
Removing Nondeterminism from
Two-Way Automata

Giovanni Pighizzini

Dipartimento di Informatica e Comunicazione
Università degli Studi di Milano

Porto – June 22, 2010

Outline

The Question of Sakoda and Sipser

Quasi Sweeping Automata and Quasi Sweeping Simulation

Sadoka&Sipser Question vs L ?
= NL

Making Unary 2NFAs Unambiguous

Conclusion

Finite State Automata

i n p u t. . .

6 -�

Base version:
one-way deterministic finite automata (1DFA)

I one-way input tape
I deterministic transitions

Possibile variants allowing:
I nondeterministic transitions

one-way nondeterministic finite automata (1NFA)
I input head moving forth and back

two-way deterministic finite automata (2DFA)
two-way nondeterministic finite automata (2NFA)

I alternation
I ...

Two-Way Automata: Technical Details

` i n p u t. . . a
6� -

I Input surrounded by the endmarkers ` and a
I Transition function δ : Q × (Σ ∪ {`,a})→ 2Q×{−1,0,+1}

where −1, 0,+1 are the possible movements of the input head
I w ∈ Σ∗ accepted iff there is a computation

with input tape ` w a
from the initial state q0, scanning the left endmarker `
reaching a final state

1DFA, 1NFA, 2DFA, 2NFA

What about the power of these models?

They share the same computational power, namely they
characterize the class of regular languages, however...

...some of them are more succinct

Example: L = (a + b)∗a(a + b)n−1

I L is accepted by a 1NFA with n + 1 states

����
q0 ����

q1 ����
q2 ����

q3 ����
qn�
��@@R

-a -a, b -a, b -a, b

�
�
�
-

a, b

I The minimum 1DFA accepting L requires 2n states
I We can get a deterministic automaton for L with n + 2 states,

which reverses the input head direction just one time
I Hence L is accepted by

a 1NFA and a 2DFA with approx. the same number of states
a minimum 1DFA exponentially larger

Example: L = (a + b)∗a(a + b)n−1a(a + b)∗

I L is accepted by a 1NFA with n + 2 states

����
q0 ����

q1 ����
q2 ����

q3 ����
qn ����

qf�
��@@R
-a -a, b -a, b -a, b -a
��- a, b
��- a, b

I The minimum 1DFA accepting L uses 3 · 2n−1 + 1 states
I Using head reversals the number of states becomes linear
I Even in this case L is accepted by

a 1NFA and a 2DFA with linearly related numbers of states
a minimum 1DFA exponentially larger

Example: L = (a + b)∗a(a + b)n−1a(a + b)∗

` b b a b a a b a a a a n = 4

while input symbol 6= a do move to the right
move n squares to the right
if input symbol = a then accept

else move n − 1 cells to the left
repeat from the first step

Exception: if input symbol =a then reject

I This can be implemented by a 2DFA with O(n) states
I By a different algorithm, L can be also accepted by a 2DFA

with O(n) states which changes the direction of its input head
only at the endmarkers

Costs of the Optimal Simulations Between Automata

1DFA

1NFA 2DFA 2NFA

@
@
@
@
@
@
@R ?

�
�

�
�

�
�
�	

2n O(2n log n) O(2n2
)

-? � ?

[Rabin&Scott ’59, Shepardson ’59, Meyer&Fischer ’71, . . .]

Question

How much the possibility of moving the input head
forth and back is useful to eliminate the nondeterminism?

Costs of the Optimal Simulations Between Automata

1DFA

1NFA 2DFA 2NFA

@
@
@
@
@
@
@R ?

�
�

�
�

�
�
�	

2n O(2n log n) O(2n2
)

-? � ?

Problem ([Sakoda&Sipser ’78])
Do there exist polynomial simulations of

I 1NFAs by 2DFAs
I 2NFAs by 2DFAs ?

Conjecture

These simulations
are not polynomial

Sakoda&Sipser Question: Lower Bounds

Polynomial lower bounds for the cost c(n) of simulation of 1NFAs
by 2DFAs:

I c(n) ∈ Ω(n2

log n) [Berman&Lingas ’77]

I c(n) ∈ Ω(n2) [Chrobak ’86]

Exponential lower bounds for the simulation of 2NFAs by 2DFAs,
for special classes of resulting machines:

I sweeping automata [Sipser ’80]
I oblivious automata [Hromkovic̆&Schnitger ’03]

Sweeping Automata

Definition (Sweeping Automata)

A two-way automaton A is said to be sweeping if and only if

I A is deterministic
I the input head of A can change direction only at the

endmarkers

Each computation is a sequence of complete traversals of the input

I Sweeping automata can be exponentially larger than 1NFAs
[Sipser ’80]

I However, they can be also exponentially larger than 2DFAs
[Berman ’81, Micali ’81]

The Unary Case: #Σ = 1

1NFAs vs 2DFAs?
I In the unary case, the cost of the simulation of

1NFAs by 2DFAs is O(n2) [Chrobak ’86]

2NFAs vs 2DFAs?
I Even restricted to the case of unary automata,

the problem seems to be difficult
I The unary version of the problem is connected with the

important question L ?
= NL in complexity theory

I In the study of unary 2NFA simulations, the notion of
quasi sweeping automata turns out to be useful.
This notion extends sweeping automata with
some restricted nondeterministic capabilities

Quasi Sweeping Automata

Definition
A 2NFA is quasi sweeping (qsNFA) iff both

I nondeterministic choices and
I head reversals

are possible only at the endmarkers

Computation of a qsNFA:
I sequence of deterministic left-to-right and right-to-left

traversals of the input
I nondeterministic choices at the endmarkers,

i.e., only immediately before/after input traversals

Quasi Sweeping Simulation of Unary 2NFAs
[GeffertMereghetti&Pighizzini ’03]

Definition
Two finite automata are almost equivalent iff they accept the same
language, with the possible exception of a finite number of strings

Theorem (Quasi Sweeping Simulation)

Each n-state unary 2NFA A can be transformed into a 2NFA M s.t.
I M has at most N ≤ 2n + 2 states
I M is quasi sweeping
I M and A are almost equivalent

(differences are possible only for inputs of length ≤ 5n2)

Quasi Sweeping Simulation: Outline

Let A be a given n-state unary 2NFA
I Wlog suppose that A accepts in a fixed state qf with the input

head scanning the left endmarker
I Given an accepting computation:

r0, r1, . . . , rp sequence of states reached at the endmarkers
(hence r0 = q0, rp = qf)

I A segment is the part of computation from ri−1 to ri
I Two kinds of segments:

traversals
U-turns

I The simulation “simplifies” these segments

Quasi Sweeping Simulation: Traversals

Traversal: segment of computation starting at one endmarker and
ending at the opposite one

I Traversals in 2NFAs can be very complicated
I However, in the unary case:

Lemma ([Geffert ’91])
For each traversal from a state ri−1 to a state ri there exists
another traversal from ri−1 to ri with the following structure:

initial and final parts consuming O(n2) input symbols
in the middle: a “dominant” loop, visiting ≤ n cells, is repeated
many times

I Hence, traversals are essentially used to compute the input
length modulo one integer

I They can be simulated by deterministic loops and
nondeterministic moves at the endmarkers

Quasi Sweeping Simulation: U-Turns

U-turn: segment of computation starting and ending at the same
endmarker

Lemma ([Geffert ’91])
For each U-turn from a state ri−1 to a state ri
there exists another U-turn from ri−1 to ri
in which the input head is never moved farther than n2 cells
from the corresponding endmarker

Hence:
I Each “long” U-turn can be replaced by a shorter U-turn
I For sufficiently long inputs (> n2):

the set of possible U-turns can be precomputed
U-turns can be replaced by stationary moves at the endmarkers

Quasi Sweeping Simulation

Theorem (Quasi Sweeping Simulation)

Each n-state unary 2NFA A can be transformed into a 2NFA M s.t.
I M has at most N ≤ 2n + 2 states
I M is quasi sweeping
I M and A are almost equivalent

(differences are possible only for inputs of length ≤ 5n2)

Proof.
From the above arguments:

I Traversals are simulated by deterministic loops and
nondeterministic moves at the endmarkers

I U-turns are replaced by stationary moves
I This can be implemented using at most 2n + 2 states
I Possible “errors” on inputs of length ≤ 5n2

Quasi Sweeping Simulation: Consequences

Several results using quasi sweeping simulation of unary 2NFAs
have been found:

(i) Subexponential simulation of unary 2NFAs by 2DFAs
Each unary n-state 2NFA can be simulated by a 2DFA
with eO(ln2 n) states [GeffertMereghetti&Pighizzini ’03]

(ii) Polynomial complementation of unary 2NFAs
Inductive counting argument for qsNFAs
[GeffertMereghetti&Pighizzini ’07]

(iii) Polynomial simulation of unary 2NFAs by unambiguous 2NFAs

(iv) Relationship with the space complexity question L ?
= NL

We are going to discuss (iv) and (iii) [Geffert&Pighizzini ’10]

Logspace Classes and Graph Accessibility Problem

L: class of languages accepted in logarithmic space
by deterministic machines

NL: class of languages accepted in logarithmic space
by nondeterministic machines

Problem
L ?

= NL

Graph Accessibility Problem GAP
I Given G = (V ,E) oriented graph, s, t ∈ V
I Decide whether or not G contains a path from s to t

Theorem ([Jones ’75])
GAP is complete for NL

Hence GAP ∈ L iff L = NL

Polynomial Deterministic Conditional Simulation

From now on, we fix an n-state unary 2NFA A

I We describe how to reduce the membership problem for L(A)
to the problem GAP
i.e, for each input string am we define a graph G (m) s.t.

am ∈ L(A) ⇐⇒ G (m) ∈ GAP

I Under the hypothesis L = NL
this reduction will be used to build 2DFA equivalent to A,
with a number of states polynomial in n

I Actually we do not work directly with A:
we use the qsNFA M obtained from A
according to the quasi sweeping simulation

Polynomial Deterministic Conditional Simulation

A fixed unary 2NFA n states
⇓ Quasi Sweeping Simulation
M almost equivalent qsNFA N ≤ 2n + 2 states

From now on, also M is fixed

I L(M) and L(A) can differ only on strings of length ≤ 5n2

I The computation of M is a sequence of traversals of the input
I The states used in each traversal form a deterministic loop
I Nondeterministic choices possible only at the endmarkers
I M has exactly one final state qF

I qF can be reached only at the left endmarker

Describing M Computations

` a a a a a. . . a

s
6

q
6

-
(`, r)

m︷ ︸︸ ︷

Traversal of the input am

I starting from the leftmost input symbol in a state s
I moving at each step to the right
I finally reaching the right endmarker in a state q

Then:
I s and q must belong to a same deterministic loop
I q depends on m mod `, where ` is the length of the loop

IDEA: Associate with (s, q), the pair of integers (`, r) s.t.:

there is a traversal of am from s to q ⇐⇒ m mod ` = r

Describing M Computations

` a a a a a. . . a
6
p q

6
-Ψp,q = (`,R)

m︷ ︸︸ ︷

However a traversal starts on the left endmarker
I we consider states p such that p `→ s
I actually, we associate the pair (`, r) with (p, q).

How many pairs (`, r) can be associated with the same (p, q)?
I q belongs to a deterministic loop: only one possible `
I on the left endmarked nondeterministic moves are possible:

p `→ s ′ and p `→ s ′′, for different s ′, s ′′ in the same loop of q,
produce different remainders r : a set of possible remainders

With (p, q) we associate Ψp,q = (`,R), where R ⊆ {0, . . . , `− 1}

Similar argument for traversals from right to left

Describing M Computations

` a a a a a. . . a
6
p q

6
-Ψp,q = (`,R)

m mod ` ∈ R

m︷ ︸︸ ︷

By summarizing:

Lemma
For all states p, q, input am, the automaton M

I starting from one endmarker in the state p
I can reach the opposite endmarker in the state q
I without any visit of the endmarkers in the meantime

if and only if

I Ψp,q = (`,R) and m mod ` ∈ R

An Accepting Computation

` a a. . . a

m︷ ︸︸ ︷
q0 - p1�������9p2 XXXXXXXz p3

...
pk−1�������9qF

m mod `1∈ R1 Ψq0,p1 = (`1,R1)

m mod `2 ∈ R2 Ψp1,p2 = (`2,R2)

m mod `3 ∈ R3 Ψp2,p3 = (`3,R3)

...
...

m mod `k ∈ Rk Ψpk−1,qF = (`k ,Rk)

For each accepting computation
all these conditions are satified

Conversely:
I Each sequence of states q0 = p1, p2, . . . , pk−1, pk = qF

s.t. m mod `i ∈ Ri (i = 1, . . . , k)
describes an accepting computation for am

Reducing Membership for L(M) to GAP

With each input am we associate the following graph G (m):
I Vertex set Q, the set of states of M
I Edge sets E (m)

(p, q) ∈ E (m) iff m mod ` ∈ R, where Ψp,q = (`,R)

namely

The graph contains the edge (p, q) if and only if
there is a traversal from p to q on input am

Lemma
The input am is accepted if and only if
the graph G (m) contains a path from q0 to qF

Hence:
To decide whether or not am ∈ L(M) reduces
to decide GAP for G (m)

Deterministic simulation

-am

G
G (m)

- DGAP
�
��*

yes

H
HHjno

I Suppose L = NL
I Let DGAP be a logspace bounded deterministic machine

solving GAP
I On input am, compute G (m) and give the resulting graph as

input to DGAP

I This decides whether or not am ∈ L(M)

Deterministic simulation

-am

G
G (m)

- DGAP
�
��*

yes

H
HHjno

I The graph G (m) has N vertices, the number of states of M
I DGAP uses space O(logN)

I M is fixed. Hence N is constant, independent on the input am

The worktape of DGAP can be encoded in a finite
control using a number of states polynomial in N

I The graph G (m) can be represented with N2 bits

Representing the graph in a finite control would
require exponentially many states

I To avoid this we compute input bits for DGAP “on demand”

Deterministic simulation

-am

G
G (m)

- DGAP
�
��*

yes

H
HHjno

We define a unary 2DFA M ′ equivalent to M

I M ′ keeps in its finite control:
The input head position of DGAP
The worktape content of DGAP
The finite control of DGAP

I This uses a number of states polynomial in N

Deterministic simulation

-am

G
G (m)

- DGAP
�
��*

yes

H
HHjno

We define a unary 2DFA M ′ equivalent to M
I On input am, M ′ simulates DGAP on input G (m)

I Input bits for DGAP are the entries of G (m) adjacency matrix
I Subroutine Ap,q computes the input bit corresponding to (p, q)

I Ap,q traverses the input am to check whether or not
the machine M can make a traversal from p to q

I Ap,q can be implemented using no more than N states
I Considering all possible (p, q), this part uses at most N3 states

Summing Up...

We described the following simulation:

I M is almost equivalent to the original 2NFA A
I Hence, M ′ is almost equivalent to A
I Possible differences for input length ≤ 5n2

I They can be fixed in a preliminary scan (5n2 + 2 more states)
I The resulting automaton has polynomially many states

A given unary 2NFA n states
⇓ Quasi Sweeping Simulation
M qsNFA almost equivalent to A N ≤ 2n + 2 states
⇓ Deterministic Simulation
M ′ 2DFA equivalent to M poly(N) states

Preliminary scan to accept/reject inputs of length ≤ 5n2
⇓

then simulation of M ′ for longer inputs
M ′′ 2DFA equivalent to A poly(n) states

Polynomial Deterministic Conditional Simulation

Theorem ([Geffert&Pighizzini ’10])
If L = NL then each n-state unary 2NFA can be simulated by an
equivalent 2DFA with a polynomial number of states

Hence
Proving the Sakoda&Sipser conjecture for unary 2NFAs
would separate L and NL

Another condition:

Theorem ([Berman&Lingas ’77])
If L = NL then there exists a polynomial p s.t.
for each m > 0 and k-state 2NFA A,
there exists a p(mk)-state 2DFA A′ s.t.
L(A′) ⊆ L(A) and L(A) ∩ Σ≤m = L(A′) ∩ Σ≤m

What About the Converse?

Question

Does a polynomial simulation of unary 2NFAs by 2DFAs imply
L = NL?

I The answer is positive, under an additional assumption:
The transformation from unary 2NFAs to 2DFAs
must be computable in deterministic logspace

I Under this assumption, the answer is positive even restricting
to the simulation of unary 1NFAs by 2DFAs:

Theorem
If there exists a deterministic logspace bounded transducer
transforming each n-state unary 1NFA into an equivalent
nO(1)-state 2DFA then L = NL

Unambiguous Logspace (Nonuniform)

Theorem ([Reinhardt&Allender ’00])
NL ⊆ UL/poly

I UL/poly
class of languages accepted by unambiguous logspace
machines with a polynomial advice, i.e.,

I A sequence of strings {α(n) | n ≥ 0} of polynomial length
I With each input string x , the machine also receives

the advice string α(|x |)

Corollary

GAP ∈ UL/poly

x - �
��*

yes

HHHjno
α(|x |)

-
UGAP

Making Unary 2NFAs Unambiguous

Theorem ([Geffert&Pighizzini ’10])
Each n-state unary 2NFA can be simulated by an equivalent
unambiguous 2NFA with a polynomial number of states

Proof.

I Similar to the polynomial deterministic conditional simulation
I Hypothetical machine DGAP replaced with UGAP and advice

Given a 2NFA the size of G (m) (input of UGAP) is fixed
I Hence the advice is fixed (i.e., it does not depend on am)
I Advice encoded in the hardware of the simulating machine

-am

G
G (m)

-

DGAP

UGAP
�
��*

yes

H
HHjno

advice

-

Sakoda&Sipser Question: Current Knowledge

I Upper bounds

unary case

general case

1NFA→ 2DFA 2NFA→ 2DFA

O(n2) eO(ln2 n)

optimal

exponential exponential

Unary case [Chrobak ’86, GeffertMereghetti&Pighizzini ’03]

I Lower Bounds
In all the cases, the best known lower bound is Ω(n2)
[Chrobak ’86]

Conclusion

I Unary automata look as very simple computational models
finite state control
contentless input

However, their investigation shows strong connections with
fundamental questions

I The study of the Sakoda&Sipser question looks interesting and
challenging also in the unary case

I Several connections between descriptional complexity and
space complexity have been discovered.
Many techniques from one of the two fields, turn out to be
useful in the other one, e.g.,

Savitch theorem
Inductive counting
Pumping arguments
Crossing sequences
...

	The Question of Sakoda and Sipser
	Quasi Sweeping Automata and Quasi Sweeping Simulation
	Sadoka&Sipser Question vs L=?NL
	Making Unary 2NFAs Unambiguous
	Conclusion

