
Eliminating the nondeterminism from two-way
finite automata

Giovanni Pighizzini

Dipartimento di Informatica e Comunicazione
Università degli Studi di Milano

Frankfurt – December 11, 2007

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Eliminating the nondeterminism from two-way
automata

Outline of the talk

Finite state automata and their descriptional complexity
Eliminating nondeterminism using two–way motion:
the problem of Sakoda and Sipser
Unary automata, unary languages and their properties
From unary one-way nondeterministic automata to
two-way deterministic automata
(optimal quadratic simulation)
From unary two-way nondeterministic automata to two-way
deterministic automata
(subexponential simulation)

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Eliminating the nondeterminism from two-way
automata

Outline of the talk

Finite state automata and their descriptional complexity
Eliminating nondeterminism using two–way motion:
the problem of Sakoda and Sipser
Unary automata, unary languages and their properties
From unary one-way nondeterministic automata to
two-way deterministic automata
(optimal quadratic simulation)
From unary two-way nondeterministic automata to two-way
deterministic automata
(subexponential simulation)

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Eliminating the nondeterminism from two-way
automata

Outline of the talk

Finite state automata and their descriptional complexity
Eliminating nondeterminism using two–way motion:
the problem of Sakoda and Sipser
Unary automata, unary languages and their properties
From unary one-way nondeterministic automata to
two-way deterministic automata
(optimal quadratic simulation)
From unary two-way nondeterministic automata to two-way
deterministic automata
(subexponential simulation)

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Eliminating the nondeterminism from two-way
automata

Outline of the talk

Finite state automata and their descriptional complexity
Eliminating nondeterminism using two–way motion:
the problem of Sakoda and Sipser
Unary automata, unary languages and their properties
From unary one-way nondeterministic automata to
two-way deterministic automata
(optimal quadratic simulation)
From unary two-way nondeterministic automata to two-way
deterministic automata
(subexponential simulation)

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Eliminating the nondeterminism from two-way
automata

Outline of the talk

Finite state automata and their descriptional complexity
Eliminating nondeterminism using two–way motion:
the problem of Sakoda and Sipser
Unary automata, unary languages and their properties
From unary one-way nondeterministic automata to
two-way deterministic automata
(optimal quadratic simulation)
From unary two-way nondeterministic automata to two-way
deterministic automata
(subexponential simulation)

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Eliminating the nondeterminism from two-way
automata

Outline of the talk

Finite state automata and their descriptional complexity
Eliminating nondeterminism using two–way motion:
the problem of Sakoda and Sipser
Unary automata, unary languages and their properties
From unary one-way nondeterministic automata to
two-way deterministic automata
(optimal quadratic simulation)
From unary two-way nondeterministic automata to two-way
deterministic automata
(subexponential simulation)

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Finite state automata

i n p u t. . .

6
-

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Finite state automata

i n p u t. . .

6
-

Base version:

One-way determistic finite automata (1dfa)
one-way input tape
deterministic

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Finite state automata

i n p u t. . .

6
-

Some possibile variants introducing:
non determinism
two-way input head motion
alternation
...

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Finite state automata

i n p u t. . .

6
-

Some possibile variants introducing:
non determinism
two-way input head motion
alternation
...

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Finite state automata

i n p u t. . .

6
-

Some possibile variants introducing:
non determinism

one-way nondetermistic finite automata (1nfa)

two-way input head motion
alternation
...

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Finite state automata

i n p u t. . .

6
-�

Some possibile variants introducing:
non determinism (1nfa)
two-way input head motion
alternation
...

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Finite state automata

i n p u t. . .

6
-�

Some possibile variants introducing:
non determinism (1nfa)
two-way input head motion

two-way determistic finite automata (2dfa)
two-way nondetermistic finite automata (2nfa)

alternation
...

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Finite state automata

i n p u t. . .

6
-�

Some possibile variants introducing:
non determinism (1nfa)
two-way input head motion

two-way determistic finite automata (2dfa)
two-way nondetermistic finite automata (2nfa)

alternation
...

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Finite state automata

i n p u t. . .

6
-�

Some possibile variants introducing:
non determinism (1nfa)
two-way input head motion (2dfa, 2nfa)
alternation
...

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Finite state automata

i n p u t. . .

6
-�

Some possibile variants introducing:
non determinism (1nfa)
two-way input head motion (2dfa, 2nfa)
alternation
...

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Finite state automata: different variants

1dfa, 1nfa, 2dfa, 2nfa, ...

What about the power of these models?

All these models have the same computational power, namely
they characterize the class of regular languages, however...

...some of them are more succinct.

Example

Each n-state 1nfa can be simulated by a 1dfa with 2n

states (subset construction) [Rabin and Scott ’59], and:
For each integer n ≥ 1 there is a language which is
accepted by a n-state 1nfa which requires 2n state to be
accepted by a 1dfa [Meyer and Fischer ’71].

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Finite state automata: different variants

1dfa, 1nfa, 2dfa, 2nfa, ...

What about the power of these models?

All these models have the same computational power, namely
they characterize the class of regular languages,

however...

...some of them are more succinct.

Example

Each n-state 1nfa can be simulated by a 1dfa with 2n

states (subset construction) [Rabin and Scott ’59], and:
For each integer n ≥ 1 there is a language which is
accepted by a n-state 1nfa which requires 2n state to be
accepted by a 1dfa [Meyer and Fischer ’71].

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Finite state automata: different variants

1dfa, 1nfa, 2dfa, 2nfa, ...

What about the power of these models?

All these models have the same computational power, namely
they characterize the class of regular languages, however...

...some of them are more succinct.

Example

Each n-state 1nfa can be simulated by a 1dfa with 2n

states (subset construction) [Rabin and Scott ’59], and:
For each integer n ≥ 1 there is a language which is
accepted by a n-state 1nfa which requires 2n state to be
accepted by a 1dfa [Meyer and Fischer ’71].

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Finite state automata: different variants

1dfa, 1nfa, 2dfa, 2nfa, ...

What about the power of these models?

All these models have the same computational power, namely
they characterize the class of regular languages, however...

...some of them are more succinct.

Example

Each n-state 1nfa can be simulated by a 1dfa with 2n

states (subset construction) [Rabin and Scott ’59], and:
For each integer n ≥ 1 there is a language which is
accepted by a n-state 1nfa which requires 2n state to be
accepted by a 1dfa [Meyer and Fischer ’71].

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Finite state automata: different variants

1dfa, 1nfa, 2dfa, 2nfa, ...

What about the power of these models?

All these models have the same computational power, namely
they characterize the class of regular languages, however...

...some of them are more succinct.

Example

Each n-state 1nfa can be simulated by a 1dfa with 2n

states (subset construction) [Rabin and Scott ’59], and:
For each integer n ≥ 1 there is a language which is
accepted by a n-state 1nfa which requires 2n state to be
accepted by a 1dfa [Meyer and Fischer ’71].

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Finite state automata: different variants

1dfa, 1nfa, 2dfa, 2nfa, ...

What about the power of these models?

All these models have the same computational power, namely
they characterize the class of regular languages, however...

...some of them are more succinct.

Example

Each n-state 1nfa can be simulated by a 1dfa with 2n

states (subset construction) [Rabin and Scott ’59], and:
For each integer n ≥ 1 there is a language which is
accepted by a n-state 1nfa which requires 2n state to be
accepted by a 1dfa [Meyer and Fischer ’71].

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Finite state automata

Costs of the optimal simulations by 1dfa:

1dfa

1nfa 2dfa 2nfa

@
@

@
@

@
@

@R ?

�
�

�
�

�
�

�	

2n O(2log n) O(2n2
)

-? � ?

[Rabin and Scott ’59, Shepardson ’59,Meyer and Fischer ’71,...]

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Finite state automata

Costs of the optimal simulations by 1dfa:

1dfa

1nfa 2dfa 2nfa

@
@

@
@

@
@

@R ?

�
�

�
�

�
�

�	

2n O(2log n) O(2n2
)

-? � ?

How much two-way motion is useful in the
elimination of the nondeterminism?

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Finite state automata

Costs of the optimal simulations by 1dfa:

1dfa

1nfa 2dfa 2nfa

@
@

@
@

@
@

@R ?

�
�

�
�

�
�

�	

2n O(2log n) O(2n2
)

-? � ?

Problem ([Sakoda and Sipser 1978])
Find the costs, in terms of states, of the optimal simulations of

1nfa by 2dfa
2nfa by 2dfa

Conjecture: these costs are exponential
Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Finite state automata

Costs of the optimal simulations by 1dfa:

1dfa

1nfa 2dfa 2nfa

@
@

@
@

@
@

@R ?

�
�

�
�

�
�

�	

2n O(2log n) O(2n2
)

-?

� ?

Problem ([Sakoda and Sipser 1978])
Find the costs, in terms of states, of the optimal simulations of

1nfa by 2dfa
2nfa by 2dfa

Conjecture: these costs are exponential
Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Finite state automata

Costs of the optimal simulations by 1dfa:

1dfa

1nfa 2dfa 2nfa

@
@

@
@

@
@

@R ?

�
�

�
�

�
�

�	

2n O(2log n) O(2n2
)

-? � ?

Problem ([Sakoda and Sipser 1978])
Find the costs, in terms of states, of the optimal simulations of

1nfa by 2dfa
2nfa by 2dfa

Conjecture: these costs are exponential
Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Finite state automata

Costs of the optimal simulations by 1dfa:

1dfa

1nfa 2dfa 2nfa

@
@

@
@

@
@

@R ?

�
�

�
�

�
�

�	

2n O(2log n) O(2n2
)

-? � ?

Problem ([Sakoda and Sipser 1978])
Find the costs, in terms of states, of the optimal simulations of

1nfa by 2dfa
2nfa by 2dfa

Conjecture: these costs are exponential
Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda and Sipser question: complete languages

Theorem (Complete languages for 1nfa vs 2dfa)

There exists a sequence of languages < B1, B2, . . . , Bn, . . . >
s.t. for each integer n ≥ 1:

Bn is accepted by a 1nfa with n states, and
among all languages accepted by n-state 1nfa, Bn requires
the largest 2dfa.

Remark: the second condition implies that
the simulation of 1nfa by 2dfa is polynomial iff each Bn is
accepted by a 2dfa with a polynomial (in n) number of states.

In a similar way:

Theorem (Complete languages for 2nfa vs 2dfa)

There exists a sequence of languages < C1, C2, . . . , Cn, . . . >
complete for the reduction of 2nfa to 2dfa.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda and Sipser question: complete languages

Theorem (Complete languages for 1nfa vs 2dfa)

There exists a sequence of languages < B1, B2, . . . , Bn, . . . >
s.t. for each integer n ≥ 1:

Bn is accepted by a 1nfa with n states, and
among all languages accepted by n-state 1nfa, Bn requires
the largest 2dfa.

Remark: the second condition implies that
the simulation of 1nfa by 2dfa is polynomial iff each Bn is
accepted by a 2dfa with a polynomial (in n) number of states.

In a similar way:

Theorem (Complete languages for 2nfa vs 2dfa)

There exists a sequence of languages < C1, C2, . . . , Cn, . . . >
complete for the reduction of 2nfa to 2dfa.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda and Sipser question: complete languages

Theorem (Complete languages for 1nfa vs 2dfa)

There exists a sequence of languages < B1, B2, . . . , Bn, . . . >
s.t. for each integer n ≥ 1:

Bn is accepted by a 1nfa with n states, and
among all languages accepted by n-state 1nfa, Bn requires
the largest 2dfa.

Remark: the second condition implies that
the simulation of 1nfa by 2dfa is polynomial iff each Bn is
accepted by a 2dfa with a polynomial (in n) number of states.

In a similar way:

Theorem (Complete languages for 2nfa vs 2dfa)

There exists a sequence of languages < C1, C2, . . . , Cn, . . . >
complete for the reduction of 2nfa to 2dfa.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda and Sipser question: complete languages

Theorem (Complete languages for 1nfa vs 2dfa)

There exists a sequence of languages < B1, B2, . . . , Bn, . . . >
s.t. for each integer n ≥ 1:

Bn is accepted by a 1nfa with n states, and
among all languages accepted by n-state 1nfa, Bn requires
the largest 2dfa.

Remark: the second condition implies that
the simulation of 1nfa by 2dfa is polynomial iff each Bn is
accepted by a 2dfa with a polynomial (in n) number of states.

In a similar way:

Theorem (Complete languages for 2nfa vs 2dfa)

There exists a sequence of languages < C1, C2, . . . , Cn, . . . >
complete for the reduction of 2nfa to 2dfa.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda and Sipser question: complete languages

Theorem (Complete languages for 1nfa vs 2dfa)

There exists a sequence of languages < B1, B2, . . . , Bn, . . . >
s.t. for each integer n ≥ 1:

Bn is accepted by a 1nfa with n states, and
among all languages accepted by n-state 1nfa, Bn requires
the largest 2dfa.

Remark: the second condition implies that
the simulation of 1nfa by 2dfa is polynomial iff each Bn is
accepted by a 2dfa with a polynomial (in n) number of states.

In a similar way:

Theorem (Complete languages for 2nfa vs 2dfa)

There exists a sequence of languages < C1, C2, . . . , Cn, . . . >
complete for the reduction of 2nfa to 2dfa.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda and Sipser question: lower bounds

Polynomial lower bounds have been proved for the cost c(n) of
simulation of 1nfa by 2dfa. In particular:

c(n) ∈ Ω(n2

log n) [Berman and Lingas 1977]

c(n) ∈ Ω(n2) [Chrobak 1986]

Exponential lower bounds have been proved, if the resulting
machines are required to satisfy some special conditions. e.g.,

sweeping automata [Sipser 1980]

oblivious automata [Hromkovic̆ and Schnitger 2003]

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda and Sipser question: lower bounds

Polynomial lower bounds have been proved for the cost c(n) of
simulation of 1nfa by 2dfa. In particular:

c(n) ∈ Ω(n2

log n) [Berman and Lingas 1977]

c(n) ∈ Ω(n2) [Chrobak 1986]

Exponential lower bounds have been proved, if the resulting
machines are required to satisfy some special conditions. e.g.,

sweeping automata [Sipser 1980]

oblivious automata [Hromkovic̆ and Schnitger 2003]

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda and Sipser question: lower bounds

Polynomial lower bounds have been proved for the cost c(n) of
simulation of 1nfa by 2dfa. In particular:

c(n) ∈ Ω(n2

log n) [Berman and Lingas 1977]

c(n) ∈ Ω(n2) [Chrobak 1986]

Exponential lower bounds have been proved, if the resulting
machines are required to satisfy some special conditions. e.g.,

sweeping automata [Sipser 1980]

oblivious automata [Hromkovic̆ and Schnitger 2003]

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda and Sipser question: lower bounds

Polynomial lower bounds have been proved for the cost c(n) of
simulation of 1nfa by 2dfa. In particular:

c(n) ∈ Ω(n2

log n) [Berman and Lingas 1977]

c(n) ∈ Ω(n2) [Chrobak 1986]

Exponential lower bounds have been proved, if the resulting
machines are required to satisfy some special conditions. e.g.,

sweeping automata [Sipser 1980]

oblivious automata [Hromkovic̆ and Schnitger 2003]

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda and Sipser question: lower bounds

Polynomial lower bounds have been proved for the cost c(n) of
simulation of 1nfa by 2dfa. In particular:

c(n) ∈ Ω(n2

log n) [Berman and Lingas 1977]

c(n) ∈ Ω(n2) [Chrobak 1986]

Exponential lower bounds have been proved, if the resulting
machines are required to satisfy some special conditions. e.g.,

sweeping automata [Sipser 1980]

oblivious automata [Hromkovic̆ and Schnitger 2003]

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda and Sipser question: lower bounds

Polynomial lower bounds have been proved for the cost c(n) of
simulation of 1nfa by 2dfa. In particular:

c(n) ∈ Ω(n2

log n) [Berman and Lingas 1977]

c(n) ∈ Ω(n2) [Chrobak 1986]

Exponential lower bounds have been proved, if the resulting
machines are required to satisfy some special conditions. e.g.,

sweeping automata [Sipser 1980]

oblivious automata [Hromkovic̆ and Schnitger 2003]

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Two-way automata

` i n p u t. . . a
6

� -

Input string surrounded by two endmarkers ` and a
Transition function

δ : Q × (Σ ∪ {`,a}) → 2Q×{−1,0,+1}

where (p, d) ∈ δ(q, a) means that the automaton
in the state q, with the input head scanning the symbol
a ∈ Σ ∪ {`,a}
can make a transition to the state p
moving the input head in the direction specified by d :

d = −1: left; d = 0: stationary; d = +1: right.
If a =` (a =a, resp.) then d 6= −1 (d 6= +1, resp.)

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Two-way automata

` i n p u t. . . a
6

� -

Input string surrounded by two endmarkers ` and a
Transition function

δ : Q × (Σ ∪ {`,a}) → 2Q×{−1,0,+1}

where (p, d) ∈ δ(q, a) means that the automaton
in the state q, with the input head scanning the symbol
a ∈ Σ ∪ {`,a}
can make a transition to the state p
moving the input head in the direction specified by d :

d = −1: left; d = 0: stationary; d = +1: right.
If a =` (a =a, resp.) then d 6= −1 (d 6= +1, resp.)

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Two-way automata

` i n p u t. . . a
6

� -

Input string surrounded by two endmarkers ` and a
Transition function

δ : Q × (Σ ∪ {`,a}) → 2Q×{−1,0,+1}

where (p, d) ∈ δ(q, a) means that the automaton
in the state q, with the input head scanning the symbol
a ∈ Σ ∪ {`,a}
can make a transition to the state p
moving the input head in the direction specified by d :

d = −1: left; d = 0: stationary; d = +1: right.
If a =` (a =a, resp.) then d 6= −1 (d 6= +1, resp.)

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Two-way automata

` i n p u t. . . a
6

� -

Input string surrounded by two endmarkers ` and a
Transition function

δ : Q × (Σ ∪ {`,a}) → 2Q×{−1,0,+1}

where (p, d) ∈ δ(q, a) means that the automaton
in the state q, with the input head scanning the symbol
a ∈ Σ ∪ {`,a}
can make a transition to the state p
moving the input head in the direction specified by d :

d = −1: left; d = 0: stationary; d = +1: right.
If a =` (a =a, resp.) then d 6= −1 (d 6= +1, resp.)

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Two-way automata

` i n p u t. . . a
6

� -

Input string surrounded by two endmarkers ` and a
Transition function

δ : Q × (Σ ∪ {`,a}) → 2Q×{−1,0,+1}

where (p, d) ∈ δ(q, a) means that the automaton
in the state q, with the input head scanning the symbol
a ∈ Σ ∪ {`,a}
can make a transition to the state p
moving the input head in the direction specified by d :

d = −1: left; d = 0: stationary; d = +1: right.
If a =` (a =a, resp.) then d 6= −1 (d 6= +1, resp.)

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Two-way automata

` i n p u t. . . a
6

� -

Input string surrounded by two endmarkers ` and a
Transition function

δ : Q × (Σ ∪ {`,a}) → 2Q×{−1,0,+1}

where (p, d) ∈ δ(q, a) means that the automaton
in the state q, with the input head scanning the symbol
a ∈ Σ ∪ {`,a}
can make a transition to the state p
moving the input head in the direction specified by d :

d = −1: left; d = 0: stationary; d = +1: right.
If a =` (a =a, resp.) then d 6= −1 (d 6= +1, resp.)

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Two-way automata

` i n p u t. . . a
6

� -

The automaton is deterministic if and only if #δ(q, a) ≤ 1
for each q ∈ Q, a ∈ Σ ∪ {`,a}

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sweeping automata

` i n p u t. . . a
6

� -

Definition
A two-way automaton A is said to be sweeping if and only if

A is determistic, and
the input head of A can change direction only on the
endmarkers

Note: the computation of a sweeping automaton is a sequence
of left-to-right and right-to-left traversals of the input

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sweeping automata

` i n p u t. . . a
6

� -

Definition
A two-way automaton A is said to be sweeping if and only if

A is determistic, and
the input head of A can change direction only on the
endmarkers

Note: the computation of a sweeping automaton is a sequence
of left-to-right and right-to-left traversals of the input

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sweeping automata

` i n p u t. . . a
6

� -

Definition
A two-way automaton A is said to be sweeping if and only if

A is determistic, and
the input head of A can change direction only on the
endmarkers

Note: the computation of a sweeping automaton is a sequence
of left-to-right and right-to-left traversals of the input

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sweeping automata

` i n p u t. . . a
6

� -

Definition
A two-way automaton A is said to be sweeping if and only if

A is determistic, and
the input head of A can change direction only on the
endmarkers

Note: the computation of a sweeping automaton is a sequence
of left-to-right and right-to-left traversals of the input

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sweeping automata

Theorem ([Sipser 1980])
There exists a family of languages < B1, B2, . . . , Bn, . . . > s.t.
for each integer n ≥ 1:

Bn is accepted by a 1nfa with n states, and
Bn cannot be accepted by any sweeping automaton with
less than 2n states.

However, 2dfa can be exponentially more succinct than
sweeping automata:

Theorem ([Berman 1981, Micali 1981])
There exists a family of languages < A1, A2, . . . , An, . . . > s.t.
for each integer n ≥ 1:

An is accepted by a 2dfa with n states, and
An cannot be accepted by any sweeping automaton with
less than 2n − 1 states.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sweeping automata

Theorem ([Sipser 1980])
There exists a family of languages < B1, B2, . . . , Bn, . . . > s.t.
for each integer n ≥ 1:

Bn is accepted by a 1nfa with n states, and
Bn cannot be accepted by any sweeping automaton with
less than 2n states.

However, 2dfa can be exponentially more succinct than
sweeping automata:

Theorem ([Berman 1981, Micali 1981])
There exists a family of languages < A1, A2, . . . , An, . . . > s.t.
for each integer n ≥ 1:

An is accepted by a 2dfa with n states, and
An cannot be accepted by any sweeping automaton with
less than 2n − 1 states.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sweeping automata

Theorem ([Sipser 1980])
There exists a family of languages < B1, B2, . . . , Bn, . . . > s.t.
for each integer n ≥ 1:

Bn is accepted by a 1nfa with n states, and
Bn cannot be accepted by any sweeping automaton with
less than 2n states.

However, 2dfa can be exponentially more succinct than
sweeping automata:

Theorem ([Berman 1981, Micali 1981])
There exists a family of languages < A1, A2, . . . , An, . . . > s.t.
for each integer n ≥ 1:

An is accepted by a 2dfa with n states, and
An cannot be accepted by any sweeping automaton with
less than 2n − 1 states.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sweeping automata

Theorem ([Sipser 1980])
There exists a family of languages < B1, B2, . . . , Bn, . . . > s.t.
for each integer n ≥ 1:

Bn is accepted by a 1nfa with n states, and
Bn cannot be accepted by any sweeping automaton with
less than 2n states.

However, 2dfa can be exponentially more succinct than
sweeping automata:

Theorem ([Berman 1981, Micali 1981])
There exists a family of languages < A1, A2, . . . , An, . . . > s.t.
for each integer n ≥ 1:

An is accepted by a 2dfa with n states, and
An cannot be accepted by any sweeping automaton with
less than 2n − 1 states.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sweeping automata

Theorem ([Sipser 1980])
There exists a family of languages < B1, B2, . . . , Bn, . . . > s.t.
for each integer n ≥ 1:

Bn is accepted by a 1nfa with n states, and
Bn cannot be accepted by any sweeping automaton with
less than 2n states.

However, 2dfa can be exponentially more succinct than
sweeping automata:

Theorem ([Berman 1981, Micali 1981])
There exists a family of languages < A1, A2, . . . , An, . . . > s.t.
for each integer n ≥ 1:

An is accepted by a 2dfa with n states, and
An cannot be accepted by any sweeping automaton with
less than 2n − 1 states.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sweeping automata

Theorem ([Sipser 1980])
There exists a family of languages < B1, B2, . . . , Bn, . . . > s.t.
for each integer n ≥ 1:

Bn is accepted by a 1nfa with n states, and
Bn cannot be accepted by any sweeping automaton with
less than 2n states.

However, 2dfa can be exponentially more succinct than
sweeping automata:

Theorem ([Berman 1981, Micali 1981])
There exists a family of languages < A1, A2, . . . , An, . . . > s.t.
for each integer n ≥ 1:

An is accepted by a 2dfa with n states, and
An cannot be accepted by any sweeping automaton with
less than 2n − 1 states.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sweeping automata

Theorem ([Sipser 1980])
There exists a family of languages < B1, B2, . . . , Bn, . . . > s.t.
for each integer n ≥ 1:

Bn is accepted by a 1nfa with n states, and
Bn cannot be accepted by any sweeping automaton with
less than 2n states.

However, 2dfa can be exponentially more succinct than
sweeping automata:

Theorem ([Berman 1981, Micali 1981])
There exists a family of languages < A1, A2, . . . , An, . . . > s.t.
for each integer n ≥ 1:

An is accepted by a 2dfa with n states, and
An cannot be accepted by any sweeping automaton with
less than 2n − 1 states.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda and Sipser question

Problem ([Sakoda and Sipser 1978])
Find the costs, in terms of states, of the optimal simulations of

1nfa by 2dfa
2nfa by 2dfa

Very difficult in its general form
Not very encouraging obtained results:

Lower and upper bounds too far
(Polynomial versus exponential)

Hence:

Try to solve a restriction of it!

Consider the unary case #Σ = 1

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda and Sipser question

Problem ([Sakoda and Sipser 1978])
Find the costs, in terms of states, of the optimal simulations of

1nfa by 2dfa
2nfa by 2dfa

Very difficult in its general form
Not very encouraging obtained results:

Lower and upper bounds too far
(Polynomial versus exponential)

Hence:

Try to solve a restriction of it!

Consider the unary case #Σ = 1

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda and Sipser question

Problem ([Sakoda and Sipser 1978])
Find the costs, in terms of states, of the optimal simulations of

1nfa by 2dfa
2nfa by 2dfa

Very difficult in its general form
Not very encouraging obtained results:

Lower and upper bounds too far
(Polynomial versus exponential)

Hence:

Try to solve a restriction of it!

Consider the unary case #Σ = 1

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda and Sipser question

Problem ([Sakoda and Sipser 1978])
Find the costs, in terms of states, of the optimal simulations of

1nfa by 2dfa
2nfa by 2dfa

Very difficult in its general form
Not very encouraging obtained results:

Lower and upper bounds too far
(Polynomial versus exponential)

Hence:

Try to solve a restriction of it!

Consider the unary case #Σ = 1

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda and Sipser question

Problem ([Sakoda and Sipser 1978])
Find the costs, in terms of states, of the optimal simulations of

1nfa by 2dfa
2nfa by 2dfa

Very difficult in its general form
Not very encouraging obtained results:

Lower and upper bounds too far
(Polynomial versus exponential)

Hence:

Try to solve a restriction of it!

Consider the unary case #Σ = 1

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Unary automata: 1dfa

Input alphabet Σ = {a}

- m - m - m - m
j m �

m
�m

�

Theorem
L ⊆ {a}∗ is regular iff ∃µ ≥ 0, λ ≥ 1 s.t.

∀n ≥ µ : an ∈ L iff an+λ ∈ L.

Special case µ = 0: the language is periodic or cyclic.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Unary automata: 1dfa

Input alphabet Σ = {a}

- m - m - m - m
j m �

m
�m

�

Theorem
L ⊆ {a}∗ is regular iff ∃µ ≥ 0, λ ≥ 1 s.t.

∀n ≥ µ : an ∈ L iff an+λ ∈ L.

Special case µ = 0: the language is periodic or cyclic.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Unary automata: 1dfa

Input alphabet Σ = {a}

- m - m - m - m
j m �

m
�m

�

Theorem
L ⊆ {a}∗ is regular iff ∃µ ≥ 0, λ ≥ 1 s.t.

∀n ≥ µ : an ∈ L iff an+λ ∈ L.

Special case µ = 0: the language is periodic or cyclic.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Unary automata: 1dfa

Input alphabet Σ = {a}

- m - m - m︸ ︷︷ ︸
µ

- m
j m �

m
�m

�

︸ ︷︷ ︸
λ

Theorem
L ⊆ {a}∗ is regular iff ∃µ ≥ 0, λ ≥ 1 s.t.

∀n ≥ µ : an ∈ L iff an+λ ∈ L.

Special case µ = 0: the language is periodic or cyclic.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Unary automata: 1dfa

Input alphabet Σ = {a}

- m - m - m︸ ︷︷ ︸
µ

- m
j m �

m
�m

�

︸ ︷︷ ︸
λ

Theorem
L ⊆ {a}∗ is regular iff ∃µ ≥ 0, λ ≥ 1 s.t.

∀n ≥ µ : an ∈ L iff an+λ ∈ L.

Special case µ = 0: the language is periodic or cyclic.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Unary automata: 1dfa

Input alphabet Σ = {a}

- m - m - m︸ ︷︷ ︸
µ

- m
j m �

m
�m

�

︸ ︷︷ ︸
λ

Theorem
L ⊆ {a}∗ is regular iff ∃µ ≥ 0, λ ≥ 1 s.t.

∀n ≥ µ : an ∈ L iff an+λ ∈ L.

Special case µ = 0: the language is periodic or cyclic.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Unary automata: 1nfa

The transition graph describing the automaton can have a
whatever structure, however...

...we can restrict to 1nfa with the following form (Chrobak
normal form):

an initial path
a nondeterministic choice
a set of cycles

- m a- km a- m�
�
��

a

@
@
@R

a

m mk-a
�

a

mk m
m

�
a

?
a

�
�

���
a

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Unary automata: 1nfa

The transition graph describing the automaton can have a
whatever structure, however...

...we can restrict to 1nfa with the following form (Chrobak
normal form):

an initial path
a nondeterministic choice
a set of cycles

- m a- km a- m�
�
��

a

@
@
@R

a

m mk-a
�

a

mk m
m

�
a

?
a

�
�

���
a

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Unary automata: 1nfa

The transition graph describing the automaton can have a
whatever structure, however...

...we can restrict to 1nfa with the following form (Chrobak
normal form):

an initial path
a nondeterministic choice
a set of cycles

- m a- km a- m�
�
��

a

@
@
@R

a

m mk-a
�

a

mk m
m

�
a

?
a

�
�

���
a

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Unary automata: 1nfa

The transition graph describing the automaton can have a
whatever structure, however...

...we can restrict to 1nfa with the following form (Chrobak
normal form):

an initial path
a nondeterministic choice
a set of cycles

- m a- km a- m�
�
��

a

@
@
@R

a

m mk-a
�

a

mk m
m

�
a

?
a

�
�

���
a

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Unary automata: 1nfa

The transition graph describing the automaton can have a
whatever structure, however...

...we can restrict to 1nfa with the following form (Chrobak
normal form):

an initial path
a nondeterministic choice
a set of cycles

- m a- km a- m�
�
��

a

@
@
@R

a

m mk-a
�

a

mk m
m

�
a

?
a

�
�

���
a

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Unary automata: 1nfa

The transition graph describing the automaton can have a
whatever structure, however...

...we can restrict to 1nfa with the following form (Chrobak
normal form):

an initial path
a nondeterministic choice
a set of cycles

- m a- km a- m�
�
��

a

@
@
@R

a

m mk-a
�

a

mk m
m

�
a

?
a

�
�

���
a

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Unary automata: Chrobak normal form

Theorem
For any unary n-state 1nfa there exists an equivalent 1nfa in
Chrobak normal form s.t.

there are O(n2) states on the initial path
the total number of states on the cycles is at most n

- m a- km a- m�
�
��

a

@
@
@R

a

m mk-a
�

a

mk m
m

�
a

?
a

�
�

���
a

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Unary automata: Chrobak normal form

Theorem
For any unary n-state 1nfa there exists an equivalent 1nfa in
Chrobak normal form s.t.

there are O(n2) states on the initial path
the total number of states on the cycles is at most n

- m a- km a- m�
�
��

a

@
@
@R

a

m mk-a
�

a

mk m
m

�
a

?
a

�
�

���
a

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Unary automata: Chrobak normal form

Theorem
For any unary n-state 1nfa there exists an equivalent 1nfa in
Chrobak normal form s.t.

there are O(n2) states on the initial path
the total number of states on the cycles is at most n

- m a- km a- m�
�
��

a

@
@
@R

a

m mk-a
�

a

mk m
m

�
a

?
a

�
�

���
a

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Unary nondeterministic automata

How to eliminate the nondeterminism from a unary 1nfa?
1 Convert the given 1nfa to

the Chrobak normal form:

- m a- m a- m�
�
��

a

@
@
@R

a

0 1 2

m m0 1
-a

�
a

m m
m

0 2

1

�
a

?
a

�
�

���
a

k
k

k

2 Copy the initial path
3 Replace the set of cycles

with a unique cycle:

- m a- m a- mk0 1 2 a- ma
�

��k
m a-k m

a@
@R m
a��	

k
ma�ma@

@I k
00

11 02

10

0112

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Unary nondeterministic automata

How to eliminate the nondeterminism from a unary 1nfa?
1 Convert the given 1nfa to

the Chrobak normal form:

- m a- m a- m�
�
��

a

@
@
@R

a

0 1 2

m m0 1
-a

�
a

m m
m

0 2

1

�
a

?
a

�
�

���
a

k
k

k

2 Copy the initial path
3 Replace the set of cycles

with a unique cycle:

- m a- m a- mk0 1 2 a- ma
�

��k
m a-k m

a@
@R m
a��	

k
ma�ma@

@I k
00

11 02

10

0112

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Unary nondeterministic automata

How to eliminate the nondeterminism from a unary 1nfa?
1 Convert the given 1nfa to

the Chrobak normal form:

- m a- m a- m�
�
��

a

@
@
@R

a

0 1 2

m m0 1
-a

�
a

m m
m

0 2

1

�
a

?
a

�
�

���
a

k
k

k

2 Copy the initial path
3 Replace the set of cycles

with a unique cycle:

- m a- m a- mk0 1 2 a- ma
�

��k
m a-k m

a@
@R m
a��	

k
ma�ma@

@I k
00

11 02

10

0112

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Unary nondeterministic automata

How to eliminate the nondeterminism from a unary 1nfa?
1 Convert the given 1nfa to

the Chrobak normal form:

- m a- m a- m�
�
��

a

@
@
@R

a

0 1 2

m m0 1
-a

�
a

m m
m

0 2

1

�
a

?
a

�
�

���
a

k
k

k

2 Copy the initial path
3 Replace the set of cycles

with a unique cycle:

- m a- m a- mk0 1 2 a- ma
�

��k
m a-k m

a@
@R m
a��	

k
ma�ma@

@I k
00

11 02

10

0112

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Unary nondeterministic automata

How to eliminate the nondeterminism from a unary 1nfa?
1 Convert the given 1nfa to

the Chrobak normal form:

- m a- m a- m�
�
��

a

@
@
@R

a

0 1 2

m m0 1
-a

�
a

m m
m

0 2

1

�
a

?
a

�
�

���
a

k
k

k

2 Copy the initial path
3 Replace the set of cycles

with a unique cycle:

- m a- m a- mk0 1 2 a- ma
�

��k
m a-k m

a@
@R m
a��	

k
ma�ma@

@I k
00

11 02

10

0112

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Unary nondeterministic automata

How to eliminate the nondeterminism from a unary 1nfa?
1 Convert the given 1nfa to

the Chrobak normal form:

- m a- m a- m�
�
��

a

@
@
@R

a

0 1 2

m m0 1
-a

�
a

m m
m

0 2

1

�
a

?
a

�
�

���
a

k
k

k

2 Copy the initial path
3 Replace the set of cycles

with a unique cycle:

- m a- m a- mk0 1 2 a- ma
�

��k
m a-k m

a@
@R m
a��	

k
ma�ma@

@I k
00

11 02

10

0112

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Unary nondeterministic automata

How to eliminate the nondeterminism from a unary 1nfa?
1 Convert the given 1nfa to

the Chrobak normal form:

- m a- m a- m�
�
��

a

@
@
@R

a

0 1 2

m m0 1
-a

�
a

m m
m

0 2

1

�
a

?
a

�
�

���
a

k
k

k

2 Copy the initial path
3 Replace the set of cycles

with a unique cycle:

- m a- m a- mk0 1 2 a- ma
�

��k
m a-k m

a@
@R m
a��	

k
ma�ma@

@I k
00

11 02

10

0112

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Unary nondeterministic automata

How to eliminate the nondeterminism from a unary 1nfa?
1 Convert the given 1nfa to

the Chrobak normal form:

- m a- m a- m�
�
��

a

@
@
@R

a

0 1 2

m m0 1
-a

�
a

m m
m

0 2

1

�
a

?
a

�
�

���
a

k
k

k

2 Copy the initial path
3 Replace the set of cycles

with a unique cycle:

- m a- m a- mk0 1 2 a- ma
�

��k
m a-k m

a@
@R m
a��	

k
ma�ma@

@I k
00

11 02

10

0112

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Unary nondeterministic automata

How to eliminate the nondeterminism from a unary 1nfa?
1 Convert the given 1nfa to

the Chrobak normal form:

- m a- m a- m�
�
��

a

@
@
@R

a

0 1 2

m m0 1
-a

�
a

m m
m

0 2

1

�
a

?
a

�
�

���
a

k
k

k

2 Copy the initial path
3 Replace the set of cycles

with a unique cycle:

- m a- m a- mk0 1 2 a- ma
�

��k
m a-k m

a@
@R m
a��	

k
ma�ma@

@I k
00

11 02

10

0112

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 1nfa by 1dfa

Given an n-state 1nfa:
Convert it in Chrobak normal form:

Initial path of O(n2) states
Cycles of lenghts λ1, . . . , λk , with λ1 + . . . + λk ≤ n

The cycles are replaced by a unique cycle of length
lcm(λ1, . . . , λk)

Hence:
The number of states in the resulting cycle is bouned by
F (n) = max{lcm(x1, . . . , xk) | x1 + . . . + xk = n}

and:
F (n) = eO(

√
n log n) [Landau 1903]

Theorem ([Chrobak 1986])
Each unary n-state 1nfa can be simulated by a 1dfa with
eO(

√
n log n) states.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 1nfa by 1dfa

Given an n-state 1nfa:
Convert it in Chrobak normal form:

Initial path of O(n2) states
Cycles of lenghts λ1, . . . , λk , with λ1 + . . . + λk ≤ n

The cycles are replaced by a unique cycle of length
lcm(λ1, . . . , λk)

Hence:
The number of states in the resulting cycle is bouned by
F (n) = max{lcm(x1, . . . , xk) | x1 + . . . + xk = n}

and:
F (n) = eO(

√
n log n) [Landau 1903]

Theorem ([Chrobak 1986])
Each unary n-state 1nfa can be simulated by a 1dfa with
eO(

√
n log n) states.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 1nfa by 1dfa

Given an n-state 1nfa:
Convert it in Chrobak normal form:

Initial path of O(n2) states
Cycles of lenghts λ1, . . . , λk , with λ1 + . . . + λk ≤ n

The cycles are replaced by a unique cycle of length
lcm(λ1, . . . , λk)

Hence:
The number of states in the resulting cycle is bouned by
F (n) = max{lcm(x1, . . . , xk) | x1 + . . . + xk = n}

and:
F (n) = eO(

√
n log n) [Landau 1903]

Theorem ([Chrobak 1986])
Each unary n-state 1nfa can be simulated by a 1dfa with
eO(

√
n log n) states.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 1nfa by 1dfa

Given an n-state 1nfa:
Convert it in Chrobak normal form:

Initial path of O(n2) states
Cycles of lenghts λ1, . . . , λk , with λ1 + . . . + λk ≤ n

The cycles are replaced by a unique cycle of length
lcm(λ1, . . . , λk)

Hence:
The number of states in the resulting cycle is bouned by
F (n) = max{lcm(x1, . . . , xk) | x1 + . . . + xk = n}

and:
F (n) = eO(

√
n log n) [Landau 1903]

Theorem ([Chrobak 1986])
Each unary n-state 1nfa can be simulated by a 1dfa with
eO(

√
n log n) states.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 1nfa by 1dfa

Given an n-state 1nfa:
Convert it in Chrobak normal form:

Initial path of O(n2) states
Cycles of lenghts λ1, . . . , λk , with λ1 + . . . + λk ≤ n

The cycles are replaced by a unique cycle of length
lcm(λ1, . . . , λk)

Hence:
The number of states in the resulting cycle is bouned by
F (n) = max{lcm(x1, . . . , xk) | x1 + . . . + xk = n}

and:
F (n) = eO(

√
n log n) [Landau 1903]

Theorem ([Chrobak 1986])
Each unary n-state 1nfa can be simulated by a 1dfa with
eO(

√
n log n) states.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 1nfa by 1dfa

Given an n-state 1nfa:
Convert it in Chrobak normal form:

Initial path of O(n2) states
Cycles of lenghts λ1, . . . , λk , with λ1 + . . . + λk ≤ n

The cycles are replaced by a unique cycle of length
lcm(λ1, . . . , λk)

Hence:
The number of states in the resulting cycle is bouned by
F (n) = max{lcm(x1, . . . , xk) | x1 + . . . + xk = n}

and:
F (n) = eO(

√
n log n) [Landau 1903]

Theorem ([Chrobak 1986])
Each unary n-state 1nfa can be simulated by a 1dfa with
eO(

√
n log n) states.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 1nfa by 1dfa

Given an n-state 1nfa:
Convert it in Chrobak normal form:

Initial path of O(n2) states
Cycles of lenghts λ1, . . . , λk , with λ1 + . . . + λk ≤ n

The cycles are replaced by a unique cycle of length
lcm(λ1, . . . , λk)

Hence:
The number of states in the resulting cycle is bouned by
F (n) = max{lcm(x1, . . . , xk) | x1 + . . . + xk = n}

and:
F (n) = eO(

√
n log n) [Landau 1903]

Theorem ([Chrobak 1986])
Each unary n-state 1nfa can be simulated by a 1dfa with
eO(

√
n log n) states.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 1nfa by 1dfa

Given an n-state 1nfa:
Convert it in Chrobak normal form:

Initial path of O(n2) states
Cycles of lenghts λ1, . . . , λk , with λ1 + . . . + λk ≤ n

The cycles are replaced by a unique cycle of length
lcm(λ1, . . . , λk)

Hence:
The number of states in the resulting cycle is bouned by
F (n) = max{lcm(x1, . . . , xk) | x1 + . . . + xk = n}

and:
F (n) = eO(

√
n log n) [Landau 1903]

Theorem ([Chrobak 1986])
Each unary n-state 1nfa can be simulated by a 1dfa with
eO(

√
n log n) states.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 1nfa by 1dfa

Given an n-state 1nfa:
Convert it in Chrobak normal form:

Initial path of O(n2) states
Cycles of lenghts λ1, . . . , λk , with λ1 + . . . + λk ≤ n

The cycles are replaced by a unique cycle of length
lcm(λ1, . . . , λk)

Hence:
The number of states in the resulting cycle is bouned by
F (n) = max{lcm(x1, . . . , xk) | x1 + . . . + xk = n}

and:
F (n) = eO(

√
n log n) [Landau 1903]

Theorem ([Chrobak 1986])
Each unary n-state 1nfa can be simulated by a 1dfa with
eO(

√
n log n) states.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 1nfa by 1dfa

Given an n-state 1nfa:
Convert it in Chrobak normal form:

Initial path of O(n2) states
Cycles of lenghts λ1, . . . , λk , with λ1 + . . . + λk ≤ n

The cycles are replaced by a unique cycle of length
lcm(λ1, . . . , λk)

Hence:
The number of states in the resulting cycle is bouned by
F (n) = max{lcm(x1, . . . , xk) | x1 + . . . + xk = n}

and:
F (n) = eO(

√
n log n) [Landau 1903]

Theorem ([Chrobak 1986])
Each unary n-state 1nfa can be simulated by a 1dfa with
eO(

√
n log n) states.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 1nfa vs 2dfa

Example

- m a- km a- m�
�
��

a

@
@
@R

a

m mk-a
�

a

mk m
m

�
a

?
a

�
�

���
a

µ = 3, λ1 = 2, λ2 = 3

On input am:
First scan – simulation of the initial path:
if m < 3 then stop and accept iff m = 1
Second scan – simulation of the first loop:
compute m MOD 2: if the result is 0 then stop and accept
Third scan – simulation of the second loop:
compute m MOD 3: if the result is 0 then stop and accept
Finally:
reject

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 1nfa vs 2dfa

Example

- m a- km a- m�
�
��

a

@
@
@R

a

m mk-a
�

a

mk m
m

�
a

?
a

�
�

���
a

µ = 3, λ1 = 2, λ2 = 3

On input am:
First scan – simulation of the initial path:
if m < 3 then stop and accept iff m = 1
Second scan – simulation of the first loop:
compute m MOD 2: if the result is 0 then stop and accept
Third scan – simulation of the second loop:
compute m MOD 3: if the result is 0 then stop and accept
Finally:
reject

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 1nfa vs 2dfa

Example

- m a- km a- m�
�
��

a

@
@
@R

a

m mk-a
�

a

mk m
m

�
a

?
a

�
�

���
a

µ = 3, λ1 = 2, λ2 = 3

On input am:
First scan – simulation of the initial path:
if m < 3 then stop and accept iff m = 1
Second scan – simulation of the first loop:
compute m MOD 2: if the result is 0 then stop and accept
Third scan – simulation of the second loop:
compute m MOD 3: if the result is 0 then stop and accept
Finally:
reject

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 1nfa vs 2dfa

Example

- m a- km a- m�
�
��

a

@
@
@R

a

m mk-a
�

a

mk m
m

�
a

?
a

�
�

���
a

µ = 3, λ1 = 2, λ2 = 3

On input am:
First scan – simulation of the initial path:
if m < 3 then stop and accept iff m = 1
Second scan – simulation of the first loop:
compute m MOD 2: if the result is 0 then stop and accept
Third scan – simulation of the second loop:
compute m MOD 3: if the result is 0 then stop and accept
Finally:
reject

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 1nfa vs 2dfa

Example

- m a- km a- m�
�
��

a

@
@
@R

a

m mk-a
�

a

mk m
m

�
a

?
a

�
�

���
a

µ = 3, λ1 = 2, λ2 = 3

On input am:
First scan – simulation of the initial path:
if m < 3 then stop and accept iff m = 1
Second scan – simulation of the first loop:
compute m MOD 2: if the result is 0 then stop and accept
Third scan – simulation of the second loop:
compute m MOD 3: if the result is 0 then stop and accept
Finally:
reject

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 1nfa vs 2dfa

Example

- m a- km a- m�
�
��

a

@
@
@R

a

m mk-a
�

a

mk m
m

�
a

?
a

�
�

���
a

µ = 3, λ1 = 2, λ2 = 3

On input am:
First scan – simulation of the initial path:
if m < 3 then stop and accept iff m = 1
Second scan – simulation of the first loop:
compute m MOD 2: if the result is 0 then stop and accept
Third scan – simulation of the second loop:
compute m MOD 3: if the result is 0 then stop and accept
Finally:
reject

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 1nfa vs 2dfa

Example

- m a- km a- m�
�
��

a

@
@
@R

a

m mk-a
�

a

mk m
m

�
a

?
a

�
�

���
a

µ = 3, λ1 = 2, λ2 = 3

On input am:
First scan – simulation of the initial path:
if m < 3 then stop and accept iff m = 1
Second scan – simulation of the first loop:
compute m MOD 2: if the result is 0 then stop and accept
Third scan – simulation of the second loop:
compute m MOD 3: if the result is 0 then stop and accept
Finally:
reject

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 1nfa vs 2dfa

How to reduce unary 1nfa to 2dfa?

Given a 1nfa in Chrobak normal form with:
an initial path of µ states, and
k cycles of λ1, . . . , λk states

we build a 2dfa making the following steps, on input am:
First scan – simulation of the initial path: µ states
check if m < µ

Second scan – simulation of the first loop: λ1 states
compute m MOD λ1

Third scan – simulation of the second loop: λ2 states
... . . .

(k + 1)th scan – simulation of the k th loop: λk states
compute m MOD λk

The total number of states is µ + λ1 + λ2 + . . . + λk

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 1nfa vs 2dfa

How to reduce unary 1nfa to 2dfa?

Given a 1nfa in Chrobak normal form with:
an initial path of µ states, and
k cycles of λ1, . . . , λk states

we build a 2dfa making the following steps, on input am:
First scan – simulation of the initial path: µ states
check if m < µ

Second scan – simulation of the first loop: λ1 states
compute m MOD λ1

Third scan – simulation of the second loop: λ2 states
... . . .

(k + 1)th scan – simulation of the k th loop: λk states
compute m MOD λk

The total number of states is µ + λ1 + λ2 + . . . + λk

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 1nfa vs 2dfa

How to reduce unary 1nfa to 2dfa?

Given a 1nfa in Chrobak normal form with:
an initial path of µ states, and
k cycles of λ1, . . . , λk states

we build a 2dfa making the following steps, on input am:
First scan – simulation of the initial path: µ states
check if m < µ

Second scan – simulation of the first loop: λ1 states
compute m MOD λ1

Third scan – simulation of the second loop: λ2 states
... . . .

(k + 1)th scan – simulation of the k th loop: λk states
compute m MOD λk

The total number of states is µ + λ1 + λ2 + . . . + λk

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 1nfa vs 2dfa

How to reduce unary 1nfa to 2dfa?

Given a 1nfa in Chrobak normal form with:
an initial path of µ states, and
k cycles of λ1, . . . , λk states

we build a 2dfa making the following steps, on input am:
First scan – simulation of the initial path: µ states
check if m < µ

Second scan – simulation of the first loop: λ1 states
compute m MOD λ1

Third scan – simulation of the second loop: λ2 states
... . . .

(k + 1)th scan – simulation of the k th loop: λk states
compute m MOD λk

The total number of states is µ + λ1 + λ2 + . . . + λk

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 1nfa vs 2dfa

How to reduce unary 1nfa to 2dfa?

Given a 1nfa in Chrobak normal form with:
an initial path of µ states, and
k cycles of λ1, . . . , λk states

we build a 2dfa making the following steps, on input am:
First scan – simulation of the initial path: µ states
check if m < µ

Second scan – simulation of the first loop: λ1 states
compute m MOD λ1

Third scan – simulation of the second loop: λ2 states
... . . .

(k + 1)th scan – simulation of the k th loop: λk states
compute m MOD λk

The total number of states is µ + λ1 + λ2 + . . . + λk

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 1nfa vs 2dfa

How to reduce unary 1nfa to 2dfa?

Given a 1nfa in Chrobak normal form with:
an initial path of µ states, and
k cycles of λ1, . . . , λk states

we build a 2dfa making the following steps, on input am:
First scan – simulation of the initial path: µ states
check if m < µ

Second scan – simulation of the first loop: λ1 states
compute m MOD λ1

Third scan – simulation of the second loop: λ2 states
... . . .

(k + 1)th scan – simulation of the k th loop: λk states
compute m MOD λk

The total number of states is µ + λ1 + λ2 + . . . + λk

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 1nfa vs 2dfa

How to reduce unary 1nfa to 2dfa?

Given a 1nfa in Chrobak normal form with:
an initial path of µ states, and
k cycles of λ1, . . . , λk states

we build a 2dfa making the following steps, on input am:
First scan – simulation of the initial path: µ states
check if m < µ

Second scan – simulation of the first loop: λ1 states
compute m MOD λ1

Third scan – simulation of the second loop: λ2 states
... . . .

(k + 1)th scan – simulation of the k th loop: λk states
compute m MOD λk

The total number of states is µ + λ1 + λ2 + . . . + λk

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 1nfa vs 2dfa

How to reduce unary 1nfa to 2dfa?

Given a 1nfa in Chrobak normal form with:
an initial path of µ states, and
k cycles of λ1, . . . , λk states

we build a 2dfa making the following steps, on input am:
First scan – simulation of the initial path: µ states
check if m < µ

Second scan – simulation of the first loop: λ1 states
compute m MOD λ1

Third scan – simulation of the second loop: λ2 states
... . . .

(k + 1)th scan – simulation of the k th loop: λk states
compute m MOD λk

The total number of states is µ + λ1 + λ2 + . . . + λk

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 1nfa vs 2dfa

How to reduce unary 1nfa to 2dfa?

Given a 1nfa in Chrobak normal form with:
an initial path of µ states, and
k cycles of λ1, . . . , λk states

we build a 2dfa making the following steps, on input am:
First scan – simulation of the initial path: µ states
check if m < µ

Second scan – simulation of the first loop: λ1 states
compute m MOD λ1

Third scan – simulation of the second loop: λ2 states
... . . .

(k + 1)th scan – simulation of the k th loop: λk states
compute m MOD λk

The total number of states is µ + λ1 + λ2 + . . . + λk

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 1nfa vs 2dfa

Cost of the simulation of unary 1nfa by 2dfa

Each unary 1nfa in Chrobak normal form with:
an initial path of µ states, and
k cycles of λ1, . . . , λk states

can be simulated by a 2dfa with µ + λ1 + . . . + λk states.
Each unary n-state 1nfa can be simulated by a 1nfa in
Chrobak normal form with O(n2) states.

Hence:

Theorem ([Chrobak 1986])

Each unary n-state 1nfa can be simulated by a 2dfa with O(n2)
states.

This gives a quadratic upper bound for the simulation of
1nfa by 2dfa in the unary case.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 1nfa vs 2dfa

Cost of the simulation of unary 1nfa by 2dfa

Each unary 1nfa in Chrobak normal form with:
an initial path of µ states, and
k cycles of λ1, . . . , λk states

can be simulated by a 2dfa with µ + λ1 + . . . + λk states.
Each unary n-state 1nfa can be simulated by a 1nfa in
Chrobak normal form with O(n2) states.

Hence:

Theorem ([Chrobak 1986])

Each unary n-state 1nfa can be simulated by a 2dfa with O(n2)
states.

This gives a quadratic upper bound for the simulation of
1nfa by 2dfa in the unary case.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 1nfa vs 2dfa

Cost of the simulation of unary 1nfa by 2dfa

Each unary 1nfa in Chrobak normal form with:
an initial path of µ states, and
k cycles of λ1, . . . , λk states

can be simulated by a 2dfa with µ + λ1 + . . . + λk states.
Each unary n-state 1nfa can be simulated by a 1nfa in
Chrobak normal form with O(n2) states.

Hence:

Theorem ([Chrobak 1986])

Each unary n-state 1nfa can be simulated by a 2dfa with O(n2)
states.

This gives a quadratic upper bound for the simulation of
1nfa by 2dfa in the unary case.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 1nfa vs 2dfa

Cost of the simulation of unary 1nfa by 2dfa

Each unary 1nfa in Chrobak normal form with:
an initial path of µ states, and
k cycles of λ1, . . . , λk states

can be simulated by a 2dfa with µ + λ1 + . . . + λk states.
Each unary n-state 1nfa can be simulated by a 1nfa in
Chrobak normal form with O(n2) states.

Hence:

Theorem ([Chrobak 1986])

Each unary n-state 1nfa can be simulated by a 2dfa with O(n2)
states.

This gives a quadratic upper bound for the simulation of
1nfa by 2dfa in the unary case.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 1nfa vs 2dfa

Cost of the simulation of unary 1nfa by 2dfa

Each unary 1nfa in Chrobak normal form with:
an initial path of µ states, and
k cycles of λ1, . . . , λk states

can be simulated by a 2dfa with µ + λ1 + . . . + λk states.
Each unary n-state 1nfa can be simulated by a 1nfa in
Chrobak normal form with O(n2) states.

Hence:

Theorem ([Chrobak 1986])

Each unary n-state 1nfa can be simulated by a 2dfa with O(n2)
states.

This gives a quadratic upper bound for the simulation of
1nfa by 2dfa in the unary case.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 1nfa vs 2dfa

Cost of the simulation of unary 1nfa by 2dfa

Each unary 1nfa in Chrobak normal form with:
an initial path of µ states, and
k cycles of λ1, . . . , λk states

can be simulated by a 2dfa with µ + λ1 + . . . + λk states.
Each unary n-state 1nfa can be simulated by a 1nfa in
Chrobak normal form with O(n2) states.

Hence:

Theorem ([Chrobak 1986])

Each unary n-state 1nfa can be simulated by a 2dfa with O(n2)
states.

This gives a quadratic upper bound for the simulation of
1nfa by 2dfa in the unary case.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 1nfa vs 2dfa

What about the lower bound?

For each n ≥ 2 consider the language

Ln = {am | m = αn + β(n − 1), n, m ∈ N}

It is possible to prove that:
Ln is accepted by a 1nfa with n states
each 2dfa accepting Ln requires Ω(n2) states.

Hence, even the lower bound is quadratic.

This solves the 1nfa vs 2dfa question in the unary case
[Chrobak 1986]

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 1nfa vs 2dfa

What about the lower bound?

For each n ≥ 2 consider the language

Ln = {am | m = αn + β(n − 1), n, m ∈ N}

It is possible to prove that:
Ln is accepted by a 1nfa with n states
each 2dfa accepting Ln requires Ω(n2) states.

Hence, even the lower bound is quadratic.

This solves the 1nfa vs 2dfa question in the unary case
[Chrobak 1986]

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 1nfa vs 2dfa

What about the lower bound?

For each n ≥ 2 consider the language

Ln = {am | m = αn + β(n − 1), n, m ∈ N}

It is possible to prove that:
Ln is accepted by a 1nfa with n states
each 2dfa accepting Ln requires Ω(n2) states.

Hence, even the lower bound is quadratic.

This solves the 1nfa vs 2dfa question in the unary case
[Chrobak 1986]

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 1nfa vs 2dfa

What about the lower bound?

For each n ≥ 2 consider the language

Ln = {am | m = αn + β(n − 1), n, m ∈ N}

It is possible to prove that:
Ln is accepted by a 1nfa with n states
each 2dfa accepting Ln requires Ω(n2) states.

Hence, even the lower bound is quadratic.

This solves the 1nfa vs 2dfa question in the unary case
[Chrobak 1986]

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 1nfa vs 2dfa

What about the lower bound?

For each n ≥ 2 consider the language

Ln = {am | m = αn + β(n − 1), n, m ∈ N}

It is possible to prove that:
Ln is accepted by a 1nfa with n states
each 2dfa accepting Ln requires Ω(n2) states.

Hence, even the lower bound is quadratic.

This solves the 1nfa vs 2dfa question in the unary case
[Chrobak 1986]

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 1nfa vs 2dfa

What about the lower bound?

For each n ≥ 2 consider the language

Ln = {am | m = αn + β(n − 1), n, m ∈ N}

It is possible to prove that:
Ln is accepted by a 1nfa with n states
each 2dfa accepting Ln requires Ω(n2) states.

Hence, even the lower bound is quadratic.

This solves the 1nfa vs 2dfa question in the unary case
[Chrobak 1986]

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulations between unary automata

Costs ot the optimal simulations between unary automata
[Chrobak 1986, Mereghetti and Pighizzini 2001]

2dfa

1dfa 1nfa

2nfa

-n

@
@

@
@

@
@

@
@

@@R

n

?

n

�
eO(

√
n log n)

�

%�6 n2

?

n

6

eO(
√

n log n)

�

' �
?

eO(
√

n log n)

-n
@

@
@

@
@

@
@

@
@@I

eO(
√

n log n)

�
?

6

eO(
√

n log n)

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 2nfa vs 2dfa

What about the simulation of unary 2nfa by 2dfa?

Exponential upper bound: eO(
√

n log n)

(simulation of 2nfa by 1dfa)
Quadratic lower bound: Ω(n2)
(simulation of 1nfa by 2dfa)

It is possible either to increase the lower bound or to decrease
the upper bound?

Theorem ([Geffert, Mereghetti, Pighizzini 2003])
Each unary n-state 2nfa can be simulated by a 2dfa with
nO(log n) states.

Remark: The function nO(log n) is not polynomial, but it grows
less than any exponential function 2nO(1)

.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 2nfa vs 2dfa

What about the simulation of unary 2nfa by 2dfa?

Exponential upper bound: eO(
√

n log n)

(simulation of 2nfa by 1dfa)
Quadratic lower bound: Ω(n2)
(simulation of 1nfa by 2dfa)

It is possible either to increase the lower bound or to decrease
the upper bound?

Theorem ([Geffert, Mereghetti, Pighizzini 2003])
Each unary n-state 2nfa can be simulated by a 2dfa with
nO(log n) states.

Remark: The function nO(log n) is not polynomial, but it grows
less than any exponential function 2nO(1)

.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 2nfa vs 2dfa

What about the simulation of unary 2nfa by 2dfa?

Exponential upper bound: eO(
√

n log n)

(simulation of 2nfa by 1dfa)
Quadratic lower bound: Ω(n2)
(simulation of 1nfa by 2dfa)

It is possible either to increase the lower bound or to decrease
the upper bound?

Theorem ([Geffert, Mereghetti, Pighizzini 2003])
Each unary n-state 2nfa can be simulated by a 2dfa with
nO(log n) states.

Remark: The function nO(log n) is not polynomial, but it grows
less than any exponential function 2nO(1)

.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 2nfa vs 2dfa

What about the simulation of unary 2nfa by 2dfa?

Exponential upper bound: eO(
√

n log n)

(simulation of 2nfa by 1dfa)
Quadratic lower bound: Ω(n2)
(simulation of 1nfa by 2dfa)

It is possible either to increase the lower bound or to decrease
the upper bound?

Theorem ([Geffert, Mereghetti, Pighizzini 2003])
Each unary n-state 2nfa can be simulated by a 2dfa with
nO(log n) states.

Remark: The function nO(log n) is not polynomial, but it grows
less than any exponential function 2nO(1)

.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 2nfa vs 2dfa

What about the simulation of unary 2nfa by 2dfa?

Exponential upper bound: eO(
√

n log n)

(simulation of 2nfa by 1dfa)
Quadratic lower bound: Ω(n2)
(simulation of 1nfa by 2dfa)

It is possible either to increase the lower bound or to decrease
the upper bound?

Theorem ([Geffert, Mereghetti, Pighizzini 2003])
Each unary n-state 2nfa can be simulated by a 2dfa with
nO(log n) states.

Remark: The function nO(log n) is not polynomial, but it grows
less than any exponential function 2nO(1)

.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question: 2nfa vs 2dfa

What about the simulation of unary 2nfa by 2dfa?

Exponential upper bound: eO(
√

n log n)

(simulation of 2nfa by 1dfa)
Quadratic lower bound: Ω(n2)
(simulation of 1nfa by 2dfa)

It is possible either to increase the lower bound or to decrease
the upper bound?

Theorem ([Geffert, Mereghetti, Pighizzini 2003])
Each unary n-state 2nfa can be simulated by a 2dfa with
nO(log n) states.

Remark: The function nO(log n) is not polynomial, but it grows
less than any exponential function 2nO(1)

.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 2nfa by 2dfa: some definitions

Definition
Two finite automata are almost equivalent iff their accepted
languages coincide, with the possible exception of a finite
number of strings.

Example:
automaton A

- m a- mk a- m a- ma
�

��k
m a-k m

a@
@R m
a��	

k
ma�ma@

@I k
automaton B

�ma
�

��k
m a-k m

a@
@R m
a��	

k
ma�ma@

@I kL(A)− L(B) = {a, a3}

L(B)− L(A) = {ε, a2}

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 2nfa by 2dfa: some definitions

Definition
Two finite automata are almost equivalent iff their accepted
languages coincide, with the possible exception of a finite
number of strings.

Example:
automaton A

- m a- mk a- m a- ma
�

��k
m a-k m

a@
@R m
a��	

k
ma�ma@

@I k
automaton B

�ma
�

��k
m a-k m

a@
@R m
a��	

k
ma�ma@

@I kL(A)− L(B) = {a, a3}

L(B)− L(A) = {ε, a2}

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 2nfa by 2dfa: some definitions

Definition
Two finite automata are almost equivalent iff their accepted
languages coincide, with the possible exception of a finite
number of strings.

Example:
automaton A

- m a- mk a- m a- ma
�

��k
m a-k m

a@
@R m
a��	

k
ma�ma@

@I k
automaton B

�ma
�

��k
m a-k m

a@
@R m
a��	

k
ma�ma@

@I kL(A)− L(B) = {a, a3}

L(B)− L(A) = {ε, a2}

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 2nfa by 2dfa: some definitions

Definition
Two finite automata are almost equivalent iff their accepted
languages coincide, with the possible exception of a finite
number of strings.

Example:
automaton A

- m a- mk a- m a- ma
�

��k
m a-k m

a@
@R m
a��	

k
ma�ma@

@I k
automaton B

�ma
�

��k
m a-k m

a@
@R m
a��	

k
ma�ma@

@I kL(A)− L(B) = {a, a3}

L(B)− L(A) = {ε, a2}

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 2nfa by 2dfa: some definitions

Sweeping automaton:
deterministic
head reversals only at the endmarkers

Definition
A two-way automaton is quasi sweeping iff both

nondeterministic choices, and
head reversals

are possible only when the input head is scanning one of the
endmarkers.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 2nfa by 2dfa: some definitions

Sweeping automaton:
deterministic
head reversals only at the endmarkers

Definition
A two-way automaton is quasi sweeping iff both

nondeterministic choices, and
head reversals

are possible only when the input head is scanning one of the
endmarkers.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 2nfa by 2dfa: some definitions

Sweeping automaton:
deterministic
head reversals only at the endmarkers

Definition
A two-way automaton is quasi sweeping iff both

nondeterministic choices, and
head reversals

are possible only when the input head is scanning one of the
endmarkers.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 2nfa by 2dfa: some definitions

Sweeping automaton:
deterministic
head reversals only at the endmarkers

Definition
A two-way automaton is quasi sweeping iff both

nondeterministic choices, and
head reversals

are possible only when the input head is scanning one of the
endmarkers.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 2nfa by 2dfa: some definitions

Sweeping automaton:
deterministic
head reversals only at the endmarkers

Definition
A two-way automaton is quasi sweeping iff both

nondeterministic choices, and
head reversals

are possible only when the input head is scanning one of the
endmarkers.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 2nfa by 2dfa

Outline of the proof:

Lemma (from 2nfa to quasi sweeping 2nfa)

For each unary n-state 2nfa A there exists an almost equivalent
quasi sweeping 2nfa A′ with no more than 2n + 2 states.

Furthermore, the languages L(A) and L(A′) can differ only on
strings of length ≤ 5n2.

Lemma (from quasi sweeping 2nfa to 2dfa)

Each unary n-state quasi sweeping 2nfa can be simulated by a
2dfa with O(ndlog2(n+1)e+3) states.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 2nfa by 2dfa

Outline of the proof:

Lemma (from 2nfa to quasi sweeping 2nfa)

For each unary n-state 2nfa A there exists an almost equivalent
quasi sweeping 2nfa A′ with no more than 2n + 2 states.

Furthermore, the languages L(A) and L(A′) can differ only on
strings of length ≤ 5n2.

Lemma (from quasi sweeping 2nfa to 2dfa)

Each unary n-state quasi sweeping 2nfa can be simulated by a
2dfa with O(ndlog2(n+1)e+3) states.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 2nfa by 2dfa

Outline of the proof:

Lemma (from 2nfa to quasi sweeping 2nfa)

For each unary n-state 2nfa A there exists an almost equivalent
quasi sweeping 2nfa A′ with no more than 2n + 2 states.

Furthermore, the languages L(A) and L(A′) can differ only on
strings of length ≤ 5n2.

Lemma (from quasi sweeping 2nfa to 2dfa)

Each unary n-state quasi sweeping 2nfa can be simulated by a
2dfa with O(ndlog2(n+1)e+3) states.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 2nfa by 2dfa

Outline of the proof:

Lemma (from 2nfa to quasi sweeping 2nfa)

For each unary n-state 2nfa A there exists an almost equivalent
quasi sweeping 2nfa A′ with no more than 2n + 2 states.

Furthermore, the languages L(A) and L(A′) can differ only on
strings of length ≤ 5n2.

Lemma (from quasi sweeping 2nfa to 2dfa)

Each unary n-state quasi sweeping 2nfa can be simulated by a
2dfa with O(ndlog2(n+1)e+3) states.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 2nfa by 2dfa

Outline of the proof:

0 A := the unary n-state 2nfa we have to simulate

1 A′ := 2nfa built from A s.t.:
A′ almost equivalent to A and quasi sweeping
2n + 2 states

2 B := 2dfa built from A′ s.t.:
B equivalent to A′

B almost equivalent to A
nO(log n) states

3 C := the following dfa:
first C checks if the input length is ≤ n2 and, in this case, it

accepts iff A accepts
hence if the input length is > n2 then C directly simulates B

C is equivalent to A
C has nO(log n) states

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 2nfa by 2dfa

Outline of the proof:

0 A := the unary n-state 2nfa we have to simulate

1 A′ := 2nfa built from A s.t.:
A′ almost equivalent to A and quasi sweeping
2n + 2 states

2 B := 2dfa built from A′ s.t.:
B equivalent to A′

B almost equivalent to A
nO(log n) states

3 C := the following dfa:
first C checks if the input length is ≤ n2 and, in this case, it

accepts iff A accepts
hence if the input length is > n2 then C directly simulates B

C is equivalent to A
C has nO(log n) states

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 2nfa by 2dfa

Outline of the proof:
0 A := the unary n-state 2nfa we have to simulate

Lemma (from 2nfa to quasi sweeping 2nfa)

For each unary n-state 2nfa A there exists an almost equivalent
quasi sweeping 2nfa A′ with no more than 2n + 2 states.

Furthermore, the languages L(A) and L(A′) can differ only on
strings of length ≤ 5n2.

1 A′ := 2nfa built from A s.t.:
A′ almost equivalent to A and quasi sweeping
2n + 2 states

2 B := 2dfa built from A′ s.t.:
B equivalent to A′

B almost equivalent to A
nO(log n) states

3 C := the following dfa:
first C checks if the input length is ≤ n2 and, in this case, it

accepts iff A accepts
hence if the input length is > n2 then C directly simulates B

C is equivalent to A
C has nO(log n) states

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 2nfa by 2dfa

Outline of the proof:
0 A := the unary n-state 2nfa we have to simulate

Lemma (from 2nfa to quasi sweeping 2nfa)

For each unary n-state 2nfa A there exists an almost equivalent
quasi sweeping 2nfa A′ with no more than 2n + 2 states.

Furthermore, the languages L(A) and L(A′) can differ only on
strings of length ≤ 5n2.

1 A′ := 2nfa built from A s.t.:
A′ almost equivalent to A and quasi sweeping
2n + 2 states

2 B := 2dfa built from A′ s.t.:
B equivalent to A′

B almost equivalent to A
nO(log n) states

3 C := the following dfa:
first C checks if the input length is ≤ n2 and, in this case, it

accepts iff A accepts
hence if the input length is > n2 then C directly simulates B

C is equivalent to A
C has nO(log n) states

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 2nfa by 2dfa

Outline of the proof:
0 A := the unary n-state 2nfa we have to simulate

Lemma (from 2nfa to quasi sweeping 2nfa)

For each unary n-state 2nfa A there exists an almost equivalent
quasi sweeping 2nfa A′ with no more than 2n + 2 states.

Furthermore, the languages L(A) and L(A′) can differ only on
strings of length ≤ 5n2.

1 A′ := 2nfa built from A s.t.:
A′ almost equivalent to A and quasi sweeping
2n + 2 states

2 B := 2dfa built from A′ s.t.:
B equivalent to A′

B almost equivalent to A
nO(log n) states

3 C := the following dfa:
first C checks if the input length is ≤ n2 and, in this case, it

accepts iff A accepts
hence if the input length is > n2 then C directly simulates B

C is equivalent to A
C has nO(log n) states

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 2nfa by 2dfa

Outline of the proof:

0 A := the unary n-state 2nfa we have to simulate

1 A′ := 2nfa built from A s.t.:
A′ almost equivalent to A and quasi sweeping
2n + 2 states

2 B := 2dfa built from A′ s.t.:
B equivalent to A′

B almost equivalent to A
nO(log n) states

3 C := the following dfa:
first C checks if the input length is ≤ n2 and, in this case, it

accepts iff A accepts
hence if the input length is > n2 then C directly simulates B

C is equivalent to A
C has nO(log n) states

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 2nfa by 2dfa

Outline of the proof:
0 A := the unary n-state 2nfa we have to simulate
1 A′ := 2nfa built from A s.t.:

A′ almost equivalent to A and quasi sweeping
2n + 2 states

Lemma (from quasi sweeping 2nfa to 2dfa)

Each unary n-state quasi sweeping 2nfa can be simulated by a
2dfa with O(ndlog2(n+1)e+3) states.

2 B := 2dfa built from A′ s.t.:
B equivalent to A′

B almost equivalent to A
nO(log n) states

3 C := the following dfa:
first C checks if the input length is ≤ n2 and, in this case, it

accepts iff A accepts
hence if the input length is > n2 then C directly simulates B

C is equivalent to A
C has nO(log n) states

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 2nfa by 2dfa

Outline of the proof:
0 A := the unary n-state 2nfa we have to simulate
1 A′ := 2nfa built from A s.t.:

A′ almost equivalent to A and quasi sweeping
2n + 2 states

Lemma (from quasi sweeping 2nfa to 2dfa)

Each unary n-state quasi sweeping 2nfa can be simulated by a
2dfa with O(ndlog2(n+1)e+3) states.

2 B := 2dfa built from A′ s.t.:
B equivalent to A′

B almost equivalent to A
nO(log n) states

3 C := the following dfa:
first C checks if the input length is ≤ n2 and, in this case, it

accepts iff A accepts
hence if the input length is > n2 then C directly simulates B

C is equivalent to A
C has nO(log n) states

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 2nfa by 2dfa

Outline of the proof:
0 A := the unary n-state 2nfa we have to simulate
1 A′ := 2nfa built from A s.t.:

A′ almost equivalent to A and quasi sweeping
2n + 2 states

Lemma (from quasi sweeping 2nfa to 2dfa)

Each unary n-state quasi sweeping 2nfa can be simulated by a
2dfa with O(ndlog2(n+1)e+3) states.

2 B := 2dfa built from A′ s.t.:
B equivalent to A′

B almost equivalent to A
nO(log n) states

3 C := the following dfa:
first C checks if the input length is ≤ n2 and, in this case, it

accepts iff A accepts
hence if the input length is > n2 then C directly simulates B

C is equivalent to A
C has nO(log n) states

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 2nfa by 2dfa

Outline of the proof:

0 A := the unary n-state 2nfa we have to simulate

1 A′ := 2nfa built from A s.t.:
A′ almost equivalent to A and quasi sweeping
2n + 2 states

2 B := 2dfa built from A′ s.t.:
B equivalent to A′

B almost equivalent to A
nO(log n) states

3 C := the following dfa:
first C checks if the input length is ≤ n2 and, in this case, it

accepts iff A accepts
hence if the input length is > n2 then C directly simulates B

C is equivalent to A
C has nO(log n) states

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 2nfa by 2dfa

Outline of the proof:

0 A := the unary n-state 2nfa we have to simulate

1 A′ := 2nfa built from A s.t.:
A′ almost equivalent to A and quasi sweeping
2n + 2 states

2 B := 2dfa built from A′ s.t.:
B equivalent to A′

B almost equivalent to A
nO(log n) states

3 C := the following dfa:
first C checks if the input length is ≤ n2 and, in this case, it

accepts iff A accepts
hence if the input length is > n2 then C directly simulates B

C is equivalent to A
C has nO(log n) states

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 2nfa by 2dfa

Outline of the proof:

0 A := the unary n-state 2nfa we have to simulate

1 A′ := 2nfa built from A s.t.:
A′ almost equivalent to A and quasi sweeping
2n + 2 states

2 B := 2dfa built from A′ s.t.:
B equivalent to A′

B almost equivalent to A
nO(log n) states

3 C := the following dfa:
first C checks if the input length is ≤ n2 and, in this case, it

accepts iff A accepts
hence if the input length is > n2 then C directly simulates B

C is equivalent to A
C has nO(log n) states

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 2nfa by 2dfa

Outline of the proof:

0 A := the unary n-state 2nfa we have to simulate

1 A′ := 2nfa built from A s.t.:
A′ almost equivalent to A and quasi sweeping
2n + 2 states

2 B := 2dfa built from A′ s.t.:
B equivalent to A′

B almost equivalent to A
nO(log n) states

3 C := the following dfa:
first C checks if the input length is ≤ n2 and, in this case, it

accepts iff A accepts
hence if the input length is > n2 then C directly simulates B

C is equivalent to A
C has nO(log n) states

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 2nfa by 2dfa

Outline of the proof:

0 A := the unary n-state 2nfa we have to simulate

1 A′ := 2nfa built from A s.t.:
A′ almost equivalent to A and quasi sweeping
2n + 2 states

2 B := 2dfa built from A′ s.t.:
B equivalent to A′

B almost equivalent to A
nO(log n) states

3 C := the following dfa:
first C checks if the input length is ≤ n2 and, in this case, it

accepts iff A accepts
hence if the input length is > n2 then C directly simulates B

C is equivalent to A
C has nO(log n) states

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Simulation of unary 2nfa by 2dfa

Outline of the proof:

0 A := the unary n-state 2nfa we have to simulate

1 A′ := 2nfa built from A s.t.:
A′ almost equivalent to A and quasi sweeping
2n + 2 states

2 B := 2dfa built from A′ s.t.:
B equivalent to A′

B almost equivalent to A
nO(log n) states

3 C := the following dfa:
first C checks if the input length is ≤ n2 and, in this case, it

accepts iff A accepts
hence if the input length is > n2 then C directly simulates B

C is equivalent to A
C has nO(log n) states

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

First lemma: outline of the proof

Lemma (from 2nfa to quasi sweeping 2nfa)

For each unary n-state 2nfa A there exists an almost equivalent
quasi sweeping 2nfa A′ with no more than 2n + 2 states.
Furthermore, the languages L(A) and L(A′) can differ only on
strings of length ≤ 5n2.

An accepting computation of a two-way machine is a
sequence of segments
The segments are delimited by the configurations in which
the input head visits the endmarkers
Two kinds of segments:

traversals
U-turns

The simulation “simplifies” the segments of accepting
computations.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

First lemma: outline of the proof

Lemma (from 2nfa to quasi sweeping 2nfa)

For each unary n-state 2nfa A there exists an almost equivalent
quasi sweeping 2nfa A′ with no more than 2n + 2 states.
Furthermore, the languages L(A) and L(A′) can differ only on
strings of length ≤ 5n2.

An accepting computation of a two-way machine is a
sequence of segments
The segments are delimited by the configurations in which
the input head visits the endmarkers
Two kinds of segments:

traversals
U-turns

The simulation “simplifies” the segments of accepting
computations.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

First lemma: outline of the proof

Lemma (from 2nfa to quasi sweeping 2nfa)

For each unary n-state 2nfa A there exists an almost equivalent
quasi sweeping 2nfa A′ with no more than 2n + 2 states.
Furthermore, the languages L(A) and L(A′) can differ only on
strings of length ≤ 5n2.

An accepting computation of a two-way machine is a
sequence of segments
The segments are delimited by the configurations in which
the input head visits the endmarkers
Two kinds of segments:

traversals
U-turns

The simulation “simplifies” the segments of accepting
computations.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

First lemma: outline of the proof

Lemma (from 2nfa to quasi sweeping 2nfa)

For each unary n-state 2nfa A there exists an almost equivalent
quasi sweeping 2nfa A′ with no more than 2n + 2 states.
Furthermore, the languages L(A) and L(A′) can differ only on
strings of length ≤ 5n2.

An accepting computation of a two-way machine is a
sequence of segments
The segments are delimited by the configurations in which
the input head visits the endmarkers
Two kinds of segments:

traversals
U-turns

The simulation “simplifies” the segments of accepting
computations.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

First lemma: outline of the proof

Lemma (from 2nfa to quasi sweeping 2nfa)

For each unary n-state 2nfa A there exists an almost equivalent
quasi sweeping 2nfa A′ with no more than 2n + 2 states.
Furthermore, the languages L(A) and L(A′) can differ only on
strings of length ≤ 5n2.

An accepting computation of a two-way machine is a
sequence of segments
The segments are delimited by the configurations in which
the input head visits the endmarkers
Two kinds of segments:

traversals
U-turns

The simulation “simplifies” the segments of accepting
computations.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

First lemma: outline of the proof

Traversal: segment of computation starting at one endmarker
and ending at the other one.

Traversals in 2nfa can be very complicated.
However, in the unary case:

For each traversal T of the input from a state q to a state p
there exists another traversal T ′ from q to p with a very “simple”
structure [Geffert 1991]:

initial and final parts consuming O(n2) input symbols
in the middle: a “dominant” loop repeated many times

Hence, traversals are essentially used to computed the input
lenght modulo one integer: they can be simulated by
deterministic loops and nondeterministic moves at the
endmarkers.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

First lemma: outline of the proof

Traversal: segment of computation starting at one endmarker
and ending at the other one.

Traversals in 2nfa can be very complicated.
However, in the unary case:

For each traversal T of the input from a state q to a state p
there exists another traversal T ′ from q to p with a very “simple”
structure [Geffert 1991]:

initial and final parts consuming O(n2) input symbols
in the middle: a “dominant” loop repeated many times

Hence, traversals are essentially used to computed the input
lenght modulo one integer: they can be simulated by
deterministic loops and nondeterministic moves at the
endmarkers.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

First lemma: outline of the proof

Traversal: segment of computation starting at one endmarker
and ending at the other one.

Traversals in 2nfa can be very complicated.
However, in the unary case:

For each traversal T of the input from a state q to a state p
there exists another traversal T ′ from q to p with a very “simple”
structure [Geffert 1991]:

initial and final parts consuming O(n2) input symbols
in the middle: a “dominant” loop repeated many times

Hence, traversals are essentially used to computed the input
lenght modulo one integer: they can be simulated by
deterministic loops and nondeterministic moves at the
endmarkers.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

First lemma: outline of the proof

Traversal: segment of computation starting at one endmarker
and ending at the other one.

Traversals in 2nfa can be very complicated.
However, in the unary case:

For each traversal T of the input from a state q to a state p
there exists another traversal T ′ from q to p with a very “simple”
structure [Geffert 1991]:

initial and final parts consuming O(n2) input symbols
in the middle: a “dominant” loop repeated many times

Hence, traversals are essentially used to computed the input
lenght modulo one integer: they can be simulated by
deterministic loops and nondeterministic moves at the
endmarkers.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

First lemma: outline of the proof

Traversal: segment of computation starting at one endmarker
and ending at the other one.

Traversals in 2nfa can be very complicated.
However, in the unary case:

For each traversal T of the input from a state q to a state p
there exists another traversal T ′ from q to p with a very “simple”
structure [Geffert 1991]:

initial and final parts consuming O(n2) input symbols
in the middle: a “dominant” loop repeated many times

Hence, traversals are essentially used to computed the input
lenght modulo one integer: they can be simulated by
deterministic loops and nondeterministic moves at the
endmarkers.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

First lemma: outline of the proof

U-turn: segment starting and ending at the same endmarker.

For sufficiently long inputs (> n2), the set of possible U-turns
can be precomputed. Hence, they can be replaced by
stationary moves [Geffert 1991].

By replacing
traversals with deterministic loops
U-turn with stationary moves,

the given n-state 2nfa A we can build an almost equivalent
quasi sweeping automaton with 2n + 2 states.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

First lemma: outline of the proof

U-turn: segment starting and ending at the same endmarker.

For sufficiently long inputs (> n2), the set of possible U-turns
can be precomputed. Hence, they can be replaced by
stationary moves [Geffert 1991].

By replacing
traversals with deterministic loops
U-turn with stationary moves,

the given n-state 2nfa A we can build an almost equivalent
quasi sweeping automaton with 2n + 2 states.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

First lemma: outline of the proof

U-turn: segment starting and ending at the same endmarker.

For sufficiently long inputs (> n2), the set of possible U-turns
can be precomputed. Hence, they can be replaced by
stationary moves [Geffert 1991].

By replacing
traversals with deterministic loops
U-turn with stationary moves,

the given n-state 2nfa A we can build an almost equivalent
quasi sweeping automaton with 2n + 2 states.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Second lemma: outline of the proof

Lemma (from quasi sweeping 2nfa to 2dfa)

Each unary n-state quasi sweeping 2nfa can be simulated by a
2dfa with O(ndlog2(n+1)e+3) states.

We consider the following predicate reachable:

reachable(q, p, k) is true, for q, p ∈ Q, k ≥ 1, iff there exists a
computation path of the given 2nfa which

starts and ends with the input head scanning the left
endmarker,
in the state q and p, respectively, and
visits that endmarker at most k + 1 times.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Second lemma: outline of the proof

Lemma (from quasi sweeping 2nfa to 2dfa)

Each unary n-state quasi sweeping 2nfa can be simulated by a
2dfa with O(ndlog2(n+1)e+3) states.

We consider the following predicate reachable:

reachable(q, p, k) is true, for q, p ∈ Q, k ≥ 1, iff there exists a
computation path of the given 2nfa which

starts and ends with the input head scanning the left
endmarker,
in the state q and p, respectively, and
visits that endmarker at most k + 1 times.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Second lemma: outline of the proof

Lemma (from quasi sweeping 2nfa to 2dfa)

Each unary n-state quasi sweeping 2nfa can be simulated by a
2dfa with O(ndlog2(n+1)e+3) states.

We consider the following predicate reachable:

reachable(q, p, k) is true, for q, p ∈ Q, k ≥ 1, iff there exists a
computation path of the given 2nfa which

starts and ends with the input head scanning the left
endmarker,
in the state q and p, respectively, and
visits that endmarker at most k + 1 times.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Second lemma: outline of the proof

Lemma (from quasi sweeping 2nfa to 2dfa)

Each unary n-state quasi sweeping 2nfa can be simulated by a
2dfa with O(ndlog2(n+1)e+3) states.

We consider the following predicate reachable:

reachable(q, p, k) is true, for q, p ∈ Q, k ≥ 1, iff there exists a
computation path of the given 2nfa which

starts and ends with the input head scanning the left
endmarker,
in the state q and p, respectively, and
visits that endmarker at most k + 1 times.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Second lemma: outline of the proof

Lemma (from quasi sweeping 2nfa to 2dfa)

Each unary n-state quasi sweeping 2nfa can be simulated by a
2dfa with O(ndlog2(n+1)e+3) states.

We consider the following predicate reachable:

reachable(q, p, k) is true, for q, p ∈ Q, k ≥ 1, iff there exists a
computation path of the given 2nfa which

starts and ends with the input head scanning the left
endmarker,
in the state q and p, respectively, and
visits that endmarker at most k + 1 times.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Second lemma: outline of the proof

Lemma (from quasi sweeping 2nfa to 2dfa)

Each unary n-state quasi sweeping 2nfa can be simulated by a
2dfa with O(ndlog2(n+1)e+3) states.

We consider the following predicate reachable:

reachable(q, p, k) is true, for q, p ∈ Q, k ≥ 1, iff there exists a
computation path of the given 2nfa which

starts and ends with the input head scanning the left
endmarker,
in the state q and p, respectively, and
visits that endmarker at most k + 1 times.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Second lemma: outline of the proof

If an accepting computation visits the left endmarker twice in
the same state, then there exists a shorter accepting
computation.

Hence:

The input is accepted iff reachable(q0, qf , n) is true.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Second lemma: outline of the proof

If an accepting computation visits the left endmarker twice in
the same state, then there exists a shorter accepting
computation.

Hence:

The input is accepted iff reachable(q0, qf , n) is true.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Second lemma: outline of the proof

How to evaluate reachable?

Divide–and–conquer technique (reach1 is the base case):

function reachable(q, p, k)
if k = 1 then return reach1(q, p)
else begin

for each state r ∈ Q do
if reachable(q, r , bk/2c) then

if reachable(r , p, dk/2e) then
return TRUE

return FALSE

end

This computation can be implemented by a 2dfa with
O(ndlog2(n+1)e+3) states.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Second lemma: outline of the proof

How to evaluate reachable?

Divide–and–conquer technique (reach1 is the base case):

function reachable(q, p, k)
if k = 1 then return reach1(q, p)
else begin

for each state r ∈ Q do
if reachable(q, r , bk/2c) then

if reachable(r , p, dk/2e) then
return TRUE

return FALSE

end

This computation can be implemented by a 2dfa with
O(ndlog2(n+1)e+3) states.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Second lemma: outline of the proof

How to evaluate reachable?

Divide–and–conquer technique (reach1 is the base case):

function reachable(q, p, k)
if k = 1 then return reach1(q, p)
else begin

for each state r ∈ Q do
if reachable(q, r , bk/2c) then

if reachable(r , p, dk/2e) then
return TRUE

return FALSE

end

This computation can be implemented by a 2dfa with
O(ndlog2(n+1)e+3) states.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Second lemma: outline of the proof

How to evaluate reachable?

Divide–and–conquer technique (reach1 is the base case):

function reachable(q, p, k)
if k = 1 then return reach1(q, p)
else begin

for each state r ∈ Q do
if reachable(q, r , bk/2c) then

if reachable(r , p, dk/2e) then
return TRUE

return FALSE

end

This computation can be implemented by a 2dfa with
O(ndlog2(n+1)e+3) states.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Second lemma: outline of the proof

How to evaluate reachable?

Divide–and–conquer technique (reach1 is the base case):

function reachable(q, p, k)
if k = 1 then return reach1(q, p)
else begin

for each state r ∈ Q do
if reachable(q, r , bk/2c) then

if reachable(r , p, dk/2e) then
return TRUE

return FALSE

end

This computation can be implemented by a 2dfa with
O(ndlog2(n+1)e+3) states.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Second lemma: outline of the proof

How to evaluate reachable?

Divide–and–conquer technique (reach1 is the base case):

function reachable(q, p, k)
if k = 1 then return reach1(q, p)
else begin

for each state r ∈ Q do
if reachable(q, r , bk/2c) then

if reachable(r , p, dk/2e) then
return TRUE

return FALSE

end

This computation can be implemented by a 2dfa with
O(ndlog2(n+1)e+3) states.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question

Current knowledge

Upper bounds

unary case

general case

1nfa → 2dfa 2nfa → 2dfa

O(n2) [1] nO(log n) [2]
optimal

exponential exponential

[1: Chrobak 1986]
[2: Geffert, Mereghetti, Pighizzini 2003]

Lower bounds
For all the cases, the best known lower bound is Ω(n2) [1]

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question

Current knowledge

Upper bounds

unary case

general case

1nfa → 2dfa 2nfa → 2dfa

O(n2) [1] nO(log n) [2]
optimal

exponential exponential

[1: Chrobak 1986]
[2: Geffert, Mereghetti, Pighizzini 2003]

Lower bounds
For all the cases, the best known lower bound is Ω(n2) [1]

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Sakoda&Sipser question

Current knowledge

Upper bounds

unary case

general case

1nfa → 2dfa 2nfa → 2dfa

O(n2) [1] nO(log n) [2]
optimal

exponential exponential

[1: Chrobak 1986]
[2: Geffert, Mereghetti, Pighizzini 2003]

Lower bounds
For all the cases, the best known lower bound is Ω(n2) [1]

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Complementation of two-way automata

Problem
Given a two-way automaton with n states accepting a language
L, find the cost in term of states, of an automaton accepting the
complement of L.

Deterministic case:
The cost is 4n, for any input alphabet.
[Geffert, Mereghetti, Pighizzini 2007]

Nondeterministic case:
The cost is polynomial for a unary alphabet.
[Geffert, Mereghetti, Pighizzini 2007]

What about the complementation of 2nfa over nonunary
alphabets?

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Complementation of two-way automata

Problem
Given a two-way automaton with n states accepting a language
L, find the cost in term of states, of an automaton accepting the
complement of L.

Deterministic case:
The cost is 4n, for any input alphabet.
[Geffert, Mereghetti, Pighizzini 2007]

Nondeterministic case:
The cost is polynomial for a unary alphabet.
[Geffert, Mereghetti, Pighizzini 2007]

What about the complementation of 2nfa over nonunary
alphabets?

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Complementation of two-way automata

Problem
Given a two-way automaton with n states accepting a language
L, find the cost in term of states, of an automaton accepting the
complement of L.

Deterministic case:
The cost is 4n, for any input alphabet.
[Geffert, Mereghetti, Pighizzini 2007]

Nondeterministic case:
The cost is polynomial for a unary alphabet.
[Geffert, Mereghetti, Pighizzini 2007]

What about the complementation of 2nfa over nonunary
alphabets?

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Complementation of two-way automata

Problem
Given a two-way automaton with n states accepting a language
L, find the cost in term of states, of an automaton accepting the
complement of L.

Deterministic case:
The cost is 4n, for any input alphabet.
[Geffert, Mereghetti, Pighizzini 2007]

Nondeterministic case:
The cost is polynomial for a unary alphabet.
[Geffert, Mereghetti, Pighizzini 2007]

What about the complementation of 2nfa over nonunary
alphabets?

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Complementation of two-way automata

Relationship with the Sakoda&Sipser question

f (n) := the cost of the simulation of a n-state 2nfa by a 2dfa.

Given an n-state 2nfa accepting L we can find:
a 2dfa accepting L with f (n) states
a 2nfa (actually a 2dfa) accepting Lc with 4f (n) states

Hence:
the complementation of 2nfa costs no more than their
determinization.

Theorem
If the complementation of 2nfa requires an exponential number
of states then the gap between 2nfa and 2dfa is exponential.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Complementation of two-way automata

Relationship with the Sakoda&Sipser question

f (n) := the cost of the simulation of a n-state 2nfa by a 2dfa.

Given an n-state 2nfa accepting L we can find:
a 2dfa accepting L with f (n) states
a 2nfa (actually a 2dfa) accepting Lc with 4f (n) states

Hence:
the complementation of 2nfa costs no more than their
determinization.

Theorem
If the complementation of 2nfa requires an exponential number
of states then the gap between 2nfa and 2dfa is exponential.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Complementation of two-way automata

Relationship with the Sakoda&Sipser question

f (n) := the cost of the simulation of a n-state 2nfa by a 2dfa.

Given an n-state 2nfa accepting L we can find:
a 2dfa accepting L with f (n) states
a 2nfa (actually a 2dfa) accepting Lc with 4f (n) states

Hence:
the complementation of 2nfa costs no more than their
determinization.

Theorem
If the complementation of 2nfa requires an exponential number
of states then the gap between 2nfa and 2dfa is exponential.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Complementation of two-way automata

Relationship with the Sakoda&Sipser question

f (n) := the cost of the simulation of a n-state 2nfa by a 2dfa.

Given an n-state 2nfa accepting L we can find:
a 2dfa accepting L with f (n) states
a 2nfa (actually a 2dfa) accepting Lc with 4f (n) states

Hence:
the complementation of 2nfa costs no more than their
determinization.

Theorem
If the complementation of 2nfa requires an exponential number
of states then the gap between 2nfa and 2dfa is exponential.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Complementation of two-way automata

Relationship with the Sakoda&Sipser question

f (n) := the cost of the simulation of a n-state 2nfa by a 2dfa.

Given an n-state 2nfa accepting L we can find:
a 2dfa accepting L with f (n) states
a 2nfa (actually a 2dfa) accepting Lc with 4f (n) states

Hence:
the complementation of 2nfa costs no more than their
determinization.

Theorem
If the complementation of 2nfa requires an exponential number
of states then the gap between 2nfa and 2dfa is exponential.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

Complementation of two-way automata

Relationship with the Sakoda&Sipser question

f (n) := the cost of the simulation of a n-state 2nfa by a 2dfa.

Given an n-state 2nfa accepting L we can find:
a 2dfa accepting L with f (n) states
a 2nfa (actually a 2dfa) accepting Lc with 4f (n) states

Hence:
the complementation of 2nfa costs no more than their
determinization.

Theorem
If the complementation of 2nfa requires an exponential number
of states then the gap between 2nfa and 2dfa is exponential.

Giovanni Pighizzini Eliminating the nondeterminism from 2nfa

