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Self-verifying machines

Standard machines (e.g. finite automata, pushdown automata,
Turing machines) with nondeterministic transitions
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Turing machines) with nondeterministic transitions

The state set is partitioned in three groups:
@ accepting states ("yes")
@ rejecting states ('no”)
@ neutral states (| do not know")
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Self-verifying machines

Standard machines (e.g. finite automata, pushdown automata,
Turing machines) with nondeterministic transitions

The state set is partitioned in three groups:
@ accepting states ("yes")
@ rejecting states ('no”)
@ neutral states (| do not know")

For each input word x the following conditions must be satisfyied:

@ At least one computation on input x ends either in an
accepting or in a rejecting state
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Self-verifying machines

Standard machines (e.g. finite automata, pushdown automata,
Turing machines) with nondeterministic transitions

The state set is partitioned in three groups:
@ accepting states ("yes")
@ rejecting states ('no”)
@ neutral states (| do not know")

For each input word x the following conditions must be satisfyied:
@ At least one computation on input x ends either in an
accepting or in a rejecting state

@ If a computation on x ends in an accepting state then there
are no computations on x ending in rejecting states
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Self-verifying machines

Some references:

o Duri§, Hromkovi¢, Rolim, and Schnitger (STACS 1997)
Definition of the model in connection with the study of Las
Vegas automata.

@ Hromkovi¢ and Schnitger (Information and Comp. 2001)
Hromkovi¢ and Schnitger (SIAM J. Comp. 2003)
Further investigations in connection with Las Vegas
computations and also per se.

@ Assent and Seibert (RAIRO-ITA 2007)
Simulation of self-verifying automata by deterministic
automata.
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Basic properties
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Basic properties

@ Trivial complementation
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Basic properties

@ Trivial complementation

@ Given nondeterministic machines M’ and M” for L and L€, we
can build a self-verifying machine M for L
as the “union” of M’ and M”, with a new initial state:

+Om O

+Owm O
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Basic properties

@ Trivial complementation

@ Given nondeterministic machines M’ and M” for L and L€, we
can build a self-verifying machine M for L
as the “union” of M’ and M”, with a new initial state:

+Om O

+Owm O

=
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@ Given a self-verifying machine for a language L we can easily
obtain nondeterministic machines for L and for L€
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Self-verifying automata (svfa): definition

A=(Q,%,0,q0, F?, F") where:
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Self-verifying automata (svfa): definition

A=(Q,%,0,q0, F?, F") where:

Q is the finite set of states

> is the input alphabet

go € Q is the initial state

@ 0:Q x ¥ — 29 is the transition function
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Self-verifying automata (svfa): definition

A=(Q,%,0,q0, F?, F") where:

Q is the finite set of states

> is the input alphabet

go € Q is the initial state

@ 0:Q x ¥ — 29 is the transition function

F2 C Q is the set of accepting states

Galina Jirdskova, Giovanni Pighizzini Converting self-verifying automata into dfa's



Self-verifying automata (svfa): definition

A=(Q,%,0,q0, F?, F") where:

Q is the finite set of states

2 is the input alphabet

go € Q is the initial state
@ §: Q x Y — 29 is the transition function

F2 C Q is the set of accepting states

F" C Q it the set of rejecting states, s.t. FANF" = ()
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Self-verifying automata (svfa): definition

A=(Q,%,0,q0, F?, F") where:

Q is the finite set of states

2 is the input alphabet

go € Q is the initial state
@ §: Q x Y — 29 is the transition function

F2 C Q is the set of accepting states

F" C Q it the set of rejecting states, s.t. FANF" = ()

® Q— (F?UF") is the set of neutral states
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Self-verifying automata (svfa): definition

The following conditions must be satisfied:
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Self-verifying automata (svfa): definition

The following conditions must be satisfied:

@ For each w € X*: §(qo,w)N(FPUF") #0
namely, for each string there exists at least one accepting
computation or one rejecting computation
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Self-verifying automata (svfa): definition

The following conditions must be satisfied:

@ For each w € X*: §(qo,w)N(FPUF") #0
namely, for each string there exists at least one accepting
computation or one rejecting computation

@ There are no strings w € ¥* s.t. 6(qo, w) N F? # () and
5(qo,w)NF"#£0
namely, the automaton cannot give contradictory answers
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Languages of svfa's

We associate with an svfa A the following languages:
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We associate with an svfa A the following languages:

@ The set of strings accepted by A:

L3(A) = {w € T* | §(qo, w) N F? 2 0}
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Languages of svfa's

We associate with an svfa A the following languages:

@ The set of strings accepted by A:

L3(A) = {w € T* | §(qo, w) N F? 2 0}

@ The set of strings rejected by A:

L"(A) = {w € T* | 5(qo, w) N F" # 0}

Galina Jiraskova, Giovanni Pighizzini Converting self-verifying automata into dfa's



Languages of svfa's

We associate with an svfa A the following languages:

@ The set of strings accepted by A:

L3(A) = {w € T* | §(qo, w) N F? 2 0}

@ The set of strings rejected by A:

L"(A) = {w € T* | 5(qo, w) N F" # 0}

By the previous conditions L"(A) = £* — L2(A).
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Languages of svfa's

We associate with an svfa A the following languages:

@ The set of strings accepted by A:

L3(A) = {w € T* | §(qo, w) N F? 2 0}

@ The set of strings rejected by A:

L"(A) = {w € T* | 5(qo, w) N F" # 0}

By the previous conditions L"(A) = £* — L2(A).
The language accepted by A is defined as L?(A).

Galina Jiraskova, Giovanni Pighizzini Converting self-verifying automata into dfa's



Questions about svfa's

First question

What is the class of languages accepted by svfa's?
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Questions about svfa's

First question
What is the class of languages accepted by svfa's?

The answer to this question is easy:

@ Each svfa is a nondeterministic automaton

@ Each deterministic automaton is also an svfa
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Questions about svfa's

First question
What is the class of languages accepted by svfa's?

The answer to this question is easy:

@ Each svfa is a nondeterministic automaton

@ Each deterministic automaton is also an svfa

Hence:
Svfa's characterize the class of regular languages

Thus, each svfa can be converted into an equivalent dfa.
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Questions about svfa's

Second question

How much it costs, in terms of states, the conversion of an
n-state svfa into an equivalent dfa?
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Questions about svfa's

Second question

How much it costs, in terms of states, the conversion of an
n-state svfa into an equivalent dfa?

@ Classical subset construction: upper bound 2"
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Questions about svfa's

Second question

How much it costs, in terms of states, the conversion of an
n-state svfa into an equivalent dfa?

@ Classical subset construction: upper bound 2"
@ It is possible to do better: Assent and Seibert (2007) reduced

the upper bound to O (%) leaving open the optimality
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Questions about svfa's

Second question

How much it costs, in terms of states, the conversion of an
n-state svfa into an equivalent dfa?

@ Classical subset construction: upper bound 2"
@ It is possible to do better: Assent and Seibert (2007) reduced

vn
In this work we further investigate this problem:

the upper bound to O (2—"> leaving open the optimality

e We reduce the upper bound to a function g(n)
which grows like 33
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Questions about svfa's

Second question

How much it costs, in terms of states, the conversion of an
n-state svfa into an equivalent dfa?

@ Classical subset construction: upper bound 2"
@ It is possible to do better: Assent and Seibert (2007) reduced

vn
In this work we further investigate this problem:

the upper bound to O (2—"> leaving open the optimality

e We reduce the upper bound to a function g(n)
which grows like 33

e We prove that our upper bound g(n) is tight
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Conversion of svfa's into dfa’s

Let A be an svfa

@ Two states g, p of A are said to be compatible iff starting
from them and reading a same string x it is not possible to
obtain contradictory answers
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Conversion of svfa's into dfa’s

Let A be an svfa

@ Two states g, p of A are said to be compatible iff starting
from them and reading a same string x it is not possible to
obtain contradictory answers

) N
| don’t know

X

| don’t know
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Conversion of svfa's into dfa’s

Let A be an svfa

@ Two states g, p of A are said to be compatible iff starting
from them and reading a same string x it is not possible to
obtain contradictory answers
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Conversion of svfa's into dfa’s

Let A be an svfa

@ Two states g, p of A are said to be compatible iff starting
from them and reading a same string x it is not possible to
obtain contradictory answers

yes no
yes

| don’t know
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Conversion of svfa's into dfa’s

Let A be an svfa

@ Two states g, p of A are said to be compatible iff starting
from them and reading a same string x it is not possible to
obtain contradictory answers

yes yes
yes

| don’t know

Galina Jirdskova, Giovanni Pighizzini Converting self-verifying automata into dfa's



Conversion of svfa's into dfa’s

Let A be an svfa

@ Two states g, p of A are said to be compatible iff starting
from them and reading a same string x it is not possible to
obtain contradictory answers

yes yes
yes | don’t know
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The subset automaton Ag,p
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The subset automaton Ag,p

@ Using the standard subset construction, from the given svfa A
we build a dfa
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The subset automaton Ag,p

@ Using the standard subset construction, from the given svfa A
we build a dfa

o Let Ay, such a dfa, restricted to its reachable states
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The subset automaton Ag,p

@ Using the standard subset construction, from the given svfa A
we build a dfa

o Let Ay, such a dfa, restricted to its reachable states
@ We study the properties of Agyp
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The subset automaton Ag,p

@ Using the standard subset construction, from the given svfa A
we build a dfa

o Let Ay, such a dfa, restricted to its reachable states
@ We study the properties of Agyp

@ Our goal is to discover which states of Ay, are equivalent
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Properties of the subset automaton

Let « be a state of the subset automaton Agy,. Then:
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Properties of the subset automaton

Let « be a state of the subset automaton Agy,. Then:

Each two states g, p € a are compatible
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Properties of the subset automaton

Let « be a state of the subset automaton Agy,. Then:
Each two states g, p € a are compatible

Proof
If g, p € a are not compatible then:
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Properties of the subset automaton

Let « be a state of the subset automaton Agy,. Then:
Each two states g, p € a are compatible

Proof
If g, p € a are not compatible then:

Given a string y s.t. « is reached on y, the original svfa on yx
should give contradictory answers!
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Properties of the subset automaton

Let o be a state of the subset automaton Ag,p. Then:
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Properties of the subset automaton

Let o be a state of the subset automaton Ag,p. Then:

For each x € L* there exists a state g € « s.t.
(g, x)N(FPUF") £
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Properties of the subset automaton

Let o be a state of the subset automaton Ag,p. Then:

For each x € L* there exists a state g € « s.t.
(g, x)N(FPUF") £

Proof
If starting from each g € «, the answer on x is “l don't know":

X

| don’t know
X

| don't know
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Properties of the subset automaton

Let o be a state of the subset automaton Ag,p. Then:

For each x € L* there exists a state g € « s.t.
(g, x)N(FPUF") £

Proof
If starting from each g € «, the answer on x is “l don't know":

X
| don’t know
y

(4]

Y G x Q
| don't know

Given a string y s.t. « is reached on y, the original svfa on yx
cannot give any answer!
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Compatibility graph

We define the following compatibility graph G, associated with the
given svfa A:
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Compatibility graph

We define the following compatibility graph G, associated with the
given svfa A:

@ The nodes of G are the states of A
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Compatibility graph

We define the following compatibility graph G, associated with the
given svfa A:
@ The nodes of G are the states of A

@ Two states q, p are connected by an edge iff g and p are
compatible
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Compatibility graph

We define the following compatibility graph G, associated with the
given svfa A:

@ The nodes of G are the states of A

@ Two states q, p are connected by an edge iff g and p are
compatible

Hence:

each state of Ag,p represents a clique of G
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Properties of the subset automaton

Let o, 8 C Q two states of Agyp
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Properties of the subset automaton

Let o, 8 C Q two states of Agyp

If U3 is a clique of G then « and 3 are equivalent
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Properties of the subset automaton

Let o, 8 C Q two states of Agyp
If U3 is a clique of G then « and 3 are equivalent

Proof
By contradiction, let x be a

string distinguishing o and :
(@——0

subset automaton Agp
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Properties of the subset automaton

Let o, 8 C Q two states of Agyp
If U3 is a clique of G then « and 3 are equivalent
Proof

By contradiction, let x be a Then dg € a, p € B s.t.:
string distinguishing o and :

X X
@ O @O——Q

Op® Fr——O)
subset automaton Agp given svfa A
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Properties of the subset automaton

Let o, 8 C Q two states of Agyp
If U3 is a clique of G then « and 3 are equivalent

Proof
By contradiction, let x be a Then dg € a, p € B s.t.:
string distinguishing o and :

(@——0
@——0

subset automaton Agp

given svfa A

This should imply that g and p are not compatible.
Hence, a U 3 cannot be a clique of G!
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Subset automatom

By the previous properties:

@ Each state of Agyp corresponds to a clique of the compatibility
graph G
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Subset automatom

By the previous properties:
@ Each state of Agyp corresponds to a clique of the compatibility
graph G
@ If the union of two states «, 3 of Agyp is still a clique then «
and 3 are equivalent
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Subset automatom

By the previous properties:
@ Each state of Agyp corresponds to a clique of the compatibility
graph G
@ If the union of two states «, 3 of Agyp is still a clique then «
and 3 are equivalent

Hence,

We can reduce the size of Ay, by considering exactly one state for
each maximal clique of G

In other words, the number of the states of the minimal dfa
equivalent to A is bounded by the number of maximal cliques of G
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Cliques in graphs

How many maximal cliques can a graph with n nodes have?
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Cliques in graphs

How many maximal cliques can a graph with n nodes have?

This question was answered by Moon and Moser (1965).

They proved the following exact bound f(n) for the maximum
number of maximal cliques in a graph with n nodes:

3Ll if =0 (mod 3)

f(n) = 4.3131-1 jfp=1 (mod 3)
2. 3l5] if n=2 (mod 3)
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Conversion of svfa's into dfa's: upper bound

Using the result of Moon and Moser, we can prove that

Each n-state svfa's can be simulated by a dfa with
at most g(n) =1+ f(n — 1) states

Notice that g(n) = O(33)
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Conversion of svfa's into dfa's: upper bound

Using the result of Moon and Moser, we can prove that

Each n-state svfa's can be simulated by a dfa with
at most g(n) =1+ f(n — 1) states

Proof

@ We proved that Ay, can be reduced to a dfa with at most
one state for each maximal clique of G

Notice that g(n) = O(33)
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Conversion of svfa's into dfa's: upper bound

Using the result of Moon and Moser, we can prove that

Each n-state svfa's can be simulated by a dfa with
at most g(n) =1+ f(n — 1) states

Proof

@ We proved that Ay, can be reduced to a dfa with at most
one state for each maximal clique of G

@ From the defintion, it follows that each two states which are
compatible with gg are compatible with each other

Notice that g(n) = O(33)
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Conversion of svfa's into dfa's: upper bound

Using the result of Moon and Moser, we can prove that

Each n-state svfa's can be simulated by a dfa with
at most g(n) =1+ f(n — 1) states

Proof

@ We proved that Ay, can be reduced to a dfa with at most
one state for each maximal clique of G

@ From the defintion, it follows that each two states which are
compatible with gg are compatible with each other

@ Hence gg belongs only to one maximal clique
o

Notice that g(n) = O(33)
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Conversion of svfa's into dfa's: upper bound

Using the result of Moon and Moser, we can prove that

Each n-state svfa's can be simulated by a dfa with
at most g(n) =1+ f(n — 1) states

Proof

@ We proved that Ay, can be reduced to a dfa with at most
one state for each maximal clique of G

@ From the defintion, it follows that each two states which are
compatible with gg are compatible with each other

@ Hence gg belongs only to one maximal clique

@ The other maximal cliques can involve at most the remaining
n — 1 states, hence they are at most f(n — 1)

Notice that g(n) = O(33)
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Conversion of svfa's into dfa's: upper bound

Using the result of Moon and Moser, we can prove that

Each n-state svfa's can be simulated by a dfa with
at most g(n) =1+ f(n — 1) states

Proof

@ We proved that Ay, can be reduced to a dfa with at most
one state for each maximal clique of G

@ From the defintion, it follows that each two states which are
compatible with gg are compatible with each other

@ Hence gg belongs only to one maximal clique

@ The other maximal cliques can involve at most the remaining
n — 1 states, hence they are at most f(n — 1)

@ This gives the upper bound g(n) =1+ f(n—1)
Notice that g(n) = O(33)
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Optimality

The upper bound g(n) is tight:
for each integer n > 1 we can show an example of n-state svfa A,
whose minimal equivalent dfa has exactly g(n) states.

For n=3m+ 1, A, is the following:
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Galina Jirdskova, Giovanni Pighizzini Converting self-verifying automata into dfa's



Optimality

The upper bound g(n) is tight:
for each integer n > 1 we can show an example of n-state svfa A,
whose minimal equivalent dfa has exactly g(n) states.

For n=3m+ 1, A, is the following:
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Properties of A,
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Properties of A,

& )

The reachable states of the subset automaton Ag,p are:

o {qo}

@ the 3™ subsets obtained by taking one state from each
column in the “grid part” (hence A, is an svfal)
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Properties of A,

@ We can verify that each two states of Ag,p, are distinguishable
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Properties of A,

Summing up:
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Properties of A,

Summing up:

@ The subset automaton A, has exactly g(n) =1 —F?)n%1 states
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Properties of A,

Summing up:

n—1
@ The subset automaton Ag,p, has exactly g(n) = 1+3"3 states
@ All these states are pairwise distinguishable
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Properties of A,

Summing up:

n—1
@ The subset automaton Ag,p, has exactly g(n) = 1+3"3 states
@ All these states are pairwise distinguishable
@ Hence, it is the minimal dfa equivalent to A,
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Properties of A,

Summing up:

n—1
@ The subset automaton Ag,p, has exactly g(n) = 1+3"3 states
@ All these states are pairwise distinguishable
@ Hence, it is the minimal dfa equivalent to A,

@ The argument can be easily adapted, for the values of n which
are not of the form 3m+1
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Properties of A,

Summing up:

@ The subset automaton A, has exactly g(n) =1 +3n%1 states

@ All these states are pairwise distinguishable

@ Hence, it is the minimal dfa equivalent to A,

@ The argument can be easily adapted, for the values of n which
are not of the form 3m+1

Hence:

the exact cost for the conversion of n-state svfa's into equivalent
dfa’s is:

1+3% if n=1(mod 3) and n > 4

14+4.3% 1 if n=2(mod 3)and n>5

1+2-3571  ifn=0(mod 3) and n >3

n if n<?2
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Svfa's with multiple initial states

What happens if we allow multiple initial states?
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Svfa's with multiple initial states

What happens if we allow multiple initial states?

@ All the initial states of A must be compatible each others
°
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Svfa's with multiple initial states

What happens if we allow multiple initial states?

@ All the initial states of A must be compatible each others
@ The initial state of the minimal dfa is the maximal clique
containing all of them

Converting self-verifying automata into dfa’s
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Svfa's with multiple initial states

What happens if we allow multiple initial states?

All the initial states of A must be compatible each others
The initial state of the minimal dfa is the maximal clique
containing all of them

This gives an upper bound f(n) =g(n+1) -1
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Svfa's with multiple initial states

What happens if we allow multiple initial states?

All the initial states of A must be compatible each others
The initial state of the minimal dfa is the maximal clique
containing all of them

This gives an upper bound f(n) =g(n+1) -1

The upper bound is optimal

(4
~—
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The unary case

What about the optimality in the unary case?
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The unary case

What about the optimality in the unary case?

@ We proved the optimality using automata over a binary
alphabet
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The unary case

What about the optimality in the unary case?

@ We proved the optimality using automata over a binary
alphabet

@ The cost of the conversion of unary nfa’s into dfa’s is
F(n) = e9/nlogn) (Chrobak, 1986)
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The unary case

What about the optimality in the unary case?

@ We proved the optimality using automata over a binary
alphabet

@ The cost of the conversion of unary nfa’s into dfa’s is
F(n) = e9(Vnlogn) (Chrobak, 1986)
e F(n) grows more slowly than g(n).

Hence F(n) is a better upper bound for the conversion
of svfa's into dfa’s in the unary case
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The unary case

What about the optimality in the unary case?

@ We proved the optimality using automata over a binary
alphabet

@ The cost of the conversion of unary nfa’s into dfa’s is
F(n) = e9/nlogn) (Chrobak, 1986)

e F(n) grows more slowly than g(n).
Hence F(n) is a better upper bound for the conversion
of svfa's into dfa’s in the unary case

@ This upper bound is not optimal!
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The unary case

What about the optimality in the unary case?

@ We proved the optimality using automata over a binary
alphabet

@ The cost of the conversion of unary nfa’s into dfa’s is
F(n) = e9/nlogn) (Chrobak, 1986)

e F(n) grows more slowly than g(n).
Hence F(n) is a better upper bound for the conversion
of svfa's into dfa’s in the unary case

@ This upper bound is not optimal!

@ In fact, if L is a unary language accepted by a n-state unary
nfa such that the minimal dfa for L requires F(n) states, then
each nfa for L€ requires F(n) states (Mera, Pighizzini, 2005)
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Conclusion

@ Each n-state svfa can be converted into an equivalent dfa
with g(n) states:
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Conclusion

@ Each n-state svfa can be converted into an equivalent dfa
with g(n) states:
o We found the value of g(n), which grows like 33
e The bound is exact:
for each integer n, there exists an svfa A, with n states and an
input alphabet of two letters such that the minimal equivalent
dfa has g(n) states.
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Conclusion

@ Each n-state svfa can be converted into an equivalent dfa
with g(n) states:
o We found the value of g(n), which grows like 33
e The bound is exact:
for each integer n, there exists an svfa A, with n states and an
input alphabet of two letters such that the minimal equivalent
dfa has g(n) states.

@ Each n-state svfa with multiple initial states can be converted
into an equivalent dfa with f(n) = g(n+ 1) — 1 states.
Also this bound is exact.
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Conclusion

@ Each n-state svfa can be converted into an equivalent dfa
with g(n) states:

o We found the value of g(n), which grows like 33

e The bound is exact:
for each integer n, there exists an svfa A, with n states and an
input alphabet of two letters such that the minimal equivalent
dfa has g(n) states.

@ Each n-state svfa with multiple initial states can be converted
into an equivalent dfa with f(n) = g(n+ 1) — 1 states.
Also this bound is exact.

@ In the unary case, a better upper bound is given by the
function F(n) = ¢9(vnlogn),
However, this upper bound is not optimal.
It is an open problem to find a better upper bound in the
unary case.

Galina Jirdskova, Giovanni Pighizzini Converting self-verifying automata into dfa's



