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Descriptional complexity

Given
C, a class of languages
S, a formal system (e.g., class of devices, class of
grammars,..) able to represent all the languages in C

What is the size of the representations of the languages
in C by the system S?

Usually, descriptional complexity compares different description
for a same class of languages:

given S ′, another formal system able to represent all the
languages in C

What is the size of the representations of the languages
in C by the system S ′, with respect to the size of their

representations by the system S?
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Descriptional complexity

Classical example: deterministic vs. nondeterministic automata

Formal language point of view:

nondeterministic finite automata are as powerful as
deterministic finite automata

Descriptional complexity point of view:

Each n-state nfa can be simulated by a 2n state dfa
(upper bound)

For each integer n there exists a language accepted by an
n-state nfa such that the minimun equivalent dfa requires

2n states (lower bound)

Hence:
The cost, in terms of states, of the simulation of nfa’s by

dfa’s is 2n.
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Descriptional complexity of regular languages

Different variant of finite automata (one-way/two-way,
deterministic/nondeterministic/alternating, ...).
All of them characterize regular languages
Many results in the literature compare these models from
the descriptional point of view.
However, we can describe regular languages using more
powerful devices or formalisms, as context-free grammars
and pushdown automata.

What about the sizes of cfg’s describing regular
languages vs the sizes of finite automata?
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Context-free vs regular: descriptional complexity

Given a context-free grammar (or a pushdown automaton) of
size n, generating a regular language, how much is big an
equivalent finite automaton, wrt n ?

Theorem ([Meyer and Fischer, 1971])
For any recursive function f and arbitrarily large integers n,
there exists a cfg G of size n generating a regular language L,
s.t. any dfa accepting L must have at least f (n) states.

As a consequence, the trade-off between context-grammars
and finite automata is not recursive.
However... The witness language L is defined over a binary
alphabet.

What about languages over a one letter
alphabet?
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Unary languages

Σ = {a}

Theorem ([Ginsurg and Rice, 1962])
Every unary context-free language is regular.

Hence the classes of unary regular languages and unary
context-free languages coincide!

Problem
Study the equivalence between unary context-free and regular
languages from the descriptional complexity point of view.
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Descriptional complexity measures

Deterministic automata (dfa):
number of states.

Nondeterministic automata (nfa):
number of states, or
number of transitions (more precise).
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Descriptional complexity measures

Context-free grammars:
number of variables?

For n ≥ 1, consider the language Ln = (an)∗:
Ln requires n states to be accepted by dfa or nfa
Ln is generated by the grammar with one variable S and the
productions

S → an S → anS S → ε

Thus, the number of variables cannot be a descriptional
complexity measure for context-free grammars.
However, for grammars in Chomsky Normal Form the
number of variables is a “reasonable” measure of
complexity [Gruska, 1973].
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Descriptional complexity measures

Pushdown automata:
W.l.o.g., we can consider only pda’s s.t. push operations
add exactly one symbol on the pushdown store.

The total size of the description of a pda satisfying this
restriction is a polynomial function of two parameters:

the number of the states
the cardinality of the pushdown alphabet.

Strong relationships have been discovered between
descriptional complexities of cfg’s and pda’s
[Goldstine, Price, Wotschke, 1982], e.g.:

Theorem
For any pda satisfying the above restriction, with n states and
m pushdown symbols, there exists an equivalent cfg in
Chomsky normal form, with n2m + 1 variables.
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Unary cfg→ nfa

Notations:
G = (V , {a}, P, S)
a cfg grammar in Chomsky normal form
h
the number of variables in G
T : A ?⇒ α
a parse tree for the derivation A ?⇒ α, with A ∈ V ,
α ∈ (V ∪ {a})∗.
ν(T )
the set of variables which appear as labels of some nodes
in T
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Unary cfg→ nfa

Lemma (padding)

Given
T : S ?⇒ a`

T ′ : A +⇒ aiAaj , with A ∈ ν(T )

there exists
T ′′ : S ?⇒ a`+i+j , with ν(T ′′) = ν(T ) ∪ ν(T ′)

i.e., T can be “padded” with T ′ in order to get T ′′.
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Unary cfg→ nfa

Lemma (decomposition)

If T : S ?⇒ a` and ` > 2h−1, then there exist:
a tree T1 : S ?⇒ as

a tree T2 : A +⇒ aiAaj , with A ∈ ν(T1)

such that:
ν(T ) = ν(T1) ∪ ν(T2)

` = s + i + j , s > 0 and 0 < i + j < 2h.

In other words, a tree T : S ?⇒ a` of a “long” string (` > 2h−1)
can be obtained by padding

a tree T1 : S ?⇒ as of shortest string
with a “small” tree T2 : A +⇒ aiAaj , where A ∈ ν(T1) (“small”
means 0 < i + j < 2h)

Notice that if s > 2h−1 then the tree T1 can be obtained in a
similar way.
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Unary cfg→ nfa

MAIN IDEA:
we can generate all strings belonging to L(G) by using “small”
trees corresponding to derivations of the forms

S ?⇒ a` and
A +⇒ aiAaj ,

where ` ≤ 2h−1 and 0 < i + j < 2h.
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Generation procedure for L(G)

nondeterministically select a tree T1 : S ?⇒ a`, with ` ≤ 2h−1

enabled← ν(T1)
iterate← nondeterministically choose true or false
while iterate do

nondeterministically select a tree T2 : A +⇒ aiAaj ,
with 0 < i + j < 2h and A ∈enabled

`← ` + i + j
enabled←enabled ∪ν(T2)
iterate← nondeterministically choose true or false

endwhile
output a`
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Unary cfg→ nfa

The strategy of the generation procedure can be
implemented by a nfa with ε-moves A.
The states of A are pairs (α, s), where:

α ⊆ V represents the variable enabled
s < 2h is used to count input factors

After some simplifications, the number of the states of such
an automaton can be reduced to 22h−1 + 1.

Hence

Theorem (upper bound)
For any unary cfg in Chomsky normal form with h variables,
there exists an equivalent nfa with at most 22h−1 + 1 states.
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Unary cfg→ nfa (lower bound)

Theorem (lower bound)
For any integer h ≥ 1, there exists a unary cfg in Chomsky
normal form with h variables, such that any equivalent nfa must
have at least 2h−1 + 1 states.

(Sketch of the proof)
For h > 1, consider variables A0, . . . , Ah−1 and productions:

A0 → a
Aj → Aj−1Aj−1, for j = 1, . . . , h − 2
Ah−1 → Ah−2Ah−2 | Ah−1Ah−1

Then, for j = 0, . . . , h − 2: Aj
?⇒ ax iff x = 2j .

If Ah−1 is the start symbol, the language is (a2h−1
)+

This language needs 2h−1 + 1 states to be accepted by an nfa.
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Unary cfg→ dfa

Let G be a unary cfg in Chomsky normal form with h variables.
There exists an equivalent nfa A with at most 22h−1 + 1
states.
Using the subset construction, we can get an equivalent
dfa with 22O(h)

states.

...we can do better!

Theorem

L(G) is accepted by a dfa with 2h2
states.
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Unary deterministic automata

- m - m - m︸ ︷︷ ︸
µ

- m
j m �

m
�m

�

︸ ︷︷ ︸
λSize: the pair (λ, µ)

Theorem ([Pighizzini and Shallit, 2002])
L1, . . . , Lk unary regular languages
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(lcm(λ1, . . . , λk ), max(µ1, . . . , µk ))
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Unary cfg→ dfa (1)

Given a variable A ∈ V :

Let a LA be the set of strings in L generated using A
A is said to be cyclic iff A +⇒ aiAaj , for some i , j s.t.
0 < i + j < 2h,
If A is cyclic:

we set λA = i + j , for an arbitrary chosen pair of integers
(i , j) satisfying the above condition.
we can prove that

the language LA is accepted by a dfa of size (λA, µA)

where λA < 2h and µA = 22h + (2h − 3)2h−1 + 2− h.

Notice that L = LS. Hence, if S is cyclic:
L is accepted by a dfa of size (λS, µS)

Using the above bounds on λS and µS, we can prove that
the number of the states is less than 2h2
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Unary cfg→ dfa (2)

If S is not cyclic, then we decompose L as:

L = L≤2h−1 ∪
⋃

A∈Vp

LA

where Vp denotes the set of cyclic variables.

L≤2h−1
is accepted by a dfa of size (1, 2h−1 + 1).

Hence, L is accepted by a dfa of size (λ, µ), where

λ = lcm{λA | A ∈ Vp}
µ = max(2h−1 + 1, 22h + (2h − 3)2h−1 + 2− h).

From λA < 2h and #Vp < h, we get that λ ≤ (2h − 1)h−1.

By computing λ + µ, we finally get that
the total number of states is less than 2h2
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Unary cfg→ dfa

Summarizing:

Theorem
For any unary cfg in Chomsky normal form with h ≥ 2 variables,
there exists an equivalent dfa with less than 2h2

states.

The upper bound is tight!!!

Theorem
There is a constant c > 0 s.t., for infinitely many integers h > 0,
there exists a unary cfg in Chomsky normal form with h
variables, s.t. any equivalent dfa must have 2ch2

states.
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Unary pushdown automata→ finite automata

Corollary
For any unary pushdown automaton with

n states
m pushdown symbols

s.t. each push add one symbol on the stack, there exist
an equivalent nfa with at most 22n2m+1 + 1 states
an equivalent dfa with less than 2n4m2+2n2m+1 states.

Proof idea:
The pda can be transformed into a cfg in Chomsky normal form
with n2m + 1 variables.
...
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Auxiliary pushdown automata (auxpda)

Turing machines augmented with a pushdown store

or, equivalently

(2way) pda augmented with an auxiliary worktape

a c e c. . . . . .

. . .X Y
A
B

B
...

6

	�
?

��-

worktape stack

input
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Ausiliary pushdown automata (auxpda)

“SPACE” ≡ worktape

Theorem ([Cook 1971])

Given L ⊆ Σ∗, s(n) ≥ log n, the following statements are
equivalent:

1 L is accepted in s(n) space by a nondeterministic auxpda
2 L is accepted in s(n) space by a deterministic auxpda
3 L is accepted in 2O(s(n)) time by a deterministic Turing

machine.

Hence: DAuxPDA(log n) = NAuxPDA(log n) = P

Giovanni Pighizzini simulating unary cfg’s and pda’s with fa’s



Ausiliary pushdown automata (auxpda)

“SPACE” ≡ worktape

Theorem ([Cook 1971])

Given L ⊆ Σ∗, s(n) ≥ log n, the following statements are
equivalent:

1 L is accepted in s(n) space by a nondeterministic auxpda
2 L is accepted in s(n) space by a deterministic auxpda
3 L is accepted in 2O(s(n)) time by a deterministic Turing

machine.

Hence: DAuxPDA(log n) = NAuxPDA(log n) = P

Giovanni Pighizzini simulating unary cfg’s and pda’s with fa’s



Ausiliary pushdown automata (auxpda)

“SPACE” ≡ worktape

Theorem ([Cook 1971])

Given L ⊆ Σ∗, s(n) ≥ log n, the following statements are
equivalent:

1 L is accepted in s(n) space by a nondeterministic auxpda
2 L is accepted in s(n) space by a deterministic auxpda
3 L is accepted in 2O(s(n)) time by a deterministic Turing

machine.

Hence: DAuxPDA(log n) = NAuxPDA(log n) = P

Giovanni Pighizzini simulating unary cfg’s and pda’s with fa’s



One-way auxiliary pda (1auxpda) [Brandenburg 1977]

The input head can be moved only to the right

Example: how to count the input length.

Given i ∈ N consider its binary representation.

Let t1 > . . . > tk be the sequence of the positions of
digits 1, i.e., i = 2t1 + 2t2 + . . . + 2tk .

The auxdpa can store i (the length of the scanned input
prefix) as follows:

a a. . . . . .

tk t1
t2

tk−1
...

6

	�
?

��-

worktape stack

input︸ ︷︷ ︸
i
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1auxpda: how to count the input length

22 = 24 + 22 + 21

a a a a. . . . . .

1
4
2

6

	�
?

�

-

︸ ︷︷ ︸
22

23 = 24 + 22 + 21 + 20

a a a a. . . . . .

0
4
2
1

6� �
	�

?

�
-
︸ ︷︷ ︸

23
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1auxpda: example

Let L = {a2k | k ≥ 0}.
We define a 1auxpda M working as follows:

M scans the input tape, counting the input length.

When the end of the input is reached, M accepts if and
only if the pushdown store is empty.

If n is the input length, then the largest integer stored on
the worktape is blog2 nc.

It can be represented in O(log log n) space.

Hence L = {a2k | k ≥ 0} is accepted by the deterministic
1auxpda M in O(log log n) space.
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One-way auxiliary pda (1auxpda)

Problem ([Brandenburg 1977])

What is the minimum amount of space s(n) s.t.
1auxpda working in s(n) space are able to accept
noncontext-free languages?

space s(n):
STRONG: any computation on each input of length n uses no

more than s(n) worktape cells.
WEAK: on each accepted input of length n there exists at

least one accepting computation using no more
than s(n) worktape cells.
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1auxpda in strong space

The space bound should be satisfied by all computations

Theorem ([Brandenburg 1977])
L ⊆ Σ∗ noncontext-free language accepted by a 1auxpda in
strong s(n) space.
Then there exists c > 0 such that

s(n) ≥ c log log n

infinitely often.

This lower bound is tight!

L = {a2k | k ≥ 0}.
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1auxpda in weak space

For each accepted input, at least one accepting computation
satisfies the bound.

Theorem ([Chytil 1986])
1 For each integer k ≥ 2 there is a language Lk such that

Lk is accepted by a 1auxpda in weak O(log . . . log︸ ︷︷ ︸
k

n) space

Lk cannot be accepted by 1auxpdas in weak o(log . . . log︸ ︷︷ ︸
k

n)

space.
2 There exists a noncontext-free language L accepted by a

1auxpda in weak O(log∗ n), where
log∗ n = min {k | log . . . log︸ ︷︷ ︸

k

n ≤ 1}.

Languages Lk and L are defined over binary alphabets.
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space bounds for 1auxpda

strong space

weak space

general case unary case

lower bound lower bound
log log n [1] log log n [1]

optimal optimal
upper bound

log∗ n [2] ?

1: Brandenburg, 1977
2: Chytil, 1986

What about the unary case?
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Automaticity [Shallit and Breitbart,1996]

AL : N→ N automaticity of a language L ⊆ Σ∗:

AL(n) = minimum number of states of a dfa accepting
a language L′, s.t. L≤n = L′≤n

i.e., L and L′ agree on strings of length ≤ n.

If L is regular the AL(n) is a constant (the size of the
minimal dfa accepting L).

What about the automaticity of nonregular languages?

Theorem ([Karp, 1971])
Let L ⊆ Σ∗ be a nonregular language. Then:

AL(n) ≥ n+3
2 for infinitely many integers n.
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1auxpda and weak space: unary case

M: unary 1auxpda accepting in weak s(n) space a
nonregular language L.

Mn: a pda whose states encode the configurations of M
using s(n) space, for a given n ≥ 1.

Mn has h = 2O(s(n)) states.
L(Mn)

≤n = L≤n

An: a dfa simulating Mn

An has 2h2
= 22O(s(n))

states.
L(An)

≤n = L≤n

By the result of Karp, the number of states of An must be at
least n+3

2 , i.o.

Hence the space s(n) must grow at least as log log n
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1auxpda and weak space: unary case

We have obtained the following:

Theorem
Let M be a unary auxpda accepting a non-context-free
language L in weak s(n) space. Then s(n) /∈ o(log log n).

The optimality can be proved again by considering
L = {a2n | n ≥ 0}.
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One-way auxiliary pushdown automata

strong space

weak space

general case unary case
lower bound lower bound
log log n [1] log log n [1]

optimal optimal
upper bound

log∗ n [2] ?

1: Brandenburg, 1977
2: Chytil, 1986
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Extension to bounded languages

Bounded languages:
Subsets of w∗

1 w∗
2 . . . w∗

n , for given words w1, . . . , wn
(letter bounded if w1, . . . , wn ∈ Σ).

The class bounded regular languages is properly included
in that of bounded cfl’s, e.g., {anbn | n ≥ 0}.
Bounded cfl’s can be accepted by finite turn pda’s.

Problem: Find a tight upper bound f (h) for the size of finite
turn pda’s equivalent to cfg’s with h variables.
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Extension to bounded languages [Malcher, Pighizzini, 2007]

The generation procedure used to simulate unary cfg’s
with nfa’s can be extended in order to simulate cfg’s
generating letter bounded languages with finite turn pda’s.

Using a suitable homomorphism such a simulation can be
extended also to the case of bounded languages

Theorem
Each bounded context-free language generated by a cfg with h
variables in Chomsky normal form is accepted by a finite-turn
pda with 2h states and O(1) stack symbols.
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Extension to bounded languages [Malcher, Pighizzini, 2007]

Even this upper bound in tight.
In particular:

For all integers m ≥ 1, h ≥ 1 there exists a language
Lm,h ⊆ a∗1a∗2 . . . a∗m s.t.:

Lm,h is generated by a cfg in Cnf with h variables

Lm,h is accepted by a (m − 1)-turn pda of size 2O(h)

for each k ≥ m − 1, every k -turn pda accepting Lm,h has
size at least 2ch, for a constant c and each n sufficiently
large

for each k < m − 1, Lm,h cannot be accepted by k -turn
pda’s (regardless of the size).
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Further investigations: dpda’s vs finite automata

Let M be a unary pda with n states and m stack symbols, s.t.
each push adds exactly one symbol.

We proved that M can be simulated by a dfa with with 2O(n4m2)

states.

What about the deterministic case?

Theorem ([Pighizzini, 2008])
If M is deterministic then it can be simulated by a dfa
with 2O(nm) states.
Furthermore, such a simulation in tight.
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Further investigations: space lower bounds

One-way auxiliary pda’s

1auxpda’s with an input alphabet of at least two symbols
can recognize noncontext-free languages using very slowly
increasing (but nonconstant) weak space.

Unary 1auxpda’s must use weak space growing at least as
log log n to recognize noncontext-free languages.

What about space lower bounds for
noncontext-free acceptance, for 1auxpda’s, with

some other kinds of restrictions?

Examples: bounded languages, finite-turn 1auxpda.
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