
Converting Self-Verifying Automata into
Deterministic Automata

Galina Jirásková1 Giovanni Pighizzini2

1Mathematical Institute
Slovak Academy of Sciences

Košice, Slovakia

2Dipartimento di Informatica e Comunicazione
Università degli Studi di Milano

Milano, Italy

LATA 2009 – Tarragona – April 7th, 2009

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Self-verifying machines

Standard machines (e.g. finite automata, pushdown automata,
Turing machines) with nondeterministic transitions

The state set is partitioned in three groups:

accepting states (“yes”)

rejecting states (“no”)

neutral states (“I do not know”)

For each input word x the following conditions must be satisfyied:

At least one computation on input x ends either in an
accepting or in a rejecting state

If a computation on x ends in an accepting state then there
are no computations on x ending in rejecting states

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Self-verifying machines

Standard machines (e.g. finite automata, pushdown automata,
Turing machines) with nondeterministic transitions

The state set is partitioned in three groups:

accepting states (“yes”)

rejecting states (“no”)

neutral states (“I do not know”)

For each input word x the following conditions must be satisfyied:

At least one computation on input x ends either in an
accepting or in a rejecting state

If a computation on x ends in an accepting state then there
are no computations on x ending in rejecting states

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Self-verifying machines

Standard machines (e.g. finite automata, pushdown automata,
Turing machines) with nondeterministic transitions

The state set is partitioned in three groups:

accepting states (“yes”)

rejecting states (“no”)

neutral states (“I do not know”)

For each input word x the following conditions must be satisfyied:

At least one computation on input x ends either in an
accepting or in a rejecting state

If a computation on x ends in an accepting state then there
are no computations on x ending in rejecting states

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Self-verifying machines

Standard machines (e.g. finite automata, pushdown automata,
Turing machines) with nondeterministic transitions

The state set is partitioned in three groups:

accepting states (“yes”)

rejecting states (“no”)

neutral states (“I do not know”)

For each input word x the following conditions must be satisfyied:

At least one computation on input x ends either in an
accepting or in a rejecting state

If a computation on x ends in an accepting state then there
are no computations on x ending in rejecting states

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Self-verifying machines

Some references:

Ďurǐs, Hromkovič, Rolim, and Schnitger (STACS 1997)
Definition of the model in connection with the study of Las
Vegas automata.

Hromkovič and Schnitger (Information and Comp. 2001)
Hromkovič and Schnitger (SIAM J. Comp. 2003)
Further investigations in connection with Las Vegas
computations and also per se.

Assent and Seibert (RAIRO-ITA 2007)
Simulation of self-verifying automata by deterministic
automata.

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Basic properties

Trivial complementation

Given nondeterministic machines M ′ and M ′′ for L and Lc , we
can build a self-verifying machine M for L
as the “union” of M ′ and M ′′, with a new initial state:

j jhM′′-

j jhM′-

Given a self-verifying machine for a language L we can easily
obtain nondeterministic machines for L and for Lc

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Basic properties

Trivial complementation

Given nondeterministic machines M ′ and M ′′ for L and Lc , we
can build a self-verifying machine M for L
as the “union” of M ′ and M ′′, with a new initial state:

j jhM′′-

j jhM′-

Given a self-verifying machine for a language L we can easily
obtain nondeterministic machines for L and for Lc

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Basic properties

Trivial complementation

Given nondeterministic machines M ′ and M ′′ for L and Lc , we
can build a self-verifying machine M for L
as the “union” of M ′ and M ′′, with a new initial state:

j jhM′′-

j jhM′-

Given a self-verifying machine for a language L we can easily
obtain nondeterministic machines for L and for Lc

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Basic properties

Trivial complementation

Given nondeterministic machines M ′ and M ′′ for L and Lc , we
can build a self-verifying machine M for L
as the “union” of M ′ and M ′′, with a new initial state:

j jhM′′-

j jhM′-

⇒ j jM′′-

j jM′-

j-

@
@

�
�

ε

ε

-

-

no

yes

Given a self-verifying machine for a language L we can easily
obtain nondeterministic machines for L and for Lc

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Basic properties

Trivial complementation

Given nondeterministic machines M ′ and M ′′ for L and Lc , we
can build a self-verifying machine M for L
as the “union” of M ′ and M ′′, with a new initial state:

j jhM′′-

j jhM′-

⇒ j jM′′-

j jM′-

j-

@
@

�
�

ε

ε

-

-

no

yes

Given a self-verifying machine for a language L we can easily
obtain nondeterministic machines for L and for Lc

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Self-verifying automata (svfa): definition

A = (Q,Σ, δ, q0,F
a,F r ) where:

Q is the finite set of states

Σ is the input alphabet

q0 ∈ Q is the initial state

δ : Q × Σ → 2Q is the transition function

F a ⊆ Q is the set of accepting states

F r ⊆ Q it the set of rejecting states, s.t. F a ∩ F r = ∅

Q − (F a ∪ F r ) is the set of neutral states

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Self-verifying automata (svfa): definition

A = (Q,Σ, δ, q0,F
a,F r ) where:

Q is the finite set of states

Σ is the input alphabet

q0 ∈ Q is the initial state

δ : Q × Σ → 2Q is the transition function

F a ⊆ Q is the set of accepting states

F r ⊆ Q it the set of rejecting states, s.t. F a ∩ F r = ∅

Q − (F a ∪ F r ) is the set of neutral states

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Self-verifying automata (svfa): definition

A = (Q,Σ, δ, q0,F
a,F r ) where:

Q is the finite set of states

Σ is the input alphabet

q0 ∈ Q is the initial state

δ : Q × Σ → 2Q is the transition function

F a ⊆ Q is the set of accepting states

F r ⊆ Q it the set of rejecting states, s.t. F a ∩ F r = ∅

Q − (F a ∪ F r ) is the set of neutral states

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Self-verifying automata (svfa): definition

A = (Q,Σ, δ, q0,F
a,F r ) where:

Q is the finite set of states

Σ is the input alphabet

q0 ∈ Q is the initial state

δ : Q × Σ → 2Q is the transition function

F a ⊆ Q is the set of accepting states

F r ⊆ Q it the set of rejecting states, s.t. F a ∩ F r = ∅

Q − (F a ∪ F r ) is the set of neutral states

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Self-verifying automata (svfa): definition

A = (Q,Σ, δ, q0,F
a,F r ) where:

Q is the finite set of states

Σ is the input alphabet

q0 ∈ Q is the initial state

δ : Q × Σ → 2Q is the transition function

F a ⊆ Q is the set of accepting states

F r ⊆ Q it the set of rejecting states, s.t. F a ∩ F r = ∅

Q − (F a ∪ F r ) is the set of neutral states

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Self-verifying automata (svfa): definition

The following conditions must be satisfied:

For each w ∈ Σ∗: δ(q0,w) ∩ (F a ∪ F r ) 6= ∅
namely, for each string there exists at least one accepting
computation or one rejecting computation

There are no strings w ∈ Σ∗ s.t. δ(q0,w) ∩ F a 6= ∅ and
δ(q0,w) ∩ F r 6= ∅
namely, the automaton cannot give contradictory answers

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Self-verifying automata (svfa): definition

The following conditions must be satisfied:

For each w ∈ Σ∗: δ(q0,w) ∩ (F a ∪ F r ) 6= ∅
namely, for each string there exists at least one accepting
computation or one rejecting computation

There are no strings w ∈ Σ∗ s.t. δ(q0,w) ∩ F a 6= ∅ and
δ(q0,w) ∩ F r 6= ∅
namely, the automaton cannot give contradictory answers

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Self-verifying automata (svfa): definition

The following conditions must be satisfied:

For each w ∈ Σ∗: δ(q0,w) ∩ (F a ∪ F r ) 6= ∅
namely, for each string there exists at least one accepting
computation or one rejecting computation

There are no strings w ∈ Σ∗ s.t. δ(q0,w) ∩ F a 6= ∅ and
δ(q0,w) ∩ F r 6= ∅
namely, the automaton cannot give contradictory answers

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Languages of svfa’s

We associate with an svfa A the following languages:

The set of strings accepted by A:

La(A) = {w ∈ Σ∗ | δ(q0,w) ∩ F a 6= ∅}

The set of strings rejected by A:

Lr (A) = {w ∈ Σ∗ | δ(q0,w) ∩ F r 6= ∅}

By the previous conditions Lr (A) = Σ∗ − La(A).

The language accepted by A is defined as La(A).

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Languages of svfa’s

We associate with an svfa A the following languages:

The set of strings accepted by A:

La(A) = {w ∈ Σ∗ | δ(q0,w) ∩ F a 6= ∅}

The set of strings rejected by A:

Lr (A) = {w ∈ Σ∗ | δ(q0,w) ∩ F r 6= ∅}

By the previous conditions Lr (A) = Σ∗ − La(A).

The language accepted by A is defined as La(A).

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Languages of svfa’s

We associate with an svfa A the following languages:

The set of strings accepted by A:

La(A) = {w ∈ Σ∗ | δ(q0,w) ∩ F a 6= ∅}

The set of strings rejected by A:

Lr (A) = {w ∈ Σ∗ | δ(q0,w) ∩ F r 6= ∅}

By the previous conditions Lr (A) = Σ∗ − La(A).

The language accepted by A is defined as La(A).

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Languages of svfa’s

We associate with an svfa A the following languages:

The set of strings accepted by A:

La(A) = {w ∈ Σ∗ | δ(q0,w) ∩ F a 6= ∅}

The set of strings rejected by A:

Lr (A) = {w ∈ Σ∗ | δ(q0,w) ∩ F r 6= ∅}

By the previous conditions Lr (A) = Σ∗ − La(A).

The language accepted by A is defined as La(A).

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Languages of svfa’s

We associate with an svfa A the following languages:

The set of strings accepted by A:

La(A) = {w ∈ Σ∗ | δ(q0,w) ∩ F a 6= ∅}

The set of strings rejected by A:

Lr (A) = {w ∈ Σ∗ | δ(q0,w) ∩ F r 6= ∅}

By the previous conditions Lr (A) = Σ∗ − La(A).

The language accepted by A is defined as La(A).

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Questions about svfa’s

First question

What is the class of languages accepted by svfa’s?

The answer to this question is easy:

Each svfa is a nondeterministic automaton

Each deterministic automaton is also an svfa

Hence:

Svfa’s characterize the class of regular languages

Thus, each svfa can be converted into an equivalent dfa.

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Questions about svfa’s

First question

What is the class of languages accepted by svfa’s?

The answer to this question is easy:

Each svfa is a nondeterministic automaton

Each deterministic automaton is also an svfa

Hence:

Svfa’s characterize the class of regular languages

Thus, each svfa can be converted into an equivalent dfa.

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Questions about svfa’s

First question

What is the class of languages accepted by svfa’s?

The answer to this question is easy:

Each svfa is a nondeterministic automaton

Each deterministic automaton is also an svfa

Hence:

Svfa’s characterize the class of regular languages

Thus, each svfa can be converted into an equivalent dfa.

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Questions about svfa’s

Second question

How much it costs, in terms of states, the conversion of an
n-state svfa into an equivalent dfa?

Classical subset construction: upper bound 2n

It is possible to do better: Assent and Seibert (2007) reduced

the upper bound to O
(

2n
√

n

)
, leaving open the optimality

In this work we further investigate this problem:

We reduce the upper bound to a function g(n)
which grows like 3

n
3

We prove that our upper bound g(n) is tight

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Questions about svfa’s

Second question

How much it costs, in terms of states, the conversion of an
n-state svfa into an equivalent dfa?

Classical subset construction: upper bound 2n

It is possible to do better: Assent and Seibert (2007) reduced

the upper bound to O
(

2n
√

n

)
, leaving open the optimality

In this work we further investigate this problem:

We reduce the upper bound to a function g(n)
which grows like 3

n
3

We prove that our upper bound g(n) is tight

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Questions about svfa’s

Second question

How much it costs, in terms of states, the conversion of an
n-state svfa into an equivalent dfa?

Classical subset construction: upper bound 2n

It is possible to do better: Assent and Seibert (2007) reduced

the upper bound to O
(

2n
√

n

)
, leaving open the optimality

In this work we further investigate this problem:

We reduce the upper bound to a function g(n)
which grows like 3

n
3

We prove that our upper bound g(n) is tight

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Questions about svfa’s

Second question

How much it costs, in terms of states, the conversion of an
n-state svfa into an equivalent dfa?

Classical subset construction: upper bound 2n

It is possible to do better: Assent and Seibert (2007) reduced

the upper bound to O
(

2n
√

n

)
, leaving open the optimality

In this work we further investigate this problem:

We reduce the upper bound to a function g(n)
which grows like 3

n
3

We prove that our upper bound g(n) is tight

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Questions about svfa’s

Second question

How much it costs, in terms of states, the conversion of an
n-state svfa into an equivalent dfa?

Classical subset construction: upper bound 2n

It is possible to do better: Assent and Seibert (2007) reduced

the upper bound to O
(

2n
√

n

)
, leaving open the optimality

In this work we further investigate this problem:

We reduce the upper bound to a function g(n)
which grows like 3

n
3

We prove that our upper bound g(n) is tight

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Conversion of svfa’s into dfa’s

Let A be an svfa

Two states q, p of A are said to be compatible iff starting
from them and reading a same string x it is not possible to
obtain contradictory answers

mq m-x

@@Rmp m-x

@@R

mq m-x

@@Rmp m-x

@@R

mq m-x

@@R
yesmp m-x

@@R
no

�
�

�
�

�
�@

@
@

@
@

@

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Conversion of svfa’s into dfa’s

Let A be an svfa

Two states q, p of A are said to be compatible iff starting
from them and reading a same string x it is not possible to
obtain contradictory answers

mq m-x

@@R
nomp m-x

@@R
no

mq m-x

@@Rmp m-x

@@R

mq m-x

@@R
yesmp m-x

@@R
no

�
�

�
�

�
�@

@
@

@
@

@

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Conversion of svfa’s into dfa’s

Let A be an svfa

Two states q, p of A are said to be compatible iff starting
from them and reading a same string x it is not possible to
obtain contradictory answers

mq m-x

@@R
I don’t knowmp m-x

@@R
I don’t know

mq m-x

@@Rmp m-x

@@R

mq m-x

@@R
yesmp m-x

@@R
no

�
�

�
�

�
�@

@
@

@
@

@

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Conversion of svfa’s into dfa’s

Let A be an svfa

Two states q, p of A are said to be compatible iff starting
from them and reading a same string x it is not possible to
obtain contradictory answers

mq m-x

@@R
yesmp m-x

@@R
yes

mq m-x

@@Rmp m-x

@@R

mq m-x

@@R
yesmp m-x

@@R
no

�
�

�
�

�
�@

@
@

@
@

@

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Conversion of svfa’s into dfa’s

Let A be an svfa

Two states q, p of A are said to be compatible iff starting
from them and reading a same string x it is not possible to
obtain contradictory answers

mq m-x

@@R
yesmp m-x

@@R
yes

mq m-x

@@R
nomp m-x

@@R
I don’t know

mq m-x

@@R
yesmp m-x

@@R
no

�
�

�
�

�
�@

@
@

@
@

@

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Conversion of svfa’s into dfa’s

Let A be an svfa

Two states q, p of A are said to be compatible iff starting
from them and reading a same string x it is not possible to
obtain contradictory answers

mq m-x

@@R
yesmp m-x

@@R
yes

mq m-x

@@R
yesmp m-x

@@R
I don’t know

mq m-x

@@R
yesmp m-x

@@R
no

�
�

�
�

�
�@

@
@

@
@

@

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Conversion of svfa’s into dfa’s

Let A be an svfa

Two states q, p of A are said to be compatible iff starting
from them and reading a same string x it is not possible to
obtain contradictory answers

mq m-x

@@R
yesmp m-x

@@R
yes

mq m-x

@@R
yesmp m-x

@@R
I don’t know

mq m-x

@@R
yesmp m-x

@@R
no

�
�

�
�

�
�@

@
@

@
@

@

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



The subset automaton Asub

Using the standard subset construction, from the given svfa A
we build a dfa

Let Asub such a dfa, restricted to its reachable states

We study the properties of Asub

Our goal is to discover which states of Asub are equivalent

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



The subset automaton Asub

Using the standard subset construction, from the given svfa A
we build a dfa

Let Asub such a dfa, restricted to its reachable states

We study the properties of Asub

Our goal is to discover which states of Asub are equivalent

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



The subset automaton Asub

Using the standard subset construction, from the given svfa A
we build a dfa

Let Asub such a dfa, restricted to its reachable states

We study the properties of Asub

Our goal is to discover which states of Asub are equivalent

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



The subset automaton Asub

Using the standard subset construction, from the given svfa A
we build a dfa

Let Asub such a dfa, restricted to its reachable states

We study the properties of Asub

Our goal is to discover which states of Asub are equivalent

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



The subset automaton Asub

Using the standard subset construction, from the given svfa A
we build a dfa

Let Asub such a dfa, restricted to its reachable states

We study the properties of Asub

Our goal is to discover which states of Asub are equivalent

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of the subset automaton

Let α be a state of the subset automaton Asub. Then:

Each two states q, p ∈ α are compatible

Proof
If q, p ∈ α are not compatible then:

mp m-x

@@R

yes
mq m-x

@@R

no

- mq0
�

�
�>

Z
Z

Z~

y

y

Given a string y s.t. α is reached on y , the original svfa on yx
should give contradictory answers!

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of the subset automaton

Let α be a state of the subset automaton Asub. Then:

Each two states q, p ∈ α are compatible

Proof
If q, p ∈ α are not compatible then:

mp m-x

@@R

yes
mq m-x

@@R

no

- mq0
�

�
�>

Z
Z

Z~

y

y

Given a string y s.t. α is reached on y , the original svfa on yx
should give contradictory answers!

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of the subset automaton

Let α be a state of the subset automaton Asub. Then:

Each two states q, p ∈ α are compatible

Proof
If q, p ∈ α are not compatible then:

mp m-x

@@R

yes
mq m-x

@@R

no

- mq0
�

�
�>

Z
Z

Z~

y

y

Given a string y s.t. α is reached on y , the original svfa on yx
should give contradictory answers!

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of the subset automaton

Let α be a state of the subset automaton Asub. Then:

Each two states q, p ∈ α are compatible

Proof
If q, p ∈ α are not compatible then:

mp m-x

@@R

yes
mq m-x

@@R

no

- mq0
�

�
�>

Z
Z

Z~

y

y

Given a string y s.t. α is reached on y , the original svfa on yx
should give contradictory answers!

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of the subset automaton

Let α be a state of the subset automaton Asub. Then:

For each x ∈ Σ∗ there exists a state q ∈ α s.t.
δ(q, x) ∩ (F a ∪ F r ) 6= ∅

Proof
If starting from each q ∈ α, the answer on x is “I don’t know”:

mq m-x

@@R

I don’t know

mq m-x

@@R

I don’t know

...
...- mq0

�
�

�>

Z
Z

Z~

y

y

Given a string y s.t. α is reached on y , the original svfa on yx
cannot give any answer!

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of the subset automaton

Let α be a state of the subset automaton Asub. Then:

For each x ∈ Σ∗ there exists a state q ∈ α s.t.
δ(q, x) ∩ (F a ∪ F r ) 6= ∅

Proof
If starting from each q ∈ α, the answer on x is “I don’t know”:

mq m-x

@@R

I don’t know

mq m-x

@@R

I don’t know

...
...- mq0

�
�

�>

Z
Z

Z~

y

y

Given a string y s.t. α is reached on y , the original svfa on yx
cannot give any answer!

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of the subset automaton

Let α be a state of the subset automaton Asub. Then:

For each x ∈ Σ∗ there exists a state q ∈ α s.t.
δ(q, x) ∩ (F a ∪ F r ) 6= ∅

Proof
If starting from each q ∈ α, the answer on x is “I don’t know”:

mq m-x

@@R

I don’t know

mq m-x

@@R

I don’t know

...
...- mq0

�
�

�>

Z
Z

Z~

y

y

Given a string y s.t. α is reached on y , the original svfa on yx
cannot give any answer!

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of the subset automaton

Let α be a state of the subset automaton Asub. Then:

For each x ∈ Σ∗ there exists a state q ∈ α s.t.
δ(q, x) ∩ (F a ∪ F r ) 6= ∅

Proof
If starting from each q ∈ α, the answer on x is “I don’t know”:

mq m-x

@@R

I don’t know

mq m-x

@@R

I don’t know

...
...- mq0

�
�

�>

Z
Z

Z~

y

y

Given a string y s.t. α is reached on y , the original svfa on yx
cannot give any answer!

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Compatibility graph

We define the following compatibility graph G , associated with the
given svfa A:

The nodes of G are the states of A

Two states q, p are connected by an edge iff q and p are
compatible

Hence:

each state of Asub represents a clique of G

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Compatibility graph

We define the following compatibility graph G , associated with the
given svfa A:

The nodes of G are the states of A

Two states q, p are connected by an edge iff q and p are
compatible

Hence:

each state of Asub represents a clique of G

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Compatibility graph

We define the following compatibility graph G , associated with the
given svfa A:

The nodes of G are the states of A

Two states q, p are connected by an edge iff q and p are
compatible

Hence:

each state of Asub represents a clique of G

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Compatibility graph

We define the following compatibility graph G , associated with the
given svfa A:

The nodes of G are the states of A

Two states q, p are connected by an edge iff q and p are
compatible

Hence:

each state of Asub represents a clique of G

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of the subset automaton

Let α, β ⊆ Q two states of Asub

If α ∪ β is a clique of G then α and β are equivalent

Proof
By contradiction, let x be a
string distinguishing α and β:

mβ m-x

mα mj-x

subset automaton Asub

Then ∃q ∈ α, p ∈ β s.t.:

mp m-x

@@R
no

mq m-x

@@R
yes

given svfa A

This should imply that q and p are not compatible.
Hence, α ∪ β cannot be a clique of G !

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of the subset automaton

Let α, β ⊆ Q two states of Asub

If α ∪ β is a clique of G then α and β are equivalent

Proof
By contradiction, let x be a
string distinguishing α and β:

mβ m-x

mα mj-x

subset automaton Asub

Then ∃q ∈ α, p ∈ β s.t.:

mp m-x

@@R
no

mq m-x

@@R
yes

given svfa A

This should imply that q and p are not compatible.
Hence, α ∪ β cannot be a clique of G !

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of the subset automaton

Let α, β ⊆ Q two states of Asub

If α ∪ β is a clique of G then α and β are equivalent

Proof
By contradiction, let x be a
string distinguishing α and β:

mβ m-x

mα mj-x

subset automaton Asub

Then ∃q ∈ α, p ∈ β s.t.:

mp m-x

@@R
no

mq m-x

@@R
yes

given svfa A

This should imply that q and p are not compatible.
Hence, α ∪ β cannot be a clique of G !

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of the subset automaton

Let α, β ⊆ Q two states of Asub

If α ∪ β is a clique of G then α and β are equivalent

Proof
By contradiction, let x be a
string distinguishing α and β:

mβ m-x

mα mj-x

subset automaton Asub

Then ∃q ∈ α, p ∈ β s.t.:

mp m-x

@@R
no

mq m-x

@@R
yes

given svfa A

This should imply that q and p are not compatible.
Hence, α ∪ β cannot be a clique of G !

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of the subset automaton

Let α, β ⊆ Q two states of Asub

If α ∪ β is a clique of G then α and β are equivalent

Proof
By contradiction, let x be a
string distinguishing α and β:

mβ m-x

mα mj-x

subset automaton Asub

Then ∃q ∈ α, p ∈ β s.t.:

mp m-x

@@R
no

mq m-x

@@R
yes

given svfa A
�

�
�

�
�

�@
@

@
@

@
@

This should imply that q and p are not compatible.
Hence, α ∪ β cannot be a clique of G !

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Subset automatom

By the previous properties:

Each state of Asub corresponds to a clique of the compatibility
graph G

If the union of two states α, β of Asub is still a clique then α
and β are equivalent

Hence,

We can reduce the size of Asub by considering exactly one state for
each maximal clique of G

In other words, the number of the states of the minimal dfa
equivalent to A is bounded by the number of maximal cliques of G

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Subset automatom

By the previous properties:

Each state of Asub corresponds to a clique of the compatibility
graph G

If the union of two states α, β of Asub is still a clique then α
and β are equivalent

Hence,

We can reduce the size of Asub by considering exactly one state for
each maximal clique of G

In other words, the number of the states of the minimal dfa
equivalent to A is bounded by the number of maximal cliques of G

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Subset automatom

By the previous properties:

Each state of Asub corresponds to a clique of the compatibility
graph G

If the union of two states α, β of Asub is still a clique then α
and β are equivalent

Hence,

We can reduce the size of Asub by considering exactly one state for
each maximal clique of G

In other words, the number of the states of the minimal dfa
equivalent to A is bounded by the number of maximal cliques of G

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Cliques in graphs

How many maximal cliques can a graph with n nodes have?

This question was answered by Moon and Moser (1965).

They proved the following exact bound f (n) for the maximum
number of maximal cliques in a graph with n nodes:

f (n) =


3b

n
3
c if n ≡ 0 (mod 3)

4 · 3b
n
3
c−1 if n ≡ 1 (mod 3)

2 · 3b
n
3
c if n ≡ 2 (mod 3)

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Cliques in graphs

How many maximal cliques can a graph with n nodes have?

This question was answered by Moon and Moser (1965).

They proved the following exact bound f (n) for the maximum
number of maximal cliques in a graph with n nodes:

f (n) =


3b

n
3
c if n ≡ 0 (mod 3)

4 · 3b
n
3
c−1 if n ≡ 1 (mod 3)

2 · 3b
n
3
c if n ≡ 2 (mod 3)

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Conversion of svfa’s into dfa’s: upper bound

Using the result of Moon and Moser, we can prove that

Each n-state svfa’s can be simulated by a dfa with
at most g(n) = 1 + f (n − 1) states

Proof

We proved that Asub can be reduced to a dfa with at most
one state for each maximal clique of G

From the defintion, it follows that each two states which are
compatible with q0 are compatible with each other

Hence q0 belongs only to one maximal clique

The other maximal cliques can involve at most the remaining
n − 1 states, hence they are at most f (n − 1)

This gives the upper bound g(n) = 1 + f (n − 1)

Notice that g(n) = O(3
n
3 )

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Conversion of svfa’s into dfa’s: upper bound

Using the result of Moon and Moser, we can prove that

Each n-state svfa’s can be simulated by a dfa with
at most g(n) = 1 + f (n − 1) states

Proof

We proved that Asub can be reduced to a dfa with at most
one state for each maximal clique of G

From the defintion, it follows that each two states which are
compatible with q0 are compatible with each other

Hence q0 belongs only to one maximal clique

The other maximal cliques can involve at most the remaining
n − 1 states, hence they are at most f (n − 1)

This gives the upper bound g(n) = 1 + f (n − 1)

Notice that g(n) = O(3
n
3 )

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Conversion of svfa’s into dfa’s: upper bound

Using the result of Moon and Moser, we can prove that

Each n-state svfa’s can be simulated by a dfa with
at most g(n) = 1 + f (n − 1) states

Proof

We proved that Asub can be reduced to a dfa with at most
one state for each maximal clique of G

From the defintion, it follows that each two states which are
compatible with q0 are compatible with each other

Hence q0 belongs only to one maximal clique

The other maximal cliques can involve at most the remaining
n − 1 states, hence they are at most f (n − 1)

This gives the upper bound g(n) = 1 + f (n − 1)

Notice that g(n) = O(3
n
3 )

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Conversion of svfa’s into dfa’s: upper bound

Using the result of Moon and Moser, we can prove that

Each n-state svfa’s can be simulated by a dfa with
at most g(n) = 1 + f (n − 1) states

Proof

We proved that Asub can be reduced to a dfa with at most
one state for each maximal clique of G

From the defintion, it follows that each two states which are
compatible with q0 are compatible with each other

Hence q0 belongs only to one maximal clique

The other maximal cliques can involve at most the remaining
n − 1 states, hence they are at most f (n − 1)

This gives the upper bound g(n) = 1 + f (n − 1)

Notice that g(n) = O(3
n
3 )

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Conversion of svfa’s into dfa’s: upper bound

Using the result of Moon and Moser, we can prove that

Each n-state svfa’s can be simulated by a dfa with
at most g(n) = 1 + f (n − 1) states

Proof

We proved that Asub can be reduced to a dfa with at most
one state for each maximal clique of G

From the defintion, it follows that each two states which are
compatible with q0 are compatible with each other

Hence q0 belongs only to one maximal clique

The other maximal cliques can involve at most the remaining
n − 1 states, hence they are at most f (n − 1)

This gives the upper bound g(n) = 1 + f (n − 1)

Notice that g(n) = O(3
n
3 )

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Conversion of svfa’s into dfa’s: upper bound

Using the result of Moon and Moser, we can prove that

Each n-state svfa’s can be simulated by a dfa with
at most g(n) = 1 + f (n − 1) states

Proof

We proved that Asub can be reduced to a dfa with at most
one state for each maximal clique of G

From the defintion, it follows that each two states which are
compatible with q0 are compatible with each other

Hence q0 belongs only to one maximal clique

The other maximal cliques can involve at most the remaining
n − 1 states, hence they are at most f (n − 1)

This gives the upper bound g(n) = 1 + f (n − 1)

Notice that g(n) = O(3
n
3 )

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Optimality

The upper bound g(n) is tight:
for each integer n ≥ 1 we can show an example of n-state svfa An

whose minimal equivalent dfa has exactly g(n) states.

For n = 3m + 1, An is the following:

���
(0, 1)

���
(0, 2)

���
(0, m)

���
(1, 1)

���
(1, 2)

���
(1, m)

���
(2, 1)

���
(2, 2)

���
(2, m)

-a -a

-a -a

-a -a

?
b

?
b

?
b

?
b

?
b

?
b

�


�

�-
a

�


�

�-

a

�

�

�-

a

�


�-

b �


�-

b �


�-

b

@@R���
q0��
�����

a, b �
�	
a, b

Z
Z

ZZ~
a, b

���yes

@@R
yes

@@R
no

@@R
no

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Optimality

The upper bound g(n) is tight:
for each integer n ≥ 1 we can show an example of n-state svfa An

whose minimal equivalent dfa has exactly g(n) states.

For n = 3m + 1, An is the following:

���
(0, 1)

���
(0, 2)

���
(0, m)

���
(1, 1)

���
(1, 2)

���
(1, m)

���
(2, 1)

���
(2, 2)

���
(2, m)

-a -a

-a -a

-a -a

?
b

?
b

?
b

?
b

?
b

?
b

�


�

�-
a

�


�

�-

a

�

�

�-

a

�


�-

b �


�-

b �


�-

b

@@R���
q0��
�����

a, b �
�	
a, b

Z
Z

ZZ~
a, b

���yes

@@R
yes

@@R
no

@@R
no

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Optimality

The upper bound g(n) is tight:
for each integer n ≥ 1 we can show an example of n-state svfa An

whose minimal equivalent dfa has exactly g(n) states.

For n = 3m + 1, An is the following:

���
(0, 1)

���
(0, 2)

���
(0, m)

���
(1, 1)

���
(1, 2)

���
(1, m)

���
(2, 1)

���
(2, 2)

���
(2, m)

-a -a

-a -a

-a -a

?
b

?
b

?
b

?
b

?
b

?
b

�


�

�-
a

�


�

�-

a

�

�

�-

a

�


�-

b �


�-

b �


�-

b

@@R���
q0��
�����

a, b �
�	
a, b

Z
Z

ZZ~
a, b

���yes

@@R
yes

@@R
no

@@R
no

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Optimality

The upper bound g(n) is tight:
for each integer n ≥ 1 we can show an example of n-state svfa An

whose minimal equivalent dfa has exactly g(n) states.

For n = 3m + 1, An is the following:

���
(0, 1)

���
(0, 2)

���
(0, m)

���
(1, 1)

���
(1, 2)

���
(1, m)

���
(2, 1)

���
(2, 2)

���
(2, m)

-a -a

-a -a

-a -a

?
b

?
b

?
b

?
b

?
b

?
b

�


�

�-
a

�


�

�-

a

�

�

�-

a

�


�-

b �


�-

b �


�-

b

@@R���
q0��
�����

a, b �
�	
a, b

Z
Z

ZZ~
a, b

���yes

@@R
yes

@@R
no

@@R
no

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Optimality

The upper bound g(n) is tight:
for each integer n ≥ 1 we can show an example of n-state svfa An

whose minimal equivalent dfa has exactly g(n) states.

For n = 3m + 1, An is the following:

���
(0, 1)

���
(0, 2)

���
(0, m)

���
(1, 1)

���
(1, 2)

���
(1, m)

���
(2, 1)

���
(2, 2)

���
(2, m)

-a -a

-a -a

-a -a

?
b

?
b

?
b

?
b

?
b

?
b

�


�

�-
a

�


�

�-

a

�

�

�-

a

�


�-

b �


�-

b �


�-

b

@@R���
q0��
�����

a, b �
�	
a, b

Z
Z

ZZ~
a, b

���yes

@@R
yes

@@R
no

@@R
no

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Optimality

The upper bound g(n) is tight:
for each integer n ≥ 1 we can show an example of n-state svfa An

whose minimal equivalent dfa has exactly g(n) states.

For n = 3m + 1, An is the following:

���
(0, 1)

���
(0, 2)

���
(0, m)

���
(1, 1)

���
(1, 2)

���
(1, m)

���
(2, 1)

���
(2, 2)

���
(2, m)

-a -a

-a -a

-a -a

?
b

?
b

?
b

?
b

?
b

?
b

�


�

�-
a

�


�

�-

a

�

�

�-

a

�


�-

b �


�-

b �


�-

b

@@R���
q0��
�����

a, b �
�	
a, b

Z
Z

ZZ~
a, b

���yes

@@R
yes

@@R
no

@@R
no

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Optimality

The upper bound g(n) is tight:
for each integer n ≥ 1 we can show an example of n-state svfa An

whose minimal equivalent dfa has exactly g(n) states.

For n = 3m + 1, An is the following:

���
(0, 1)

���
(0, 2)

���
(0, m)

���
(1, 1)

���
(1, 2)

���
(1, m)

���
(2, 1)

���
(2, 2)

���
(2, m)

-a -a

-a -a

-a -a

?
b

?
b

?
b

?
b

?
b

?
b

�


�

�-
a

�


�

�-

a

�

�

�-

a

�


�-

b �


�-

b �


�-

b

@@R���
q0��
�����

a, b �
�	
a, b

Z
Z

ZZ~
a, b

���yes

@@R
yes

@@R
no

@@R
no

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Optimality

The upper bound g(n) is tight:
for each integer n ≥ 1 we can show an example of n-state svfa An

whose minimal equivalent dfa has exactly g(n) states.

For n = 3m + 1, An is the following:

���
(0, 1)

���
(0, 2)

���
(0, m)

���
(1, 1)

���
(1, 2)

���
(1, m)

���
(2, 1)

���
(2, 2)

���
(2, m)

-a -a

-a -a

-a -a

?
b

?
b

?
b

?
b

?
b

?
b

�


�

�-
a

�


�

�-

a

�

�

�-

a

�


�-

b �


�-

b �


�-

b

@@R���
q0��
�����

a, b �
�	
a, b

Z
Z

ZZ~
a, b

���yes

@@R
yes

@@R
no

@@R
no

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of An

���
(0, 1)

���
(0, 2)

���
(0, m)

���
(1, 1)

���
(1, 2)

���
(1, m)

���
(2, 1)

���
(2, 2)

���
(2, m)

-a -a

-a -a

-a -a

?
b

?
b

?
b

?
b

?
b

?
b

�


�

�-
a

�


�

�-

a

�

�

�-

a

�


�-

b �


�-

b �


�-

b

@@R���
q0��
�����

a, b �
�	
a, b

Z
Z

ZZ~
a, b

���yes

@@R
yes

@@R
no

@@R
no

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of An

���
(0, 1)

���
(0, 2)

���
(0, m)

���
(1, 1)

���
(1, 2)

���
(1, m)

���
(2, 1)

���
(2, 2)

���
(2, m)

-a -a

-a -a

-a -a

?
b

?
b

?
b

?
b

?
b

?
b

�


�

�-
a

�


�

�-

a

�

�

�-

a

�


�-

b �


�-

b �


�-

b

@@R���
q0��
�����

a, b �
�	
a, b

Z
Z

ZZ~
a, b

���yes

@@R
yes

@@R
no

@@R
no

a

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of An

���
(0, 1)

���
(0, 2)

���
(0, m)

���
(1, 1)

���
(1, 2)

���
(1, m)

���
(2, 1)

���
(2, 2)

���
(2, m)

-a -a

-a -a

-a -a

?
b

?
b

?
b

?
b

?
b

?
b

�


�

�-
a

�


�

�-

a

�

�

�-

a

�


�-

b �


�-

b �


�-

b

@@R���
q0��
�����

a, b �
�	
a, b

Z
Z

ZZ~
a, b

���yes

@@R
yes

@@R
no

@@R
no

a

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of An

���
(0, 1)

���
(0, 2)

���
(0, m)

���
(1, 1)

���
(1, 2)

���
(1, m)

���
(2, 1)

���
(2, 2)

���
(2, m)

-a -a

-a -a

-a -a

?
b

?
b

?
b

?
b

?
b

?
b

�


�

�-
a

�


�

�-

a

�

�

�-

a

�


�-

b �


�-

b �


�-

b

@@R���
q0��
�����

a, b �
�	
a, b

Z
Z

ZZ~
a, b

���yes

@@R
yes

@@R
no

@@R
no

ab

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of An

���
(0, 1)

���
(0, 2)

���
(0, m)

���
(1, 1)

���
(1, 2)

���
(1, m)

���
(2, 1)

���
(2, 2)

���
(2, m)

-a -a

-a -a

-a -a

?
b

?
b

?
b

?
b

?
b

?
b

�


�

�-
a

�


�

�-

a

�

�

�-

a

�


�-

b �


�-

b �


�-

b

@@R���
q0��
�����

a, b �
�	
a, b

Z
Z

ZZ~
a, b

���yes

@@R
yes

@@R
no

@@R
no

ab

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of An

���
(0, 1)

���
(0, 2)

���
(0, m)

���
(1, 1)

���
(1, 2)

���
(1, m)

���
(2, 1)

���
(2, 2)

���
(2, m)

-a -a

-a -a

-a -a

?
b

?
b

?
b

?
b

?
b

?
b

�


�

�-
a

�


�

�-

a

�

�

�-

a

�


�-

b �


�-

b �


�-

b

@@R���
q0��
�����

a, b �
�	
a, b

Z
Z

ZZ~
a, b

���yes

@@R
yes

@@R
no

@@R
no

aba

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of An

���
(0, 1)

���
(0, 2)

���
(0, m)

���
(1, 1)

���
(1, 2)

���
(1, m)

���
(2, 1)

���
(2, 2)

���
(2, m)

-a -a

-a -a

-a -a

?
b

?
b

?
b

?
b

?
b

?
b

�


�

�-
a

�


�

�-

a

�

�

�-

a

�


�-

b �


�-

b �


�-

b

@@R���
q0��
�����

a, b �
�	
a, b

Z
Z

ZZ~
a, b

���yes

@@R
yes

@@R
no

@@R
no

aba

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of An

���
(0, 1)

���
(0, 2)

���
(0, m)

���
(1, 1)

���
(1, 2)

���
(1, m)

���
(2, 1)

���
(2, 2)

���
(2, m)

-a -a

-a -a

-a -a

?
b

?
b

?
b

?
b

?
b

?
b

�


�

�-
a

�


�

�-

a

�

�

�-

a

�


�-

b �


�-

b �


�-

b

@@R���
q0��
�����

a, b �
�	
a, b

Z
Z

ZZ~
a, b

���yes

@@R
yes

@@R
no

@@R
no

abaa

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of An

���
(0, 1)

���
(0, 2)

���
(0, m)

���
(1, 1)

���
(1, 2)

���
(1, m)

���
(2, 1)

���
(2, 2)

���
(2, m)

-a -a

-a -a

-a -a

?
b

?
b

?
b

?
b

?
b

?
b

�


�

�-
a

�


�

�-

a

�

�

�-

a

�


�-

b �


�-

b �


�-

b

@@R���
q0��
�����

a, b �
�	
a, b

Z
Z

ZZ~
a, b

���yes

@@R
yes

@@R
no

@@R
no

abaa

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of An

���
(0, 1)

���
(0, 2)

���
(0, m)

���
(1, 1)

���
(1, 2)

���
(1, m)

���
(2, 1)

���
(2, 2)

���
(2, m)

-a -a

-a -a

-a -a

?
b

?
b

?
b

?
b

?
b

?
b

�


�

�-
a

�


�

�-

a

�

�

�-

a

�


�-

b �


�-

b �


�-

b

@@R���
q0��
�����

a, b �
�	
a, b

Z
Z

ZZ~
a, b

���yes

@@R
yes

@@R
no

@@R
no

abaab

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of An

���
(0, 1)

���
(0, 2)

���
(0, m)

���
(1, 1)

���
(1, 2)

���
(1, m)

���
(2, 1)

���
(2, 2)

���
(2, m)

-a -a

-a -a

-a -a

?
b

?
b

?
b

?
b

?
b

?
b

�


�

�-
a

�


�

�-

a

�

�

�-

a

�


�-

b �


�-

b �


�-

b

@@R���
q0��
�����

a, b �
�	
a, b

Z
Z

ZZ~
a, b

���yes

@@R
yes

@@R
no

@@R
no

abaab

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of An

���
(0, 1)

���
(0, 2)

���
(0, m)

���
(1, 1)

���
(1, 2)

���
(1, m)

���
(2, 1)

���
(2, 2)

���
(2, m)

-a -a

-a -a

-a -a

?
b

?
b

?
b

?
b

?
b

?
b

�


�

�-
a

�


�

�-

a

�

�

�-

a

�


�-

b �


�-

b �


�-

b

@@R���
q0��
�����

a, b �
�	
a, b

Z
Z

ZZ~
a, b

���yes

@@R
yes

@@R
no

@@R
no

The reachable states of the subset automaton Asub are:

{q0}
the 3m subsets obtained by taking one state from each
column in the “grid part” (hence An is an svfa!)

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of An

���
(0, 1)

���
(0, 2)

���
(0, m)

���
(1, 1)

���
(1, 2)

���
(1, m)

���
(2, 1)

���
(2, 2)

���
(2, m)

-a -a

-a -a

-a -a

?
b

?
b

?
b

?
b

?
b

?
b

�


�

�-
a

�


�

�-

a

�

�

�-

a

�


�-

b �


�-

b �


�-

b

@@R���
q0��
�����

a, b �
�	
a, b

Z
Z

ZZ~
a, b

���yes

@@R
yes

@@R
no

@@R
no

We can verify that each two states of Asub are distinguishable

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of An

Summing up:

The subset automaton Asub has exactly g(n) = 1+3
n−1

3 states

All these states are pairwise distinguishable

Hence, it is the minimal dfa equivalent to An

The argument can be easily adapted, for the values of n which
are not of the form 3m + 1

Hence:

the exact cost for the conversion of n-state svfa’s into equivalent
dfa’s is:

g(n) =


1 + 3

n−1
3 if n ≡ 1 (mod 3) and n > 4

1 + 4 · 3
n−2

3
−1 if n ≡ 2 (mod 3) and n > 5

1 + 2 · 3
n
3
−1 if n ≡ 0 (mod 3) and n > 3

n if n 6 2

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of An

Summing up:

The subset automaton Asub has exactly g(n) = 1+3
n−1

3 states

All these states are pairwise distinguishable

Hence, it is the minimal dfa equivalent to An

The argument can be easily adapted, for the values of n which
are not of the form 3m + 1

Hence:

the exact cost for the conversion of n-state svfa’s into equivalent
dfa’s is:

g(n) =


1 + 3

n−1
3 if n ≡ 1 (mod 3) and n > 4

1 + 4 · 3
n−2

3
−1 if n ≡ 2 (mod 3) and n > 5

1 + 2 · 3
n
3
−1 if n ≡ 0 (mod 3) and n > 3

n if n 6 2

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of An

Summing up:

The subset automaton Asub has exactly g(n) = 1+3
n−1

3 states

All these states are pairwise distinguishable

Hence, it is the minimal dfa equivalent to An

The argument can be easily adapted, for the values of n which
are not of the form 3m + 1

Hence:

the exact cost for the conversion of n-state svfa’s into equivalent
dfa’s is:

g(n) =


1 + 3

n−1
3 if n ≡ 1 (mod 3) and n > 4

1 + 4 · 3
n−2

3
−1 if n ≡ 2 (mod 3) and n > 5

1 + 2 · 3
n
3
−1 if n ≡ 0 (mod 3) and n > 3

n if n 6 2

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of An

Summing up:

The subset automaton Asub has exactly g(n) = 1+3
n−1

3 states

All these states are pairwise distinguishable

Hence, it is the minimal dfa equivalent to An

The argument can be easily adapted, for the values of n which
are not of the form 3m + 1

Hence:

the exact cost for the conversion of n-state svfa’s into equivalent
dfa’s is:

g(n) =


1 + 3

n−1
3 if n ≡ 1 (mod 3) and n > 4

1 + 4 · 3
n−2

3
−1 if n ≡ 2 (mod 3) and n > 5

1 + 2 · 3
n
3
−1 if n ≡ 0 (mod 3) and n > 3

n if n 6 2

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of An

Summing up:

The subset automaton Asub has exactly g(n) = 1+3
n−1

3 states

All these states are pairwise distinguishable

Hence, it is the minimal dfa equivalent to An

The argument can be easily adapted, for the values of n which
are not of the form 3m + 1

Hence:

the exact cost for the conversion of n-state svfa’s into equivalent
dfa’s is:

g(n) =


1 + 3

n−1
3 if n ≡ 1 (mod 3) and n > 4

1 + 4 · 3
n−2

3
−1 if n ≡ 2 (mod 3) and n > 5

1 + 2 · 3
n
3
−1 if n ≡ 0 (mod 3) and n > 3

n if n 6 2

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Properties of An

Summing up:

The subset automaton Asub has exactly g(n) = 1+3
n−1

3 states

All these states are pairwise distinguishable

Hence, it is the minimal dfa equivalent to An

The argument can be easily adapted, for the values of n which
are not of the form 3m + 1

Hence:

the exact cost for the conversion of n-state svfa’s into equivalent
dfa’s is:

g(n) =


1 + 3

n−1
3 if n ≡ 1 (mod 3) and n > 4

1 + 4 · 3
n−2

3
−1 if n ≡ 2 (mod 3) and n > 5

1 + 2 · 3
n
3
−1 if n ≡ 0 (mod 3) and n > 3

n if n 6 2

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Svfa’s with multiple initial states

What happens if we allow multiple initial states?

All the initial states of A must be compatible each others

The initial state of the minimal dfa is the maximal clique
containing all of them

This gives an upper bound f (n) = g(n + 1)− 1

The upper bound is optimal ���
(0, 1)

���
(0, 2)

���
(0, m)

���
(1, 1)

���
(1, 2)

���
(1, m)

���
(2, 1)

���
(2, 2)

���
(2, m)

-a -a

-a -a

-a -a

?
b

?
b

?
b

?
b

?
b

?
b

�


�

�-
a

�


�

�-

a

�

�

�-

a

�


�-

b �


�-

b �


�-

b

@@R
yes

@@R
no

@@R
no

@@R@@R @@R

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Svfa’s with multiple initial states

What happens if we allow multiple initial states?

All the initial states of A must be compatible each others

The initial state of the minimal dfa is the maximal clique
containing all of them

This gives an upper bound f (n) = g(n + 1)− 1

The upper bound is optimal ���
(0, 1)

���
(0, 2)

���
(0, m)

���
(1, 1)

���
(1, 2)

���
(1, m)

���
(2, 1)

���
(2, 2)

���
(2, m)

-a -a

-a -a

-a -a

?
b

?
b

?
b

?
b

?
b

?
b

�


�

�-
a

�


�

�-

a

�

�

�-

a

�


�-

b �


�-

b �


�-

b

@@R
yes

@@R
no

@@R
no

@@R@@R @@R

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Svfa’s with multiple initial states

What happens if we allow multiple initial states?

All the initial states of A must be compatible each others

The initial state of the minimal dfa is the maximal clique
containing all of them

This gives an upper bound f (n) = g(n + 1)− 1

The upper bound is optimal ���
(0, 1)

���
(0, 2)

���
(0, m)

���
(1, 1)

���
(1, 2)

���
(1, m)

���
(2, 1)

���
(2, 2)

���
(2, m)

-a -a

-a -a

-a -a

?
b

?
b

?
b

?
b

?
b

?
b

�


�

�-
a

�


�

�-

a

�

�

�-

a

�


�-

b �


�-

b �


�-

b

@@R
yes

@@R
no

@@R
no

@@R@@R @@R

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Svfa’s with multiple initial states

What happens if we allow multiple initial states?

All the initial states of A must be compatible each others

The initial state of the minimal dfa is the maximal clique
containing all of them

This gives an upper bound f (n) = g(n + 1)− 1

The upper bound is optimal ���
(0, 1)

���
(0, 2)

���
(0, m)

���
(1, 1)

���
(1, 2)

���
(1, m)

���
(2, 1)

���
(2, 2)

���
(2, m)

-a -a

-a -a

-a -a

?
b

?
b

?
b

?
b

?
b

?
b

�


�

�-
a

�


�

�-

a

�

�

�-

a

�


�-

b �


�-

b �


�-

b

@@R
yes

@@R
no

@@R
no

@@R@@R @@R

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Svfa’s with multiple initial states

What happens if we allow multiple initial states?

All the initial states of A must be compatible each others

The initial state of the minimal dfa is the maximal clique
containing all of them

This gives an upper bound f (n) = g(n + 1)− 1

The upper bound is optimal ���
(0, 1)

���
(0, 2)

���
(0, m)

���
(1, 1)

���
(1, 2)

���
(1, m)

���
(2, 1)

���
(2, 2)

���
(2, m)

-a -a

-a -a

-a -a

?
b

?
b

?
b

?
b

?
b

?
b

�


�

�-
a

�


�

�-

a

�

�

�-

a

�


�-

b �


�-

b �


�-

b

@@R
yes

@@R
no

@@R
no

@@R@@R @@R

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



The unary case

What about the optimality in the unary case?

We proved the optimality using automata over a binary
alphabet

The cost of the conversion of unary nfa’s into dfa’s is
F (n) = eO(

√
n log n) (Chrobak, 1986)

F (n) grows more slowly than g(n).
Hence F (n) is a better upper bound for the conversion
of svfa’s into dfa’s in the unary case

This upper bound is not optimal!

In fact, if L is a unary language accepted by a n-state unary
nfa such that the minimal dfa for L requires F (n) states, then
each nfa for Lc requires F (n) states (Mera, Pighizzini, 2005)

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



The unary case

What about the optimality in the unary case?

We proved the optimality using automata over a binary
alphabet

The cost of the conversion of unary nfa’s into dfa’s is
F (n) = eO(

√
n log n) (Chrobak, 1986)

F (n) grows more slowly than g(n).
Hence F (n) is a better upper bound for the conversion
of svfa’s into dfa’s in the unary case

This upper bound is not optimal!

In fact, if L is a unary language accepted by a n-state unary
nfa such that the minimal dfa for L requires F (n) states, then
each nfa for Lc requires F (n) states (Mera, Pighizzini, 2005)

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



The unary case

What about the optimality in the unary case?

We proved the optimality using automata over a binary
alphabet

The cost of the conversion of unary nfa’s into dfa’s is
F (n) = eO(

√
n log n) (Chrobak, 1986)

F (n) grows more slowly than g(n).
Hence F (n) is a better upper bound for the conversion
of svfa’s into dfa’s in the unary case

This upper bound is not optimal!

In fact, if L is a unary language accepted by a n-state unary
nfa such that the minimal dfa for L requires F (n) states, then
each nfa for Lc requires F (n) states (Mera, Pighizzini, 2005)

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



The unary case

What about the optimality in the unary case?

We proved the optimality using automata over a binary
alphabet

The cost of the conversion of unary nfa’s into dfa’s is
F (n) = eO(

√
n log n) (Chrobak, 1986)

F (n) grows more slowly than g(n).
Hence F (n) is a better upper bound for the conversion
of svfa’s into dfa’s in the unary case

This upper bound is not optimal!

In fact, if L is a unary language accepted by a n-state unary
nfa such that the minimal dfa for L requires F (n) states, then
each nfa for Lc requires F (n) states (Mera, Pighizzini, 2005)

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



The unary case

What about the optimality in the unary case?

We proved the optimality using automata over a binary
alphabet

The cost of the conversion of unary nfa’s into dfa’s is
F (n) = eO(

√
n log n) (Chrobak, 1986)

F (n) grows more slowly than g(n).
Hence F (n) is a better upper bound for the conversion
of svfa’s into dfa’s in the unary case

This upper bound is not optimal!

In fact, if L is a unary language accepted by a n-state unary
nfa such that the minimal dfa for L requires F (n) states, then
each nfa for Lc requires F (n) states (Mera, Pighizzini, 2005)

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



The unary case

What about the optimality in the unary case?

We proved the optimality using automata over a binary
alphabet

The cost of the conversion of unary nfa’s into dfa’s is
F (n) = eO(

√
n log n) (Chrobak, 1986)

F (n) grows more slowly than g(n).
Hence F (n) is a better upper bound for the conversion
of svfa’s into dfa’s in the unary case

This upper bound is not optimal!

In fact, if L is a unary language accepted by a n-state unary
nfa such that the minimal dfa for L requires F (n) states, then
each nfa for Lc requires F (n) states (Mera, Pighizzini, 2005)

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Conclusion

Each n-state svfa can be converted into an equivalent dfa
with g(n) states:

We found the value of g(n), which grows like 3
n
3

The bound is exact:
for each integer n, there exists an svfa An with n states and an
input alphabet of two letters such that the minimal equivalent
dfa has g(n) states.

Each n-state svfa with multiple initial states can be converted
into an equivalent dfa with f (n) = g(n + 1)− 1 states.
Also this bound is exact.

In the unary case, a better upper bound is given by the
function F (n) = eO(

√
n log n).

However, this upper bound is not optimal.
It is an open problem to find a better upper bound in the
unary case.

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Conclusion

Each n-state svfa can be converted into an equivalent dfa
with g(n) states:

We found the value of g(n), which grows like 3
n
3

The bound is exact:
for each integer n, there exists an svfa An with n states and an
input alphabet of two letters such that the minimal equivalent
dfa has g(n) states.

Each n-state svfa with multiple initial states can be converted
into an equivalent dfa with f (n) = g(n + 1)− 1 states.
Also this bound is exact.

In the unary case, a better upper bound is given by the
function F (n) = eO(

√
n log n).

However, this upper bound is not optimal.
It is an open problem to find a better upper bound in the
unary case.

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Conclusion

Each n-state svfa can be converted into an equivalent dfa
with g(n) states:

We found the value of g(n), which grows like 3
n
3

The bound is exact:
for each integer n, there exists an svfa An with n states and an
input alphabet of two letters such that the minimal equivalent
dfa has g(n) states.

Each n-state svfa with multiple initial states can be converted
into an equivalent dfa with f (n) = g(n + 1)− 1 states.
Also this bound is exact.

In the unary case, a better upper bound is given by the
function F (n) = eO(

√
n log n).

However, this upper bound is not optimal.
It is an open problem to find a better upper bound in the
unary case.

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s



Conclusion

Each n-state svfa can be converted into an equivalent dfa
with g(n) states:

We found the value of g(n), which grows like 3
n
3

The bound is exact:
for each integer n, there exists an svfa An with n states and an
input alphabet of two letters such that the minimal equivalent
dfa has g(n) states.

Each n-state svfa with multiple initial states can be converted
into an equivalent dfa with f (n) = g(n + 1)− 1 states.
Also this bound is exact.

In the unary case, a better upper bound is given by the
function F (n) = eO(

√
n log n).

However, this upper bound is not optimal.
It is an open problem to find a better upper bound in the
unary case.

Galina Jirásková, Giovanni Pighizzini Converting self-verifying automata into dfa’s


