Deterministic Pushdown Automata and Unary

Languages

Giovanni Pighizzini

Dipartimento di Informatica e Comunicazione
Universita degli Studi di Milano

Mathematical Institute

Slovak Academy of Sciences — KoSice
November 13th, 2008

Giovanni Pighizzini dpda’s and unary languages

Outline of the talk

Giovanni Pighizzini dpda’s and unary languages

Outline of the talk

@ Context-free grammars and pda’s vs regular languages:
some descriptional complexity results

Giovanni Pighizzini dpda’s and unary languages

Outline of the talk

@ Context-free grammars and pda’s vs regular languages:
some descriptional complexity results

@ Exponential simulation of unary dpda’s by dfa’s

Giovanni Pighizzini dpda’s and unary languages

Outline of the talk

@ Context-free grammars and pda’s vs regular languages:
some descriptional complexity results

@ Exponential simulation of unary dpda’s by dfa’s
@ Optimality of the simulation

Giovanni Pighizzini dpda’s and unary languages

Outline of the talk

@ Context-free grammars and pda’s vs regular languages:
some descriptional complexity results

@ Exponential simulation of unary dpda’s by dfa’s
@ Optimality of the simulation
@ Unary dpda’s vs context-free grammars

Giovanni Pighizzini dpda’s and unary languages

Outline of the talk

@ Context-free grammars and pda’s vs regular languages:
some descriptional complexity results

@ Exponential simulation of unary dpda’s by dfa’s
@ Optimality of the simulation
@ Unary dpda’s vs context-free grammars

@ Simulation of unary dfa’s by dpda’s

Giovanni Pighizzini dpda’s and unary languages

Context-free vs regular: descriptional complexity

Given a context-free grammar (or a pushdown automaton) of
size n, generating a regular language, how much is big an
equivalent finite automaton, wrt n ?

Giovanni Pighizzini dpda’s and unary languages

Context-free vs regular: descriptional complexity

Given a context-free grammar (or a pushdown automaton) of
size n, generating a regular language, how much is big an
equivalent finite automaton, wrt n ?

For any recursive function f and arbitrarily large integers n,
there exists a cfg G of size n generating a regular language L,
s.t. any dfa accepting L must have at least f(n) states.

Giovanni Pighizzini dpda’s and unary languages

Context-free vs regular: descriptional complexity

Given a context-free grammar (or a pushdown automaton) of
size n, generating a regular language, how much is big an
equivalent finite automaton, wrt n ?

For any recursive function f and arbitrarily large integers n,
there exists a cfg G of size n generating a regular language L,
s.t. any dfa accepting L must have at least f(n) states.

As a consequence, the trade-off between context-grammars
and finite automata is not recursive.
However...

Giovanni Pighizzini dpda’s and unary languages

Context-free vs regular: descriptional complexity

Given a context-free grammar (or a pushdown automaton) of
size n, generating a regular language, how much is big an
equivalent finite automaton, wrt n ?

For any recursive function f and arbitrarily large integers n,
there exists a cfg G of size n generating a regular language L,
s.t. any dfa accepting L must have at least f(n) states.

As a consequence, the trade-off between context-grammars
and finite automata is not recursive.

However... The witness language L is defined over a binary
alphabet.

Giovanni Pighizzini dpda’s and unary languages

Context-free vs regular: descriptional complexity

Given a context-free grammar (or a pushdown automaton) of
size n, generating a regular language, how much is big an
equivalent finite automaton, wrt n ?

For any recursive function f and arbitrarily large integers n,
there exists a cfg G of size n generating a regular language L,
s.t. any dfa accepting L must have at least f(n) states.

As a consequence, the trade-off between context-grammars
and finite automata is not recursive.

However... The witness language L is defined over a binary
alphabet.

What about languages over a one letter
alphabet?

Giovanni Pighizzini dpda’s and unary languages

Unary languages

Y ={a}

Every unary context-free language is regular.

Hence the classes of unary regular languages and unary
context—free languages coincide!

Giovanni Pighizzini dpda’s and unary languages

Unary languages

Y ={a}

Every unary context-free language is regular. \

Hence the classes of unary regular languages and unary
context—free languages coincide!

Problem

Study the equivalence between unary context-free and regular
languages from the descriptional complexity point of view.

Giovanni Pighizzini dpda’s and unary languages

Context-free vs regular

Unary case [Pighizzini, Shallit, Wang, 2002]

For any cfg in Chomsky normal form with h variables,
generating a unary language, there exists an equivalent dfa
with 27 states. Furthermore, this bound is tight.

Giovanni Pighizzini dpda’s and unary languages

Context-free vs regular

Unary case [Pighizzini, Shallit, Wang, 2002]

For any cfg in Chomsky normal form with h variables,
generating a unary language, there exists an equivalent dfa
with 27 states. Furthermore, this bound is tight.

Each unary pda with n states and m stack symbols, s.t. each
push adds exactly one symbol, can be simulated by a dfa with
20(n*n?) gtates.

Giovanni Pighizzini dpda’s and unary languages

Context-free vs regular

Unary case [Pighizzini, Shallit, Wang, 2002]

For any cfg in Chomsky normal form with h variables,
generating a unary language, there exists an equivalent dfa
with 27 states. Furthermore, this bound is tight.

Each unary pda with n states and m stack symbols, s.t. each
push adds exactly one symbol, can be simulated by a dfa with
20(n*n?) gtates.

What about the deterministic case?

Giovanni Pighizzini dpda’s and unary languages

Dpda’s vs finite automata (general case)

@ Each dpda of size s accepting a regular language can be
simulated by a dfa with 22* states. [Stearns, 1967]

Giovanni Pighizzini dpda’s and unary languages

Dpda’s vs finite automata (general case)

@ Each dpda of size s accepting a regular language can be
simulated by a dfa with 22* states. [Stearns, 1967]

@ This upper bound was reduced to 22° in [Valiant, 1975].

Giovanni Pighizzini dpda’s and unary languages

Dpda’s vs finite automata (general case)

@ Each dpda of size s accepting a regular language can be
simulated by a dfa with 22* states. [Stearns, 1967]

@ This upper bound was reduced to 22° in [Valiant, 1975].

@ It cannot be further reduced because a matching lower
bound [Meyer and Fischer, 1971].

Giovanni Pighizzini dpda’s and unary languages

Dpda’s vs finite automata (general case)

@ Each dpda of size s accepting a regular language can be
simulated by a dfa with 22* states. [Stearns, 1967]

@ This upper bound was reduced to 22° in [Valiant, 1975].

@ It cannot be further reduced because a matching lower
bound [Meyer and Fischer, 1971].

@ However, in the unary case, it can be reduced to 2° (tight
bound) [Pighizzini, 2008].

Giovanni Pighizzini dpda’s and unary languages

@ Size of a finite automaton:
Number of its states

Giovanni Pighizzini dpda’s and unary languages

@ Size of a finite automaton:
Number of its states

@ Size of a pushdown automaton:
Total number of symbols needed to write down its
description.

Giovanni Pighizzini dpda’s and unary languages

@ Size of a finite automaton:
Number of its states

@ Size of a pushdown automaton:
Total number of symbols needed to write down its
description.
We have to keep into account:

e the number of the states

e the cardinality of the pushdown alphabet

o the length of the strings that can be pushed in one move on
the stack

e the number of transitions

Giovanni Pighizzini dpda’s and unary languages

Size of dpda’s

Normal form for pda’s (some restrictions on the transitions)
°

Giovanni Pighizzini dpda’s and unary languages

Size of dpda’s

Normal form for pda’s (some restrictions on the transitions)

@ We can prove that each dpda of size s can be converted
into an equivalent dpda in normal form such that the
product of

e the number of states
e the cardinality of the pushdown alphabet

is O(s).

Giovanni Pighizzini dpda’s and unary languages

Size of dpda’s

Normal form for pda’s (some restrictions on the transitions)

@ We can prove that each dpda of size s can be converted
into an equivalent dpda in normal form such that the
product of

o the number of states
e the cardinality of the pushdown alphabet

is O(s).

Hence, we can restrict our attention to:
@ dpda’s in normal form with
@ size = # states x # pushdown alphabet

Giovanni Pighizzini dpda’s and unary languages

Unary dfa’s

Input alphabet > = {a}

Giovanni Pighizzini dpda’s and unary languages

Unary dfa’s

Input alphabet > = {a}

~O—0 ~O0—0 4
o

Giovanni Pighizzini dpda’s and unary languages

Unary dfa’s

Input alphabet > = {a}

~0—0--0—0¢ |
.

L C {a}* is regular iff

Giovanni Pighizzini dpda’s and unary languages

Unary dfa’s

Input alphabet > = {a}

~0—0--0—0¢ |
u Ny

A

L C {a}* isregulariff 3 > 0,\ > 1 s.t.

Giovanni Pighizzini dpda’s and unary languages

Unary dfa’s

Input alphabet > = {a}

~0—0--0—0¢ |
u Ny

A

L C {a}* isregulariff 3 > 0,\ > 1 s.t.

Vn>pu:aeliffa™ e L.

Giovanni Pighizzini dpda’s and unary languages

Unary automata

The costs of the optimal simulations between automata
are different in the unary and in the general case!

Giovanni Pighizzini dpda’s and unary languages

Unary automata

The costs of the optimal simulations between automata
are different in the unary and in the general case!

Unary case: [Chrobak 1986, Mereghetti and Pighizzini 2001]

dfa nfa

2dfa 2nfa

Giovanni Pighizzini dpda’s and unary languages

Unary automata

The costs of the optimal simulations between automata
are different in the unary and in the general case!

Unary case: [Chrobak 1986, Mereghetti and Pighizzini 2001]

dfa VT nfa

2dfa 2nfa

Giovanni Pighizzini dpda’s and unary languages

Unary automata

The costs of the optimal simulations between automata
are different in the unary and in the general case!

Unary case: [Chrobak 1986, Mereghetti and Pighizzini 2001]

df:a N nfa
CO“ /nlog n)
2dfa 2nfa

Giovanni Pighizzini dpda’s and unary languages

Unary automata

The costs of the optimal simulations between automata
are different in the unary and in the general case!

Unary case: [Chrobak 1986, Mereghetti and Pighizzini 2001]

dfa « T nfa

eO(\/n log n)

e0(+/nlog n)

2dfa 2nfa

Giovanni Pighizzini dpda’s and unary languages

Unary automata

The costs of the optimal simulations between automata
are different in the unary and in the general case!

Unary case: [Chrobak 1986, Mereghetti and Pighizzini 2001]

/CO(/nlog n) ﬁ'

dfa « T r}fa

eO(\/n log n) CO(\ /nlog n)

e0(+/nlog n)

- 2dfa 2nfa

Giovanni Pighizzini dpda’s and unary languages

Unary automata

The costs of the optimal simulations between automata
are different in the unary and in the general case!

Unary case: [Chrobak 1986, Mereghetti and Pighizzini 2001]

/ﬂ%@) w

dfa -« T r]fa ~

eO(\/n log n) eO(\/n log n)

e0(+/nlog n)

- 2dfa 2nfa

L nz/

Giovanni Pighizzini dpda’s and unary languages

Unary automata

The costs of the optimal simulations between automata
are different in the unary and in the general case!

Unary case: [Chrobak 1986, Mereghetti and Pighizzini 2001]

/ﬂ%@) w

dfa « T r]fa ~

eO(\/n log n) eO(\/n log n)

e0(+/nlog n)

- 2dfa 5 2nfa

Giovanni Pighizzini dpda’s and unary languages

Unary automata

The costs of the optimal simulations between automata
are different in the unary and in the general case!

Unary case: [Chrobak 1986, Mereghetti and Pighizzini 2001]

/ﬂ%@) w

n
dfa = /e r]fa ~

n eO(w/nlog n) e0(/nlogn) | |

e0(+/nlog n)

- 2dfa = ; > 2nfa

Giovanni Pighizzini dpda’s and unary languages

Pushdown automata

M: (szvr757 q07207F)

[al---|[b[blc] --a]
input Z
@J .

Giovanni Pighizzini dpda’s and unary languages

Pushdown automata

M: (szvr757 q07207F)

—
[al---|b[ble] --a]
input @ (9,x,Za)
Z . .
configuration
@J ® [gZ] mode

stack

Giovanni Pighizzini dpda’s and unary languages

Pushdown automata

M: (szvr757 q07207F)

—
[al---|b[ble] --a]
input @ (9,x,Za)
Z . .
configuration
@J ® [gZ] mode

stack

@ Mis deterministiciff vge Q,Z €T:

e if5(q,e,Z) # 0 thend(q,a,Z) =0, foreach ac X
e #6(q,0,2Z) <1, foreach o € X U{e}.

Giovanni Pighizzini dpda’s and unary languages

Pushdown automata

M: (szvr757 q07207F)

—
[al---|b[ble] --a]
input @ (9,x,Za)
Z . .
configuration
@J ® [gZ] mode

stack

@ Mis deterministiciff vge Q,Z €T:

e if5(q,e,Z) # 0 thend(q,a,Z) =0, foreach ac X
e #6(q,0,2Z) <1, foreach o € X U{e}.

@ Deterministic cfl’'s: acceptance by final states

L(M) = {X ey’ | (q0>XazO)P(qv €>7)>Cl € Fa7 € r*}

Giovanni Pighizzini dpda’s and unary languages

Pushdown automata

M: (szvr757 q07207F)

—
[a]---|afala] --a]
input ° (q.x,Za)
Z . .
configuration
@J ® [gZ] mode

stack

Unary deterministic pda’s:

Giovanni Pighizzini dpda’s and unary languages

Pushdown automata

M: (szvr757 q07207F)

X

——
lal---[alala] ---[a]
input - ° (g,x,Za)
EJ configuration
q @ [gZ] mode
«
stack

Unary deterministic pda’s:
For each integer t > 0:
@ if the computation does not stop before t steps

then the configuration reached at the step t does not
depend on the input length

Giovanni Pighizzini dpda’s and unary languages

[gA] < [pB] iff all the following conditions hold:

Giovanni Pighizzini dpda’s and unary languages

[gA] < [pB] iff all the following conditions hold:

Qo| £y C

@ A configuration C with mode [gA] is reachable from the
initial configuration

Giovanni Pighizzini dpda’s and unary languages

[gA] < [pB] iff all the following conditions hold:

g A] p

@ A configuration with mode [pB] is reachable from the
configuration with mode [gA] and pushdown store
containing only A

Giovanni Pighizzini dpda’s and unary languages

[gA] < [pB] iff all the following conditions hold:

Qo| £y C

@ A configuration C with mode [gA] is reachable from the
initial configuration

@ A configuration with mode [pB] is reachable from the
configuration with mode [gA]| and pushdown store
containing only A

Giovanni Pighizzini dpda’s and unary languages

[gA] < [pB] iff all the following conditions hold:

P/ B

/
wzl | e c
@ A configuration C with mode [gA] is reachable from the
initial configuration

@ A configuration with mode [pB] is reachable from the
configuration with mode [gA]| and pushdown store
containing only A

© If a configuration C’ with mode [pB] is reachable before C,
then

Giovanni Pighizzini dpda’s and unary languages

[gA] < [pB] iff all the following conditions hold:

p
q A b
pP| B /
\/
ﬁ/ 8] (8]
Q| Zy ! C

@ A configuration C with mode [gA] is reachable from the
initial configuration

@ A configuration with mode [pB] is reachable from the
configuration with mode [gA]| and pushdown store
containing only A

© If a configuration C’ with mode [pB] is reachable before C,
then the stack height in some configuration between ¢’ and
C must be less than in C'.

Giovanni Pighizzini dpda’s and unary languages

The relation < defines a partial order on the set of the modes.

Giovanni Pighizzini dpda’s and unary languages

h; history at the time t

Stack content + state information

gml Zm
17, 1
ay Zi Z
Z Z Z
%[2 | Z; Z; Z;

History h; at the time t:
sequence of modes [gmZpy] - .. [q1Z1] s.t.:
@ Z,...Z is the stack content after t computation steps

e fori=1,...,m, [qiZ] is the mode of the last visited
configuration with stack height i

dpda’s and unary languages

Giovanni Pighizzini

Histories and modes

For each step t > 0 we consider:
@ h; history
@ m; mode (leftmost element of h;)

Giovanni Pighizzini dpda’s and unary languages

Histories and modes

For each step t > 0 we consider:
@ h; history
@ m; mode (leftmost element of h;)

For the given dpda M we consider:
@ H={h; |t >0}, the set all reachable histories
@ (my)s>0, the sequence of reached modes

Giovanni Pighizzini dpda’s and unary languages

Histories and modes

For each step t > 0 we consider:
@ h; history
@ m; mode (leftmost element of h;)

For the given dpda M we consider:
@ H={h; |t >0}, the set all reachable histories
@ (my)s>0, the sequence of reached modes

Two possibilities:

@ Every history belonging to H does not contain a repeated
mode

© At least one history belonging to H contains a repetition

Giovanni Pighizzini dpda’s and unary languages

Case 1: Every history belonging to H does not contain a
repeated mode

Giovanni Pighizzini dpda’s and unary languages

Case 1: Every history belonging to H does not contain a
repeated mode

@ His finite

Giovanni Pighizzini dpda’s and unary languages

Case 1: Every history belonging to H does not contain a
repeated mode

@ His finite
@ The given dpda can be simulated by a deterministic
automaton A whose set of states is H

Giovanni Pighizzini dpda’s and unary languages

Case 1: Every history belonging to H does not contain a
repeated mode

@ His finite
@ The given dpda can be simulated by a deterministic
automaton A whose set of states is H

@ The number of the states of A is bounded by the number of
histories without repetitions

Giovanni Pighizzini dpda’s and unary languages

Case 1: Every history belonging to H does not contain a
repeated mode

@ His finite
@ The given dpda can be simulated by a deterministic
automaton A whose set of states is H

@ The number of the states of A is bounded by the number of
histories without repetitions

@ If an history [gmZn] - . . [g1Z1] does not contain any
repetition, then [q1Z] < [qeZy] < ... < [gmZnm]

Giovanni Pighizzini dpda’s and unary languages

Case 1: Every history belonging to H does not contain a
repeated mode

@ His finite
@ The given dpda can be simulated by a deterministic
automaton A whose set of states is H

@ The number of the states of A is bounded by the number of
histories without repetitions

@ If an history [gmZn] - . . [g1Z1] does not contain any
repetition, then [q1Z] < [qeZy] < ... < [gmZnm]

@ Hence:

the number of states of the deterministic automaton A
is bounded by 2#Q#T

Giovanni Pighizzini dpda’s and unary languages

Case 2: At least one history in H contains a repetition

Giovanni Pighizzini dpda’s and unary languages

Case 2: At least one history in H contains a repetition

@ The histories in H grow in a periodic way, i.e.:

Giovanni Pighizzini dpda’s and unary languages

Case 2: At least one history in H contains a repetition

@ The histories in H grow in a periodic way, i.e.:
Ju > 0,\ > 1, 3 sequences of modes ho, Py, ..., hy s.t. for
t > u, the history at the step tis:

~ ~ t—p
he = hwoo A ()3 h

"

Giovanni Pighizzini dpda’s and unary languages

Case 2: At least one history in H contains a repetition

@ The histories in H grow in a periodic way, i.e.:

31 > 0,\ > 1, I sequences of modes hy, hy, ..., hy s.t. for
t > u, the history at the step tis:

t—p

ht = hrwop A (AL 1,
@ The sequence (m;);>o is ultimately periodic
(period A, from t > p)

Giovanni Pighizzini dpda’s and unary languages

Case 2: At least one history in H contains a repetition

@ The histories in H grow in a periodic way, i.e.:
31 > 0,\ > 1, I sequences of modes hy, hy, ..., hy s.t. for
t > u, the history at the step tis:
he = Prwop (AL “Ih,
@ The sequence (m;);>o is ultimately periodic
(period A, from t > p)

@ The language can be accepted by a deterministic
automaton A with at most A + . states

Giovanni Pighizzini dpda’s and unary languages

Case 2: At least one history in H contains a repetition

@ The histories in H grow in a periodic way, i.e.:
31 > 0,\ > 1, I sequences of modes hy, hy, ..., hy s.t. for
t > u, the history at the step tis:
hy = BtMODA(BA)LHJhﬂ
@ The sequence (m;);>o is ultimately periodic
(period A, from t > p)
@ The language can be accepted by a deterministic
automaton A with at most A + . states
@ \ 4 p < 2#AHT

Giovanni Pighizzini dpda’s and unary languages

Case 2: At least one history in H contains a repetition

@ The histories in H grow in a periodic way, i.e.:
31 > 0,\ > 1, I sequences of modes hy, hy, ..., hy s.t. for
t > u, the history at the step tis:
he = Prwop (AL “Ih,
@ The sequence (m;);>o is ultimately periodic
(period A, from t > p)

@ The language can be accepted by a deterministic
automaton A with at most A + . states

@ \ 4 p < 2#AHT
@ Hence:

the given dpda can be simulated by a deterministic
automaton A with at most 2#@#T states

Giovanni Pighizzini dpda’s and unary languages

Unary dpda’s vs dfa’s

As a consequence:

Each unary dpda of size s can be simulated by a dfa with 29(5)
States.

Giovanni Pighizzini dpda’s and unary languages

Unary dpda’s vs dfa’s

As a consequence:

Each unary dpda of size s can be simulated by a dfa with 29(5)
States.

What about the optimality of this simulation?

Giovanni Pighizzini dpda’s and unary languages

Unary dpda’s vs dfa’s: lower bound

Given s > 0 consider Ls = (a°)*.
We can prove that:

Giovanni Pighizzini dpda’s and unary languages

Unary dpda’s vs dfa’s: lower bound

Given s > 0 consider Ls = (a°)*.
We can prove that:
@ There exists a dpda of size 8s + 4 accepting Ls.

Giovanni Pighizzini dpda’s and unary languages

Unary dpda’s vs dfa’s: lower bound

Given s > 0 consider Ls = (a°)*.
We can prove that:
@ There exists a dpda of size 8s + 4 accepting Ls.
@ Each dfa accepting Ls must have at least 2° states.

Giovanni Pighizzini dpda’s and unary languages

Unary dpda’s vs dfa’s: lower bound

Given s > 0 consider Ls = (a°)*.
We can prove that:
@ There exists a dpda of size 8s + 4 accepting Ls.
@ Each dfa accepting Ls must have at least 2° states.

Hence our simulation is optimal!

Giovanni Pighizzini dpda’s and unary languages

Unary dpda’s vs dfa’s: lower bound

Given s > 0 consider Ls = (a°)*.
We can prove that:
@ There exists a dpda of size 8s + 4 accepting Ls.
@ Each dfa accepting Ls must have at least 2° states.

Hence our simulation is optimal!

Problem: Does it is possible to reduce the cost of the simulation
of unary dpda’s, by using nondeterministic or two-way finite
automata?

Giovanni Pighizzini dpda’s and unary languages

Unary dpda’s vs 2nfa’s

We recall the following result:

L C a* ultimately properly \-cyclic, with A = pf‘ . p§2 . -p’S‘S, for
primes p1, ..., Ps, integers Ky, ..., ks > 1.

Then each 2nfa accepting L must have at least

Pl 4 ple 4 ...+ pl states in its cycles.

Giovanni Pighizzini dpda’s and unary languages

Unary dpda’s vs 2nfa’s

We recall the following result:

L C a* ultimately properly \-cyclic, with A = pf‘ . p§2 . -p’S‘S, for
primes p1, ..., Ps, integers Ky, ..., ks > 1.

Then each 2nfa accepting L must have at least

Pl 4 ple 4 ...+ pl states in its cycles.

@ We consider again Ls = (&2)*, s > 0

Giovanni Pighizzini dpda’s and unary languages

Unary dpda’s vs 2nfa’s

We recall the following result:

L C a* ultimately properly \-cyclic, with A = pf‘ . p§2 . -p’S‘S, for
primes p1, ..., Ps, integers Ky, ..., ks > 1.

Then each 2nfa accepting L must have at least

Pl 4 ple 4 ...+ pl states in its cycles.

@ We consider again Ls = (&2)*, s > 0
@ L is properly 2°-cyclic

Giovanni Pighizzini dpda’s and unary languages

Unary dpda’s vs 2nfa’s

We recall the following result:

L C a* ultimately properly \-cyclic, with A = pf‘ . p§2 . -p’S‘S, for
primes p1, ..., Ps, integers Ky, ..., ks > 1.

Then each 2nfa accepting L must have at least

Pl 4 ple 4 ...+ pl states in its cycles.

@ We consider again Ls = (a%°)*, s > 0

@ L is properly 2°-cyclic

@ Hence, each two-way nondeterministic automaton
accepting Lg needs 2° states

Giovanni Pighizzini dpda’s and unary languages

Unary dpda’s vs 2nfa’s

We recall the following result:

L C a* ultimately properly \-cyclic, with A = pf‘ . p§2 . -p’S‘S, for

primes p1, ..., Ps, integers Ky, ..., ks > 1.
Then e‘zch 2nfa accepting L must have at least
2

4+ ple ...+ pls states in its cycles.

@ We consider again Ls = (a%°)*, s > 0

@ L is properly 2°-cyclic

@ Hence, each two-way nondeterministic automaton
accepting Lg needs 2° states

Since L is accepted by a dpda with O(s) states, we get that:

Even the cost of the optimal simulation of unary
dpda’s by 2nfa’s is exponential!

Giovanni Pighizzini dpda’s and unary languages

Pda’s vs cfg’s

How to transform pda’s into equivalent cfg’s?

Giovanni Pighizzini dpda’s and unary languages

Pda’s vs cfg’s

How to transform pda’s into equivalent cfg’s?

The standard construction uses the following set of variables:

{Stu{lgApl | g, p € Q. Ac V}

with a set of productions such that

[9Ap] = w iff (q, w, A (p.¢)

Giovanni Pighizzini dpda’s and unary languages

Pda’s vs cfg’s

How to transform pda’s into equivalent cfg’s?

The standard construction uses the following set of variables:
{StU{lgAp] | a.p € QA€ V}
with a set of productions such that
[9Ap] = wiff (g, w, A)F (p, €)
Hence, the total number of variables is (#Q)? - #I + 1.

Giovanni Pighizzini dpda’s and unary languages

Pda’s vs cfg’s

How to transform pda’s into equivalent cfg’s?

The standard construction uses the following set of variables:
{StU{lgAp] | a.p € QA€ V}
with a set of productions such that
[9Ap] = wiff (g, w, A)F (p, €)
Hence, the total number of variables is (#Q)? - #I + 1.

This number cannot be reduced, even if the given pda is
deterministic [Goldstine, Price, Wotschke, 1982].

Giovanni Pighizzini dpda’s and unary languages

Pda’s vs cfg’s

How to transform pda’s into equivalent cfg’s?

The standard construction uses the following set of variables:
{StU{lgAp] | a.p € QA€ V}
with a set of productions such that
[9Ap] = wiff (g, w, A)F (p, €)
Hence, the total number of variables is (#Q)? - #I + 1.

This number cannot be reduced, even if the given pda is
deterministic [Goldstine, Price, Wotschke, 1982].

However, if the dpda is unary we can do better!

Giovanni Pighizzini dpda’s and unary languages

Pda’s vs cfg’s

How to transform pda’s into equivalent cfg’s?

The standard construction uses the following set of variables:
{StU{lgAp] | a.p € QA€ V}
with a set of productions such that
[9Ap] = wiff (g, w, A)F (p, €)
Hence, the total number of variables is (#Q)? - #I + 1.

This number cannot be reduced, even if the given pda is
deterministic [Goldstine, Price, Wotschke, 1982].

However, if the dpda is unary we can do better!
This number can be reduced to 2 - #Q - #I

Giovanni Pighizzini dpda’s and unary languages

From unary dpda’s to cfg’s (outline)

@ For each mode [gA] there exists at most one state p and
one string x € a* such that (g, x, A)F (p, €, €)

Giovanni Pighizzini dpda’s and unary languages

From unary dpda’s to cfg’s (outline)

@ For each mode [gA] there exists at most one state p and
one string x € a* such that (g, x, A)F (p, €, €)

@ Given [gA] we consider two variables:

Giovanni Pighizzini dpda’s and unary languages

From unary dpda’s to cfg’s (outline)

@ For each mode [gA] there exists at most one state p and
one string x € a* such that (g, x, A)F (p, €, €)

@ Given [gA] we consider two variables:
@ [gA]o is used to generate the only string, if any, accepted by
empty stack starting from the mode [gA], i.e.,

[qA]O :+> x iff (qv X, A)': (p7676)7p €Q

Giovanni Pighizzini dpda’s and unary languages

From unary dpda’s to cfg’s (outline)

@ For each mode [gA] there exists at most one state p and
one string x € a* such that (g, x, A)F (p, €, €)

@ Given [gA] we consider two variables:
@ [gA]o is used to generate the only string, if any, accepted by
empty stack starting from the mode [gA], i.e.,
[9Alo = x iff (g, x, A)F (p.€,€),p € Q
e [gA]s is used to generate all strings accepted by final states
starting from the mode [gA], i.e.,

[9Al1 = x iff (g, x, A (p,e,7), p€ F,y eTT

Giovanni Pighizzini dpda’s and unary languages

From unary dpda’s to cfg’s (outline)

@ For each mode [gA] there exists at most one state p and
one string x € a* such that (g, x, A)F (p, €, €)

@ Given [gA] we consider two variables:
@ [gA]o is used to generate the only string, if any, accepted by
empty stack starting from the mode [gA], i.e.,
[9Alo = x iff (g, X, A)F (p.e.€).p € Q
e [gA]s is used to generate all strings accepted by final states
starting from the mode [gA], i.e.,
[qAls = x iff (q.x, A)F (p,e,7), p€ F,y el

@ Hence, [qyS] = x iff x is accepted by the given pda.

Each unary deterministic pda’s in normal form with n states and
m pushdown symbols can be converted into an equivalent cfg
with 2mn variables.

Giovanni Pighizzini dpda’s and unary languages

Languages with “complex” dpda’s

Unary dpda’s can be exponentially more succinct than dfa’s.
Does this is true for each unary regular language?

Problem

Form >0, let L,, C a* be a language accepted by a dfa with
2™ states.
Does there exists an equivalent dpda with O(m) states?

Giovanni Pighizzini dpda’s and unary languages

Languages with “complex” dpda’s

Unary dpda’s can be exponentially more succinct than dfa’s.
Does this is true for each unary regular language?

Problem

Form >0, let L,, C a* be a language accepted by a dfa with

2™ states.
Does there exists an equivalent dpda with O(m) states?

The answer to this question is negative:

Giovanni Pighizzini dpda’s and unary languages

Languages with “complex” dpda’s

Unary dpda’s can be exponentially more succinct than dfa’s.
Does this is true for each unary regular language?

Problem

Form >0, let L,, C a* be a language accepted by a dfa with
2™ states.
Does there exists an equivalent dpda with O(m) states?

The answer to this question is negative:

For each m > 0 there exists a language L, C a* s.t.:
@ L, is accepted by a dfa with 2™ states.

@ The size of any dpda accepting L, is at least dfn—";, for a
constant d.

Giovanni Pighizzini dpda’s and unary languages

Languages with “complex” dpda’s

W de Bruijn word of order mon {0, 1}:

@ each string of length mis a factor of wy,, occurring in wy,
exactly one time

@ the suffix and the prefix of length m — 1 of w,;, coincide.

Giovanni Pighizzini

dpda’s and unary languages

Languages with “complex” dpda’s

W de Bruijn word of order mon {0, 1}:

@ each string of length mis a factor of wy,, occurring in wy,
exactly one time

@ the suffix and the prefix of length m — 1 of w,;, coincide.

Ln = {&" | the letter of wy, in position k MOD’2™ is 1},
where x MOD'y = x MOD y, if xMOD y > 0, y otherwise

Giovanni Pighizzini

dpda’s and unary languages

Languages with “complex” dpda’s

W de Bruijn word of order mon {0, 1}:

@ each string of length mis a factor of wy,, occurring in wy,
exactly one time

@ the suffix and the prefix of length m — 1 of w,;, coincide.

Ln = {&" | the letter of wy, in position k MOD’2™ is 1},
where x MOD'y = x MOD y, if xMOD y > 0, y otherwise

The language L, is periodic, with period 2™. Hence:

Giovanni Pighizzini

dpda’s and unary languages

Languages with “complex” dpda’s

W de Bruijn word of order mon {0, 1}:

@ each string of length mis a factor of wy,, occurring in wy,
exactly one time

@ the suffix and the prefix of length m — 1 of w,;, coincide.

Ln = {&" | the letter of wy, in position k MOD’2™ is 1},
where x MOD'y = x MOD y, if xMOD y > 0, y otherwise

The language L, is periodic, with period 2™. Hence:

L, is accepted by a dfa with 2™ states

Giovanni Pighizzini

dpda’s and unary languages

Languages with “complex” dpda’s
Example: m=3
de Bruijn word w3 = 0001011100
L ={a° a* & a’}{a®}"

The language Lj is accepted by the following automaton:

Giovanni Pighizzini dpda’s and unary languages

Languages with “complex” dpda’s

@ M: a dpda of size s accepting L

Giovanni Pighizzini dpda’s and unary languages

Languages with “complex” dpda’s

@ M: a dpda of size s accepting L

@ M': M extended with an output tape to generate the de
Bruijn word

Giovanni Pighizzini dpda’s and unary languages

Languages with “complex” dpda’s

@ M: a dpda of size s accepting L

@ M': M extended with an output tape to generate the de
Bruijn word

@ A: adfa with m—+ 1 states, input alphabet {0, 1}, ending
and accepting when the last m input symbols coincide with
the suffix of length m of wy,

Giovanni Pighizzini dpda’s and unary languages

Languages with “complex” dpda’s

@ M: a dpda of size s accepting L

@ M': M extended with an output tape to generate the de
Bruijn word

@ A: adfa with m—+ 1 states, input alphabet {0, 1}, ending
and accepting when the last m input symbols coincide with
the suffix of length m of wy,

@ M": a dpda of size O(ms), composition of M" and A,
accepting {&2" ™1}

Giovanni Pighizzini dpda’s and unary languages

Languages with “complex” dpda’s

@ M: a dpda of size s accepting L

@ M': M extended with an output tape to generate the de
Bruijn word

@ A: adfa with m—+ 1 states, input alphabet {0, 1}, ending
and accepting when the last m input symbols coincide with
the suffix of length m of wy,

@ M": a dpda of size O(ms), composition of M" and A,
accepting {&2" ™1}

@ G: cfg grammar of size O(ms), obtained from M”,
generating {wm}

Giovanni Pighizzini dpda’s and unary languages

Languages with “complex” dpda’s

@ M: a dpda of size s accepting L

@ M': M extended with an output tape to generate the de
Bruijn word

@ A: adfa with m—+ 1 states, input alphabet {0, 1}, ending
and accepting when the last m input symbols coincide with
the suffix of length m of wy,

@ M": a dpda of size O(ms), composition of M" and A,
accepting {&2" ™1}

@ G: cfg grammar of size O(ms), obtained from M”,
generating {wm}

The size of each grammar G generating {wn} must be at least
c2”, for some constant c.

Giovanni Pighizzini dpda’s and unary languages

Languages with “complex” dpda’s

@ M: a dpda of size s accepting L

@ M': M extended with an output tape to generate the de
Bruijn word

@ A: adfa with m—+ 1 states, input alphabet {0, 1}, ending
and accepting when the last m input symbols coincide with
the suffix of length m of wy,

@ M": a dpda of size O(ms), composition of M" and A,
accepting {&2" ™1}

@ G: cfg grammar of size O(ms), obtained from M”,
generating {wm}

The size of each grammar G generating {wn} must be at least
c2”, for some constant c.

Hence s > dZ;, for some d > 0.

Giovanni Pighizzini dpda’s and unary languages

Simulation of unary dfa’s by dpda’s

As a consequence we get the following lower bound:

There exists a constant K > 0 such that the conversion of
unary n-state dfa’s into equivalent dpda’s produces dpda’s of
size at least K o for infinitely many n’s.

n
log?

Giovanni Pighizzini dpda’s and unary languages

Related questions and results

Bounded languages:
Subsets of wyw; ... w;, for given words wy, ..., w.

Giovanni Pighizzini dpda’s and unary languages

Related questions and results

Bounded languages:
Subsets of wyw; ... w;, for given words wy, ..., w.

Extend the investigation to bounded deterministic context-free
languages:
o

Giovanni Pighizzini dpda’s and unary languages

Related questions and results

Bounded languages:
Subsets of wyw; ... w;, for given words wy, ..., w.

Extend the investigation to bounded deterministic context-free
languages:

@ Simulation of dpda’s accepting bounded regular
languages, by finite automata.

Giovanni Pighizzini dpda’s and unary languages

Related questions and results

Bounded languages:
Subsets of wyw; ... w;, for given words wy, ..., w.

Extend the investigation to bounded deterministic context-free
languages:
@ Simulation of dpda’s accepting bounded regular
languages, by finite automata.

@ Simulation of dpda’s accepting bounded (context-free)
languages, by finite-turn pushdown automata.

Giovanni Pighizzini dpda’s and unary languages

Related questions and results

Bounded languages:
Subsets of wyw; ... w;, for given words wy, ..., w.

Extend the investigation to bounded deterministic context-free
languages:

@ Simulation of dpda’s accepting bounded regular
languages, by finite automata.

@ Simulation of dpda’s accepting bounded (context-free)
languages, by finite-turn pushdown automata.

In the nondeterministic case we have the following:

Each bounded context-free language generated by a cfg with h
variables in Chomsky normal form is accepted by a finite-turn
pda with 2" and O(1) stack symbols.

Giovanni Pighizzini dpda’s and unary languages

Related questions: unary 2dpda’s

What about two-way dpda’s?

Giovanni Pighizzini dpda’s and unary languages

Related questions: unary 2dpda’s

What about two-way dpda’s?

@ 2dpda’s are very powerful, even in the unary case:
e.g., the unary versions of all languages in the class P are
accepted by 2dpda’s [Monien 1984].

Giovanni Pighizzini dpda’s and unary languages

Related questions: unary 2dpda’s

What about two-way dpda’s?

@ 2dpda’s are very powerful, even in the unary case:
e.g., the unary versions of all languages in the class P are
accepted by 2dpda’s [Monien 1984].

@ However, every unary 2dpda making O(1) input head
reversals accepts a regular language [Chrobak 1984].

Giovanni Pighizzini dpda’s and unary languages

Related questions: unary 2dpda’s

What about two-way dpda’s?

@ 2dpda’s are very powerful, even in the unary case:
e.g., the unary versions of all languages in the class P are
accepted by 2dpda’s [Monien 1984].

@ However, every unary 2dpda making O(1) input head
reversals accepts a regular language [Chrobak 1984].

@ The same does not hold for nonunary languages:
e.g., consider {a"b"a" | n > 1} which is not a cfl.

Giovanni Pighizzini dpda’s and unary languages

Related questions: unary 2dpda’s

What about two-way dpda’s?

@ 2dpda’s are very powerful, even in the unary case:
e.g., the unary versions of all languages in the class P are
accepted by 2dpda’s [Monien 1984].

@ However, every unary 2dpda making O(1) input head
reversals accepts a regular language [Chrobak 1984].

@ The same does not hold for nonunary languages:
e.g., consider {a"b"a" | n > 1} which is not a cfl.

Problems:
@ Input head reversals are useful to reduce the size of
dpda’s?
@ Given a unary 2dpda of size s making at most r reversals
on each input string, how many state should have a finite
automaton simulating it (wrt s and r)?

Giovanni Pighizzini dpda’s and unary languages

Related questions: unary 2dpda’s

Number of reversal vs nonregular acceptance

Giovanni Pighizzini dpda’s and unary languages

Related questions: unary 2dpda’s

Number of reversal vs nonregular acceptance

@ There is a 2dpda accepting the powers of 2 in unary
notation
{&" | k=0}

using O(log n) input head reversals

Giovanni Pighizzini dpda’s and unary languages

Related questions: unary 2dpda’s

Number of reversal vs nonregular acceptance

@ There is a 2dpda accepting the powers of 2 in unary
notation
{&" | k=0}

using O(log n) input head reversals

@ What is the minumum amount of head reversals needed by
a 2dpda in order to recognize a unary nonregular
language?

Giovanni Pighizzini dpda’s and unary languages

Related questions: unary 2dpda’s

Number of reversal vs nonregular acceptance

@ There is a 2dpda accepting the powers of 2 in unary
notation
{&" | k=0}

using O(log n) input head reversals

@ What is the minumum amount of head reversals needed by
a 2dpda in order to recognize a unary nonregular
language?

@ | conjecture that with o(log n) reversals only regular
languages can be accepted.

Giovanni Pighizzini dpda’s and unary languages

