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A general problem

Compare the number of the states of complementary automata,
i.e, automata accepting a regular language and its complement:

Given an n-state automaton accepting L, how many states are
necessary and sufficient to accept Lc?

Deterministic automata (dfas): trivial.

Nondeterministic automata (nfas):

trivial upper bound: 2n, optimal [Birget 1993]
differences between the general case and the case of unary
languages. [Mera&Pighizzini 2005]
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Size of complementary nfas: general vs. unary case

There are languages having “small” complementary nfas:

For each integer n there exists a regular language L such that:

L is accepted by an n-state nfa,

Lc is accepted by an nfa with at most n + 1 states,

the minimum dfa accepting L requires 2n states.

Hence:

L is a witness of the maximal state gap between nfas and
dfas,

the gap between the total size of smallest nfas accepting L
and Lc and corresponding dfas is exponential.

The language L is defined over a two letter alphabet.

The unary case looks completely different:

If a unary language L has a “small” nfa then
each nfa accepting Lc must be “large”.
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Unary case Σ = {a}

The cost of the optimal simulation of n-state nfas by dfas in the

unary case reduces from 2n to the function F (n) = eΘ(
√

n·ln n),
which is subexponential but superpolynomial. [Chrobak 1986]

However:

If L is a unary language accepted by an n-state nfa s.t. the
minimum equivalent dfa requires F (n) states, then also each nfa
accepting Lc requires at least F (n) states. [Mera&Pighizzini 2005]

In other words:

If L is a witness of the maximal state gap between unary nfas
and equivalent dfas then each nfa for Lc must have as many
states as the minimum dfa.

Hence, taking into account the total number of states of
smallest nfas accepting L and Lc, the superpolynomial gap
with the size of dfas disappears.
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Paper contributions

How large can be the gap between the total size of pairs
of nfas accepting a unary language and its complement

and the minimum dfa ?

We prove that this gap is superpolynomial, not too far from F (n):

There are infinitely many unary languages L such that:

the state gap between nfas and dfas accepting L is a little
bit smaller than F (n), but it is still superpolynomial,

the same gap is achieved in the case of Lc.

We also prove superpolynomial gaps between:

the sizes of unary unambiguous automata and of dfas,

the sizes of unary self-verifying automata and of dfas.
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Unary dfas and cyclic languages

Input alphabet Σ = {a}

- m - m - m - m
j m �

m
�m

�

As a special case of unary regular languages are cyclic languages:

L ⊆ {a}∗ is said to be cyclic iff it is accepted by a dfa whose
transition graph is just one loop.
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The witness languages

Let us consider:

λ0, λ1, . . . , λs−1 a sequence of s ≥ 1 powers of different
primes,

the smallest integer ŝ ≥ s dividing one λ`, ` ∈ {0, . . . , s − 1}.
We define the language:

L =
s−1⋃
i=0

{ak | k mod ŝ = i = k mod λi}.

How to recognize L and Lc?
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the smallest integer ŝ ≥ s dividing one λ`, ` ∈ {0, . . . , s − 1}.
We define the language:

L =
s−1⋃
i=0
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the smallest integer ŝ ≥ s dividing one λ`, ` ∈ {0, . . . , s − 1}.
We define the language:

L =
s−1⋃
i=0
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How to recognize L =
⋃s−1

i=0{ak | k mod ŝ = i = k mod λi}

To decide if an input string ak belongs to L we can use the
following procedure:

i ← k mod ŝ

if i = 0 then accept iff k mod λ0 = 0

if i = 1 then accept iff k mod λ1 = 1

...

if i = s − 1 then accept iff k mod λs−1 = s − 1

if i ≥ s then reject

Nondeterministic version:

guess i , with 0 ≤ i < s

accept iff k mod ŝ = i and k mod λi = i

The nondeterministic version can be implemented by an nfa A+.
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i=0{ak | k mod ŝ = i = k mod λi}

To decide if an input string ak belongs to L we can use the
following procedure:

i ← k mod ŝ
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An nfa for L =
⋃s−1

i=0{ak | k mod ŝ = i = k mod λi}
nfa A+:

one initial state and s disjoint loops

in the initial state one among s possible transitions is chosen:
guess i , with 0 ≤ i < s

transition i leads to the ith loop, which implements:
accept iff k mod ŝ = i and k mod λi = i

length of the ith loop: lcm(ŝ, λi )

Size of A+:

Summing up: total number of states: 1 +
s−1∑
i=0

lcm(ŝ, λi )

However lcm(ŝ, λi ) =

{
ŝ · λi , if i 6= `;
λ`, otherwise.

Hence, the total number of the states is:

N = 1 + λ` + ŝ ·
s−1∑

i=0,i 6=`

λi .
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i=0{ak | k mod ŝ = i = k mod λi}
nfa A+:

one initial state and s disjoint loops

in the initial state one among s possible transitions is chosen:
guess i , with 0 ≤ i < s

transition i leads to the ith loop, which implements:
accept iff k mod ŝ = i and k mod λi = i

length of the ith loop: lcm(ŝ, λi )
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{
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An nfa for L =
⋃s−1

i=0{ak | k mod ŝ = i = k mod λi}
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An example

Let λ0 = 22, λ1 = 5. Then ŝ = s = 2.

L = {ak | (k mod 2 = 0 = k mod 22) ∨ (k mod 2 = 1 = k mod 5)}
= {ak | (k mod 22 = 0) ∨ (k mod 2 = 1 = k mod 5)}
= (a4)∗ ∪ a(a10)∗.

nfa A+ for L:

j j jj��* HHj

���HHY

j j j j j
jjjjj

��*
- -

HHj

?

�����HHY

6

j- ���

@@R

+
+

+

λ0 = 22 states

ŝ ·λ1 = 2·5 states
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How to accept the complement of L

Deterministic procedure to decide whether or not ak ∈ L:

i ← k mod ŝ

if i = 0 then accept iff k mod λ0 = 0

if i = 1 then accept iff k mod λ1 = 1

...

if i = s − 1 then accept iff k mod λs−1 = s − 1

if i ≥ s then reject

To recognize Lc we just need to replace “accept” with ”reject” and
vice versa, in the previous procedure.
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How to accept the complement of L

Deterministic procedure to decide whether or not ak ∈ Lc:

i ← k mod ŝ

if i = 0 then reject iff k mod λ0 = 0

if i = 1 then reject iff k mod λ1 = 1

...

if i = s − 1 then reject iff k mod λs−1 = s − 1

if i ≥ s then accept
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How to accept the complement of L

Deterministic procedure to decide whether or not ak ∈ Lc:

i ← k mod ŝ

if i = 0 then accept iff k mod λ0 6= 0

if i = 1 then accept iff k mod λ1 6= 1

...

if i = s − 1 then accept iff k mod λs−1 6= s − 1

if i ≥ s then accept
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Deterministic procedure to decide whether or not ak ∈ Lc:

i ← k mod ŝ

if i = 0 then accept iff k mod λ0 6= 0

if i = 1 then accept iff k mod λ1 6= 1

...

if i = s − 1 then accept iff k mod λs−1 6= s − 1

if i ≥ s then accept

Nondeterministic version:

guess i , with 0 ≤ i < s

if i < s then accept iff k mod ŝ = i and k mod λi 6= i

if i ≥ s then accept iff k mod ŝ = i

Hence:

Lc =
s−1⋃
i=0

{ak | k mod ŝ = i ∧ k mod λi 6= i} ∪ {ak | k mod ŝ ≥ s)}
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Viliam Geffert, Giovanni Pighizzini Pairs of Complementary Unary Languages



An nfa A− for
Lc =

⋃s−1
i=0{ak | k mod ŝ = i ∧ k mod λi 6= i} ∪ {ak | k mod ŝ ≥ s)}

Same transition graph as A+:

For i = 0, . . . , s − 1, the ith loop is used to accept if
k mod ŝ = i and k mod λi 6= i

however, the (s − 1)th loop accepts also if
k mod ŝ ≥ s.

A+ and A− have the same size N = 1 + λ` + ŝ ·
∑s−1

i=0,i 6=` λi .

It can be observed that A+ and A− are unambiguous.
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k mod ŝ = i and k mod λi 6= i

however, the (s − 1)th loop accepts also if
k mod ŝ ≥ s.
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The previous example: how to accept the complement

Let λ0 = 22, λ1 = 5. Then ŝ = s = 2.

L = {ak | if k is even then k mod 22 = 0,

if k is odd then k mod 5 = 1}.
Hence:

Lc = {ak | if k is even then k mod 22 6= 0,

if k is odd then k mod 5 6= 1}
= a2(a4)∗ ∪ (a3 + a5 + a7 + a9)(a10)∗.
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j j j j j
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��*
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The witness languages and their automata

By previous discussion and by investigating the structure of the
minimum dfa accepting L, we proved that:

Theorem

The transition graph of the minimum dfa A accepting L is a
loop of λ0 · λ1 · · ·λs−1 states.

L and Lc are accepted by two unambiguous nfas A+ and A−

of at most N = 1 + λ` + ŝ ·
∑s−1

i=0,i 6=` λi states.

We now study the following question:

How large is the gap between N and λ0 · λ1 · · ·λs−1,
i.e, between the size of nfas A+, A−,

and of the minimum dfa A ?
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∑s−1

i=0,i 6=` λi states.

We now study the following question:

How large is the gap between N and λ0 · λ1 · · ·λs−1,
i.e, between the size of nfas A+, A−,

and of the minimum dfa A ?

Viliam Geffert, Giovanni Pighizzini Pairs of Complementary Unary Languages



The witness languages and their automata

By previous discussion and by investigating the structure of the
minimum dfa accepting L, we proved that:

Theorem

The transition graph of the minimum dfa A accepting L is a
loop of λ0 · λ1 · · ·λs−1 states.

L and Lc are accepted by two unambiguous nfas A+ and A−

of at most N = 1 + λ` + ŝ ·
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The Landau Function F (n)

Initially investigated in group theory. [Landau 1903, 1909]

Fundamental role in the analysis of simulations among various
models of unary automata. [Chrobak 1986]

Definition

For a positive integer n:

F (n) = max{lcm(λ0, . . . , λs−1) | λ0 + · · ·+ λs−1 = n} ,

where λ0, . . . , λs−1 denote arbitrary positive integers.

Sharp estimation: [Szalay 1980]

F (n) = e(1+o(1))·
√

n·ln n

Viliam Geffert, Giovanni Pighizzini Pairs of Complementary Unary Languages



The Landau Function F (n)

Initially investigated in group theory. [Landau 1903, 1909]

Fundamental role in the analysis of simulations among various
models of unary automata. [Chrobak 1986]

Definition

For a positive integer n:

F (n) = max{lcm(λ0, . . . , λs−1) | λ0 + · · ·+ λs−1 = n} ,

where λ0, . . . , λs−1 denote arbitrary positive integers.

Sharp estimation: [Szalay 1980]

F (n) = e(1+o(1))·
√

n·ln n

Viliam Geffert, Giovanni Pighizzini Pairs of Complementary Unary Languages



The Landau Function F (n)

Initially investigated in group theory. [Landau 1903, 1909]

Fundamental role in the analysis of simulations among various
models of unary automata. [Chrobak 1986]

Definition

For a positive integer n:

F (n) = max{lcm(λ0, . . . , λs−1) | λ0 + · · ·+ λs−1 = n} ,

where λ0, . . . , λs−1 denote arbitrary positive integers.

Sharp estimation: [Szalay 1980]

F (n) = e(1+o(1))·
√

n·ln n

Viliam Geffert, Giovanni Pighizzini Pairs of Complementary Unary Languages



The Landau Function F (n)

Initially investigated in group theory. [Landau 1903, 1909]

Fundamental role in the analysis of simulations among various
models of unary automata. [Chrobak 1986]

Definition

For a positive integer n:

F (n) = max{lcm(λ0, . . . , λs−1) | λ0 + · · ·+ λs−1 = n} ,

where λ0, . . . , λs−1 denote arbitrary positive integers.

Sharp estimation: [Szalay 1980]

F (n) = e(1+o(1))·
√

n·ln n

Viliam Geffert, Giovanni Pighizzini Pairs of Complementary Unary Languages



The Landau Function F (n)

F (n) = max{lcm(λ0, . . . , λs−1) | λ0 + · · ·+ λs−1 = n}

We observe that:

lcm(λ0, . . . , λs−1) = lcm(λ0, . . . , λs−1, 1, . . . , 1):
it is enough to require that λ0 + · · ·+ λs−1 ≤ n.

If λi = a·b with gcd(a, b) = 1 then a+b ≤ a·b:
replacing λi with a and b does not increase the sum and does
not change the least common multiple of λjs.

If λi divides λj then λi can be removed without changing the
least common multiple.

Hence:

F (n) = max{λ0 · · ·λs−1 | λ0 + · · ·+ λs−1 ≤ n} ,

where λ0, . . . , λs−1 denote powers of different primes, exactly as in
the definition of the witness language L.
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Witness language and Landau Function

Let us fix an integer n and some powers λ0, . . . , λs−1 of different
primes such that:

λ0 + · · ·+ λs−1 ≤ n and F (n) = λ0 · · ·λs−1.

The witness language L and its complement are both accepted:

by nfas with at most N = 1 + λ` + ŝ ·
∑s−1

i=0,i 6=` λi states,

by minimum dfas with F (n) states.

Using:

some properties of F (n) [Nicolas 1968, Grantham 1995],

the Bertrand’s postulate [Ramanujan 1919],

we proved that
√

n·ln n ≥ Ω(
3
√

N · ln2N).

Hence:
F (n) = e(1+o(1))·

√
n·ln n ≥ eΩ(

3√
N·ln2N).
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The exponential gap

Summing up, for infinitely many N we provided a language L s.t.:

L and Lc are accepted by two nfas A+ and A− using at most
N states,

the minimum dfa accepting L (or Lc) must use at least

eΩ(
3√
N·ln2N) states.

Hence:

The gap between the total number of states of the pair of
complementary unary nfas A+,A− and the minimum

equivalent dfa is superpolynomial.

Remark: actually we can show the existence of a witness language
L for each sufficiently large N.
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Self-verifying automata (svfas)

Finite automata with a “symmetric form” of nondeterminism
[Ďurǐs, Hromkovič, Rolim & Schnitger 1977].

The state set is partitioned in three groups:

accepting states (“yes”)

rejecting states (“no”)

neutral states (“I do not know”)

It is required that:

on each input string at least one accepting or one rejecting
state is reached,

on a same input string both accepting and rejecting states are
not reachable.
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Self-verifying automata (svfas)

svfas characterize the class of regular languages.

Each n-state svfa can be converted into an equivalent dfa with
O(3n/3) ≈ O(1.45n) states. This cost is tight, for an input
alphabet of at least two letters. [Jirásková & Pighizzini 2009]

What about the tight cost in the unary case?

It must be strictly smaller than F (n), the cost of the
conversion of unary nfas into dfas. [J&P 2009]

As a consequence of the gap between complementary unary
nfas and dfas we get that this cost is superpolynomial, not
too far from F (n).

This is proved by observing how a svfa can be obtained from
two complementary nfas.
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From pairs of complementary nfas to a svfas

Let A+ and A− be two complementary nfas.
We can build an equivalent svfa A as the “union” of A+ and A−,
using a new initial state:

j j−A−-

j j+A+-

However, if A+ and A− have the same transition graph we can do
better...
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From our witness nfas to svfas
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Conclusion

We proved that the following gaps are superpolynomial, even for
unary cyclic languages:

between the total size of two nfas accepting one language
and its complement and the size of the corresponding dfa,

between the sizes of svfas and dfas.

The witness nfas A+ and A− we used are unambiguous.
Hence, also the following gaps are superpolynomial for unary cyclic
languages:

between the sizes of unambiguous nfas and dfas,

between the sizes of unambiguous svfas and dfas.

The superpolynomial function in all these gaps is eΩ(
3√
N·ln2N).

We strongly believe that for unary languages these gaps cannot be
significantly improved.
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