
Risultati recenti intorno al problema
di Sakoda e Sipser

Giovanni Pighizzini

Dipartimento di Informatica e Comunicazione
Università degli Studi di Milano

Milano, 20 ottobre 2011

Outline

Preliminaries

The Question of Sakoda and Sipser

Restricted 2DFAs

The Unary Case

Sadoka&Sipser Question vs Logarithmic Space

Restricted 2NFAs

Conclusion

Finite State Automata

i n p u t. . .

6 -�

Base version:
one-way deterministic finite automata (1DFA)

I one-way input tape
I deterministic transitions

Possibile variants allowing:
I nondeterministic transitions

one-way nondeterministic finite automata (1NFA)
I input head moving forth and back

two-way deterministic finite automata (2DFA)
two-way nondeterministic finite automata (2NFA)

I alternation
I ...

Two-Way Automata: Technical Details

` i n p u t. . . a
6� -

I Input surrounded by the endmarkers ` and a
I Transition function δ : Q × (Σ ∪ {`,a})→ 2Q×{−1,0,+1}

where −1, 0,+1 are the possible movements of the input head
I w ∈ Σ∗ accepted iff there is a computation

with input tape ` w a
from the initial state q0, scanning the left endmarker `
reaching a final state

1DFA, 1NFA, 2DFA, 2NFA

What about the power of these models?

They share the same computational power, namely they
characterize the class of regular languages, however...

...some of them are more succinct

Example: L = (a + b)∗a(a + b)n−1

I L is accepted by a 1NFA with n + 1 states

����q0 ����q1 ����q2 ����q3 ����qn�
��@@R
-a -a, b -a, b -a, b

�
�
�
-

a, b

I The minimum 1DFA accepting L requires 2n states
I We can get a deterministic automaton for L with n + 2 states,

which reverses the input head direction just one time
I Hence L is accepted by

a 1NFA and a 2DFA with approx. the same number of states
a minimum 1DFA exponentially larger

Example: L = (a + b)∗a(a + b)n−1a(a + b)∗

I L is accepted by a 1NFA with n + 2 states

����q0 ����q1 ����q2 ����q3 ����qn ����qf�
��@@R
-a -a, b -a, b -a, b -a
��- a, b
��- a, b

I The minimum 1DFA accepting L uses 3 · 2n−1 + 1 states
I Using head reversals the number of states becomes linear
I Even in this case L is accepted by

a 1NFA and a 2DFA with linearly related numbers of states
a minimum 1DFA exponentially larger

Example: L = (a + b)∗a(a + b)n−1a(a + b)∗

` b b a b a a b a a a a n = 4

while input symbol 6= a do move to the right
move n squares to the right
if input symbol = a then accept

else move n − 1 cells to the left
repeat from the first step

Exception: if input symbol =a then reject

I This can be implemented by a 2DFA with O(n) states
I By a different algorithm, L can be also accepted by a 2DFA

with O(n) states which changes the direction of its input head
only at the endmarkers (a sweeping automaton)

Costs of the Optimal Simulations Between Automata

1DFA

1NFA 2DFA 2NFA

@
@
@
@
@
@
@R ?

�
�

�
�

�
�
�	

2n O(2n log n) O(2n2
)

-? � ?

[Rabin&Scott ’59, Shepardson ’59, Meyer&Fischer ’71, . . .]

Question

How much the possibility of moving the input head
forth and back is useful to eliminate the nondeterminism?

Costs of the Optimal Simulations Between Automata

1DFA

1NFA 2DFA 2NFA

@
@
@
@
@
@
@R ?

�
�

�
�

�
�
�	

2n O(2n log n) O(2n2
)

-? � ?

Problem ([Sakoda&Sipser ’78])
Do there exist polynomial simulations of

I 1NFAs by 2DFAs
I 2NFAs by 2DFAs ?

Conjecture

These simulations
are not polynomial

Sakoda&Sipser Question: Upper and Lower Bounds

I Exponential upper bounds
deriving from the simulations of 1NFAs and 2NFAs by 1DFAs

I Polynomial lower bounds
for the cost c(n) of simulation of 1NFAs by 2DFAs:

c(n) ∈ Ω(n2

log n) [Berman&Lingas ’77]
c(n) ∈ Ω(n2) [Chrobak ’86]

I Complete languages
...

Sakoda and Sipser question

I Very difficult in its general form
I Not very encouraging obtained results:

Lower and upper bounds too far
(Polynomial vs exponential)

I Hence:
Try to attack restricted versions of the problem!

2NFAs vs 2DFAs: restricted versions

(i) Restrictions on the resulting machines (2DFAs)
I sweeping automata [Sipser ’80]
I oblivious automata [Hromkovič&Schnitger ’03]
I “few reversal” automata [Kapoutsis ’11]

(ii) Restrictions on the languages
I unary regular languages [GeffertMereghetti&P ’03]

(iii) Restrictions on the starting machines (2NFAs)
I outer nondeterministic automata [Geffert Guillon&P ’11]

Sweeping Automata

Definition (Sweeping Automata)

A two-way automaton A is said to be sweeping if and only if

I A is deterministic
I the input head of A can change direction only at the

endmarkers

Each computation is a sequence of complete traversals of the input

I Sweeping automata can be exponentially larger than 1NFAs
[Sipser ’80]

I However, they can be also exponentially larger than 2DFAs
[Berman ’81, Micali ’81]

Oblivious automata

Definition
A two-way automaton A is said to be oblivious if and only if

I A is deterministic, and
I for each integer n, the “trajectory” of the input head is the

same for all inputs of length n

Each sweeping automaton can be made oblivious with at most a
quadratic growth of the number of the states

Oblivious automata

I Oblivious automata can be exponentially larger than 2NFAs
[Hromkovič&Schnitger ’03]

I Oblivious automata can be exponentially smaller than
sweeping automata:

Lk = ({uv | u, v ∈ {a, b}k and u 6= v}#)∗

Lk is accepted by an oblivious automaton with O(k) states
[KutribMalcher&P ’11]

each sweeping automaton for Lk requires at least 2
k−1

2 states
[Hromkovič&Schnitger ’03]

I Oblivious automata can be exponentially larger than 2DFAs
Witness: PAD(Lk) =

⋃
a1a2...am∈Lk

$∗a1$∗a2$∗ · · · $∗am$∗

[KutribMalcher&P ’11]

“Few Reversal” Automata [Kapoutsis ’11]

Definition (Few Reversal Automata)

A two-way automaton A makes few reversals if and only if the
number of reversals on input of length n is o(n)

Model between sweeping automata (O(1) reversals) and 2NFAs

Theorem ([Kapoutsis ’11])

I Few reversal DFAs can be exponentially larger
than few reversal NFAs and, hence, than 2NFAs

I Sweeping automata can be exponentially larger
than few reversal DFAs

I Few reversal DFAs can be exponentially larger
than 2DFAs

Hence, this result really extends Sipser’s separation,
but does not solve the full problem

Sakoda&Sipser Question

Problem ([Sakoda&Sipser ’78])
Do there exist polynomial simulations of

I 1NFAs by 2DFAs
I 2NFAs by 2DFAs ?

Another possible restriction:

The unary case #Σ = 1

Optimal Simulation Between Unary Automata

The costs of the optimal simulations between automata are
different in the unary and in the general case

2DFA

1DFA 1NFA

2NFA

�
eΘ(
√

n ln n)

6

eΘ(
√

n ln n)

@
@
@

@
@
@

@
@I

eΘ(
√

n ln n)

�

�
?

eΘ(
√

n ln n)

6

eΘ(
√

n ln n)

�

!�6 n2

�
?

[Chrobak ’86, Mereghetti&P ’01]

Optimal Simulation Between Unary Automata

The costs of the optimal simulations between automata are
different in the unary and in the general case

2DFA

1DFA 1NFA

2NFA

�
eΘ(
√

n ln n)

6

eΘ(
√

n ln n)

@
@
@

@
@
@

@
@I

eΘ(
√

n ln n)

�

�
?

eΘ(
√

n ln n)

6

eΘ(
√

n ln n)

�

!�6 n2

�
?

1NFA → 2DFA
In the unary case
this question is solved!
(polynomial conversion)

Optimal Simulation Between Unary Automata

The costs of the optimal simulations between automata are
different in the unary and in the general case

2DFA

1DFA 1NFA

2NFA

�
eΘ(
√

n ln n)

6

eΘ(
√

n ln n)

@
@
@

@
@
@

@
@I

eΘ(
√

n ln n)

�

�
?

eΘ(
√

n ln n)

6

eΘ(
√

n ln n)

�

!�6 n2

�
?

2NFA → 2DFA
Even in the unary case
this question is open!

I eΘ(
√

n ln n) upper bound
(from 2NFA → 1DFA)

I Ω(n2) lower bound
(from 1NFA → 2DFA)

A better upper bound eO(ln2 n)

has been proved!

Sakoda&Sipser Question: Current Knowledge

I Upper bounds

unary case

general case

1NFA→ 2DFA 2NFA→ 2DFA

O(n2) eO(ln2 n)

optimal

exponential exponential

Unary case [Chrobak ’86, GeffertMereghetti&P ’03]

I Lower Bounds
In all the cases, the best known lower bound is Ω(n2)
[Chrobak ’86]

Unary Case: Quasi Sweeping Automata
[GeffertMereghetti&P ’03]

In the study of unary 2NFA, sweeping automata with some
restricted nondeterministic capabilities turn out to be very useful:

Definition
A 2NFA is quasi sweeping (qsNFA) iff both

I nondeterministic choices and head reversals
are possible only at the endmarkers

Theorem (Quasi Sweeping Simulation)

Each n-state unary 2NFA A can be transformed into a 2NFA M s.t.
I M is quasi sweeping
I M has at most N ≤ 2n + 2 states
I M and A are “almost equivalent”

(differences are possible only for inputs of length ≤ 5n2)

Quasi Sweeping Simulation: Consequences

Several results using quasi sweeping simulation of unary 2NFAs
have been found:

(i) Subexponential simulation of unary 2NFAs by 2DFAs
Each unary n-state 2NFA can be simulated by a 2DFA
with eO(ln2 n) states [GeffertMereghetti&P ’03]

(ii) Polynomial complementation of unary 2NFAs
Inductive counting argument for qsNFAs
[GeffertMereghetti&P ’07]

(iii) Polynomial simulation of unary 2NFAs by 2DFAs
under the condition L = NL

(iv) Polynomial simulation of unary 2NFAs by unambiguous 2NFAs
(unconditional)

We are going to discuss (iii) and (iv) [Geffert&P ’10]

Logspace Classes and Graph Accessibility Problem

L: class of languages accepted in logarithmic space
by deterministic machines

NL: class of languages accepted in logarithmic space
by nondeterministic machines

Problem
L ?

= NL

Graph Accessibility Problem GAP
I Given G = (V ,E) oriented graph, s, t ∈ V
I Decide whether or not G contains a path from s to t

Theorem ([Jones ’75])
GAP is complete for NL

Hence GAP ∈ L iff L = NL

Polynomial Deterministic Simulation (under L = NL)
Outline

From now on, we fix an n-state unary 2NFA A

I We give a reduction from L(A) to GAP
i.e, for each input string am we define a graph G (m) s.t.

am ∈ L(A) ⇐⇒ G (m) ∈ GAP

I Under the hypothesis L = NL
this reduction will be used to build 2DFA equivalent to A,
with a number of states polynomial in n

I Actually we do not work directly with A:
we use the qsNFA M obtained from A
according to the quasi sweeping simulation

The graph G (m)

` a a a a a. . . a
6
p q

6
-

m︷ ︸︸ ︷

Given the qsNFA M with N states and an input am

the graph G (m) is defined as:
I the vertices are the states of M
I (p, q) is an edge iff M can traverse the input

from one endmarker in the state p
to the opposite endmarker in the state q
without visiting the endmarkers in the meantime

Then
am ∈ L(M) iff G (m) contains a path from q0 to qF

The existence of the edge (p, q) can be verified by a finite
automaton Ap,q with N states

Polynomial Deterministic Simulation (under L = NL)

-am

G
G (m)

- DGAP
�
��*

yes

H
HHjno

I Suppose L = NL
I Let DGAP be a logspace bounded deterministic machine

solving GAP
I On input am, compute G (m) and give the resulting graph as

input to DGAP

I This decides whether or not am ∈ L(M)

Polynomial Deterministic Simulation (under L = NL)

-am

G
G (m)

- DGAP
�
��*

yes

H
HHjno

I The graph G (m) has N vertices, the number of states of M
I DGAP uses space O(logN)

I M is fixed. Hence N is constant, independent on the input am

The worktape of DGAP can be encoded in a finite
control using a number of states polynomial in N

I The graph G (m) can be represented with N2 bits

Representing the graph in a finite control would
require exponentially many states

I To avoid this, input bits for DGAP are computed “on demand”

Polynomial Deterministic Simulation (under L = NL)

-am

G
G (m)

- DGAP
�
��*

yes

H
HHjno

We define a unary 2DFA M ′ equivalent to M

I M ′ keeps in its finite control:
The input head position of DGAP
The worktape content of DGAP
The finite control of DGAP

I This uses a number of states polynomial in N

Polynomial Deterministic Simulation (under L = NL)

-am

G
G (m)

- DGAP
�
��*

yes

H
HHjno

We define a unary 2DFA M ′ equivalent to M
I On input am, M ′ simulates DGAP on input G (m)

I Input bits for DGAP are the entries of G (m) adjacency matrix
I Subroutine Ap,q, using N states, computes the input bit

corresponding to (p, q)

I Considering all possible (p, q), this part uses at most N3 states

Summing Up...

We described the following simulation:

I M is almost equivalent to the original 2NFA A
I Hence, M ′ is almost equivalent to A
I Possible differences for input length ≤ 5n2

I They can be fixed in a preliminary scan (5n2 + 2 more states)
I The resulting automaton has polynomially many states

A given unary 2NFA n states
⇓ Quasi Sweeping Simulation
M qsNFA almost equivalent to A N ≤ 2n + 2 states
⇓ Deterministic Simulation
M ′ 2DFA equivalent to M poly(N) states

Preliminary scan to accept/reject inputs of length ≤ 5n2
⇓

then simulation of M ′ for longer inputs
M ′′ 2DFA equivalent to A poly(n) states

Polynomial Deterministic Conditional Simulation

Theorem ([Geffert&P ’10])
If L = NL then each n-state unary 2NFA can be simulated by an
equivalent 2DFA with poly(n) many states

Hence
Proving the Sakoda&Sipser conjecture for unary 2NFAs
would separate L and NL

Unambiguous Logspace (Nonuniform)

Theorem ([Reinhardt&Allender ’00])
NL ⊆ UL/poly

I UL/poly
class of languages accepted by unambiguous logspace
machines with a polynomial advice, i.e.,

I A sequence of strings {α(n) | n ≥ 0} of polynomial length
I With each input string x , the machine also receives

the advice string α(|x |)

Corollary

GAP ∈ UL/poly

x - �
��*

yes

HHHjno
α(|x |)

-
UGAP

Making Unary 2NFAs Unambiguous

Theorem ([Geffert&P ’10])
Each n-state unary 2NFA can be simulated by an equivalent
unambiguous 2NFA with poly(n) many states

Proof.

I Similar to the polynomial deterministic conditional simulation
I Hypothetical machine DGAP replaced with UGAP and advice

Given a 2NFA the size of G (m) (input of UGAP) is fixed
I Hence the advice is fixed (i.e., it does not depend on am)
I Advice encoded in the hardware of the simulating machine

-am

G
G (m)

-

DGAP

UGAP
��
�*yes

HHHjno
advice

-

Polynomial Deterministic Conditional Simulation

If L = NL then each n-state unary 2NFA can be simulated by an
equivalent 2DFA with poly(n) many states

What about the converse?

Polynomial Deterministic Conditional Simulation

Question

Does a polynomial simulation of unary 2NFAs by 2DFAs imply
L = NL?

I The answer is positive, under an additional assumption:
The transformation from unary 2NFAs to 2DFAs
must be computable in deterministic logspace

I Under this assumption, the answer is positive even restricting
to the simulation of unary 1NFAs by 2DFAs:

Theorem
If there exists a deterministic logspace bounded transducer
transforming each n-state unary 1NFA into an equivalent
nO(1)-state 2DFA then L = NL

Polynomial Deterministic Conditional Simulation

If L ⊇ NL then each n-state unary 2NFA can be simulated by an
equivalent 2DFA with poly(n) many states

Ch. Kapoutsis observed that the proof works also for the
nonuniform version of L:

Theorem
If L/poly ⊇ NL then each n-state unary 2NFA can be simulated by
an equivalent 2DFA with poly(n) many states

Note: L ⊆ L/poly hence the assumption is weaker

We proved the converse of the last statement. Hence:

Theorem ([Kapoutsis&P ’11])
L/poly ⊇ NL iff
each n-state unary 2NFA can be simulated by an equivalent 2DFA
with poly(n) many states

Outline of the proof (1/4)
The “hardest” language

I Kn := complete directed graph with
vertices {0, . . . , n − 1}

I With each edge (i , j) we associate
a different prime number p(i ,j) �
��2 �
��3

�
��0 �
��1
-

�

-
�

6

?

6

?�
�
�
���
�

�
�	

�

�
6

�

�
?

3

2

7

5

11 13
17 19

23

29

31

37

I We define a unary 2NFA An s.t.
the states visited at the endmarkers are (copies of) 0, . . . , n− 1
an input am can be traversed from the state i at one endmarker
to the state j at the opposite endmarker iff p(i,j) divides m
the initial and the final states are 0 and n − 1, respectively

I Choosing small different primes,
An can be implemented with O(n4 log n) states

Outline of the proof (2/4)
The “hardest” language

I Let Hn = L(An) be the language accepted by An. Then:
I am ∈ Hn iff there is a path

0 = i0
p(i0,i1)

−→ i1
p(i1,i2)

−→ · · ·
p(ik−1,ik)

−→ ik = n − 1

s.t. m is a multiple of all p(ij−1,ij), for j = 1, . . . , k

Example: m = 580
I 580 is a multiple of 2, 5, 29
I a580 is accepted along the path

0 2−→ 1 29−→ 2 5−→ 3

I Even 9570 is a multiple of those
numbers, hence a9570 is accepted
along the same path

�
��2 �
��3
�
��0 �
��1

-
�

-
�

6

?

6

?�
�
�
���
�

�
�	

�

�
6

�

�
?

3

2

7

5

11 13
17 19

23

29

31

37

Outline of the proof (3/4)
From GAP to the “hardest” language

Given G = ({0, . . . , n − 1},E),
we encode it by the number:

mG =
∏

(i ,j)∈E

p(i ,j) �
��2 �
��3
�
��0 �
��1

-

-
�

6�
�

�
�	

3

2

5

11
29

mG = 2·3·5·11·29 = 9570
I G is a subgraph of Kn

I Then G ∈ GAP iff amG ∈ Hn

Hence, we have defined a reduction from GAP (restricted to graphs
with n vertices) to Hn

Outline of the proof (4/4)
The final machine solving GAP

If the conversion of unary 2NFAs by 2DFAs is polynomial:
I Hn is accepted by a 2DFA Bn with poly(n) states

Furthermore we can suppose that (...more or less...)
Bn is sweeping
In each sweep Bn verifies the divisibility of the input length
by one of the p(i,j)

I We define the following machine Mn

the input is a graph G = ({0, . . . , n − 1},E)
Mn simulates Bn on input amG , where mG =

∏
(i,j)∈E

p(i,j)

mG is not explicitly computed:
to simulate a sweep of Bn checking divisibility by p(i,j),
Mn checks whether of not (i , j) ∈ E

I Mn solves GAP for graphs with n vertices
I We can prove that Mn works in logarithmic space

Since GAP is complete for NL, we conclude L/poly ⊇ NL

Outer nondeterministic automata (ONFAs)

Definition
A two-way automaton is said to be outer nondeterministic iff
nondeterministic choices are allowed only when the input head is
scanning the endmarkers

Hence:

I No restrictions on the input alphabet
I No restrictions on head reversals
I Deterministic transitions on “real” input symbols
I Nondeterminstic choices only at the endmarkers

Outer nondeterministic automata (ONFAs)

All the results we obtained for the unary case
can be extended to ONFAs: [Geffert Guillon&P ’11]

(i) Subexponential simulation of 2ONFAs by 2DFAs
(ii) Polynomial complementation of unary 2ONFAs
(iii) Polynomial simulation of 2ONFAs by 2DFAs

under the condition L/poly ⊇ NL
(iv) Polynomial simulation of 2ONFAs by unambiguous 2ONFAs

While in the unary case all the proofs rely on the conversion
of 2NFAs into quasi sweeping automata,
in the case of 2ONFAs we do not have a similar tool!

Outer nondeterministic automata (ONFAs)

Main tool: procedure reach(p, q)
I The procedure checks the existence of a computation segment

- from the left endmarker in the state p
- to the left endmarker in the state q
- not visiting the left endmarker in between

I Difficult point: possibility of infinite loops
I Implementation:

Modification of a technique for the complementation
of 2DFAs [GeffertMereghetti&P ’07], which is a refinement of
a construction for the complementation of space bounded
Turing machines [Sipser ’80]
Finite control with a linear number of states reading a
two-way input tape

Loops involving endmarkers can be avoided by observing that for
each accepting computation visiting one of the endmarkers more
than |Q| times there exists a shorter accepting computation

Final considerations

I The question of Sakoda and Sipser is very challenging

I In the investigation of restricted versions many interesting and
not artificial models have been considered

I The results obtained for restricted versions of the problem,
even if they do not solve the full problem, are nontrivial
and, in many cases, very deep

I Strong connections with open questions in structural
complexity

I Many times techniques used in space complexity can be
adapted for the investigation of automata and vice versa

Two Further Directions

I The results obtained in the unary case have been extended to
the general case for outer nondeterministic automata

Question

Does it is possible to extend the same results (or some of them) to
some less restricted models of computation?

I Input head reversals are a critical resource that deserves
further investigation
An example of problem that could be investigated:

Question

Given k > 0, does there exists a language L such that each 2DFA
accepting L with less than k head reversals is exponentially larger
than each 2DFA with k reversals?

A positive answer is known only for k ≤ 2 [Balcerzac&Niwiński ’10]

	Preliminaries
	The Question of Sakoda and Sipser
	Restricted 2DFAs
	The Unary Case
	Sadoka&Sipser Question vs Logarithmic Space
	Restricted 2NFAs
	Conclusion

