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Context-free vs regular: descriptional complexity

Given a context-free grammar (or a pushdown automaton) of
size n, generating a regular language, how much is big an
equivalent finite automaton, wrt n ?

Theorem ([Meyer and Fischer, 1971])
For any recursive function f and arbitrarily large integers n,
there exists a cfg G of size n generating a regular language L,
s.t. any dfa accepting L must have at least f (n) states.

As a consequence, the trade-off between context-grammars
and finite automata is not recursive.
However... The witness language L is defined over a binary
alphabet.

What about languages over a one letter
alphabet?
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Unary languages

Σ = {a}

Theorem ([Ginsurg and Rice, 1962])
Every unary context-free language is regular.

Hence the classes of unary regular languages and unary
context–free languages coincide!

Problem
Study the equivalence between unary context-free and regular
languages from the descriptional complexity point of view.
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Context-free vs regular

Unary case [Pighizzini, Shallit, Wang, 2002]

Theorem
For any cfg in Chomsky normal form with h variables,
generating a unary language, there exists an equivalent dfa
with 2h2

states. Furthermore, this bound is tight.

Corollary
Each unary pda with n states and m stack symbols, s.t. each
push adds exactly one symbol, can be simulated by a dfa with
2O(n4m2) states.

What about the deterministic case?
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Dpda’s vs finite automata (general case)

Each dpda of size s accepting a regular language can be
simulated by a dfa with 222s

states. [Stearns, 1967]

This upper bound was reduced to 22s
in [Valiant, 1975].

It cannot be further reduced because a matching lower
bound [Meyer and Fischer, 1971].

However, in the unary case, it can be reduced to 2s

[this work] (tight bound).
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Size

Size of a finite automaton:
Number of its states

Size of a pushdown automaton:
Total number of symbols needed to write down its
description.
We have to keep into account:

the number of the states
the cardinality of the pushdown alphabet
the length of the strings that can be pushed in one move on
the stack
the number of transitions
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Size of dpda’s

Normal form for pda’s (some restrictions on the transitions)

We can prove that each dpda of size s can be converted
into an equivalent dpda in normal form such that the
product of

the number of states
the cardinality of the pushdown alphabet

is O(s).

Hence, we can restrict our attention to:
dpda’s in normal form with
size = # states × # pushdown alphabet
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Unary dfa’s

Input alphabet Σ = {a}

- m - m - m - m
j m �

m
�m

�

Theorem
L ⊆ {a}∗ is regular iff ∃µ ≥ 0, λ ≥ 1 s.t.

∀n ≥ µ : an ∈ L iff an+λ ∈ L.
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Unary automata

The costs of the optimal simulations between automata
are different in the unary and in the general case!

Costs in the unary case:
[Chrobak 1986, Mereghetti and Pighizzini 2001]
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Pushdown automata

M = (Q,Σ, Γ, δ, q0, Z0, F )

a b b c a. . . . . .

α

Z

q

6

	
�-

stack

input

x︷ ︸︸ ︷
(q, x , Zα)
configuration
[qZ ] mode
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M = (Q,Σ, Γ, δ, q0, Z0, F )

a b b c a. . . . . .

α

Z

q

6

	
�-

stack

input

x︷ ︸︸ ︷
(q, x , Zα)
configuration
[qZ ] mode

M is deterministic iff ∀q ∈ Q, Z ∈ Γ:
if δ(q, ε, Z ) 6= ∅ then δ(q, a, Z ) = ∅, for each a ∈ Σ
#δ(q, σ, Z ) ≤ 1, for each σ ∈ Σ ∪ {ε}.

Deterministic cfl’s: acceptance by final states

L(M) = {x ∈ Σ∗ | (q0, x , Z0)`
?
(q, ε, γ), q ∈ F , γ ∈ Γ∗}
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Pushdown automata
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Unary deterministic pda’s:
For each integer t ≥ 0:

if the computation does not stop before t steps
then the configuration reach at the step t does not depend
on the input length
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Modes

[qA] ≤ [pB] iff all the following conditions hold:

1 A configuration C with mode [qA] is reachable from the
initial configuration

2 A configuration with mode [pB] is reachable from the
configuration with mode [qA] and pushdown store
containing only A

3 If a configuration C′ with mode [pB] is reachable before C,
then the stack height in some configuration between C′ and
C must be less than in C′.
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Modes

Lemma
The relation ≤ defines a partial order on the set of the modes.
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ht history at the time t

Stack content + state information

Z0q0 Z1

Z2

...

Zmqm

Z1

Z2

...

Ziqi

Z1

Z2

...

Zi

Zi+1
qi+1

�
��@@�

�
�
�

�
��B

BB��
��

Q
QQ�

�
�
HH

History ht at the time t :
sequence of modes [qmZm] . . . [q1Z1] s.t.:

Zm . . . Z1 is the stack content after t computation steps
for i = 1, . . . , m, [qiZi ] is the mode of the last visited
configuration with stack height i
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Histories and modes

For each step t ≥ 0 we consider:
ht history
mt mode (leftmost element of ht )

For the given dpda M we consider:
H = {ht | t ≥ 0}, the set all reachable histories
(mt)t≥0, the sequence of reached modes

Two possibilities:

1 Every history belonging to H does not contain a repeated
mode

2 At least one history belonging to H contains a repetition
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Histories

Case 1: Every history belonging to H does not contain a
repeated mode

H is finite
The given dpda can be simulated by a deterministic
automaton A whose set of states is H
The number of the states of A is bounded by the number of
histories without repetitions
If an history [qmZm] . . . [q1Z1] does not contain any
repetition, then [q1Z1] ≤ [q2Z2] ≤ . . . ≤ [qmZm]

Hence:

the number of states of the deterministic automaton A
is bounded by 2#Q·#Γ
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Histories

Case 2: At least one history in H contains a repetition

The histories in H grow in a periodic way, i.e.:
∃µ ≥ 0, λ ≥ 1, ∃ sequences of modes h̃0, h̃1, . . . , h̃λ s.t. for
t ≥ µ, the history at the step t is:

ht = h̃t MOD λ(h̃λ)b
t−µ

λ
chµ

The sequence (mt)t≥0 is ultimately periodic
(period λ, from t ≥ µ)
The language can be accepted by a deterministic
automaton A with at most λ + µ states
λ + µ ≤ 2#Q·#Γ

Hence:

the given dpda can be simulated by a deterministic
automaton A with at most 2#Q·#Γ states
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Unary dpda’s vs dfa’s

As a consequence:

Theorem

Each unary dpda of size s can be simulated by a dfa with 2O(s)

states.

What about the optimality of this simulation?
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Unary dpda’s vs dfa’s: lower bound

Given s > 0 consider Ls = (a2s
)∗.

We can prove that:
There exists a dpda of size 8s + 4 accepting Ls.
Each dfa accepting Ls must have at least 2s states.

Hence our simulation is optimal!

Problem: Does it is possible to reduce the cost of the simulation
of unary dpda’s, by using nondeterministic or two-way finite
automata?
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Unary dpda’s vs 2nfa’s

We consider again Ls = (a2s
)∗, s > 0

Ls is accepted by a dpda of size 8s + 4
Furthermore, even each two-way nondeterministic
automaton accepting Ls needs 2s states
[Mereghetti, Pighizzini, 2000]

Hence:

Even the cost of the optimal simulation of unary
dpda’s by 2nfa’s is exponential!
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Languages with “complex” dpda’s

Unary dpda’s can be exponentially more succinct than dfa’s.
Does this is true for each unary regular language?

Problem
For m ≥ 0, let Lm ⊆ a∗ be a language accepted by a dfa with
2m states.
Does there exists an equivalent dpda with O(m) states?

The answer to this question is negative:

For each m > 0 there exists a language Lm ⊆ a∗ s.t.:
Lm is accepted by a dfa with 2m states.
The size of any dpda accepting Lm is at least d 2m

m2 , for a
constant d .
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Languages with “complex” dpda’s

wm de Bruijn word of order m on {0, 1}:

|wm| = 2m + m − 1
each string of length m is a factor of wm, occurring in wm
exactly one time
the suffix and the prefix of length m − 1 of wm coincide.

Example: w3 = 0001011100

Lm = {ak | the letter of wm in position k MOD ′2m is 1},
where x MOD ′y = x MOD y , if x MOD y > 0, y otherwise

Example: L3 = {a0, a4, a6, a7}{a8}∗.

Lm is accepted by a dfa with 2m states
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Languages with “complex” dpda’s

M: a dpda of size s accepting Lm

M ′: M extended with an output tape to generate the de
Bruijn word
A: a dfa with m + 1 states, input alphabet {0, 1}, ending
and accepting when the last m input symbols coincide with
the suffix of length m of wm

M ′′: a dpda of size O(ms), composition of M ′ and A,
accepting {a2m+m−1}
G: cfg grammar of size O(ms), obtained from M ′′,
generating {wm}

Lemma ([Domaratzki, Pighizzini, Shallit, 2002])

The size of each grammar G generating {wm} must be at least
c 2m

m , for some constant c.

Hence s ≥ d 2m

m2 , for some d > 0.
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Simulation of unary dfa’s by dpda’s

As a consequence we get the following lower bound:

Corollary
There exists a constant K > 0 such that the conversion of
unary n-state dfa’s into equivalent dpda’s produces dpda’s of
size at least K n

log2 n
, for infinitely many n’s.
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Pda’s vs cfg’s

To prove the last result we have investigated the transformation
of unary dpda’s into context-free grammars.

Each pda can be transformed into an equivalent cfg with
(#Q)2 ·#Γ + 1 variables.
This number cannot be reduced, even if the given pda is
deterministic [Goldstine, Price, Wotschke, 1982].

However, we proved that:

Theorem
Each unary dpda can be transformed into an equivalent cfg
grammar with #Q ·#Γ variables.
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Related questions and results

Bounded languages:
Subsets of w∗

1 w∗
2 . . . w∗

n , for given words w1, . . . , wn.

Extend the investigation to bounded deterministic context-free
languages:

Simulation of dpda’s accepting bounded regular
languages, by finite automata.
Simulation of dpda’s accepting bounded (context-free)
languages, by finite-turn pushdown automata.

In the nondeterministic case we have the following:

Theorem ([Malcher, Pighizzini, 2007])
Each bounded context-free language generated by a cfg with h
variables in Chomsky normal form is accepted by a finite-turn
pda with 2h and O(1) stack symbols.
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