New Results Related to the Sakoda
and Sipser Question

Giovanni Pighizzini

Dipartimento di Informatica e Comunicazione
Universita degli Studi di Milano

P.J. Safarik University — Kosice — Slovak Republic
November 7th, 2011

UNIVERSITA DEGLI STUDI
DI MILANO

Outline

Preliminaries

The Question of Sakoda and Sipser

The Unary Case and the Relationships with L ZNL
Restricted 2NFAs

Conclusion

Finite State Automata

Base version:

one-way deterministic finite automata (1DFA)
> one-way input tape
» deterministic transitions

Possibile variants allowing:
» nondeterministic transitions
m one-way nondeterministic finite automata (1NFA)
» input head moving forth and back
B two-way deterministic finite automata (2DFA)
m two-way nondeterministic finite automata (2NFA)
> alternation
> ..

Two-Way Automata: Technical Details

» Input surrounded by the endmarkers F and
» w € X* is accepted iff there is a computation

m with input tape - w
m starting at the left endmarker F in the initial state
m reaching a final state

1DFA, INFA, 2DFA, 2NFA

What about the power of these models?

They share the same computational power, namely they
characterize the class of regular languages, however...

...some of them are more succinct

Example: L = (a+ b)*a(a+ b)"?

» L is accepted by a INFA with n+ 1 states

N
RO MROROSORC

a, b

» The minimum 1DFA accepting L requires 2" states
» We can get a deterministic automaton for L with n + 2 states,
which reverses the input head direction just one time

» Hence L is accepted by

m a 1NFA and a 2DFA with approx. the same number of states
m a minimum 1DFA exponentially larger

Example: L = (a+ b)*a(a+ b)"ta(a + b)*

» L is accepted by a INFA with n+ 2 states

.
a a,b a,b g\ a,b a
(@),

» The minimum 1DFA accepting L uses 3 -2"~1 + 1 states
» Using head reversals the number of states becomes linear

» Even in this case L is accepted by

m a 1NFA and a 2DFA with linearly related numbers of states
m a minimum 1DFA exponentially larger

Example: L = (a+ b)*a(a+ b)"ta(a + b)*

[Telble b e 2 e la]e]]7] =4

while input symbol # a do move to the right
move n squares to the right
if input symbol = a then accept
else move n — 1 cells to the left
repeat from the first step
Exception: if input symbol =— then reject

» This can be implemented by a 2DFA with O(n) states

» By a different algorithm, L can be also accepted by a 2DFA
with O(n) states which changes the direction of its input head
only at the endmarkers (a sweeping automaton)

Costs of the Optimal Simulations Between Automata

1INFA ! 2DFA ! 2NFA
on O(2n|ogn) O(2n2)
1DFA

[Rabin&Scott '59, Shepardson '59, Meyer&Fischer '71, .. .]

Question

How much the possibility of moving the input head
forth and back is useful to eliminate the nondeterminism?

Costs of the Optimal Simulations Between Automata

INFA ! 2DFA ! 2NFA
on O(2n|ogn) O(2n2)
1DFA

Problem ([Sakoda&Sipser '78])

Do there exist polynomial simulations of Conjecture
» INFAs by 2DFAs

» 2NFAs by 2DFAs ?

These simulations
are not polynomial

Sakoda&Sipser Question: Upper and Lower Bounds

» Exponential upper bounds
deriving from the simulations of 1NFAs and 2NFAs by 1DFAs

» Polynomial lower bounds
for the cost c(n) of simulation of INFAs by 2DFAs:

m c(n) € Q(Z-) [Berman&Lingas '77]

logn

m c(n) € Q(n?) [Chrobak '86]

Sakoda and Sipser Question

» Very difficult in its general form
» Not very encouraging obtained results:

Lower and upper bounds too far
(Polynomial vs exponential)

» Hence:

Try to attack restricted versions of the problem!

2NFAs vs 2DFAs: Restricted Versions

(i) Restrictions on the resulting machines (2DFAs)

> sweeping automata [Sipser '80]
» oblivious automata [Hromkovic&Schnitger '03]
» “few reversal" automata [Kapoutsis '11]

(i) Restrictions on the languages
» unary regular languages [Geffert Mereghetti&P '03]

(i) Restrictions on the starting machines (2NFAs)
» outer nondeterministic automata [Geffert Guillon&P '11]

The Unary Case: #¥ =1

INFAs vs 2DFAs? Solved!

» The cost is O(n?)
[Chrobak '86]

2NFAs vs 2DFAs? It looks hard!

» Subexponential but superpolynomial upper bound e
[Geffert Mereghetti&P '03]

O(In2 n)

» Connection with the open question L ZNL
[Geffert&P '10, Kapoutsis&P '11]

Unary 2NFAs: A Fundamental Tool

In the investigation of unary 2NFAs,
the following notion and the next result are very useful:
Definition
A 2NFA is quasi sweeping (qsNFA) iff both
» nondeterministic choices and head reversals

are possible only at the endmarkers

Quasi Sweeping Simulation

Theorem ([Geffert Mereghetti&P '03])

Each n-state unary 2NFA A can be transformed into a 2NFA M s.t.
» M is quasi sweeping
» M has at most N < 2n + 2 states

» M and A are “almost equivalent”
(differences are possible only for inputs of length < 5n?)

Quasi Sweeping Simulation: Consequences

Several results using quasi sweeping simulation of unary 2NFAs
have been found:

(i) Subexponential simulation of unary 2NFAs by 2DFAs
Each unary n-state 2NFA can be simulated by a 2DFA
2
with e90n" 1) states [Geffert Mereghetti&P '03]

(ii) Polynomial complementation of unary 2NFAs
Inductive counting argument for gsNFAs
[Geffert Mereghetti&P '07]

(iii) Polynomial simulation of unary 2NFAs by 2DFAs
under the condition L = NL
[Geffert&P '10]

(iv) Polynomial simulation of unary 2NFAs by unambiguous 2NFAs
[Geffert&P "10]

We are going to discuss (iii)

Logspace Classes and Graph Accessibility Problem

L: class of languages accepted in logarithmic space
by deterministic machines Problem

NL: class of languages accepted in logarithmic space L<NL
by nondeterministic machines
Graph Accessibility Problem GAP
» Given G = (V, E) oriented graph, s, t € V

» Decide whether or not G contains a path from s to t

Theorem ([Jones '75])
GAP is complete for NL = GAPeLiffL=NL
(under logspace reductions)

More in general, GAP € C implies C O NL
for each class C closed under logspace reductions

Polynomial Deterministic Simulation (under L = NL)
Outline

From now on, we fix an n-state unary 2NFA A

» We give a reduction from L(A) to GAP
i.e, for each input string a™ we define a graph G(m) s.t.

am e L(A) <= G(m) € GAP

» Under the hypothesis L = NL
this reduction will be used to build 2DFA equivalent to A,
with a number of states polynomial in n
» Actually we do not work directly with A:
we use the gsNFA M obtained from A
according to the quasi sweeping simulation

The graph G(m)

HEBREBEE
p .

Given the gsNFA M with N states and an input a™
the graph G(m) is defined as:

» the vertices are the states of M

» (p,q) is an edge iff M can traverse the input

m from one endmarker in the state p
m to the opposite endmarker in the state g
m without visiting the endmarkers in the meantime

Then
a™m € L(M) iff G(m) contains a path from qg to gf

The existence of the edge (p, q) can be verified by a subroutine,
implemented by a finite automaton A, ; with N states

Polynomial Deterministic Simulation (under L = NL)

yes
am G(m) -
G Dcap

\no

» Suppose L = NL

» Let Dcap be a logspace bounded deterministic machine
solving GAP

» On input @™, compute G(m) and give the resulting graph as
input to Dcap

» This decides whether or not a” € L(M)

Polynomial Deterministic Simulation (under L = NL)

am G(m) 7
G Deap

v

The graph G(m) has N vertices, the number of states of M

v

Dgap uses space O(log N)

v

M is fixed. Hence N is constant, independent on the input a™

The worktape of Dgap can be encoded in a finite
control using a number of states polynomial in N

v

The graph G(m) can be represented with N2 bits

Representing the graph in a finite control would
require exponentially many states

v

To avoid this, input bits for Dgap are computed “on demand”

Polynomial Deterministic Simulation (under L = NL)

yes
am G(m) 7
G Dcap

\no

We define a unary 2DFA M’ equivalent to M

» M’ simulates Dgap by keeping in its finite control:

m The input head position of Dgap
m The worktape content of Dgap
m The finite control of Dgap

This uses a number of states polynomial in N
» Each time Dgap needs an input bit, a subroutine A, 4 is called

Considering all possible (p, g), this uses at most N° states

Polynomial Deterministic Simulation (under L = NL)

am G(m) | YeS
G Dcap
\no

We define a unary 2DFA M’ equivalent to M

Summing Up...

We described the following simulation:

» M is almost equivalent to the original 2NFA A

» Hence, M’ is almost equivalent to A

» Possible differences for input length < 5n°

» They can be fixed in a preliminary scan (5n? + 2 more states)

» The resulting automaton has polynomially many states

A given unary 2NFA n states
[} Quasi Sweeping Simulation
M qsNFA almost equivalent to A N < 2n+ 2 states
[} Deterministic Simulation
M’ 2DFA equivalent to M poly(N) states

Preliminary scan to accept/reject inputs of length < 5n?
U then simulation of M’ for longer inputs

M" 2DFA equivalent to A poly(n) states

Polynomial Deterministic Conditional Simulation

Theorem ([Geffert&P '10])

If L = NL then each n-state unary 2NFA can be simulated by an
equivalent 2DFA with poly(n) many states

Hence, proving the Sakoda& Sipser conjecture for unary
2NFAs would separate L and NL

What about the converse?

» We proved the converse under an additional assumption:

The transformation from unary 2NFAs to 2DFAs
must be computable in deterministic logspace

» Ch. Kapoutsis observed that the above theorem can be
generalized by considering the nonuniform version of L

» For such generalization the converse also hold!

L/poly: Nonuniform Logarithmic Space

» L/poly
class of languages accepted by deterministic logspace machines

with a polynomial advice, i.e.,
» A sequence of strings {c(n) | n > 0} of polynomial length
» With each input string x, the logspace machine also receives

the advice string a(]x|)
— yes
X 4'<
F no

Polynomial Deterministic Conditional Simulation

v

Since L C NL is known, our condition can be written as:

If L O NL then each n-state unary 2NFA can be simulated by
an equivalent 2DFA with poly(n) many states

v

The proof does not use the uniformity of L
Hence, the condition L O NL can be replaced by L/poly O NL:

v

If L/poly O NL then each n-state unary 2NFA can be simulated
by an equivalent 2DFA with poly(n) many states

v

Since L C L/poly, the assumption is weaker
So the last statement is stronger

v

Even to prove the converse we use GAP

Solving GAP with Two-Way Automata
Binary Encoding: Languages BGAP

> Let n be a fixed integer

» GAP, denotes GAP restricted to graphs with vertex set
V,=1{0,...,n—1}
» The binary encoding of a graph G = (V,,, E)
is the standard encoding of its adjacency matrix, i.e., a string
<G>2 = X1X2**Xp2 € {0, 1}n2
with xj.ptj+1 = 1 if and only if (i,j) € E
» BGAP, := {(G)2 | G has a path from 0 to n — 1}
={(G)2 | G € GAP,}

Solving GAP with Two-Way Automata
Recognizing BGAP,

Standard nondeterministic algorithm solving graph accessibility

i—0 // input head on the left endmarker
while i #n—1do
guess j £ i // try the edge (i,))
move to the input cell /- n+j+1
if the input symbol is 0 then reject /] (i,j) ¢ E
move the input head to the left endmarker
[—J
endwhile
accept

» Implementation using O(n3) states
» Nondeterministic choices are taken only at the left endmarker

» Head reversals can be confined at the endmarkers

Solving GAP with Two-Way Automata
Unary Encoding: Languages UGAP

» K, := complete directed graph with
vertex set V, = {0,...,n—1}
» With each edge (i,;) we associate
the prime number p(; ;) = pi.ntj+1

Solving GAP with Two-Way Automata
Unary Encoding: Languages UGAP

» K, := complete directed graph with 3
vertexspet Vn:{O,..g.,S—l} @ @
» With each edge (i,;) we associate a3
the prime number p(; ;) = pi.ntj+1 ;
» A subgraph G = (V,, E) of K, is @
encoded by the number
me = H PG mg = 3-11.17-37-43
(i)eE = 802551

and by the string (G); = a”¢

» Conversely, each string a” denotes the graph K,(m) which
contains the edge (i,) iff p; j divides m. Then G = K,(mg)
» UGAP, := {a™ | K,(m) has a path from 0 to n — 1}

Solving GAP with Two-Way Automata

Recognizing UGAP,

Unary version of the algorithm for BGAP,

i—0 // input head on the left endmarker
while i #n—1 do
guess j £ i // try the edge (i,))
scan the input string counting modulo p(; ;)
if reminder # 0 then reject /] (i,j) ¢ E
move the input head to the left endmarker
[«—J
endwhile
accept

» Implementation using O(n* log n) states
» Nondeterministic choices are taken only at the left endmarker

» Head reversals only at the endmarkers

Solving GAP with Two-Way Automata

Outline of the Construction

G O ame 5 /yes
1 n
\no

» Suppose the conversion of unary 2NFAs into 2DFAs is
polynomial

> Let B, be a 2DFA with poly(n) states recognizing UGAP,

» Given a graph G = (V,, E), compute its unary encoding a™¢
and give it as input to B,

» This decides whether or not G € GAP

Solving GAP with Two-Way Automata

Outline of the Construction

< >1 Bn
\no

» Our goal:

m a deterministic machine

m working in logarithmic space

m using a polynomial advice
» The input is the graph G, hence its size is n?
» The size of B, is polynomial in n
» However representing a™¢ would require too much space
» Hence, we use a different strategy to represent mg

Solving GAP with Two-Way Automata

Outline of the Construction

Next steps
1. A different representation of mg:
prime encoding of input lengths
2. The prime encoding of mg
3. Replacing unary 2DFA inputs by prime encodings

4. Combining these things together to obtain a (nonuniform)
logspace deterministic machine solving GAP

Prime Encodings

Given an integer m:
> m= p2‘1~pg2- . -pi" decomposition as product of prime powers
» A prime encoding of m is a string
#a#zo - H#2zk
where z1, 25, ...,z encode in an arbitrary order

a1 02 (078
pi1 7P,‘2 a"-ap,'k

For simplicity:
» The factor z; can be seen also as a number

» Hence, m=2z; -z --- z

Prime Encodings and Graphs

Given an integer m:

> m= p2‘1~pg2- . -pi" decomposition as product of prime powers
» A prime encoding of m is a string

#a#zo - H#2zk
where z1, 25, ...,z encode in an arbitrary order

a1 02 (078
pi1 7P,‘2 a"-ap,'k

Given a graph G = (V,,, E):
> A prime encoding of mg = [] p(i j
(ij)eE
is just a list of all primes p; ;) associated with the edges of G
» It can be computed in logarithmic space
by a deterministic transducer T
whose input is the adjacency matrix of G

Replacing Unary 2DFA Inputs by Prime Encodings
A Normal Form for Unary 2DFAs

From the results in [Chrobak '86, Kunc&Okhotin '11]
the following form for unary 2DFAs can be derived:

Theorem
Each s-state unary 2DFA A can be transformed into 2DFA M s.t.
» M is sweeping
» in each sweep M counts the input length modulo some
number {
» M has O(s) states

» M and A are “almost equivalent”
(differences are possible only for input of length O(s))

Replacing Unary 2DFA Inputs by Prime Encodings
A Normal Form for Unary 2DFAs

» Let B an s-state unary 2DFA

» B is replaced by an almost equivalent 2DFA M in normal form
with O(s) states

» L(B) and L(M) can be differ on strings of length < sp € O(s)
» We define a 2DFA B’ “equivalent” to B:
B’ inputs represent prime encodings of B inputs

» On a prime encoding of an integer m,
B’ works in two phases:
1. B’ checks if the input is “short”, i.e., m < s
in this case, B’ accepts or rejects according to a finite table
2. otherwise, B’ on its input simulates M on a™

» The number of states of B’ is polynomial in s

Replacing Unary 2DFA Inputs by Prime Encodings

Phase 1: Detecting Short Inputs

» Given

m 2", input of B

B Hz1#25 - #2k, input of B’, prime encoding of m
» For each t < sy, B’ checks if m = t:

m B’ checks if each z; is a factor t

— prime factorization of t: at most log t factors
— length of each factor: at most log t
— one traversal of the input, O(log® t) states
m B’ checks if each prime power in the factorization of t is
encoded by some z;
— at most log t traversals of the input, each using log t states

» If m =t for some t < sy then the simulation stops,
accepting or rejecting according to a finite table

» Since so € O(s), by considering all possible t's,
this phase can be implemented with O(s.log2s) states

Replacing Unary 2DFA Inputs by Prime Encodings
Phase 2: Simulating the 2DFA M on Long Inputs

In each sweep:
» M counts the input length modulo an integer ¢

» The value of ¢ depends only on the starting state g
» The ending state p depends on g and on m mod ¢
Let #z1#2z> - - - #2z, be a prime encoding of m:
» B’ simulates the sweep of M with a sweep from g to p on
#a#z - #z

» Hence, by considering the overall computation,
M accepts a™ if and only if B” accepts #z1#z5 - - - #2zi

Replacing Unary 2DFA Inputs by Prime Encodings
Phase 2: Simulating the 2DFA M on Long Inputs

m mod ¢

» Since m =z - zp - - - z then:
mmod ¢ = ((---((z1 mod £) - zz) mod £---) - z;) mod ¢

» r = m mod { is obtained using the following iteration:
r—1
while there is a next factor #z do
r«— (r-z) mod/{
» The state p is derived from g and r

» This phase can be implemented with O(s?) states

Solving GAP with Two-Way Automata
Combining All Together

G #z - #2

» We replace:

m The machine which computes mg = (G)1 by a logspace
transducer T which outputs a prime encoding of mg

m The unary 2DFA B, by an “equivalent” 2DFA B/, working on
prime encodings

» The resulting machine still decides whether G € GAP,

» However, even representing #z;- - -#z, would require too
much space

» Hence, the symbols of #2z;- - -#z, are computed “on the fly"
by restarting T each time BJ, needs them

Solving GAP with Two-Way Automata

Combining All Together

G #z - #2

/yes
\no

v

of states of B,

B! has O(s?) states, where s = O(n*log n) is the number

Hence its size is polynomial in n?, the size of the input G
poly

» T works in space O(log n)

» Hence the whole resulting machine works in logarithmic space

» However, we did not provided B}, is a constructive way

m The existence of B, follows from the hypothesis that the
simulation of unary 2NFAs by 2DFAs is polynomial

v

m B/ is the advice

Hence, the resulting machine is nonuniform

Solving GAP with Two-Way Automata

Combining All Together

G Hz1- - Hzk

Since GAP is complete for NL we obtain:

Theorem

If each n-state unary 2NFA can be simulated by a 2DFA with a
polynomial number of states then L/poly O NL

Hence
Corollary

L/poly O NL if and only if each n-state unary 2NFA can be
simulated by a 2DFA with a polynomial number of states

Characterizations of L/poly versus NL

2D: families of languages accepted by 2DFAs of polynomial size
2N: families of languages accepted by 2NFAs of polynomial size
2N/poly: restriction of 2N to instances of polynomial length

2N/unary: restriction of 2N to unary instances

Theorem ([Kapoutsis '11, Kapoutsis&P '11])
The following statements are equivalent:
1. L/poly D NL
2D D 2N/poly
2D D 2N/unary
2D > BGAP
2D > UGAP

Ol =i CORTID

Outer Nondeterministic Automata (ONFAs)

Definition

A two-way automaton is said to be outer nondeterministic iff
nondeterministic choices are allowed only when the input head is
scanning the endmarkers

Hence:

No restrictions on the input alphabet

>
» No restrictions on head reversals

» Deterministic transitions on “real” input symbols
>

Nondeterministic choices only at the endmarkers

Outer Nondeterministic Automata (ONFAs)

All the results we obtained for the unary case
can be extended to ONFAs: [Geffert Guillon&P "11]

(i) Subexponential simulation of 20NFAs by 2DFAs
(i) Polynomial complementation of unary 20NFAs

(iii) Polynomial simulation of 20NFAs by 2DFAs
under the condition L/poly O NL

(iv) Polynomial simulation of 20NFAs by unambiguous 20NFAs

While in the unary case all the proofs rely on the conversion
of 2NFAs into quasi sweeping automata,
in the case of 20NFAs we do not have a similar tool!

Outer Nondeterministic Automata (ONFAs)

Main tool: procedure reach(p, q)
» The procedure checks the existence ofa computation segment
- from the left endmarker in the state p

- to the left endmarker in the state g
- not visiting the left endmarker in between

» Difficult point: possibility of infinite loops
» Implementation:
m Modification of a technique for the complementation
of 2DFAs [Geffert Mereghetti&P '07], which is a refinement of
a construction for the complementation of space bounded
Turing machines [Sipser '80]
m Finite control with a linear number of states reading a
two-way input tape

Loops involving endmarkers can be avoided by observing that for
each accepting computation visiting one of the endmarkers more
than | Q| times there exists a shorter accepting computation

Final Remarks

» The question of Sakoda and Sipser is very challenging

» In the investigation of restricted versions many interesting and
not artificial models have been considered

» The results obtained for restricted versions of the problem,
even if they do not solve the full problem, are nontrivial
and, in many cases, very deep

» Strong connections with open questions in structural
complexity

» Many times techniques used in space complexity can be
adapted for the investigation of automata and vice versa

Two Further Directions

» The results obtained in the unary case have been extended to
the general case for outer nondeterministic automata

Question

Does it is possible to extend the same results (or some of them) to
some less restricted models of computation?
» Input head reversals are a critical resource that deserves
further investigation

An example of problem that could be investigated:

Question

Given k > 0, does there exists a language L such that each 2DFA
accepting L with less than k head reversals is exponentially larger
than each 2DFA with k reversals?

A positive answer is known only for k < 2 [Balcerzac&Niwinski '10]

	Preliminaries
	The Question of Sakoda and Sipser
	The Unary Case and the Relationships with L=?NL
	Restricted 2NFAs
	Conclusion

