C

Finite State Automata

i n p u t. . .

6 -�

Base version:
one-way deterministic finite automata (1DFA)

I one-way input tape
I deterministic transitions

Possibile variants allowing:
I nondeterministic transitions

one-way nondeterministic finite automata (1NFA)
I input head moving forth and back

two-way deterministic finite automata (2DFA)
two-way nondeterministic finite automata (2NFA)

I alternation
I ...

Two-Way Automata: Technical Details

` i n p u t. . . a
6� -

I Input surrounded by the endmarkers ` and a
I Transition function δ : Q × (Σ ∪ {`,a})→ 2Q×{−1,0,+1}

where −1, 0,+1 are the possible movements of the input head
I w ∈ Σ∗ accepted iff there is a computation

with input tape ` w a
from the initial state q0, scanning the left endmarker `
reaching a final state

1DFA, 1NFA, 2DFA, 2NFA

What about the power of these models?

They share the same computational power, namely they
characterize the class of regular languages, however...

...some of them are more succinct

Example: L = (a + b)∗a(a + b)n−1

I L is accepted by a 1NFA with n + 1 states

����q0 ����q1 ����q2 ����q3 ����qn���@@R
-a -a, b -a, b -a, b

�
�
�
-

a, b

I The minimum 1DFA accepting L requires 2n states
I We can get a deterministic automaton for L with n + 2 states,

which reverses the input head direction just one time
I Hence L is accepted by

a 1NFA and a 2DFA with approx. the same number of states
a minimum 1DFA exponentially larger

Example: L = (a + b)∗a(a + b)n−1a(a + b)∗

I L is accepted by a 1NFA with n + 2 states

����q0 ����q1 ����q2 ����q3 ����qn ����qf���@@R
-a -a, b -a, b -a, b -a��- a, b ��- a, b

I The minimum 1DFA accepting L uses 3 · 2n−1 + 1 states
I Using head reversals the number of states becomes linear
I Even in this case L is accepted by

a 1NFA and a 2DFA with linearly related numbers of states
a minimum 1DFA exponentially larger

Example: L = (a + b)∗a(a + b)n−1a(a + b)∗

` b b a b a a b a a a a n = 4

while input symbol 6= a do move to the right
move n squares to the right
if input symbol = a then accept

else move n − 1 cells to the left
repeat from the first step

Exception: if input symbol =a then reject

I This can be implemented by a 2DFA with O(n) states
I By a different algorithm, L can be also accepted by a 2DFA

with O(n) states which changes the direction of its input head
only at the endmarkers (a sweeping automaton)

Costs of the Optimal Simulations Between Automata

1DFA

1NFA 2DFA 2NFA

@
@
@
@
@
@
@R ?

�
�

�
�

�
�
�	

2n O(2n log n) O(2n2
)

-? � ?

[Rabin&Scott ’59, Shepardson ’59, Meyer&Fischer ’71, . . .]

Question

How much the possibility of moving the input head
forth and back is useful to eliminate the nondeterminism?

Costs of the Optimal Simulations Between Automata

1DFA

1NFA 2DFA 2NFA

@
@
@
@
@
@
@R ?

�
�

�
�

�
�
�	

2n O(2n log n) O(2n2
)

-? � ?

Problem ([Sakoda&Sipser ’78])
Do there exist polynomial simulations of

I 1NFAs by 2DFAs
I 2NFAs by 2DFAs ?

Conjecture

These simulations
are not polynomial

Sakoda&Sipser Question: Lower Bounds

Polynomial lower bounds for the cost c(n) of simulation of 1NFAs
by 2DFAs:

I c(n) ∈ Ω(n2

log n) [Berman&Lingas ’77]

I c(n) ∈ Ω(n2) [Chrobak ’86]

Exponential lower bounds for the simulation of 2NFAs by 2DFAs,
for special classes of resulting machines:

I sweeping automata [Sipser ’80]
I oblivious automata [Hromkovic̆&Schnitger ’03]
I “few reversal” automata [Kapoutsis ’11]

Sweeping Automata

Definition (Sweeping Automata)

A two-way automaton A is said to be sweeping if and only if

I A is deterministic
I the input head of A can change direction only at the

endmarkers

Each computation is a sequence of complete traversals of the input

I Sweeping automata can be exponentially larger than 1NFAs
[Sipser ’80]

I However, they can be also exponentially larger than 2DFAs
[Berman ’81, Micali ’81]

“Few Reversal” Automata [Kapoutsis ’11]

Definition (Few Reversal Automata)

A two-way automaton A makes few reversals if and only if the
number of reversals on input of length n is o(n)

Model between sweeping automata (O(1) reversals) and 2NFAs

Theorem ([Kapoutsis ’11])

I Few reversal DFAs can be exponentially larger
than few reversal NFAs and, hence, than 2NFAs

I Sweeping automata can be exponentially larger
than few reversal DFAs

I Few reversal DFAs can be exponentially larger
than 2DFAs

Hence, this result really extends Sipser’s separation,
but does not solve the full problem

Sakoda&Sipser Question

Problem ([Sakoda&Sipser ’78])
Do there exist polynomial simulations of

I 1NFAs by 2DFAs
I 2NFAs by 2DFAs ?

Another possible restriction:

The unary case #Σ = 1

Optimal Simulation Between Unary Automata

The costs of the optimal simulations between automata are
different in the unary and in the general case

2DFA

1DFA 1NFA

2NFA

�
eΘ(
√

n ln n)

6

eΘ(
√

n ln n)

@
@
@

@
@
@

@
@I

eΘ(
√

n ln n)

�

�
?

eΘ(
√

n ln n)

6

eΘ(
√

n ln n)

�

!�6 n2

�
?

[Chrobak ’86,
Mereghetti&Pighizzini ’01]

Optimal Simulation Between Unary Automata

The costs of the optimal simulations between automata are
different in the unary and in the general case

2DFA

1DFA 1NFA

2NFA

�
eΘ(
√

n ln n)

6

eΘ(
√

n ln n)

@
@
@

@
@
@

@
@I

eΘ(
√

n ln n)

�

�
?

eΘ(
√

n ln n)

6

eΘ(
√

n ln n)

�

!�6 n2

�
?

1NFA → 2DFA
In the unary case
this question is solved!
(polynomial conversion)

Optimal Simulation Between Unary Automata

The costs of the optimal simulations between automata are
different in the unary and in the general case

2DFA

1DFA 1NFA

2NFA

�
eΘ(
√

n ln n)

6

eΘ(
√

n ln n)

@
@
@

@
@
@

@
@I

eΘ(
√

n ln n)

�

�
?

eΘ(
√

n ln n)

6

eΘ(
√

n ln n)

�

!�6 n2

�
?

2NFA → 2DFA
Even in the unary case
this question is open!

I eΘ(
√

n ln n) upper bound
(from 2NFA → 1DFA)

I Ω(n2) lower bound
(from 1NFA → 2DFA)

A better upper bound eO(ln2 n)

has been proved!

Sakoda&Sipser Question: Current Knowledge

I Upper bounds

unary case

general case

1NFA→ 2DFA 2NFA→ 2DFA

O(n2) eO(ln2 n)

optimal

exponential exponential

Unary case [Chrobak ’86, GeffertMereghetti&Pighizzini ’03]

I Lower Bounds
In all the cases, the best known lower bound is Ω(n2)
[Chrobak ’86]

Unary Case: Quasi Sweeping Automata
[GeffertMereghetti&Pighizzini ’03]

In the study of unary 2NFA, sweeping automata with some
restricted nondeterministic capabilities turn out to be very useful:

Definition
A 2NFA is quasi sweeping (qsNFA) iff both

I nondeterministic choices and head reversals
are possible only at the endmarkers

Theorem (Quasi Sweeping Simulation)

Each n-state unary 2NFA A can be transformed into a 2NFA M s.t.
I M is quasi sweeping
I M has at most N ≤ 2n + 2 states
I M and A are “almost equivalent”

(differences are possible only for inputs of length ≤ 5n2)

Quasi Sweeping Simulation: Consequences

Several results using quasi sweeping simulation of unary 2NFAs
have been found:

(i) Subexponential simulation of unary 2NFAs by 2DFAs
Each unary n-state 2NFA can be simulated by a 2DFA
with eO(ln2 n) states [GeffertMereghetti&Pighizzini ’03]

(ii) Polynomial complementation of unary 2NFAs
Inductive counting argument for qsNFAs
[GeffertMereghetti&Pighizzini ’07]

(iii) Polynomial simulation of unary 2NFAs by 2DFAs
under the condition L = NL

(iv) Polynomial simulation of unary 2NFAs by unambiguous 2NFAs
(unconditional)

We are going to discuss (iii) and (iv) [Geffert&Pighizzini ’10]

Logspace Classes and Graph Accessibility Problem

L: class of languages accepted in logarithmic space
by deterministic machines

NL: class of languages accepted in logarithmic space
by nondeterministic machines

Problem
L ?

= NL

Graph Accessibility Problem GAP
I Given G = (V ,E) oriented graph, s, t ∈ V
I Decide whether or not G contains a path from s to t

Theorem ([Jones ’75])
GAP is complete for NL

Hence GAP ∈ L iff L = NL

Polynomial Deterministic Simulation (under L = NL)
Outline

From now on, we fix an n-state unary 2NFA A

I We give a reduction from L(A) to GAP
i.e, for each input string am we define a graph G (m) s.t.

am ∈ L(A) ⇐⇒ G (m) ∈ GAP

I Under the hypothesis L = NL
this reduction will be used to build 2DFA equivalent to A,
with a number of states polynomial in n

I Actually we do not work directly with A:
we use the qsNFA M obtained from A
according to the quasi sweeping simulation

The graph G (m)

` a a a a a. . . a
6
p q

6
-

m︷ ︸︸ ︷

Given the qsNFA M with N states and an input am

the graph G (m) is defined as:
I the vertices are the states of M
I (p, q) is an edge iff M can traverse the input

from one endmarker in the state p
to the opposite endmarker in the state q
without visiting the endmarkers in the meantime

Then
am ∈ L(M) iff G (m) contains a path from q0 to qF

The existence of the edge (p, q) can be verified by a finite
automaton Ap,q with N states

Polynomial Deterministic Simulation (under L = NL)

-am

G
G (m)

- DGAP
�
��*

yes

H
HHjno

I Suppose L = NL
I Let DGAP be a logspace bounded deterministic machine

solving GAP
I On input am, compute G (m) and give the resulting graph as

input to DGAP

I This decides whether or not am ∈ L(M)

Polynomial Deterministic Simulation (under L = NL)

-am

G
G (m)

- DGAP
�
��*

yes

H
HHjno

I The graph G (m) has N vertices, the number of states of M
I DGAP uses space O(logN)

I M is fixed. Hence N is constant, independent on the input am

The worktape of DGAP can be encoded in a finite
control using a number of states polynomial in N

I The graph G (m) can be represented with N2 bits

Representing the graph in a finite control would
require exponentially many states

I To avoid this, input bits for DGAP are computed “on demand”

Polynomial Deterministic Simulation (under L = NL)

-am

G
G (m)

- DGAP
�
��*

yes

H
HHjno

We define a unary 2DFA M ′ equivalent to M

I M ′ keeps in its finite control:
The input head position of DGAP
The worktape content of DGAP
The finite control of DGAP

I This uses a number of states polynomial in N

Polynomial Deterministic Simulation (under L = NL)

-am

G
G (m)

- DGAP
�
��*

yes

H
HHjno

We define a unary 2DFA M ′ equivalent to M
I On input am, M ′ simulates DGAP on input G (m)

I Input bits for DGAP are the entries of G (m) adjacency matrix
I Subroutine Ap,q, using N states, computes the input bit

corresponding to (p, q)

I Considering all possible (p, q), this part uses at most N3 states

Summing Up...

We described the following simulation:

I M is almost equivalent to the original 2NFA A
I Hence, M ′ is almost equivalent to A
I Possible differences for input length ≤ 5n2

I They can be fixed in a preliminary scan (5n2 + 2 more states)
I The resulting automaton has polynomially many states

A given unary 2NFA n states
⇓ Quasi Sweeping Simulation
M qsNFA almost equivalent to A N ≤ 2n + 2 states
⇓ Deterministic Simulation
M ′ 2DFA equivalent to M poly(N) states

Preliminary scan to accept/reject inputs of length ≤ 5n2
⇓

then simulation of M ′ for longer inputs
M ′′ 2DFA equivalent to A poly(n) states

Polynomial Deterministic Conditional Simulation

Theorem ([Geffert&Pighizzini ’10])
If L = NL then each n-state unary 2NFA can be simulated by an
equivalent 2DFA with a polynomial number of states

Hence
Proving the Sakoda&Sipser conjecture for unary 2NFAs
would separate L and NL

Another condition:

Theorem ([Berman&Lingas ’77])
If L = NL then there exists a polynomial p s.t.
for each m > 0 and k-state 2NFA A,
there exists a p(mk)-state 2DFA A′ s.t.
L(A′) ⊆ L(A) and L(A) ∩ Σ≤m = L(A′) ∩ Σ≤m

Further relationships with logspace complexity in [Kapoutsis ’11]

What About the Converse?

Question

Does a polynomial simulation of unary 2NFAs by 2DFAs imply
L = NL?

I The answer is positive, under an additional assumption:
The transformation from unary 2NFAs to 2DFAs
must be computable in deterministic logspace

I Under this assumption, the answer is positive even restricting
to the simulation of unary 1NFAs by 2DFAs:

Theorem
If there exists a deterministic logspace bounded transducer
transforming each n-state unary 1NFA into an equivalent
nO(1)-state 2DFA then L = NL

Unambiguous Logspace (Nonuniform)

Theorem ([Reinhardt&Allender ’00])
NL ⊆ UL/poly

I UL/poly
class of languages accepted by unambiguous logspace
machines with a polynomial advice, i.e.,

I A sequence of strings {α(n) | n ≥ 0} of polynomial length
I With each input string x , the machine also receives

the advice string α(|x |)

Corollary

GAP ∈ UL/poly

x - �
��*

yes

HHHjno
α(|x |)

-
UGAP

Making Unary 2NFAs Unambiguous

Theorem ([Geffert&Pighizzini ’10])
Each n-state unary 2NFA can be simulated by an equivalent
unambiguous 2NFA with a polynomial number of states

Proof.

I Similar to the polynomial deterministic conditional simulation
I Hypothetical machine DGAP replaced with UGAP and advice

Given a 2NFA the size of G (m) (input of UGAP) is fixed
I Hence the advice is fixed (i.e., it does not depend on am)
I Advice encoded in the hardware of the simulating machine

-am

G
G (m)

-

DGAP

UGAP
�
��*

yes

H
HHjno

advice

-

Descriptional Complexity of Regular Languages

I Different variants of finite automata characterize regular
languages

I However, we can describe regular languages using more
powerful formalisms or devices, as context-free grammars and
pushdown automata

What about the sizes of CFGs or PDAs describing regular
languages vs the sizes of finite automata?

Descriptional Complexity Measures

I Context-free grammars:
number of variables?

For n ≥ 1, consider the language Ln = (an)∗:
I Ln requires n states to be accepted by 1DFAs or 1NFAs
I Ln is generated by the grammar with one variable S and the

productions
S → anS S → ε

I Thus, the number of variables cannot be a descriptional
complexity measure for context-free grammars.

I However, for grammars in Chomsky Normal Form the number
of variables is a “reasonable” measure of complexity
[Gruska ’73]

Context-Free vs Regular: Descriptional Complexity

Given a context-free grammar of size n, generating a regular
language, how much is big an equivalent finite automaton, wrt n ?

Theorem ([Meyer&Fischer ’71])
For any recursive function f and arbitrarily large integers n,
there exists a CFG of size n generating a regular language L,
s.t. any DFA accepting L must have at least f (n) states

Then:

the trade-off between CFG and finite automata is not recursive

However...

the witness language is defined over a binary alphabet

What about unary languages?

CFGs vs Automata: Unary Case

Theorem ([Ginsburg&Rice, ’62])
Every unary context-free language is regular

What about descriptional complexity?

Theorem ([Pighizzini Shallit&Wang ’02])
Given a unary CFG in Chomsky normal form with h variables, there
exist:

I an equivalent 1NFA with at most 22h−1 + 1 states
I an equivalent 1DFA with at most 2h2

states
These bounds are tight, namely, matching lower bound have been
obtained.

Final considerations

I Many results in formal language theory have been revisited and
refined considering descriptional complexity aspects

I Having descriptions of small size can be very interesting for
many applications
(e.g., small circuits and programs for portable devices)

I There are strong connections between descriptional complexity
and structural complexity
(e.g., Sakoda and Sipser question and L vs NL question,
machine simulations, similar techniques as crossing sequences,
inductive counting, Savitch simulation,...)

I Other complexity measure deserve further investigation
(e.g., ambiguity degrees, measures of nondeterminism)

Final considerations

I We discussed only a few aspects related to descriptional
complexity of regular languages

I Many other aspects have been investigated
I Probably the first paper in the area:

A.R. Meyer, M.J. Fischer:
Economy of Description by Automata, Grammars, and Formal
Systems, FOCS 1971, 188–191

I An intersting survey:
J. Goldstine, M. Kappes, C.M.R. Kintala, H. Leung,
A. Malcher, D. Wotschke:
Descriptional Complexity of Machines with Limited Resources,
J. Universal Comp. Science 8(2): 193–234 (2002)

I Annnual international worskhop on descriptional complexity
Descriptional Complexity of Formal Systems (DCFS)

Limburg, Germany, July 25-27, 2011.

	Introduction: What is Descriptional Complexity?
	The Question of Sakoda and Sipser
	Unary Automata
	Sadoka&Sipser Question vs L=?NL
	Context-Free Grammars vs Regular Languages
	Conclusion

