Simulating Unary Context-Free Grammars and Pushdown Automata with Finite Automata

Giovanni Pighizzini

Dipartimento di Informatica e Comunicazione Università degli Studi di Milano ITALY

P.J. Šafárik University – Košice – Slovak Republic November 12th, 2008

(本間) (本語) (本語) (二語)

Introduction

- Simulation of unary cfg's by nfa's
- Simulation of unary cfg's by dfa's

The results presented at points 2, 3, 4, and 5 are from [Pighizzini, Shallit, Wang, 2002].

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Introduction

- Simulation of unary cfg's by nfa's
- Simulation of unary cfg's by dfa's
- Auditary pushdown automata.

The results presented at points 2, 3, 4, and 5 are from [Pighizzini, Shallit, Wang, 2002].

<ロト (四) (日) (日) (日) (日) (日) (日)

Introduction

- Simulation of unary cfg's by nfa's
- Simulation of unary cfg's by dfa's
- Auxiliary pushdown automata
- Space lower bound for 1 auxpda's accepting noncontext-free languages

0

The results presented at points 2, 3, 4, and 5 are from [Pighizzini, Shallit, Wang, 2002].

<ロト (四) (日) (日) (日) (日) (日) (日)

Introduction

- Simulation of unary cfg's by nfa's
- Simulation of unary cfg's by dfa's
- Auxiliary pushdown automata
- Space lower bound for 1 auxpda's accepting noncontext-free languages
- Extension to bounded languages

The results presented at points 2, 3, 4, and 5 are from [Pighizzini, Shallit, Wang, 2002].

Introduction

- Simulation of unary cfg's by nfa's
- Simulation of unary cfg's by dfa's
- Auxiliary pushdown automata
- Space lower bound for 1auxpda's accepting noncontext-free languages
- Extension to bounded languages

Final remarks

The results presented at points 2, 3, 4, and 5 are from [Pighizzini, Shallit, Wang, 2002].

- Introduction
- Simulation of unary cfg's by nfa's
- Simulation of unary cfg's by dfa's
- Auxiliary pushdown automata
- Space lower bound for 1auxpda's accepting noncontext-free languages
- Extension to bounded languages

Final remarks

The results presented at points 2, 3, 4, and 5 are from [Pighizzini, Shallit, Wang, 2002].

- Introduction
- Simulation of unary cfg's by nfa's
- Simulation of unary cfg's by dfa's
- Auxiliary pushdown automata
- Space lower bound for 1auxpda's accepting noncontext-free languages
- Extension to bounded languages

Final remarks

The results presented at points 2, 3, 4, and 5 are from [Pighizzini, Shallit, Wang, 2002].

- Introduction
- Simulation of unary cfg's by nfa's
- Simulation of unary cfg's by dfa's
- Auxiliary pushdown automata
- Space lower bound for 1auxpda's accepting noncontext-free languages
- Extension to bounded languages

Final remarks

The results presented at points 2, 3, 4, and 5 are from [Pighizzini, Shallit, Wang, 2002].

<ロ> <同> <同> < 回> < 回> < 三> < 三>

- Introduction
- Simulation of unary cfg's by nfa's
- Simulation of unary cfg's by dfa's
- Auxiliary pushdown automata
- Space lower bound for 1auxpda's accepting noncontext-free languages
- Extension to bounded languages
- Final remarks

The results presented at points 2, 3, 4, and 5 are from [Pighizzini, Shallit, Wang, 2002].

<ロ> <同> <同> < 回> < 回> < 三> < 三>

Given

- C, a class of languages
- S, a formal system (e.g., class of devices, class of grammars,..) able to represent all the languages in C

What is the *size* of the representations of the languages in C by the system S?

Usually, descriptional complexity compares different description for a same class of languages:

edt lis trecençen of ekki metaya larmohrentions ,/2, nevig...e

くロト (過) (目) (日)

Given

- C, a class of languages
- S, a formal system (e.g., class of devices, class of grammars,..) able to represent all the languages in C

What is the *size* of the representations of the languages in C by the system S?

Usually, descriptional complexity compares different description for a same class of languages:

- given S', another formal system able to represent all the languages in C
- aceaugnal and to anoitatneacangar ant to esta and cal tai tad. Northo esta ant of tragger ntiw, 25 metaga ant yol 3 ni 25 metaga ant yol anoitatneacangar

ヘロア ヘビア ヘビア・

Given

- C, a class of languages
- S, a formal system (e.g., class of devices, class of grammars,..) able to represent all the languages in C

What is the *size* of the representations of the languages in C by the system S?

Usually, descriptional complexity compares different description for a same class of languages:

 given S', another formal system able to represent all the languages in C

What is the *size* of the representations of the languages in C by the system S', with respect to the size of their representations by the system S?

イロン 不良 とくほう 不良 とうほ

Given

- C, a class of languages
- S, a formal system (e.g., class of devices, class of grammars,..) able to represent all the languages in C

What is the *size* of the representations of the languages in C by the system S?

Usually, descriptional complexity compares different description for a same class of languages:

 given S', another formal system able to represent all the languages in C

What is the *size* of the representations of the languages in C by the system S', with respect to the size of their representations by the system S?

▲ ■ ▶ ▲ 国 ▶ ▲ 国 ▶

Given

- C, a class of languages
- S, a formal system (e.g., class of devices, class of grammars,..) able to represent all the languages in C

What is the *size* of the representations of the languages in C by the system S?

Usually, descriptional complexity compares different description for a same class of languages:

 given S', another formal system able to represent all the languages in C

What is the *size* of the representations of the languages in C by the system S', with respect to the size of their representations by the system S?

E → < E → </p>

Classical example: deterministic vs. nondeterministic automata

• Formal language point of view:

nondeterministic finite automata are as powerful as deterministic finite automata

Descriptional complexity point of view:

Each *n*-state nfa can be simulated by a 2ⁿ state dfa (upper bound)

na ya batqasaa egaugnal a alaba erenti n regelmi daaa nG aanugar alistinalavtuga muminim entitadi daxa alin etata-n: cantugar alistinalavtuga muminim catata %

イロン 不良 とくほう 不良 とうほ

Classical example: deterministic vs. nondeterministic automata

• Formal language point of view:

nondeterministic finite automata are as powerful as deterministic finite automata

• Descriptional complexity point of view:

Each *n*-state nfa can be simulated by a 2ⁿ state dfa (upper bound)

For each integer *n* there exists a language accepted by an *n*-state nfa such that the minimun equivalent dfa requires 2ⁿ states (lower bound)

Hence:

yd a'ain io notalumia edi lo ,aatata lo amet ni ,taco edi. 25 at a'att

くロト (過) (目) (日)

Classical example: deterministic vs. nondeterministic automata

• Formal language point of view:

nondeterministic finite automata are as powerful as deterministic finite automata

Descriptional complexity point of view:

Each *n*-state nfa can be simulated by a 2^{*n*} state dfa (upper bound)

For each integer *n* there exists a language accepted by an *n*-state nfa such that the minimun equivalent dfa requires 2ⁿ states (lower bound)

Hence:

The cost, in terms of states, of the simulation of nfa's by dfa's is 2^{n} .

イロン 不良 とくほう 不良 とうほ

Classical example: deterministic vs. nondeterministic automata

• Formal language point of view:

nondeterministic finite automata are as powerful as deterministic finite automata

Descriptional complexity point of view:

Each *n*-state nfa can be simulated by a 2^{*n*} state dfa (upper bound)

For each integer *n* there exists a language accepted by an *n*-state nfa such that the minimun equivalent dfa requires 2^n states (lower bound)

Hence:

The cost, in terms of states, of the simulation of nfa's by dfa's is 2ⁿ.

(本間) (本語) (本語) (二語)

Classical example: deterministic vs. nondeterministic automata

• Formal language point of view:

nondeterministic finite automata are as powerful as deterministic finite automata

Descriptional complexity point of view:

Each *n*-state nfa can be simulated by a 2^{*n*} state dfa (upper bound)

For each integer *n* there exists a language accepted by an *n*-state nfa such that the minimun equivalent dfa requires 2^n states (lower bound)

Hence:

The cost, in terms of states, of the simulation of nfa's by dfa's is 2^n .

(日本)(日本)(日本)(日本)

- Different variant of finite automata (one-way/two-way, deterministic/nondeterministic/alternating, ...).
- All of them characterize regular languages
- Many results in the literature compare these models from the descriptional point of view.
- However, we can describe regular languages using more powerful devices or formalisms, as context-free grammars and pushdown automata.

What about the sizes of cfg's describing regular languages vs the sizes of finite automata?

(二回) (二回) (二回)

- Different variant of finite automata (one-way/two-way, deterministic/nondeterministic/alternating, ...).
- All of them characterize regular languages
- Many results in the literature compare these models from the descriptional point of view.
- However, we can describe regular languages using more powerful devices or formalisms, as context-free grammars and pushdown automata.

What about the sizes of cfg's describing regular languages vs the sizes of finite automata?

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

- Different variant of finite automata (one-way/two-way, deterministic/nondeterministic/alternating, ...).
- All of them characterize regular languages
- Many results in the literature compare these models from the descriptional point of view.
- However, we can describe regular languages using more powerful devices or formalisms, as context-free grammars and pushdown automata.

What about the sizes of cfg's describing regular languages vs the sizes of finite automata?

ヘロア ヘビア ヘビア・

- Different variant of finite automata (one-way/two-way, deterministic/nondeterministic/alternating, ...).
- All of them characterize regular languages
- Many results in the literature compare these models from the descriptional point of view.
- However, we can describe regular languages using more powerful devices or formalisms, as context-free grammars and pushdown automata.

What about the sizes of cfg's describing regular languages vs the sizes of finite automata?

ヘロア 人間 アメヨア ヘヨア

- Different variant of finite automata (one-way/two-way, deterministic/nondeterministic/alternating, ...).
- All of them characterize regular languages
- Many results in the literature compare these models from the descriptional point of view.
- However, we can describe regular languages using more powerful devices or formalisms, as context-free grammars and pushdown automata.

What about the sizes of cfg's describing regular languages vs the sizes of finite automata?

・ 同 ト ・ ヨ ト ・ ヨ ト

Given a context-free grammar (or a pushdown automaton) of size n, generating a regular language, how much is big an equivalent finite automaton, wrt n ?

Theorem ([Meyer and Fischer, 1971])

For any recursive function f and arbitrarily large integers n, there exists a cfg G of size n generating a regular language L, s.t. any dfa accepting L must have at least f(n) states.

As a consequence, the trade-off between context-grammars and finite automata is not recursive. However... The winness language to is defined over a binary alphabet

・ロン ・ 一 と ・ 日 と ・ 日 と

Given a context-free grammar (or a pushdown automaton) of size n, generating a regular language, how much is big an equivalent finite automaton, wrt n ?

Theorem ([Meyer and Fischer, 1971])

For any recursive function f and arbitrarily large integers n, there exists a cfg G of size n generating a regular language L, s.t. any dfa accepting L must have at least f(n) states.

As a consequence, the trade-off between context-grammars and finite automata is not recursive. However... The witness language *L* is defined over a binary alphabet.

What about languages over a one lettern

<ロト <回 > < 注 > < 注 > 、

Given a context-free grammar (or a pushdown automaton) of size n, generating a regular language, how much is big an equivalent finite automaton, wrt n ?

Theorem ([Meyer and Fischer, 1971])

For any recursive function f and arbitrarily large integers n, there exists a cfg G of size n generating a regular language L, s.t. any dfa accepting L must have at least f(n) states.

As a consequence, the trade-off between context-grammars and finite automata is not recursive.

However... The witness language *L* is defined over a binary alphabet.

What about languages over a one letter alphabet?

イロト イポト イヨト イヨト

Given a context-free grammar (or a pushdown automaton) of size n, generating a regular language, how much is big an equivalent finite automaton, wrt n ?

Theorem ([Meyer and Fischer, 1971])

For any recursive function f and arbitrarily large integers n, there exists a cfg G of size n generating a regular language L, s.t. any dfa accepting L must have at least f(n) states.

As a consequence, the trade-off between context-grammars and finite automata is not recursive. However... The witness language *L* is defined over a binary alphabet.

What about languages over a one letter alphabet?

코 에 제 코 어

Given a context-free grammar (or a pushdown automaton) of size n, generating a regular language, how much is big an equivalent finite automaton, wrt n ?

Theorem ([Meyer and Fischer, 1971])

For any recursive function f and arbitrarily large integers n, there exists a cfg G of size n generating a regular language L, s.t. any dfa accepting L must have at least f(n) states.

As a consequence, the trade-off between context-grammars and finite automata is not recursive. However... The witness language L is defined over a binary alphabet.

What about languages over a one letter alphabet?

 $\Sigma = \{a\}$

Theorem ([Ginsurg and Rice, 1962])

Every unary context-free language is regular.

Hence the classes of unary regular languages and unary *context-free* languages coincide!

Problem

Study the equivalence between unary context-free and regular languages from the descriptional complexity point of view.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

 $\Sigma = \{a\}$

Theorem ([Ginsurg and Rice, 1962])

Every unary context-free language is regular.

Hence the classes of unary regular languages and unary *context-free* languages coincide!

Problem

Study the equivalence between unary context-free and regular languages from the descriptional complexity point of view.

ヘロト ヘ戸ト ヘヨト ヘヨト

Descriptional complexity measures

- Deterministic automata (dfa): number of states.
- Nondeterministic automata (nfa): number of states, or number of transitions (more precise)

・ 同 ト ・ ヨ ト ・ ヨ ト

Descriptional complexity measures

• Deterministic automata (dfa): number of states.

 Nondeterministic automata (nfa): number of states, or number of transitions (more precise)

・ 同 ト ・ ヨ ト ・ ヨ ト …

• Deterministic automata (dfa): number of states.

 Nondeterministic automata (nfa): number of states, or number of transitions (more precise)

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Deterministic automata (dfa): number of states.
- Nondeterministic automata (nfa): number of states, or number of transitions (more precise)

・ 同 ト ・ ヨ ト ・ ヨ ト …
- Deterministic automata (dfa): number of states.
- Nondeterministic automata (nfa): number of states, or number of transitions (more precise)

< 回 > < 回 > < 回 > -

- Deterministic automata (dfa): number of states.
- Nondeterministic automata (nfa): number of states, or number of transitions (more precise).

伺き くほき くほう

• Context-free grammars: number of variables?

For $n \ge 1$, consider the language $L_n = (a^n)^*$:

- L_n requires n states to be accepted by dfa or nfa
- *L_n* is generated by the grammar with one variable *S* and the productions

 $S \rightarrow a^n$ $S \rightarrow a^n S$ $S \rightarrow \epsilon$

Thus, the number of variables cannot be a descriptional complexity measure for context-free grammars. However, for grammars in *Chomsky Normal Form* the number of variables is a "reasonable" measure of complexity [Gruska, 1973].

• Context-free grammars: number of variables?

For $n \ge 1$, consider the language $L_n = (a^n)^*$:

- L_n requires n states to be accepted by dfa or nfa
- *L_n* is generated by the grammar with one variable *S* and the productions

 $S \rightarrow a^n$ $S \rightarrow a^n S$ $S \rightarrow \epsilon$

Thus, the number of variables cannot be a descriptional complexity measure for context-free grammars. However, for grammars in *Chomsky Normal Form* the number of variables is a "reasonable" measure of complexity [Gruska, 1973].

• Context-free grammars: number of variables?

For $n \ge 1$, consider the language $L_n = (a^n)^*$:

- L_n requires n states to be accepted by dfa or nfa
- *L_n* is generated by the grammar with one variable *S* and the productions

 $S \rightarrow a^n$ $S \rightarrow a^n S$ $S \rightarrow \epsilon$

Thus, the number of variables cannot be a descriptional complexity measure for context-free grammars. However, for grammars in *Chomsky Normal Form* the number of variables is a "reasonable" measure of complexity [Gruska, 1973].

• Context-free grammars: number of variables?

For $n \ge 1$, consider the language $L_n = (a^n)^*$:

- L_n requires n states to be accepted by dfa or nfa
- *L_n* is generated by the grammar with one variable *S* and the productions

 $S \rightarrow a^n$ $S \rightarrow a^n S$ $S \rightarrow \epsilon$

Thus, the number of variables cannot be a descriptional complexity measure for context-free grammars. However, for grammars in *Chomsky Normal Form* the number of variables is a "reasonable" measure of complexity [Gruska, 1973].

・ロト ・ 同ト ・ ヨト ・ ヨト - 三日

• Context-free grammars: number of variables?

For $n \ge 1$, consider the language $L_n = (a^n)^*$:

- L_n requires n states to be accepted by dfa or nfa
- *L_n* is generated by the grammar with one variable *S* and the productions

 $S \rightarrow a^n$ $S \rightarrow a^n S$ $S \rightarrow \epsilon$

Thus, the number of variables cannot be a descriptional complexity measure for context-free grammars. However, for grammars in *Chomsky Normal Form* the number of variables is a "reasonable" measure of complexity [Gruska, 1973].

・ロト ・ 同ト ・ ヨト ・ ヨト - 三日

• Context-free grammars: number of variables?

For $n \ge 1$, consider the language $L_n = (a^n)^*$:

- L_n requires n states to be accepted by dfa or nfa
- *L_n* is generated by the grammar with one variable *S* and the productions

 $S \rightarrow a^n$ $S \rightarrow a^n S$ $S \rightarrow \epsilon$

Thus, the number of variables cannot be a descriptional complexity measure for context-free grammars. However, for grammars in *Chomsky Normal Form* the number of variables is a "reasonable" measure of complexity [Gruska, 1973].

・ロト ・ 同ト ・ ヨト ・ ヨト - 三日

• Context-free grammars: number of variables?

For $n \ge 1$, consider the language $L_n = (a^n)^*$:

- L_n requires n states to be accepted by dfa or nfa
- *L_n* is generated by the grammar with one variable *S* and the productions

 $S \rightarrow a^n$ $S \rightarrow a^n S$ $S \rightarrow \epsilon$

Thus, the number of variables cannot be a descriptional complexity measure for context-free grammars. However, for grammars in *Chomsky Normal Form* the number of variables is a "reasonable" measure of complexity [Gruska, 1973].

<ロト (四) (日) (日) (日) (日) (日) (日)

• Context-free grammars: number of variables?

For $n \ge 1$, consider the language $L_n = (a^n)^*$:

- L_n requires n states to be accepted by dfa or nfa
- *L_n* is generated by the grammar with one variable *S* and the productions

 $S \rightarrow a^n$ $S \rightarrow a^n S$ $S \rightarrow \epsilon$

Thus, the number of variables cannot be a descriptional complexity measure for context-free grammars. However, for grammars in *Chomsky Normal Form* the number of variables is a "reasonable" measure of complexity [Gruska, 1973].

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

• Pushdown automata:

W.I.o.g., we can consider only pda's s.t. push operations add exactly one symbol on the pushdown store.

The total size of the description of a pda satisfying this restriction is a polynomial function of two parameters:

- the number of the states
- the cardinality of the pushdown alphabet.

Strong relationships have been discovered between descriptional complexities of cfg's and pda's [Goldstine, Price, Wotschke, 1982], e.g.:

Theorem

For any pda satisfying the above restriction, with n states and m pushdown symbols, there exists an equivalent cfg in Chomsky normal form, with $n^2m + 1$ variables.

イロト イポト イヨト イヨト 三日

Pushdown automata:

W.I.o.g., we can consider only pda's s.t. push operations add exactly one symbol on the pushdown store.

The total size of the description of a pda satisfying this restriction is a polynomial function of two parameters:

- the number of the states
- the cardinality of the pushdown alphabet.

Strong relationships have been discovered between descriptional complexities of cfg's and pda's [Goldstine, Price, Wotschke, 1982], e.g.:

Theorem

For any pda satisfying the above restriction, with n states and m pushdown symbols, there exists an equivalent cfg in Chomsky normal form, with $n^2m + 1$ variables.

Pushdown automata:

W.I.o.g., we can consider only pda's s.t. push operations add exactly one symbol on the pushdown store.

The total size of the description of a pda satisfying this restriction is a polynomial function of two parameters:

- the number of the states
- the cardinality of the pushdown alphabet.

Strong relationships have been discovered between descriptional complexities of cfg's and pda's [Goldstine, Price, Wotschke, 1982], e.g.:

Theorem

For any pda satisfying the above restriction, with n states and m pushdown symbols, there exists an equivalent cfg in Chomsky normal form, with $n^2m + 1$ variables.

Pushdown automata:

W.I.o.g., we can consider only pda's s.t. push operations add exactly one symbol on the pushdown store.

The total size of the description of a pda satisfying this restriction is a polynomial function of two parameters:

- the number of the states
- the cardinality of the pushdown alphabet.

Strong relationships have been discovered between descriptional complexities of cfg's and pda's [Goldstine, Price, Wotschke, 1982], e.g.:

Theorem

For any pda satisfying the above restriction, with n states and m pushdown symbols, there exists an equivalent cfg in Chomsky normal form, with $n^2m + 1$ variables.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Notations:

• $G = (V, \{a\}, P, S)$

a cfg grammar in Chomsky normal form

• h

the number of variables in G

• $T: A \stackrel{\star}{\Rightarrow} \alpha$

a *parse tree* for the derivation $A \stackrel{*}{\Rightarrow} \alpha$, with $A \in V$,

- $lpha \in (\mathit{V} \cup \{\mathit{a}\})^*$.
- *ν*(*T*)

the set of variables which appear as labels of some nodes in ${\cal T}$

(日本)(日本)(日本)(日本)

Notations:

• G = (V, {a}, P, S) a cfg grammar in Chomsky normal form

• h

the number of variables in G

• $T: A \stackrel{\star}{\Rightarrow} \alpha$

a *parse tree* for the derivation $A \stackrel{*}{\Rightarrow} \alpha$, with $A \in V$,

 $lpha \in (\mathit{V} \cup \{\mathit{a}\})^*$.

● *ν*(*T*)

the set of variables which appear as labels of some nodes in $\ensuremath{\mathcal{T}}$

Notations:

• $G = (V, \{a\}, P, S)$

a cfg grammar in Chomsky normal form

• *h*

the number of variables in G

• $T: A \stackrel{\star}{\Rightarrow} \alpha$

a *parse tree* for the derivation $A \stackrel{*}{\Rightarrow} \alpha$, with $A \in V$, $\alpha \in (V \cup \{a\})^*$.

● *ν*(*T*)

the set of variables which appear as labels of some nodes in ${\cal T}$

<ロト (四) (日) (日) (日) (日) (日) (日)

Notations:

• $G = (V, \{a\}, P, S)$

a cfg grammar in Chomsky normal form

• h

the number of variables in G

• $T : A \stackrel{\star}{\Rightarrow} \alpha$

a *parse tree* for the derivation $A \stackrel{\star}{\Rightarrow} \alpha$, with $A \in V$, $\alpha \in (V \cup \{a\})^*$.

• $\nu(T)$

the set of variables which appear as labels of some nodes in $\ensuremath{\mathcal{T}}$

(個) (目) (日) (日)

Notations:

• $G = (V, \{a\}, P, S)$

a cfg grammar in Chomsky normal form

• h

the number of variables in G

• $T : A \stackrel{\star}{\Rightarrow} \alpha$

a *parse tree* for the derivation $A \stackrel{\star}{\Rightarrow} \alpha$, with $A \in V$,

 $\alpha \in (\mathbf{V} \cup \{\mathbf{a}\})^*.$

• $\nu(T)$

the set of variables which appear as labels of some nodes in $\ensuremath{\mathcal{T}}$

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ● ● ● ●

Lemma (padding)

Given

- $T: S \stackrel{\star}{\Rightarrow} a^{\ell}$
- $T': A \stackrel{+}{\Rightarrow} a^i A a^j$, with $A \in \nu(T)$

there exists

• $T'': S \stackrel{\star}{\Rightarrow} a^{\ell+i+j}$, with $\nu(T'') = \nu(T) \cup \nu(T')$

i.e., T can be "padded" with T' in order to get T".

<ロト (四) (日) (日) (日) (日) (日) (日)

Lemma (padding)

Given

- $T: S \stackrel{\star}{\Rightarrow} a^{\ell}$
- $T': A \stackrel{+}{\Rightarrow} a^i A a^j$, with $A \in \nu(T)$

there exists

• $T'': S \stackrel{\star}{\Rightarrow} a^{\ell+i+j}$, with $\nu(T'') = \nu(T) \cup \nu(T')$

i.e., T can be "padded" with T' in order to get T".

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Lemma (padding)

Given

- $T: S \stackrel{\star}{\Rightarrow} a^{\ell}$
- $T': A \stackrel{+}{\Rightarrow} a^i A a^j$, with $A \in \nu(T)$

there exists

• $T'': S \stackrel{\star}{\Rightarrow} a^{\ell+i+j}$, with $\nu(T'') = \nu(T) \cup \nu(T')$

i.e., T can be "padded" with T' in order to get T".

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Lemma (decomposition)

```
If T: S \stackrel{\star}{\Rightarrow} a^{\ell} and \ell > 2^{h-1}, then there exist:
```

- a tree $T_1 : S \stackrel{\star}{\Rightarrow} a^s$
- a tree $T_2 : A \stackrel{+}{\Rightarrow} a^i A a^j$, with $A \in \nu(T_1)$

such that:

• $\nu(T) = \nu(T_1) \cup \nu(T_2)$

• $\ell = s + i + j$, s > 0 and $0 < i + j < 2^{h}$.

In other words, a tree $T : S \stackrel{*}{\Rightarrow} a^{\ell}$ of a "long" string ($\ell > 2^{h-1}$) can be obtained by padding

- a tree $T_1: S \stackrel{\star}{\Rightarrow} a^s$ of shortest string
- with a "small" tree $T_2 : A \Rightarrow a^i A a^j$, where $A \in \nu(T_1)$ ("small" means $0 < i + j < 2^h$)

Lemma (decomposition)

If $T: S \stackrel{\star}{\Rightarrow} a^{\ell}$ and $\ell > 2^{h-1}$, then there exist:

- a tree $T_1 : S \stackrel{\star}{\Rightarrow} a^s$
- a tree $T_2: A \stackrel{+}{\Rightarrow} a^i A a^j$, with $A \in \nu(T_1)$

such that:

• $\nu(T) = \nu(T_1) \cup \nu(T_2)$

• $\ell = s + i + j$, s > 0 and $0 < i + j < 2^{h}$.

In other words, a tree $T : S \stackrel{\star}{\Rightarrow} a^{\ell}$ of a "long" string ($\ell > 2^{h-1}$) can be obtained by padding

- a tree $T_1: S \stackrel{\star}{\Rightarrow} a^s$ of shortest string
- with a "small" tree $T_2 : A \Rightarrow a^i A a^j$, where $A \in \nu(T_1)$ ("small" means $0 < i + j < 2^h$)

Lemma (decomposition)

If $T: S \stackrel{\star}{\Rightarrow} a^{\ell}$ and $\ell > 2^{h-1}$, then there exist:

- a tree $T_1 : S \stackrel{\star}{\Rightarrow} a^s$
- a tree $T_2: A \stackrel{+}{\Rightarrow} a^i A a^j$, with $A \in \nu(T_1)$

such that:

• $\nu(T) = \nu(T_1) \cup \nu(T_2)$

• $\ell = s + i + j$, s > 0 and $0 < i + j < 2^{h}$.

In other words, a tree $T : S \stackrel{*}{\Rightarrow} a^{\ell}$ of a "long" string ($\ell > 2^{h-1}$) can be obtained by padding

- a tree $T_1: S \stackrel{\star}{\Rightarrow} a^s$ of shortest string
- with a "small" tree $T_2 : A \Rightarrow a^i A a^j$, where $A \in \nu(T_1)$ ("small" means $0 < i + j < 2^h$)

Lemma (decomposition)

If $T: S \stackrel{\star}{\Rightarrow} a^{\ell}$ and $\ell > 2^{h-1}$, then there exist:

- a tree $T_1 : S \stackrel{\star}{\Rightarrow} a^s$
- a tree $T_2: A \stackrel{+}{\Rightarrow} a^i A a^j$, with $A \in \nu(T_1)$

such that:

• $\nu(T) = \nu(T_1) \cup \nu(T_2)$

• $\ell = s + i + j$, s > 0 and $0 < i + j < 2^{h}$.

In other words, a tree $T : S \stackrel{\star}{\Rightarrow} a^{\ell}$ of a "long" string ($\ell > 2^{h-1}$) can be obtained by padding

- a tree $T_1: S \stackrel{\star}{\Rightarrow} a^s$ of shortest string
- with a "small" tree $T_2 : A \Rightarrow a^i A a^j$, where $A \in \nu(T_1)$ ("small" means $0 < i + j < 2^h$)

Lemma (decomposition)

If $T: S \stackrel{\star}{\Rightarrow} a^{\ell}$ and $\ell > 2^{h-1}$, then there exist:

- a tree $T_1 : S \stackrel{\star}{\Rightarrow} a^s$
- a tree $T_2 : A \stackrel{+}{\Rightarrow} a^i A a^j$, with $A \in \nu(T_1)$

such that:

• $\nu(T) = \nu(T_1) \cup \nu(T_2)$

• $\ell = s + i + j$, s > 0 and $0 < i + j < 2^{h}$.

In other words, a tree $T : S \stackrel{\star}{\Rightarrow} a^{\ell}$ of a "long" string ($\ell > 2^{h-1}$) can be obtained by padding

- a tree $T_1: S \stackrel{\star}{\Rightarrow} a^s$ of shortest string
- with a "small" tree $T_2 : A \Rightarrow a^i A a^j$, where $A \in \nu(T_1)$ ("small" means $0 < i + j < 2^h$)

Lemma (decomposition)

If $T: S \stackrel{\star}{\Rightarrow} a^{\ell}$ and $\ell > 2^{h-1}$, then there exist:

- a tree $T_1 : S \stackrel{\star}{\Rightarrow} a^s$
- a tree $T_2: A \stackrel{+}{\Rightarrow} a^i A a^j$, with $A \in \nu(T_1)$

such that:

• $\nu(T) = \nu(T_1) \cup \nu(T_2)$

• $\ell = s + i + j$, s > 0 and $0 < i + j < 2^{h}$.

In other words, a tree $T : S \stackrel{\star}{\Rightarrow} a^{\ell}$ of a "long" string ($\ell > 2^{h-1}$) can be obtained by padding

- a tree $T_1: S \stackrel{\star}{\Rightarrow} a^s$ of shortest string
- with a "small" tree $T_2 : A \Rightarrow a^i A a^j$, where $A \in \nu(T_1)$ ("small" means $0 < i + j < 2^h$)

Lemma (decomposition)

If $T: S \stackrel{\star}{\Rightarrow} a^{\ell}$ and $\ell > 2^{h-1}$, then there exist:

- a tree $T_1 : S \stackrel{\star}{\Rightarrow} a^s$
- a tree $T_2: A \stackrel{+}{\Rightarrow} a^i A a^j$, with $A \in \nu(T_1)$

such that:

• $\nu(T) = \nu(T_1) \cup \nu(T_2)$

• $\ell = s + i + j$, s > 0 and $0 < i + j < 2^{h}$.

In other words, a tree $T : S \stackrel{\star}{\Rightarrow} a^{\ell}$ of a "long" string ($\ell > 2^{h-1}$) can be obtained by padding

- a tree $T_1 : S \stackrel{*}{\Rightarrow} a^s$ of shortest string
- with a "small" tree $T_2 : A \Rightarrow a^i A a^j$, where $A \in \nu(T_1)$ ("small" means $0 < i + j < 2^h$)

Lemma (decomposition)

If $T: S \stackrel{\star}{\Rightarrow} a^{\ell}$ and $\ell > 2^{h-1}$, then there exist:

- a tree $T_1 : S \stackrel{\star}{\Rightarrow} a^s$
- a tree $T_2: A \stackrel{+}{\Rightarrow} a^i A a^j$, with $A \in \nu(T_1)$

such that:

- $\nu(T) = \nu(T_1) \cup \nu(T_2)$
- $\ell = s + i + j$, s > 0 and $0 < i + j < 2^{h}$.

In other words, a tree $T : S \stackrel{\star}{\Rightarrow} a^{\ell}$ of a "long" string ($\ell > 2^{h-1}$) can be obtained by padding

- a tree $T_1: S \stackrel{\star}{\Rightarrow} a^s$ of shortest string
- with a "small" tree $T_2 : A \Rightarrow a^i A a^i$, where $A \in \nu(T_1)$ ("small" means $0 < i + j < 2^h$)

Lemma (decomposition)

If $T: S \stackrel{\star}{\Rightarrow} a^{\ell}$ and $\ell > 2^{h-1}$, then there exist:

- a tree $T_1 : S \stackrel{\star}{\Rightarrow} a^s$
- a tree $T_2: A \stackrel{+}{\Rightarrow} a^i A a^j$, with $A \in \nu(T_1)$

such that:

- $\nu(T) = \nu(T_1) \cup \nu(T_2)$
- $\ell = s + i + j$, s > 0 and $0 < i + j < 2^{h}$.

In other words, a tree $T : S \stackrel{\star}{\Rightarrow} a^{\ell}$ of a "long" string ($\ell > 2^{h-1}$) can be obtained by padding

- a tree $T_1: S \stackrel{\star}{\Rightarrow} a^s$ of shortest string
- with a "small" tree $T_2 : A \stackrel{+}{\Rightarrow} a^i A a^j$, where $A \in \nu(T_1)$ ("small" means $0 < i + j < 2^h$)

Lemma (decomposition)

If $T: S \stackrel{\star}{\Rightarrow} a^{\ell}$ and $\ell > 2^{h-1}$, then there exist:

- a tree $T_1 : S \stackrel{\star}{\Rightarrow} a^s$
- a tree $T_2: A \stackrel{+}{\Rightarrow} a^i A a^j$, with $A \in \nu(T_1)$

such that:

- $\nu(T) = \nu(T_1) \cup \nu(T_2)$
- $\ell = s + i + j$, s > 0 and $0 < i + j < 2^{h}$.

In other words, a tree $T : S \stackrel{\star}{\Rightarrow} a^{\ell}$ of a "long" string ($\ell > 2^{h-1}$) can be obtained by padding

- a tree $T_1: S \stackrel{\star}{\Rightarrow} a^s$ of shortest string
- with a "small" tree $T_2 : A \stackrel{+}{\Rightarrow} a^i A a^j$, where $A \in \nu(T_1)$ ("small" means $0 < i + j < 2^h$)

MAIN IDEA:

we can generate all strings belonging to L(G) by using "small" trees corresponding to derivations of the forms

- $S \stackrel{\star}{\Rightarrow} a^{\ell}$ and
- $A \stackrel{+}{\Rightarrow} a^i A a^j$,

where $\ell \le 2^{h-1}$ and $0 < i + j < 2^{h}$.

nondeterministically select a tree $T_1: S \stackrel{\star}{\Rightarrow} a^{\ell}$, with $\ell < 2^{h-1}$

nondeterministically select a tree $T_1: S \stackrel{\star}{\Rightarrow} a^{\ell}$, with $\ell < 2^{h-1}$ output a^{ℓ}
nondeterministically select a tree $T_1 : S \stackrel{\star}{\Rightarrow} a^{\ell}$, with $\ell \leq 2^{h-1}$ enabled $\leftarrow \nu(T_1)$ iterate \leftarrow nondeterministically choose true or false

while iterate do

nondeterministically select a tree $T_2 : A \Rightarrow a' Aa'$, with $0 < i + j < 2^h$ and $A \in enabled$

 $\ell \leftarrow \ell + i + j$

enabled \leftarrow enabled $\cup \nu(T_2)$

iterate ← nondeterministically choose *true* or *false* endwhile

output a^ℓ

イロン 不良 とくほう 不良 とうほ

nondeterministically select a tree $T_1 : S \stackrel{\star}{\Rightarrow} a^{\ell}$, with $\ell \leq 2^{h-1}$ enabled $\leftarrow \nu(T_1)$ iterate \leftarrow nondeterministically choose true or false while iterate **do** nondeterministically select a tree $T_2 : A \stackrel{\pm}{\Rightarrow} a^i A a^j$, with $0 < i + j < 2^h$ and $A \in enabled$

 $\ell \leftarrow \ell + i + j$ enabled \leftarrow enabled $\cup \nu(T_2)$ iterate \leftarrow nondeterministically choose true or false endwhile output a^{ℓ}

nondeterministically select a tree $T_1 : S \stackrel{\star}{\Rightarrow} a^{\ell}$, with $\ell \leq 2^{h-1}$ enabled $\leftarrow \nu(T_1)$ iterate \leftarrow nondeterministically choose true or false while iterate do

nondeterministically select a tree $T_2 : A \Rightarrow a^i A a^j$, with $0 < i + j < 2^h$ and $A \in enabled$ $\ell \leftarrow \ell + i + j$ enabled $\leftarrow enabled \cup \nu(T_2)$ iterate \leftarrow nondeterministically choose true or false endwhile output a^ℓ

nondeterministically select a tree $T_1 : S \stackrel{\star}{\Rightarrow} a^{\ell}$, with $\ell \leq 2^{h-1}$ enabled $\leftarrow \nu(T_1)$ iterate \leftarrow nondeterministically choose true or false while iterate do

nondeterministically select a tree $T_2 : A \Rightarrow a^i A a^j$, with $0 < i + j < 2^h$ and $A \in enabled$ $\ell \leftarrow \ell + i + j$ enabled $\leftarrow enabled \cup \nu(T_2)$ iterate \leftarrow nondeterministically choose true or false endwhile output a^ℓ

nondeterministically select a tree $T_1 : S \stackrel{\star}{\Rightarrow} a^{\ell}$, with $\ell \leq 2^{h-1}$ enabled $\leftarrow \nu(T_1)$ iterate \leftarrow nondeterministically choose true or false

while iterate do

nondeterministically select a tree $T_2 : A \Rightarrow a^i A a^j$, with $0 < i + j < 2^h$ and $A \in enabled$ $\ell \leftarrow \ell + i + j$ enabled \leftarrow enabled $\cup \nu(T_2)$ iterate \leftarrow nondeterministically choose true or false endwhile output a^ℓ

- The strategy of the generation procedure can be implemented by a nfa with ε-moves A.
- The states of *A* are pairs (α, s) , where:
 - $\alpha \subseteq V$ represents the variable *enabled*
 - $s < 2^h$ is used to count input factors
- After some simplifications, the number of the states of such an automaton can be reduced to $2^{2h-1} + 1$.

Hence

Theorem (upper bound)

For any unary cfg in Chomsky normal form with h variables, there exists an equivalent nfa with at most $2^{2h-1} + 1$ states.

ヘロト ヘ回ト ヘヨト ヘヨト

- The strategy of the generation procedure can be implemented by a nfa with *ϵ*-moves *A*.
- The states of *A* are pairs (α, s) , where:
 - $\alpha \subseteq V$ represents the variable *enabled*
 - $s < 2^h$ is used to count input factors
- After some simplifications, the number of the states of such an automaton can be reduced to $2^{2h-1} + 1$.

Hence

Theorem (upper bound)

For any unary cfg in Chomsky normal form with h variables, there exists an equivalent nfa with at most $2^{2h-1} + 1$ states.

・ロン ・ 一 と ・ 日 と ・ 日 と

- The strategy of the generation procedure can be implemented by a nfa with *ε*-moves *A*.
- The states of *A* are pairs (α, s) , where:
 - α ⊆ V represents the variable *enabled* s < 2^h is used to count input factors
- After some simplifications, the number of the states of such an automaton can be reduced to $2^{2h-1} + 1$.

Hence

Theorem (upper bound)

For any unary cfg in Chomsky normal form with h variables, there exists an equivalent nfa with at most $2^{2h-1} + 1$ states.

ヘロア ヘビア ヘビア・

- The strategy of the generation procedure can be implemented by a nfa with *ε*-moves *A*.
- The states of *A* are pairs (α, s) , where:
 - $\alpha \subseteq V$ represents the variable *enabled*
 - $s < 2^h$ is used to count input factors
- After some simplifications, the number of the states of such an automaton can be reduced to $2^{2h-1} + 1$.

Hence

Theorem (upper bound)

For any unary cfg in Chomsky normal form with h variables, there exists an equivalent nfa with at most $2^{2h-1} + 1$ states.

ヘロン ヘアン ヘビン ヘビン

- The strategy of the generation procedure can be implemented by a nfa with *ε*-moves *A*.
- The states of *A* are pairs (α, s) , where:
 - $\alpha \subseteq V$ represents the variable *enabled*
 - $s < 2^h$ is used to count input factors
- After some simplifications, the number of the states of such an automaton can be reduced to $2^{2h-1} + 1$.

Hence

Theorem (upper bound)

For any unary cfg in Chomsky normal form with h variables, there exists an equivalent nfa with at most $2^{2h-1} + 1$ states.

ヘロン ヘアン ヘビン ヘビン

- The strategy of the generation procedure can be implemented by a nfa with *ε*-moves *A*.
- The states of *A* are pairs (α, s) , where:
 - $\alpha \subseteq V$ represents the variable *enabled*
 - $s < 2^h$ is used to count input factors
- After some simplifications, the number of the states of such an automaton can be reduced to $2^{2h-1} + 1$.

Hence

Theorem (upper bound)

For any unary cfg in Chomsky normal form with h variables, there exists an equivalent nfa with at most $2^{2h-1} + 1$ states.

イロン 不良 とくほう 不良 とうほ

- The strategy of the generation procedure can be implemented by a nfa with *ε*-moves *A*.
- The states of *A* are pairs (α, s) , where:
 - $\alpha \subseteq V$ represents the variable *enabled*
 - $s < 2^h$ is used to count input factors
- After some simplifications, the number of the states of such an automaton can be reduced to $2^{2h-1} + 1$.

Hence

Theorem (upper bound)

For any unary cfg in Chomsky normal form with h variables, there exists an equivalent nfa with at most $2^{2h-1} + 1$ states.

くロト (過) (目) (日)

For any integer $h \ge 1$, there exists a unary cfg in Chomsky normal form with h variables, such that any equivalent nfa must have at least $2^{h-1} + 1$ states.

(Sketch of the proof) For h > 1, consider variables A_0, \ldots, A_{h-1} and product

- $A_0 \rightarrow a$
- $A_j \rightarrow A_{j-1}A_{j-1}$, for $j = 1, \ldots, h-2$

• $A_{h-1} \rightarrow A_{h-2}A_{h-2} \mid A_{h-1}A_{h-1}$

Then, for $j = 0, \ldots, h - 2$: $A_j \stackrel{*}{\Rightarrow} a^x$ iff $x = 2^j$.

If A_{h-1} is the start symbol, the language is $(a^{2^{h-1}})^+$

This language needs $2^{h-1} + 1$ states to be accepted by an nfa.

イロト 不得 とくほ とくほ とうほ

For any integer $h \ge 1$, there exists a unary cfg in Chomsky normal form with h variables, such that any equivalent nfa must have at least $2^{h-1} + 1$ states.

(Sketch of the proof)

For h > 1, consider variables A_0, \ldots, A_{h-1} and productions:

• $A_0 \rightarrow a$

•
$$A_j \to A_{j-1}A_{j-1}$$
, for $j = 1, ..., h-2$

• $A_{h-1} \rightarrow A_{h-2}A_{h-2} \mid A_{h-1}A_{h-1}$

Then, for $j = 0, \ldots, h - 2$: $A_j \stackrel{*}{\Rightarrow} a^x$ iff $x = 2^j$.

If A_{h-1} is the start symbol, the language is $(a^{2^{h-1}})^+$

This language needs $2^{h-1} + 1$ states to be accepted by an nfa.

イロン 不良 とくほう 不良 とうほ

For any integer $h \ge 1$, there exists a unary cfg in Chomsky normal form with h variables, such that any equivalent nfa must have at least $2^{h-1} + 1$ states.

(Sketch of the proof) For h > 1, consider variables A_0, \ldots, A_{h-1} and productions: • $A_0 \rightarrow a$ • $A_i \to A_{i-1}A_{i-1}$, for j = 1, ..., h-2• $A_{h-1} \rightarrow A_{h-2}A_{h-2} \mid A_{h-1}A_{h-1}$

For any integer $h \ge 1$, there exists a unary cfg in Chomsky normal form with h variables, such that any equivalent nfa must have at least $2^{h-1} + 1$ states.

(Sketch of the proof) For h > 1, consider variables A_0, \ldots, A_{h-1} and productions: • $A_0 \rightarrow a$ • $A_i \to A_{i-1}A_{i-1}$, for j = 1, ..., h-2• $A_{h-1} \rightarrow A_{h-2}A_{h-2} | A_{h-1}A_{h-1}$ Then, for $j = 0, \ldots, h-2$: $A_j \stackrel{\star}{\Rightarrow} a^x$ iff $x = 2^j$.

For any integer $h \ge 1$, there exists a unary cfg in Chomsky normal form with h variables, such that any equivalent nfa must have at least $2^{h-1} + 1$ states.

(Sketch of the proof) For h > 1, consider variables A_0, \ldots, A_{h-1} and productions:

• $A_0 \rightarrow a$

•
$$A_j \to A_{j-1}A_{j-1}$$
, for $j = 1, ..., h-2$

• $A_{h-1} \rightarrow A_{h-2}A_{h-2} \mid A_{h-1}A_{h-1}$

Then, for $j = 0, \ldots, h - 2$: $A_j \stackrel{\star}{\Rightarrow} a^x$ iff $x = 2^j$.

If A_{h-1} is the start symbol, the language is $(a^{2^{h-1}})^+$

This language needs $2^{h-1} + 1$ states to be accepted by an nfa.

For any integer $h \ge 1$, there exists a unary cfg in Chomsky normal form with h variables, such that any equivalent nfa must have at least $2^{h-1} + 1$ states.

(Sketch of the proof) For h > 1, consider variables A_0, \ldots, A_{h-1} and productions:

• $A_0 \rightarrow a$

•
$$A_j \to A_{j-1}A_{j-1}$$
, for $j = 1, ..., h-2$

• $A_{h-1} \rightarrow A_{h-2}A_{h-2} \mid A_{h-1}A_{h-1}$

Then, for $j = 0, \ldots, h - 2$: $A_j \stackrel{\star}{\Rightarrow} a^x$ iff $x = 2^j$.

If A_{h-1} is the start symbol, the language is $(a^{2^{h-1}})^+$

This language needs $2^{h-1} + 1$ states to be accepted by an nfa.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Let G be a unary cfg in Chomsky normal form with h variables.

- There exists an equivalent nfa A with at most $2^{2h-1} + 1$ states.
- Using the subset construction, we can get an equivalent dfa with 2^{2^{O(h)}} states.
- ...we can do better!

Theorem

L(G) is accepted by a dfa with 2^{h^2} states.

Let G be a unary cfg in Chomsky normal form with h variables.

- There exists an equivalent nfa A with at most $2^{2h-1} + 1$ states.
- Using the subset construction, we can get an equivalent dfa with 2^{2^{O(h)}} states.

...we can do better!

Theorem

L(G) is accepted by a dfa with 2^{h^2} states.

Let G be a unary cfg in Chomsky normal form with h variables.

- There exists an equivalent nfa A with at most $2^{2h-1} + 1$ states.
- Using the subset construction, we can get an equivalent dfa with 2^{2^{O(h)}} states.

...we can do better!

Theorem

L(G) is accepted by a dfa with 2^{h^2} states.

Let G be a unary cfg in Chomsky normal form with h variables.

- There exists an equivalent nfa A with at most $2^{2h-1} + 1$ states.
- Using the subset construction, we can get an equivalent dfa with 2^{2^{O(h)}} states.

...we can do better!

Theorem

L(G) is accepted by a dfa with 2^{h^2} states.

Let G be a unary cfg in Chomsky normal form with h variables.

- There exists an equivalent nfa A with at most $2^{2h-1} + 1$ states.
- Using the subset construction, we can get an equivalent dfa with 2^{2^{O(h)}} states.

...we can do better!

Theorem

L(G) is accepted by a dfa with 2^{h^2} states.

▲ 同 ▶ ▲ 回 ▶ ▲ 回 ▶ ― 回

Theorem ([Pighizzini and Shallit, 2002])

• L₁,..., L_k unary regular languages

• L_i accepted by a dfa of size (λ_i, μ_i) , i = 1, ..., k.

Then $\bigcup_{i=1}^{k} L_i$ is accepted by a dfa of size

 $(lcm(\lambda_1,\ldots,\lambda_k),max(\mu_1,\ldots,\mu_k))$

Theorem ([Pighizzini and Shallit, 2002])

• L₁,..., L_k unary regular languages

• L_i accepted by a dfa of size (λ_i, μ_i) , i = 1, ..., k.

Then $\bigcup_{i=1}^{k} L_i$ is accepted by a dfa of size

 $(lcm(\lambda_1,\ldots,\lambda_k),max(\mu_1,\ldots,\mu_k))$

Theorem ([Pighizzini and Shallit, 2002])

- L₁,..., L_k unary regular languages
- L_i accepted by a dfa of size (λ_i, μ_i) , i = 1, ..., k.

Then $\bigcup_{i=1}^{\kappa} L_i$ is accepted by a dfa of size

 $(lcm(\lambda_1,\ldots,\lambda_k), max(\mu_1,\ldots,\mu_k))$

Theorem ([Pighizzini and Shallit, 2002])

- L₁,..., L_k unary regular languages
- L_i accepted by a dfa of size (λ_i, μ_i) , i = 1, ..., k.

Then $\bigcup_{i=1}^{k} L_i$ is accepted by a dfa of size

 $(lcm(\lambda_1,\ldots,\lambda_k),max(\mu_1,\ldots,\mu_k))$

- Given a variable $A \in V$:
 - Let a *L_A* be the set of strings in *L* generated using *A*
 - A is said to be cyclic iff A [±]→ aⁱ Aaⁱ, for some i, j s.t.
 0 < i + j < 2^h,
 - If *A* is cyclic:
 - we set $\lambda_A = i + j$, for an arbitrary chosen pair of integers (i, j) satisfying the above condition.
 - we can prove that

the language L_A is accepted by a dfa of size (λ_A, μ_A) where $\lambda_A < 2^h$ and $\mu_A = 2^{2h} + (2h - 3)2^{h-1} + 2 - h$.

Notice that $L = L_S$. Hence, if S is cyclic:

- *L* is accepted by a dfa of size (λ_S, μ_S)
- Using the above bounds on λ_S and μ_S , we can prove that

Given a variable $A \in V$:

- Let a *L_A* be the set of strings in *L* generated using *A*
- A is said to be *cyclic* iff $A \stackrel{+}{\Rightarrow} a^i A a^j$, for some i, j s.t. $0 < i + j < 2^h$,
- If *A* is cyclic:
 - we set $\lambda_A = i + j$, for an arbitrary chosen pair of integers (i, j) satisfying the above condition.
 - we can prove that

the language L_A is accepted by a dfa of size (λ_A, μ_A) where $\lambda_A < 2^h$ and $\mu_A = 2^{2h} + (2h - 3)2^{h-1} + 2 - h$.

Notice that $L = L_S$. Hence, if S is cyclic:

- *L* is accepted by a dfa of size (λ_S, μ_S)
- Using the above bounds on λ_S and μ_S , we can prove that

Given a variable $A \in V$:

- Let a *L_A* be the set of strings in *L* generated using *A*
- A is said to be *cyclic* iff $A \stackrel{+}{\Rightarrow} a^i A a^j$, for some i, j s.t. $0 < i + j < 2^h$,
- If A is cyclic:
 - we set $\lambda_A = i + j$, for an arbitrary chosen pair of integers (i, j) satisfying the above condition.

• we can prove that

the language L_A is accepted by a dfa of size (λ_A, μ_A) where $\lambda_A < 2^h$ and $\mu_A = 2^{2h} + (2h - 3)2^{h-1} + 2 - h$.

Notice that $L = L_S$. Hence, if S is cyclic:

- *L* is accepted by a dfa of size (λ_S, μ_S)
- Using the above bounds on λ_S and μ_S , we can prove that

Given a variable $A \in V$:

- Let a *L_A* be the set of strings in *L* generated using *A*
- A is said to be *cyclic* iff $A \stackrel{+}{\Rightarrow} a^i A a^j$, for some i, j s.t. $0 < i + j < 2^h$,
- If A is cyclic:
 - we set $\lambda_A = i + j$, for an arbitrary chosen pair of integers (i, j) satisfying the above condition.
 - we can prove that

the language L_A is accepted by a dfa of size (λ_A, μ_A) where $\lambda_A < 2^h$ and $\mu_A = 2^{2h} + (2h - 3)2^{h-1} + 2 - h$.

Notice that $L = L_S$. Hence, if S is cyclic:

- *L* is accepted by a dfa of size (λ_S, μ_S)
- Using the above bounds on λ_S and μ_S , we can prove that

Given a variable $A \in V$:

- Let a *L_A* be the set of strings in *L* generated using *A*
- A is said to be *cyclic* iff $A \stackrel{+}{\Rightarrow} a^i A a^j$, for some i, j s.t. $0 < i + j < 2^h$,
- If A is cyclic:
 - we set $\lambda_A = i + j$, for an arbitrary chosen pair of integers (i, j) satisfying the above condition.
 - we can prove that

the language L_A is accepted by a dfa of size (λ_A, μ_A) where $\lambda_A < 2^h$ and $\mu_A = 2^{2h} + (2h - 3)2^{h-1} + 2 - h$.

Notice that $L = L_S$. Hence, if S is cyclic:

- *L* is accepted by a dfa of size (λ_S, μ_S)
- Using the above bounds on λ_S and μ_S, we can prove that

Given a variable $A \in V$:

- Let a *L_A* be the set of strings in *L* generated using *A*
- A is said to be *cyclic* iff $A \stackrel{+}{\Rightarrow} a^i A a^j$, for some i, j s.t. $0 < i + j < 2^h$,
- If A is cyclic:
 - we set $\lambda_A = i + j$, for an arbitrary chosen pair of integers (i, j) satisfying the above condition.
 - we can prove that

the language L_A is accepted by a dfa of size (λ_A, μ_A) where $\lambda_A < 2^h$ and $\mu_A = 2^{2h} + (2h - 3)2^{h-1} + 2 - h$.

Notice that $L = L_S$. Hence, if S is cyclic:

- *L* is accepted by a dfa of size (λ_S, μ_S)
- Using the above bounds on λ_S and μ_S, we can prove that

Given a variable $A \in V$:

- Let a *L_A* be the set of strings in *L* generated using *A*
- A is said to be *cyclic* iff $A \stackrel{+}{\Rightarrow} a^i A a^j$, for some i, j s.t. $0 < i + j < 2^h$,
- If A is cyclic:
 - we set $\lambda_A = i + j$, for an arbitrary chosen pair of integers (i, j) satisfying the above condition.
 - we can prove that

the language L_A is accepted by a dfa of size (λ_A, μ_A) where $\lambda_A < 2^h$ and $\mu_A = 2^{2h} + (2h - 3)2^{h-1} + 2 - h$.

Notice that $L = L_S$. Hence, if S is cyclic:

- *L* is accepted by a dfa of size (λ_S, μ_S)
- Using the above bounds on λ_s and μ_s , we can prove that

If S is not cyclic, then we decompose L as:

$$L = L^{\leq 2^{h-1}} \cup \bigcup_{A \in V_p} L_A$$

where V_p denotes the set of cyclic variables.

- $L^{\leq 2^{h-1}}$ is accepted by a dfa of size $(1, 2^{h-1} + 1)$.
- Hence, *L* is accepted by a dfa of size (λ, μ) , where

•
$$\lambda = \operatorname{lcm}\{\lambda_A \mid A \in V_p\}$$

- $\mu = \max(2^{h-1} + 1, 2^{2h} + (2h-3)2^{h-1} + 2 h).$
- From $\lambda_A < 2^h$ and $\# V_p < h$, we get that $\lambda \le (2^h 1)^{h-1}$.
- By computing $\lambda + \mu$, we finally get that the total number of states is less than 2^{h^2}

<ロト (四) (日) (日) (日) (日) (日) (日)

If S is not cyclic, then we decompose L as:

$$L = L^{\leq 2^{h-1}} \cup \bigcup_{A \in V_p} L_A$$

where V_p denotes the set of cyclic variables.

- $L^{\leq 2^{h-1}}$ is accepted by a dfa of size $(1, 2^{h-1} + 1)$.
- Hence, *L* is accepted by a dfa of size (λ, μ) , where

•
$$\lambda = \operatorname{lcm}\{\lambda_A \mid A \in V_p\}$$

- $\mu = \max(2^{h-1} + 1, 2^{2h} + (2h-3)2^{h-1} + 2 h).$
- From $\lambda_A < 2^h$ and $\# V_p < h$, we get that $\lambda \le (2^h 1)^{h-1}$.
- By computing $\lambda + \mu$, we finally get that the total number of states is less than 2^{h^2}

<ロト (四) (日) (日) (日) (日) (日) (日)
Unary cfg \rightarrow dfa (2)

If S is not cyclic, then we decompose L as:

$$L = L^{\leq 2^{h-1}} \cup \bigcup_{A \in V_p} L_A$$

where V_p denotes the set of cyclic variables.

- $L^{\leq 2^{h-1}}$ is accepted by a dfa of size $(1, 2^{h-1} + 1)$.
- Hence, *L* is accepted by a dfa of size (λ, μ) , where

•
$$\lambda = \operatorname{lcm}\{\lambda_A \mid A \in V_p\}$$

- $\mu = \max(2^{h-1} + 1, 2^{2h} + (2h-3)2^{h-1} + 2 h).$
- From $\lambda_A < 2^h$ and $\# V_p < h$, we get that $\lambda \le (2^h 1)^{h-1}$.
- By computing $\lambda + \mu$, we finally get that the total number of states is less than 2^{h^2}

<ロト (四) (日) (日) (日) (日) (日) (日)

Unary cfg \rightarrow dfa (2)

If S is not cyclic, then we decompose L as:

$$L = L^{\leq 2^{h-1}} \cup \bigcup_{A \in V_p} L_A$$

where V_p denotes the set of cyclic variables.

- $L^{\leq 2^{h-1}}$ is accepted by a dfa of size $(1, 2^{h-1} + 1)$.
- Hence, *L* is accepted by a dfa of size (λ, μ) , where

•
$$\lambda = \operatorname{lcm}\{\lambda_A \mid A \in V_p\}$$

- $\mu = \max(2^{h-1} + 1, 2^{2h} + (2h-3)2^{h-1} + 2 h).$
- From $\lambda_A < 2^h$ and $\# V_p < h$, we get that $\lambda \le (2^h 1)^{h-1}$.
- By computing $\lambda + \mu$, we finally get that the total number of states is less than 2^{h^2}

同 ト イヨ ト イヨ ト ヨ うくぐ

Theorem

For any unary cfg in Chomsky normal form with $h \ge 2$ variables, there exists an equivalent dfa with less than 2^{h^2} states.

The upper bound is tight!!!

Theorem

There is a constant c > 0 s.t., for infinitely many integers h > 0, there exists a unary cfg in Chomsky normal form with h variables, s.t. any equivalent dfa must have 2^{ch^2} states.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

For any unary cfg in Chomsky normal form with $h \ge 2$ variables, there exists an equivalent dfa with less than 2^{h^2} states.

The upper bound is tight!!!

Theorem

There is a constant c > 0 s.t., for infinitely many integers h > 0, there exists a unary cfg in Chomsky normal form with h variables, s.t. any equivalent dfa must have 2^{ch^2} states.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

Theorem

For any unary cfg in Chomsky normal form with $h \ge 2$ variables, there exists an equivalent dfa with less than 2^{h^2} states.

The upper bound is tight!!!

Theorem

There is a constant c > 0 s.t., for infinitely many integers h > 0, there exists a unary cfg in Chomsky normal form with h variables, s.t. any equivalent dfa must have 2^{ch^2} states.

(日本)(日本)(日本)

Theorem

For any unary cfg in Chomsky normal form with $h \ge 2$ variables, there exists an equivalent dfa with less than 2^{h^2} states.

The upper bound is tight!!!

Theorem

There is a constant c > 0 s.t., for infinitely many integers h > 0, there exists a unary cfg in Chomsky normal form with h variables, s.t. any equivalent dfa must have 2^{ch^2} states.

イロト イポト イヨト イヨト

For any unary pushdown automaton with

- n states
- m pushdown symbols
- s.t. each push add one symbol on the stack, there exist
 - an equivalent nfa with at most $2^{2n^2m+1} + 1$ states
 - an equivalent dfa with less than $2^{n^4m^2+2n^2m+1}$ states.

Proof idea:

The pda can be transformed into a cfg in Chomsky normal form with $n^2m + 1$ variables.

ヘロア ヘビア ヘビア・

For any unary pushdown automaton with

- n states
- m pushdown symbols
- s.t. each push add one symbol on the stack, there exist
 - an equivalent nfa with at most $2^{2n^2m+1} + 1$ states
 - an equivalent dfa with less than $2^{n^4m^2+2n^2m+1}$ states.

Proof idea:

The pda can be transformed into a cfg in Chomsky normal form with $n^2m + 1$ variables.

ヘロン ヘアン ヘビン ヘビン

For any unary pushdown automaton with

- n states
- m pushdown symbols
- s.t. each push add one symbol on the stack, there exist
 - an equivalent nfa with at most $2^{2n^2m+1} + 1$ states
 - an equivalent dfa with less than $2^{n^4m^2+2n^2m+1}$ states.

Proof idea:

The pda can be transformed into a cfg in Chomsky normal form with $n^2m + 1$ variables.

ヘロン ヘアン ヘビン ヘビン

For any unary pushdown automaton with

- n states
- m pushdown symbols
- s.t. each push add one symbol on the stack, there exist
 - an equivalent nfa with at most $2^{2n^2m+1} + 1$ states
 - an equivalent dfa with less than $2^{n^4m^2+2n^2m+1}$ states.

Proof idea:

The pda can be transformed into a cfg in Chomsky normal form with $n^2m + 1$ variables.

• • •

イロン 不良 とくほう 不良 とうほ

Auxiliary pushdown automata (auxpda)

Turing machines augmented with a pushdown store or, equivalently

(2way) pda augmented with an auxiliary worktape

프 🖌 🛪 프 🛌

Ausiliary pushdown automata (auxpda)

"SPACE" \equiv worktape

Theorem ([Cook 1971])

Given $L \subseteq \Sigma^*$, $s(n) \ge \log n$, the following statements are equivalent:

- L is accepted in s(n) space by a nondeterministic auxpda
- L is accepted in s(n) space by a deterministic auxpda
- L is accepted in 2^{O(s(n))} time by a deterministic Turing machine.

Hence: $DAuxPDA(\log n) = NAuxPDA(\log n) = P$

ヘロン ヘアン ヘビン ヘビン

Ausiliary pushdown automata (auxpda)

"SPACE" \equiv worktape

Theorem ([Cook 1971])

Given $L \subseteq \Sigma^*$, $s(n) \ge \log n$, the following statements are equivalent:

- L is accepted in s(n) space by a nondeterministic auxpda
- 2 L is accepted in s(n) space by a deterministic auxpda
- L is accepted in 2^{O(s(n))} time by a deterministic Turing machine.

Hence: $DAuxPDA(\log n) = NAuxPDA(\log n) = P$

・ロト ・ 同ト ・ ヨト ・ ヨト

Ausiliary pushdown automata (auxpda)

"SPACE" \equiv worktape

Theorem ([Cook 1971])

Given $L \subseteq \Sigma^*$, $s(n) \ge \log n$, the following statements are equivalent:

- L is accepted in s(n) space by a nondeterministic auxpda
- 2 L is accepted in s(n) space by a deterministic auxpda
- L is accepted in 2^{O(s(n))} time by a deterministic Turing machine.

Hence: $DAuxPDA(\log n) = NAuxPDA(\log n) = P$

・ロト ・ 同ト ・ ヨト ・ ヨト

The input head can be moved only to the right

- Given $i \in \mathbb{N}$ consider its binary representation.
- Let $t_1 > \ldots > t_k$ be the sequence of the positions of digits 1, i.e., $i = 2^{t_1} + 2^{t_2} + \ldots + 2^{t_k}$.
- The auxdpa can store *i* (the length of the scanned input prefix) as follows:

The input head can be moved only to the right

- Given $i \in \mathbf{N}$ consider its binary representation.
- Let $t_1 > \ldots > t_k$ be the sequence of the positions of digits 1, i.e., $i = 2^{t_1} + 2^{t_2} + \ldots + 2^{t_k}$.
- The auxdpa can store *i* (the length of the scanned input prefix) as follows:

The input head can be moved only to the right

- Given $i \in \mathbf{N}$ consider its binary representation.
- Let $t_1 > \ldots > t_k$ be the sequence of the positions of digits 1, i.e., $i = 2^{t_1} + 2^{t_2} + \ldots + 2^{t_k}$.
- The auxdpa can store *i* (the length of the scanned input prefix) as follows:

The input head can be moved only to the right

- Given $i \in \mathbf{N}$ consider its binary representation.
- Let $t_1 > \ldots > t_k$ be the sequence of the positions of digits 1, i.e., $i = 2^{t_1} + 2^{t_2} + \ldots + 2^{t_k}$.
- The auxdpa can store *i* (the length of the scanned input prefix) as follows:

< 臣 → < 臣 → …

${\bf 22}={\bf 2^4}+{\bf 2^2}+{\bf 2^1}$

$23 = 2^4 + 2^2 + 2^1 + 2^0$

(本語) (本語) (二語)

$22 = 2^4 + 2^2 + 2^1$

$23 = 2^4 + 2^2 + 2^1 + 2^0$

< 臣 → < 臣 → …

$23 = 2^4 + 2^2 + 2^1 + 2^0$

Giovanni Pighizzini simulating unary cfg's and pda's with fa's

(E) < E)</p>

프 에 에 프 어

$23 = 2^4 + 2^2 + 2^1 + 2^0$

$\mathbf{23} = \mathbf{2^4} + \mathbf{2^2} + \mathbf{2^1} + \mathbf{2^0}$

Giovanni Pighizzini simulating unary cfg's and pda's with fa's

(人) 医子子 医子子 医

$$\mathbf{23} = \mathbf{2^4} + \mathbf{2^2} + \mathbf{2^1} + \mathbf{2^0}$$

$$24 = 2^4 + 2^3$$

Giovanni Pighizzini simulating unary cfg's and pda's with fa's

▶ ★ 臣 ▶ ...

э.

4

$$\mathbf{23} = \mathbf{2^4} + \mathbf{2^2} + \mathbf{2^1} + \mathbf{2^0}$$

▶ < Ξ >

-2

$$24 = 2^4 + 2^3$$

We define a 1auxpda *M* working as follows:

- *M* scans the input tape, counting the input length.
- When the end of the input is reached, *M* accepts if and only if the pushdown store is empty.
- If *n* is the input length, then the largest integer stored on the worktape is ⌊log₂ *n*⌋.

• It can be represented in $O(\log \log n)$ space.

Hence $\mathcal{L} = \{a^{2^k} \mid k \ge 0\}$ is accepted by the deterministic 1auxpda *M* in $O(\log \log n)$ space.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Let $\mathcal{L} = \{a^{2^k} \mid k \ge 0\}$. We define a 1auxpda *M* working as follows:

- *M* scans the input tape, counting the input length.
- When the end of the input is reached, *M* accepts if and only if the pushdown store is empty.
- If *n* is the input length, then the largest integer stored on the worktape is ⌊log₂ *n*⌋.
- It can be represented in O(log log n) space.

Hence $\mathcal{L} = \{a^{2^k} \mid k \ge 0\}$ is accepted by the deterministic 1auxpda *M* in $O(\log \log n)$ space.

・ロン ・ 一 と ・ 日 と ・ 日 と

We define a 1auxpda *M* working as follows:

- *M* scans the input tape, counting the input length.
- When the end of the input is reached, *M* accepts if and only if the pushdown store is empty.
- If *n* is the input length, then the largest integer stored on the worktape is ⌊log₂ *n*⌋.
- It can be represented in $O(\log \log n)$ space.

Hence $\mathcal{L} = \{a^{2^k} \mid k \ge 0\}$ is accepted by the deterministic 1auxpda *M* in $O(\log \log n)$ space.

ヘロン ヘアン ヘビン ヘビン

We define a 1auxpda *M* working as follows:

- *M* scans the input tape, counting the input length.
- When the end of the input is reached, *M* accepts if and only if the pushdown store is empty.
- If n is the input length, then the largest integer stored on the worktape is [log₂ n].

• It can be represented in $O(\log \log n)$ space.

Hence $\mathcal{L} = \{a^{2^k} \mid k \ge 0\}$ is accepted by the deterministic 1auxpda *M* in $O(\log \log n)$ space.

イロン 不良 とくほう 不良 とうほ

We define a 1auxpda *M* working as follows:

- *M* scans the input tape, counting the input length.
- When the end of the input is reached, *M* accepts if and only if the pushdown store is empty.
- If n is the input length, then the largest integer stored on the worktape is [log₂ n].

• It can be represented in $O(\log \log n)$ space.

Hence $\mathcal{L} = \{a^{2^k} \mid k \ge 0\}$ is accepted by the deterministic 1auxpda *M* in $O(\log \log n)$ space.

・ロト ・ 同ト ・ ヨト ・ ヨト

We define a 1auxpda *M* working as follows:

- *M* scans the input tape, counting the input length.
- When the end of the input is reached, *M* accepts if and only if the pushdown store is empty.
- If n is the input length, then the largest integer stored on the worktape is [log₂ n].
- It can be represented in $O(\log \log n)$ space.

Hence $\mathcal{L} = \{a^{2^k} \mid k \ge 0\}$ is accepted by the deterministic 1auxpda *M* in $O(\log \log n)$ space.

・ロト ・ 同ト ・ ヨト ・ ヨト

What is the minimum amount of space s(n) s.t. 1auxpda working in s(n) space are able to accept noncontext-free languages?

space s(n):
STRONG: any computation on each input of length n uses no
more than s(n) worktape cells.
WEAK: on each accepted input of length n there exists at

least one accepting computation using no more than s(n) worktape cells.

・ロン ・ 一 と ・ 日 と ・ 日 と

What is the minimum amount of space s(n) s.t. 1auxpda working in s(n) space are able to accept noncontext-free languages?

space *s*(*n*):

- STRONG: *any computation on each input* of length *n* uses no more than *s*(*n*) worktape cells.
 - WEAK: on each accepted input of length *n* there exists at least one accepting computation using no more than *s*(*n*) worktape cells.

ヘロト ヘ戸ト ヘヨト ヘヨト

What is the minimum amount of space s(n) s.t. 1auxpda working in s(n) space are able to accept noncontext-free languages?

space s(n):

STRONG: any computation on each input of length n uses no more than s(n) worktape cells.

WEAK: on each accepted input of length *n* there exists at least one accepting computation using no more than *s*(*n*) worktape cells.

くロト (過) (目) (日)

What is the minimum amount of space s(n) s.t. 1auxpda working in s(n) space are able to accept noncontext-free languages?

space s(n):

- STRONG: any computation on each input of length n uses no more than s(n) worktape cells.
 - WEAK: on each accepted input of length *n* there exists at least one accepting computation using no more than *s*(*n*) worktape cells.

くロト (過) (目) (日)
1auxpda in strong space

The space bound should be satisfied by all computations

Theorem ([Brandenburg 1977])

 $L \subseteq \Sigma^*$ noncontext-free language accepted by a 1auxpda in strong s(n) space. Then there exists c > 0 such that

 $s(n) \ge c \log \log n$

infinitely often.

This lower bound is tight!

 $\mathcal{L} = \{ \boldsymbol{a}^{\boldsymbol{2}^{k}} \mid k \geq \boldsymbol{0} \}.$

The space bound should be satisfied by all computations

Theorem ([Brandenburg 1977])

 $L \subseteq \Sigma^*$ noncontext-free language accepted by a 1auxpda in strong s(n) space.

Then there exists c > 0 such that

 $s(n) \ge c \log \log n$

infinitely often.

This lower bound is tight!

 $\mathcal{L} = \{ \boldsymbol{a}^{2^k} \mid k \geq 0 \}.$

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

The space bound should be satisfied by all computations

Theorem ([Brandenburg 1977])

 $L \subseteq \Sigma^*$ noncontext-free language accepted by a 1auxpda in strong s(n) space. Then there exists c > 0 such that

 $s(n) \ge c \log \log n$

infinitely often.

This lower bound is tight!

 $\mathcal{L} = \{ \boldsymbol{a}^{\boldsymbol{2}^k} \mid k \geq \boldsymbol{0} \}.$

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

The space bound should be satisfied by all computations

Theorem ([Brandenburg 1977])

 $L \subseteq \Sigma^*$ noncontext-free language accepted by a 1auxpda in strong s(n) space. Then there exists c > 0 such that

 $s(n) \ge c \log \log n$

infinitely often.

This lower bound is tight!

 $\mathcal{L} = \{ a^{2^k} \mid k \ge 0 \}.$

For each accepted input, at least one accepting computation satisfies the bound.

Theorem ([Chytil 1986])

Languages *L_k* and *L* are defined over *binary alphabets.*

ヘロア ヘビア ヘビア・

For each accepted input, at least one accepting computation satisfies the bound.

Theorem ([Chytil 1986])

Languages *L_k* and *L* are defined over *binary alphabets*.

ヘロト ヘ回ト ヘヨト ヘヨト

For each accepted input, at least one accepting computation satisfies the bound.

Theorem ([Chytil 1986])

Languages *L_k* and *L* are defined over *binary alphabets.*

ヘロト ヘ回ト ヘヨト ヘヨト

For each accepted input, at least one accepting computation satisfies the bound.

Theorem ([Chytil 1986])

1 For each integer $k \ge 2$ there is a language L_k such that • L_k is accepted by a 1 auxpda in weak $O(\log \ldots \log n)$ space • L_k cannot be accepted by 1 auxpdas in weak $o(\log \ldots \log n)$ space.

Languages L_k and L are defined over binary alphabets.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

For each accepted input, at least one accepting computation satisfies the bound.

Theorem ([Chytil 1986])

1 For each integer $k \ge 2$ there is a language L_k such that • L_k is accepted by a 1 auxpda in weak $O(\log \ldots \log n)$ space • L_k cannot be accepted by 1 auxpdas in weak $o(\log \ldots \log n)$ space. There exists a noncontext-free language L accepted by a 1 auxpda in weak $O(\log^* n)$, where $\log^* n = \min \{k \mid \log \ldots \log n \le 1\}.$

Languages *L_k* and *L* are defined over *binary alphabets.*

ヘロア ヘビア ヘビア・

For each accepted input, at least one accepting computation satisfies the bound.

Theorem ([Chytil 1986])

1 For each integer $k \ge 2$ there is a language L_k such that • L_k is accepted by a 1 auxpda in weak $O(\log \ldots \log n)$ space • L_k cannot be accepted by 1 auxpdas in weak $o(\log \ldots \log n)$ space. There exists a noncontext-free language L accepted by a 1 auxpda in weak $O(\log^* n)$, where $\log^* n = \min \{k \mid \log \ldots \log n \le 1\}.$

Languages L_k and L are defined over binary alphabets.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

	general case	unary case
strong space		
weak space		

Giovanni Pighizzini simulating unary cfg's and pda's with fa's

ヨン くヨン -

< 🗇 🕨 🔸

æ

	general case	unary case
	lower bound	lower bound
strong space	log log <i>n</i> [1]	log log <i>n</i> [1]
	optimal	optimal
weak space		

1: Brandenburg, 1977

	general case	unary case
	lower bound	lower bound
strong space	log log <i>n</i> [1]	log log <i>n</i> [1]
	optimal	optimal
	upper bound	
weak space	log* <i>n</i> [2]	

1: Brandenburg, 1977

2: Chytil, 1986

(人) (日本) (日本)

	general case	unary case
	lower bound	lower bound
strong space	log log <i>n</i> [1]	log log <i>n</i> [1]
	optimal	optimal
	upper bound	
weak space	log* <i>n</i> [2]	?

1: Brandenburg, 1977

2: Chytil, 1986

What about the unary case?

ヨト イヨト

 $A_L(n)$ = minimum number of states of a dfa accepting a language L', s.t. $L^{\leq n} = L'^{\leq n}$ i.e., L and L' agree on strings of length $\leq n$.

If L is regular the A_L(n) is a constant (the size of the minimal dfa accepting L).

What about the automaticity of nonregular languages?

Theorem ([Karp, 1971])

Let $L \subseteq \Sigma^*$ be a nonregular language. Then:

 $A_L(n)$ = minimum number of states of a dfa accepting a language L', s.t. $L^{\leq n} = L'^{\leq n}$ i.e., L and L' agree on strings of length $\leq n$.

If L is regular the A_L(n) is a constant (the size of the minimal dfa accepting L).

What about the automaticity of nonregular languages?

Theorem ([Karp, 1971])

Let $L \subseteq \Sigma^*$ be a nonregular language. Then:

 $A_L(n)$ = minimum number of states of a dfa accepting a language L', s.t. $L^{\leq n} = L'^{\leq n}$ i.e., L and L' agree on strings of length $\leq n$.

If L is regular the A_L(n) is a constant (the size of the minimal dfa accepting L).

What about the automaticity of nonregular languages?

Theorem ([Karp, 1971])

Let $L \subseteq \Sigma^*$ be a nonregular language. Then:

 $A_L(n)$ = minimum number of states of a dfa accepting a language L', s.t. $L^{\leq n} = L'^{\leq n}$ i.e., L and L' agree on strings of length $\leq n$.

If L is regular the A_L(n) is a constant (the size of the minimal dfa accepting L).

What about the automaticity of nonregular languages?

Theorem ([Karp, 1971])

Let $L \subseteq \Sigma^*$ be a nonregular language. Then:

- *M*: unary 1auxpda accepting in weak *s*(*n*) space a nonregular language *L*.
- *M_n*: a pda whose states encode the configurations of *M* using *s*(*n*) space, for a given *n* ≥ 1.
 - M_n has $h = 2^{O(s(n))}$ states.
 - $L(M_n)^{\leq n} = L^{\leq n}$
- A_n : a dfa simulating M_n
 - A_n has 2^{h²} = 2<sup>2^{O(s(n))} states.
 L(A_n)^{≤n} = L^{≤n}
 </sup>
- By the result of Karp, the number of states of A_n must be at least $\frac{n+3}{2}$, i.o.

Hence the space s(n) must grow at least as $\log \log n$

- *M*: unary 1auxpda accepting in weak *s*(*n*) space a nonregular language *L*.
- *M_n*: a pda whose states encode the configurations of *M* using *s*(*n*) space, for a given *n* ≥ 1.
 - M_n has $h = 2^{O(s(n))}$ states.
 - $L(M_n)^{\leq n} = L^{\leq n}$
- A_n : a dfa simulating M_n
 - A_n has 2^{h²} = 2<sup>2^{O(s(n))} states.
 L(A_n)^{≤n} = L^{≤n}
 </sup>
- By the result of Karp, the number of states of A_n must be at least $\frac{n+3}{2}$, i.o.

Hence the space s(n) must grow at least as log log n

- *M*: unary 1auxpda accepting in weak *s*(*n*) space a nonregular language *L*.
- *M_n*: a pda whose states encode the configurations of *M* using *s*(*n*) space, for a given *n* ≥ 1.
 - M_n has $h = 2^{O(s(n))}$ states.
 - $L(M_n)^{\leq n} = L^{\leq n}$
- A_n : a dfa simulating M_n
 - A_n has 2^{h²} = 2^{2O(s(n))} states.
 L(A_n)^{≤n} = L^{≤n}
- By the result of Karp, the number of states of A_n must be at least $\frac{n+3}{2}$, i.o.

Hence the space s(n) must grow at least as log log n

- *M*: unary 1auxpda accepting in weak s(n) space a nonregular language *L*.
- *M_n*: a pda whose states encode the configurations of *M* using *s*(*n*) space, for a given *n* ≥ 1.
 - M_n has $h = 2^{O(s(n))}$ states.
 - $L(M_n)^{\leq n} = L^{\leq n}$
- A_n : a dfa simulating M_n
 - A_n has 2^{h²} = 2^{2^{O(s(n))}} states.
 L(A_n)^{≤n} = L^{≤n}
- By the result of Karp, the number of states of A_n must be at least $\frac{n+3}{2}$, i.o.

Hence the space s(n) must grow at least as log log n

- *M*: unary 1auxpda accepting in weak *s*(*n*) space a nonregular language *L*.
- *M_n*: a pda whose states encode the configurations of *M* using *s*(*n*) space, for a given *n* ≥ 1.
 - M_n has $h = 2^{O(s(n))}$ states.
 - $L(M_n)^{\leq n} = L^{\leq n}$
- A_n : a dfa simulating M_n
 - A_n has $2^{h^2} = 2^{2^{O(s(n))}}$ states.
 - $L(A_n)^{\leq n} = L^{\leq n}$
- By the result of Karp, the number of states of A_n must be at least $\frac{n+3}{2}$, i.o.

Hence the space s(n) must grow at least as $\log \log n$

- *M*: unary 1auxpda accepting in weak s(n) space a nonregular language *L*.
- *M_n*: a pda whose states encode the configurations of *M* using *s*(*n*) space, for a given *n* ≥ 1.
 - M_n has $h = 2^{O(s(n))}$ states.
 - $L(M_n)^{\leq n} = L^{\leq n}$
- A_n: a dfa simulating M_n
 - A_n has $2^{h^2} = 2^{2^{O(s(n))}}$ states.
 - $L(A_n)^{\leq n} = L^{\leq n}$
- By the result of Karp, the number of states of A_n must be at least ⁿ⁺³/₂, i.o.

Hence the space s(n) must grow at least as log log n

- *M*: unary 1auxpda accepting in weak *s*(*n*) space a nonregular language *L*.
- *M_n*: a pda whose states encode the configurations of *M* using *s*(*n*) space, for a given *n* ≥ 1.
 - M_n has $h = 2^{O(s(n))}$ states.
 - $L(M_n)^{\leq n} = L^{\leq n}$
- A_n : a dfa simulating M_n
 - A_n has $2^{h^2} = 2^{2^{O(s(n))}}$ states.
 - $L(A_n)^{\leq n} = L^{\leq n}$
- By the result of Karp, the number of states of A_n must be at least ⁿ⁺³/₂, i.o.

Hence the space s(n) must grow at least as $\log \log n$

We have obtained the following:

Theorem

Let *M* be a unary auxpda accepting a non-context-free language *L* in weak s(n) space. Then $s(n) \notin o(\log \log n)$.

The optimality can be proved again by considering $\mathcal{L} = \{a^{2^n} \mid n \ge 0\}.$

ヘロン ヘアン ヘビン ヘビン

We have obtained the following:

Theorem

Let *M* be a unary auxpda accepting a non-context-free language *L* in weak s(n) space. Then $s(n) \notin o(\log \log n)$.

The optimality can be proved again by considering $\mathcal{L} = \{a^{2^n} \mid n \ge 0\}.$

・ 同 ト ・ ヨ ト ・ ヨ ト …

One-way auxiliary pushdown automata

	general case	unary case
	lower bound	lower bound
strong space	log log <i>n</i> [1]	log log <i>n</i> [1]
	optimal	optimal
	upper bound	
weak space	log* <i>n</i> [2]	?

1: Brandenburg, 1977

2: Chytil, 1986

(人) (日本) (日本)

One-way auxiliary pushdown automata

	general case	unary case
	lower bound	lower bound
strong space	log log <i>n</i> [1]	log log <i>n</i> [1]
	optimal	optimal
	upper bound	lower bound
weak space	log* <i>n</i> [2]	log log <i>n</i>
		optimal

1: Brandenburg, 1977

2: Chytil, 1986

(人) (日本) (日本)

Subsets of $w_1^* w_2^* \dots w_n^*$, for given words w_1, \dots, w_n (*letter bounded* if $w_1, \dots, w_n \in \Sigma$).

- The class bounded regular languages is properly included in that of bounded cfl's, e.g., {aⁿbⁿ | n ≥ 0}.
- Bounded cll's can be accepted by finite turn pda's.

Problem: Find a tight upper bound f(h) for the size of *finite turn* pda's equivalent to cfg's with h variables.

Subsets of $w_1^* w_2^* \dots w_n^*$, for given words w_1, \dots, w_n (*letter bounded* if $w_1, \dots, w_n \in \Sigma$).

- The class bounded regular languages is *properly* included in that of bounded cfl's, e.g., {aⁿbⁿ | n ≥ 0}.
- Bounded cfl's can be accepted by *finite turn* pda's.

Problem: Find a tight upper bound f(h) for the size of *finite turn* pda's equivalent to cfg's with h variables.

Subsets of $w_1^* w_2^* \dots w_n^*$, for given words w_1, \dots, w_n (*letter bounded* if $w_1, \dots, w_n \in \Sigma$).

- The class bounded regular languages is *properly* included in that of bounded cfl's, e.g., {aⁿbⁿ | n ≥ 0}.
- Bounded cfl's can be accepted by finite turn pda's.

Problem: Find a tight upper bound f(h) for the size of *finite turn* pda's equivalent to cfg's with h variables.

Subsets of $w_1^* w_2^* \dots w_n^*$, for given words w_1, \dots, w_n (*letter bounded* if $w_1, \dots, w_n \in \Sigma$).

- The class bounded regular languages is *properly* included in that of bounded cfl's, e.g., {aⁿbⁿ | n ≥ 0}.
- Bounded cfl's can be accepted by finite turn pda's.

Problem: Find a tight upper bound f(h) for the size of *finite turn* pda's equivalent to cfg's with *h* variables.

- The *generation procedure* used to simulate unary cfg's with nfa's can be extended in order to simulate cfg's generating *letter bounded* languages with finite turn pda's.
- Using a suitable homomorphism such a simulation can be extended also to the case of *bounded* languages

Theorem

Each bounded context-free language generated by a cfg with h variables in Chomsky normal form is accepted by a finite-turn pda with 2^h states and O(1) stack symbols.

・ロン ・ 一 と ・ 日 と ・ 日 と

- The *generation procedure* used to simulate unary cfg's with nfa's can be extended in order to simulate cfg's generating *letter bounded* languages with finite turn pda's.
- Using a suitable homomorphism such a simulation can be extended also to the case of *bounded* languages

Theorem

Each bounded context-free language generated by a cfg with h variables in Chomsky normal form is accepted by a finite-turn pda with 2^h states and O(1) stack symbols.

ヘロア ヘビア ヘビア・

- The *generation procedure* used to simulate unary cfg's with nfa's can be extended in order to simulate cfg's generating *letter bounded* languages with finite turn pda's.
- Using a suitable homomorphism such a simulation can be extended also to the case of *bounded* languages

Theorem

Each bounded context-free language generated by a cfg with h variables in Chomsky normal form is accepted by a finite-turn pda with 2^h states and O(1) stack symbols.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・
Even this upper bound in tight.

In particular:

For all integers $m \ge 1, h \ge 1$ there exists a language $L_{m,h} \subseteq a_1^* a_2^* \dots a_m^*$ s.t.:

L_{m,h} is generated by a cig in Cnf with h variables

イロン 不良 とくほう 不良 とうほ

For all integers $m \ge 1, h \ge 1$ there exists a language $L_{m,h} \subseteq a_1^* a_2^* \dots a_m^*$ s.t.:

- $L_{m,h}$ is generated by a cfg in Cnf with h variables
- ullet $L_{m,h}$ is accepted by a (m-1)-turn pda of size $2^{O(h)}$

(日本)(日本)(日本)(日本)

For all integers $m \ge 1, h \ge 1$ there exists a language $L_{m,h} \subseteq a_1^* a_2^* \dots a_m^*$ s.t.:

- $L_{m,h}$ is generated by a cfg in Cnf with *h* variables
- $L_{m,h}$ is accepted by a (m-1)-turn pda of size $2^{O(h)}$
- for each k (2 m = 1, every k-turn pda accepting L_{m,h} has size at least 2%, for a constant c and each n sufficiently large

For all integers $m \ge 1$, $h \ge 1$ there exists a language $L_{m,h} \subseteq a_1^* a_2^* \dots a_m^*$ s.t.:

- $L_{m,h}$ is generated by a cfg in Cnf with *h* variables
- $L_{m,h}$ is accepted by a (m-1)-turn pda of size $2^{O(h)}$
- for each $k \ge m 1$, every k-turn pda accepting $L_{m,h}$ has size at least 2^{ch} , for a constant c and each n sufficiently large
- for each k < m = 1, L_m, cannot be accepted by k-turn pda's (regardless of the size).

For all integers $m \ge 1$, $h \ge 1$ there exists a language $L_{m,h} \subseteq a_1^* a_2^* \dots a_m^*$ s.t.:

- $L_{m,h}$ is generated by a cfg in Cnf with *h* variables
- $L_{m,h}$ is accepted by a (m-1)-turn pda of size $2^{O(h)}$
- for each $k \ge m 1$, every k-turn pda accepting $L_{m,h}$ has size at least 2^{ch}, for a constant c and each n sufficiently large
- for each k < m 1, L_{m,h} cannot be accepted by k-turn pda's (regardless of the size).

For all integers $m \ge 1$, $h \ge 1$ there exists a language $L_{m,h} \subseteq a_1^* a_2^* \dots a_m^*$ s.t.:

- $L_{m,h}$ is generated by a cfg in Cnf with *h* variables
- $L_{m,h}$ is accepted by a (m-1)-turn pda of size $2^{O(h)}$
- for each $k \ge m 1$, every *k*-turn pda accepting $L_{m,h}$ has size *at least* 2^{ch} , for a constant *c* and each *n* sufficiently large
- for each k < m − 1, L_{m,h} cannot be accepted by k-turn pda's (regardless of the size).

For all integers $m \ge 1$, $h \ge 1$ there exists a language $L_{m,h} \subseteq a_1^* a_2^* \dots a_m^*$ s.t.:

- $L_{m,h}$ is generated by a cfg in Cnf with *h* variables
- $L_{m,h}$ is accepted by a (m-1)-turn pda of size $2^{O(h)}$
- for each $k \ge m 1$, every *k*-turn pda accepting $L_{m,h}$ has size *at least* 2^{ch} , for a constant *c* and each *n* sufficiently large
- for each k < m 1, L_{m,h} cannot be accepted by k-turn pda's (regardless of the size).

イロン 不良 とくほう 不良 とうほ

Let M be a unary pda with n states and m stack symbols, s.t. each push adds exactly one symbol.

We proved that *M* can be simulated by a dfa with with $2^{O(n^4m^2)}$ states.

What about the deterministic case?

Theorem ([Pighizzini, 2008])

If M is deterministic then it can be simulated by a dfa with $2^{O(nm)}$ states. Furthermore, such a simulation in tight

・ロン ・ 一 マン・ 日 マー・

Let M be a unary pda with n states and m stack symbols, s.t. each push adds exactly one symbol.

We proved that *M* can be simulated by a dfa with with $2^{O(n^4m^2)}$ states.

What about the deterministic case?

Theorem ([Pighizzini, 2008])

If *M* is deterministic then it can be simulated by a dfa with $2^{O(nm)}$ states. Furthermore, such a simulation in tight.

ヘロン ヘアン ヘビン ヘビン

Let M be a unary pda with n states and m stack symbols, s.t. each push adds exactly one symbol.

We proved that *M* can be simulated by a dfa with with $2^{O(n^4m^2)}$ states.

What about the deterministic case?

Theorem ([Pighizzini, 2008])

If *M* is deterministic then it can be simulated by a dfa with $2^{O(nm)}$ states. Furthermore, such a simulation in tight.

・ 同 ト ・ ヨ ト ・ ヨ ト

One-way auxiliary pda's

- 1auxpda's with an input alphabet of at least two symbols can recognize noncontext-free languages using very slowly increasing (but nonconstant) weak space.
- Unary 1 auxpda's must use weak space growing at least as log log *n* to recognize noncontext-free languages.

What about space lower bounds for noncontext-free acceptance, for 1auxpda's, with some other kinds of restrictions?

Examples: bounded languages, finite-turn 1auxpda.

ヘロア ヘビア ヘビア・

One-way auxiliary pda's

- 1auxpda's with an input alphabet of at least two symbols can recognize noncontext-free languages using very slowly increasing (but nonconstant) weak space.
- Unary 1auxpda's must use weak space growing at least as log log *n* to recognize noncontext-free languages.

What about space lower bounds for noncontext-free acceptance, for 1auxpda's, with some other kinds of restrictions?

Examples: bounded languages, finite-turn 1auxpda.

イロン 不良 とくほう 不良 とうほ

One-way auxiliary pda's

- 1auxpda's with an input alphabet of at least two symbols can recognize noncontext-free languages using very slowly increasing (but nonconstant) weak space.
- Unary 1auxpda's must use weak space growing at least as log log *n* to recognize noncontext-free languages.

What about space lower bounds for noncontext-free acceptance, for 1auxpda's, with some other kinds of restrictions?

Examples: bounded languages, finite-turn 1auxpda.

(日本)(日本)(日本)(日本)