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Descriptional complexity

Given
C, a class of languages
S, a formal system (e.g., class of devices, class of
grammars,..) able to represent all the languages in C

What is the size of the representations of the languages
in C by the system S?

Usually, descriptional complexity compares different description
for a same class of languages:

given S ′, another formal system able to represent all the
languages in C

What is the size of the representations of the languages
in C by the system S ′, with respect to the size of their

representations by the system S?
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Classical example: finite state automata

i n p u t. . .

6
-
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Descriptional complexity

Classical example: finite state automata

i n p u t. . .

6
-

Base version:

One-way determistic finite automata (1dfa)
one-way input tape
deterministic
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Classical example: finite state automata

i n p u t. . .
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Some possibile variants introducing:
non determinism
two-way input head motion
alternation
...
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Finite state automata: different variants

1dfa, 1nfa, 2dfa, 2nfa, ...
Formal language point of view:

What about the power of these models?
All of them characterize the class of regular languages...

Descriptional complexity point of view:
What about the size of their descriptions?

...however some of them are more succinct.

Example

Each n-state 1nfa can be simulated by a 1dfa with 2n

states (subset construction) [Rabin and Scott ’59], and:
For each integer n ≥ 1 there is a language which is
accepted by a n-state 1nfa which requires 2n states to be
accepted by a 1dfa [Meyer and Fischer ’71].
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Descriptional complexity measures for finite automa

Deterministic automata (dfa):
number of states.

Nondeterministic automata (nfa):
number of states, or
number of transitions (more precise).

Remarks:

Each nfa with n states has O(n2) transitions.
Many results have been obtained for the measure “number
of the states”.
The measure “number of transitions” was recently
investigated by some authors,
however it was already proposed as a more realistic
measure in1971 by Meyer and Fischer.

Giovanni Pighizzini Descriptional complexity of automata and languages



Descriptional complexity measures for finite automa

Deterministic automata (dfa):
number of states.

Nondeterministic automata (nfa):
number of states, or
number of transitions (more precise).

Remarks:

Each nfa with n states has O(n2) transitions.
Many results have been obtained for the measure “number
of the states”.
The measure “number of transitions” was recently
investigated by some authors,
however it was already proposed as a more realistic
measure in1971 by Meyer and Fischer.

Giovanni Pighizzini Descriptional complexity of automata and languages



Descriptional complexity measures for finite automa

Deterministic automata (dfa):
number of states.

Nondeterministic automata (nfa):
number of states, or
number of transitions (more precise).

Remarks:

Each nfa with n states has O(n2) transitions.
Many results have been obtained for the measure “number
of the states”.
The measure “number of transitions” was recently
investigated by some authors,
however it was already proposed as a more realistic
measure in1971 by Meyer and Fischer.

Giovanni Pighizzini Descriptional complexity of automata and languages



Descriptional complexity measures for finite automa

Deterministic automata (dfa):
number of states.

Nondeterministic automata (nfa):
number of states, or
number of transitions (more precise).

Remarks:

Each nfa with n states has O(n2) transitions.
Many results have been obtained for the measure “number
of the states”.
The measure “number of transitions” was recently
investigated by some authors,
however it was already proposed as a more realistic
measure in1971 by Meyer and Fischer.

Giovanni Pighizzini Descriptional complexity of automata and languages



Descriptional complexity measures for finite automa

Deterministic automata (dfa):
number of states.

Nondeterministic automata (nfa):
number of states, or
number of transitions (more precise).

Remarks:

Each nfa with n states has O(n2) transitions.
Many results have been obtained for the measure “number
of the states”.
The measure “number of transitions” was recently
investigated by some authors,
however it was already proposed as a more realistic
measure in1971 by Meyer and Fischer.

Giovanni Pighizzini Descriptional complexity of automata and languages



Descriptional complexity measures for finite automa

Deterministic automata (dfa):
number of states.

Nondeterministic automata (nfa):
number of states, or
number of transitions (more precise).

Remarks:

Each nfa with n states has O(n2) transitions.
Many results have been obtained for the measure “number
of the states”.
The measure “number of transitions” was recently
investigated by some authors,
however it was already proposed as a more realistic
measure in1971 by Meyer and Fischer.

Giovanni Pighizzini Descriptional complexity of automata and languages



Descriptional complexity measures for finite automa

Deterministic automata (dfa):
number of states.

Nondeterministic automata (nfa):
number of states, or
number of transitions (more precise).

Remarks:

Each nfa with n states has O(n2) transitions.
Many results have been obtained for the measure “number
of the states”.
The measure “number of transitions” was recently
investigated by some authors,
however it was already proposed as a more realistic
measure in1971 by Meyer and Fischer.

Giovanni Pighizzini Descriptional complexity of automata and languages



Finite state automata

Costs of the optimal simulations by 1dfa (in terms of states):

1dfa

1nfa 2dfa 2nfa

@
@

@
@

@
@

@R ?

�
�

�
�

�
�

�	

2n O(2log n) O(2n2
)

-? � ?

[Rabin and Scott ’59, Shepardson ’59,Meyer and Fischer ’71,...]
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How much two-way motion can be useful in
order to eliminate the nondeterminism?
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Problem ([Sakoda and Sipser 1978])
Find the costs, in terms of states, of the optimal simulations of

1nfa by 2dfa
2nfa by 2dfa

Conjecture: these costs are exponential
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Sakoda and Sipser question: complete languages

Theorem (Complete languages for 1nfa vs 2dfa)

There exists a sequence of languages < B1, B2, . . . , Bn, . . . >
s.t. for each integer n ≥ 1:

Bn is accepted by a 1nfa with n states, and
among all languages accepted by n-state 1nfa, Bn requires
the largest 2dfa.

Remark: the second condition implies that
the simulation of 1nfa by 2dfa is polynomial iff each Bn is
accepted by a 2dfa with a polynomial (in n) number of states.

In a similar way:

Theorem (Complete languages for 2nfa vs 2dfa)

There exists a sequence of languages < C1, C2, . . . , Cn, . . . >
complete for the reduction of 2nfa to 2dfa.
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Sakoda and Sipser question: lower bounds

Polynomial lower bounds have been proved for the cost c(n) of
simulation of 1nfa by 2dfa. In particular:

c(n) ∈ Ω( n2

log n ) [Berman and Lingas 1977]

c(n) ∈ Ω(n2) [Chrobak 1986]

Exponential lower bounds have been proved, if the resulting
machines are required to satisfy some special conditions. e.g.,

sweeping automata [Sipser 1980]

oblivious automata [Hromkovic̆ and Schnitger 2003]
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Sweeping automata

Theorem ([Sipser 1980])
There exists a family of languages < B1, B2, . . . , Bn, . . . > s.t.
for each integer n ≥ 1:

Bn is accepted by a 1nfa with n states, and
Bn cannot be accepted by any sweeping automaton with
less than 2n states.

However, 2dfa can be exponentially more succinct than
sweeping automata:

Theorem ([Berman 1981, Micali 1981])
There exists a family of languages < A1, A2, . . . , An, . . . > s.t.
for each integer n ≥ 1:

An is accepted by a 2dfa with n states, and
An cannot be accepted by any sweeping automaton with
less than 2n − 1 states.
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Sakoda&Sipser question

Current knowledge

Upper bounds

general case

unary case

1nfa → 2dfa 2nfa → 2dfa

exponential exponential

O(n2) [1] nO(log n) [2]
optimal

[1: Chrobak 1986]
[2: Geffert, Mereghetti, Pighizzini 2003]

Lower bounds
For all the cases, the best known lower bound is Ω(n2) [1]
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Unary automata: 1dfa

Input alphabet Σ = {a}

- m - m - m - m
j m �

m
�m

�

Theorem
L ⊆ {a}∗ is regular iff ∃µ ≥ 0, λ ≥ 1 s.t.

∀n ≥ µ : an ∈ L iff an+λ ∈ L.

Special case µ = 0: the language is periodic or cyclic.
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Unary automata: 1nfa

The transition graph describing the automaton can have a
whatever structure, however...

...we can restrict to 1nfa with the following form (Chrobak
normal form):

an initial path
a nondeterministic choice
a set of cycles

- m a- km a- m�
�
��

a

@
@
@R

a

m mk-a
�

a

mk m
m

�
a

?
a

�
�

���
a
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Unary automata: Chrobak normal form

Theorem
For any unary n-state 1nfa there exists an equivalent 1nfa in
Chrobak normal form s.t.

there are O(n2) states on the initial path
the total number of states on the cycles is at most n

- m a- km a- m�
�
��

a

@
@
@R
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Unary nondeterministic automata

How to eliminate the nondeterminism from a unary 1nfa?
1 Convert the given 1nfa to

the Chrobak normal form:

- m a- m a- m�
�
��

a

@
@
@R

a

0 1 2

m m0 1
-a

�
a

m m
m

0 2

1

�
a

?
a

�
�

���
a

k
k

k

2 Copy the initial path
3 Replace the set of cycles

with a unique cycle:

- m a- m a- mk0 1 2 a- ma
�

��k
m a-k m

a@
@R m
a��	

k
ma�ma@

@I k
00

11 02

10

0112
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Simulation of unary 1nfa by 1dfa

Given an n-state 1nfa:
Convert it in Chrobak normal form:

Initial path of O(n2) states
Cycles of lenghts λ1, . . . , λk , with λ1 + . . . + λk ≤ n

The cycles are replaced by a unique cycle of length
lcm(λ1, . . . , λk )

Hence:
The number of states in the resulting cycle is bouned by
F (n) = max{lcm(x1, . . . , xk ) | x1 + . . . + xk = n}

and:
F (n) = eO(

√
n log n) [Landau 1903]

Theorem ([Chrobak 1986])
Each unary n-state 1nfa can be simulated by a 1dfa with
eO(

√
n log n) states.
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Hence:
The number of states in the resulting cycle is bouned by
F (n) = max{lcm(x1, . . . , xk ) | x1 + . . . + xk = n}

and:
F (n) = eO(

√
n log n) [Landau 1903]

Theorem ([Chrobak 1986])
Each unary n-state 1nfa can be simulated by a 1dfa with
eO(

√
n log n) states.
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Unary automata

The costs of the optimal simulations between automata
are different in the unary and in the general case!

Unary case: [Chrobak 1986, Mereghetti and Pighizzini 2001]

2dfa

1dfa 1nfa

2nfa

Giovanni Pighizzini Descriptional complexity of automata and languages



Unary automata

The costs of the optimal simulations between automata
are different in the unary and in the general case!

Unary case: [Chrobak 1986, Mereghetti and Pighizzini 2001]

2dfa

1dfa 1nfa

2nfa

Giovanni Pighizzini Descriptional complexity of automata and languages



Unary automata

The costs of the optimal simulations between automata
are different in the unary and in the general case!

Unary case: [Chrobak 1986, Mereghetti and Pighizzini 2001]

2dfa

1dfa 1nfa

2nfa

�
eO(

√
n log n)

Giovanni Pighizzini Descriptional complexity of automata and languages



Unary automata

The costs of the optimal simulations between automata
are different in the unary and in the general case!

Unary case: [Chrobak 1986, Mereghetti and Pighizzini 2001]

2dfa

1dfa 1nfa

2nfa

�
eO(

√
n log n)

6

eO(
√

n log n)

Giovanni Pighizzini Descriptional complexity of automata and languages



Unary automata

The costs of the optimal simulations between automata
are different in the unary and in the general case!

Unary case: [Chrobak 1986, Mereghetti and Pighizzini 2001]

2dfa

1dfa 1nfa

2nfa

�
eO(

√
n log n)

6

eO(
√

n log n)

@
@

@
@

@
@

@
@I

eO(
√

n log n)

Giovanni Pighizzini Descriptional complexity of automata and languages



Unary automata

The costs of the optimal simulations between automata
are different in the unary and in the general case!

Unary case: [Chrobak 1986, Mereghetti and Pighizzini 2001]

2dfa

1dfa 1nfa

2nfa

�
eO(

√
n log n)

6

eO(
√

n log n)

@
@

@
@

@
@

@
@I

eO(
√

n log n)

6

eO(
√

n log n)

�

# �
?

eO(
√

n log n)

Giovanni Pighizzini Descriptional complexity of automata and languages



Unary automata

The costs of the optimal simulations between automata
are different in the unary and in the general case!

Unary case: [Chrobak 1986, Mereghetti and Pighizzini 2001]

2dfa

1dfa 1nfa

2nfa

�
eO(

√
n log n)

6

eO(
√

n log n)

@
@

@
@

@
@

@
@I

eO(
√

n log n)

6

eO(
√

n log n)

�

# �
?

eO(
√

n log n) �

!�6 n2

Giovanni Pighizzini Descriptional complexity of automata and languages



Unary automata

The costs of the optimal simulations between automata
are different in the unary and in the general case!

Unary case: [Chrobak 1986, Mereghetti and Pighizzini 2001]

2dfa

1dfa 1nfa

2nfa

�
eO(

√
n log n)

6

eO(
√

n log n)

@
@

@
@

@
@

@
@I

eO(
√

n log n)

6

eO(
√

n log n)

�

# �
?

eO(
√

n log n) �

!�6 n2

�
?

Giovanni Pighizzini Descriptional complexity of automata and languages



Unary automata

The costs of the optimal simulations between automata
are different in the unary and in the general case!

Unary case: [Chrobak 1986, Mereghetti and Pighizzini 2001]

2dfa

1dfa 1nfa

2nfa

�
eO(

√
n log n)

6

eO(
√

n log n)

@
@

@
@

@
@

@
@I

eO(
√

n log n)

6

eO(
√

n log n)

�

# �
?

eO(
√

n log n) �

!�6 n2

�
?

-n

@
@

@
@

@
@

@
@R

n

?

n

?

n

6

eO(
√

n log n)

-n�
?

Giovanni Pighizzini Descriptional complexity of automata and languages



Descriptional complexity of regular languages

Different variant of finite automata characterize regular
languages.
However, we can describe regular languages using more
powerful formalisms or devices, as context-free grammars
and pushdown automata.

What about the sizes of cfg’s or pda’s describing regular
languages vs the sizes of finite automata?
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Descriptional complexity measures

Context-free grammars:
number of variables?

For n ≥ 1, consider the language Ln = (an)∗:
Ln requires n states to be accepted by dfa or nfa
Ln is generated by the grammar with one variable S and the
productions

S → an S → anS S → ε

Thus, the number of variables cannot be a descriptional
complexity measure for context-free grammars.
However, for grammars in Chomsky Normal Form the
number of variables is a “reasonable” measure of
complexity [Gruska, 1973].
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Descriptional complexity measures

Pushdown automata:
W.l.o.g., we can consider only pda’s s.t. push operations
add exactly one symbol on the pushdown store.

The total size of the description of a pda satisfying this
restriction is a polynomial function of two parameters:

the number of the states
the cardinality of the pushdown alphabet.

Giovanni Pighizzini Descriptional complexity of automata and languages



Descriptional complexity measures

Pushdown automata:
W.l.o.g., we can consider only pda’s s.t. push operations
add exactly one symbol on the pushdown store.

The total size of the description of a pda satisfying this
restriction is a polynomial function of two parameters:

the number of the states
the cardinality of the pushdown alphabet.

Giovanni Pighizzini Descriptional complexity of automata and languages



Context-free vs regular: descriptional complexity

Given a context-free grammar (or a pushdown automaton) of
size n, generating a regular language, how much is big an
equivalent finite automaton, wrt n ?

Theorem ([Meyer and Fischer, 1971])
For any recursive function f and arbitrarily large integers n,
there exists a cfg G of size n generating a regular language L,
s.t. any dfa accepting L must have at least f (n) states.

As a consequence, the trade-off between context-grammars
and finite automata is not recursive.
However... The witness language L is defined over a binary
alphabet.

What about languages over a one letter
alphabet?
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Unary languages

Σ = {a}

Theorem ([Ginsurg and Rice, 1962])
Every unary context-free language is regular.

Hence the classes of unary regular languages and unary
context-free languages coincide!

Problem
Study the equivalence between unary context-free and regular
languages from the descriptional complexity point of view.
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Unary cfg’s vs finite automata

The following bounds have been proved in
[Pighizzini, Shallit, Wang, 2002]:

Given a unary cfg in Chomsky normal form with h variables,
there exist:

an equivalent 1nfa with at most 22h−1 + 1 states
an equivalent 1dfa with at most 2h2

states

These bounds are tight, namely, matching lower bound have
been discovered.
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Extension to bounded languages

Bounded languages:
Subsets of w∗

1 w∗
2 . . . w∗

n , for given words w1, . . . , wn
(letter bounded if w1, . . . , wn ∈ Σ).

The class bounded regular languages is properly included
in that of bounded cfl’s, e.g., {anbn | n ≥ 0}.
Bounded cfl’s can be accepted by finite turn pda’s.

Theorem ([Malcher, Pighizzini, 2007])
Each bounded context-free language generated by a cfg with h
variables in Chomsky normal form is accepted by a finite-turn
pda with 2h states and O(1) stack symbols.

Even this upper bound is tight!
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Unary dpda’s vs finite automata

Let M be a unary pda with n states and m stack symbols, s.t.
each push adds exactly one symbol.

Using the simulation of unary cfg’s by finite automata and the
standard transformation of pda’s into cfg’s, it can be shown that
M can be simulated by a 1dfa with with 2O(n4m2) states.

What about the deterministic case?

Theorem ([Pighizzini, 2008])
If M is deterministic then it can be simulated by a 1dfa
with 2O(nm) states.
Furthermore, such a simulation is tight.
Its cost cannot be reduced even if we simulate M by a 2nfa.
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Languages with “complex” dpda’s

Unary dpda’s can be exponentially more succinct than dfa’s.
Does this is true for each unary regular language?

Problem
For m ≥ 0, let Lm ⊆ a∗ be a language accepted by a dfa with
2m states.
Does there exists an equivalent dpda with O(m) states?

The answer to this question is negative: [Pighizzini, 2008]

For each m > 0 there exists a language Lm ⊆ a∗ s.t.:
Lm is accepted by a dfa with 2m states.
The size of any dpda accepting Lm is at least d 2m

m2 , for a
constant d .

Giovanni Pighizzini Descriptional complexity of automata and languages



Languages with “complex” dpda’s

Unary dpda’s can be exponentially more succinct than dfa’s.
Does this is true for each unary regular language?

Problem
For m ≥ 0, let Lm ⊆ a∗ be a language accepted by a dfa with
2m states.
Does there exists an equivalent dpda with O(m) states?

The answer to this question is negative: [Pighizzini, 2008]

For each m > 0 there exists a language Lm ⊆ a∗ s.t.:
Lm is accepted by a dfa with 2m states.
The size of any dpda accepting Lm is at least d 2m

m2 , for a
constant d .

Giovanni Pighizzini Descriptional complexity of automata and languages



Languages with “complex” dpda’s

Unary dpda’s can be exponentially more succinct than dfa’s.
Does this is true for each unary regular language?

Problem
For m ≥ 0, let Lm ⊆ a∗ be a language accepted by a dfa with
2m states.
Does there exists an equivalent dpda with O(m) states?

The answer to this question is negative: [Pighizzini, 2008]

For each m > 0 there exists a language Lm ⊆ a∗ s.t.:
Lm is accepted by a dfa with 2m states.
The size of any dpda accepting Lm is at least d 2m

m2 , for a
constant d .

Giovanni Pighizzini Descriptional complexity of automata and languages



State complexity of language operations

Let L1 and L2 two regular languages accepted by two
automata with s1 and s2 states, and op a binary operation
preserving the regularity.

State a tight upper bound fop(s1, s2) for the number of the
states of an automaton accepting the language L1op L2.

A same question can be formulated for other kinds of
operations.

These problems have been extensively studied in the case of
one-way deterministic and nondeterministic automata for
“classical” regular operations.

There are interesting results and problems for the complement
of languages in the case of nondeterministic machines.
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Complementation of two-way automata

Problem
Given a two-way automaton with n states accepting a language
L, find the cost in term of states, of an automaton accepting the
complement of L.

Deterministic case:
The cost is 4n, for any input alphabet.
[Geffert, Mereghetti, Pighizzini 2007]
(note that 2dfa’s can have infinite computations)
Nondeterministic case:
The cost is polynomial for a unary alphabet.
[Geffert, Mereghetti, Pighizzini 2007]

What about the complementation of 2nfa over nonunary
alphabets?
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Complementation of two-way automata

Relationship with the Sakoda&Sipser question

f (n) := the cost of the simulation of a n-state 2nfa by a 2dfa.

Given an n-state 2nfa accepting L we can find:
a 2dfa accepting L with f (n) states
a 2nfa (actually a 2dfa) accepting Lc with 4f (n) states

Hence:
the complementation of 2nfa’s costs no more than their
determinization.

Theorem
If the complementation of 2nfa’s requires an exponential
number of states then the gap between 2nfa’s and 2dfa’s is
exponential.
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Complementation of one-way automata

Deterministic case: trivial

Nondeterministic case:
Worst case: [Jiraskova, 2005]
For each integer n ≥ 1 there exists a language L accepted
by a 1nfa with n states such that each 1nfa accepting Lc

needs 2n states.

Best case: [Mera, Pighizzini, 2005]
For each integer n ≥ 1 there exists a language L such that:
– the smallest 1nfa accepting L has n states
– the minimum 1dfa’s accepting L and Lc have 2n states
– the smallest 1nfa accepting Lc has at most n + 1 states.

Remarks:
L is a witness of the gap between 1nfa’s and 1dfa’s.
Both L and Lc have “small” 1nfa but “large” 1dfa’s.
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Complementation of 1nfa: unary case

The last result does not hold in the case of
unary languages:

For each unary language L such that:
L is accepted by a 1nfa with n states

L the minimum 1dfa accepting L has eO(
√

n log n) states
Then: [Mera, Pighizzini, 2005]

Each 1nfa accepting Lc should have at least n states.

Hence, if L has a “small” 1nfa and a “large” 1dfa, i.e., it is a
witness of the gap between unary 1nfa’s and 1dfa’s, then the
nondeterminism does not help in the recognition of Lc .

Giovanni Pighizzini Descriptional complexity of automata and languages



Complementation of 1nfa: unary case

The last result does not hold in the case of
unary languages:

For each unary language L such that:
L is accepted by a 1nfa with n states

L the minimum 1dfa accepting L has eO(
√

n log n) states
Then: [Mera, Pighizzini, 2005]

Each 1nfa accepting Lc should have at least n states.

Hence, if L has a “small” 1nfa and a “large” 1dfa, i.e., it is a
witness of the gap between unary 1nfa’s and 1dfa’s, then the
nondeterminism does not help in the recognition of Lc .

Giovanni Pighizzini Descriptional complexity of automata and languages



Complementation of 1nfa: unary case

The last result does not hold in the case of
unary languages:

For each unary language L such that:
L is accepted by a 1nfa with n states

L the minimum 1dfa accepting L has eO(
√

n log n) states
Then: [Mera, Pighizzini, 2005]

Each 1nfa accepting Lc should have at least n states.

Hence, if L has a “small” 1nfa and a “large” 1dfa, i.e., it is a
witness of the gap between unary 1nfa’s and 1dfa’s, then the
nondeterminism does not help in the recognition of Lc .

Giovanni Pighizzini Descriptional complexity of automata and languages



Complementation of 1nfa: unary case

The last result does not hold in the case of
unary languages:

For each unary language L such that:
L is accepted by a 1nfa with n states

L the minimum 1dfa accepting L has eO(
√

n log n) states
Then: [Mera, Pighizzini, 2005]

Each 1nfa accepting Lc should have at least n states.

Hence, if L has a “small” 1nfa and a “large” 1dfa, i.e., it is a
witness of the gap between unary 1nfa’s and 1dfa’s, then the
nondeterminism does not help in the recognition of Lc .

Giovanni Pighizzini Descriptional complexity of automata and languages


