Complementing Unary Nondeterministic Automata

Filippo Mera and Giovanni Pighizzini
Dipartimento di Informatica e Comunicazione
Università degli Studi di Milano, Italy
PROBLEM
Comparing the number of states needed to accept a language and its complement, i.e.,

Given an \(n \)-state automaton accepting \(\mathcal{L} \), how many states are necessary and sufficient to accept \(\mathcal{L}^C \)?

Deterministic Automata
Trivial: it suffices to complement the set of final states.

Nondeterministic Automata
Upper bound: \(2^n \) (just convert to a deterministic automaton).
This bound cannot be improved [Next talk].
Present paper

Investigation of this problem for the unary case.

Main result:

\(L \) is accepted by a “small” nfa

\[\downarrow \]

each nfa accepting \(L^C \) must be “large”
What do “small” and “large” mean?

Small: The automaton and the language it accepts are witnesses of the gap between nfa’s and dfa’s, i.e., the nfa has n-states and each dfa accepting the same language has at least $e^{\Theta(\sqrt{n \ln n})}$ states.

Large: The automaton has at least as many states as a deterministic automaton (nondeterminism is thus useless.)
Unary Deterministic Automata

Size of an automaton $A \equiv (\lambda, \mu)$

Any unary regular language is ultimately cyclic. It is cyclic for words of length $\geq \mu$, being (λ, μ) the size of a dfa accepting it.

If A is minimum then λ is the *ultimate period* of the language considered.
Theorem [Chr86]:

Any nfa with n states can be simulated with an nfa in Chrobak Normal Form having size at most $\left(n, O\left(n^2\right)\right)$.
State complexity of a regular language:

\[sc(L) \equiv \text{number of states of the smallest deterministic automaton accepting it.} \]

Nondeterministic state complexity:

\[nsc(L) \equiv \text{number of states of a minimal nondeterministic automaton accepting it.} \]

Theorem [Jiang, McDowell, Ravikumar 91]

If \(\lambda \) is the ultimate period of \(L \) and \(\lambda \) factorizes as \(p_1^{k_1} \cdot p_2^{k_2} \cdots p_s^{k_s} \), then we have \(nsc(L) \geq p_1^{k_1} + p_2^{k_2} + \cdots + p_s^{k_s} \).
Main result:

If a unary language \mathcal{L} with ultimate period $\lambda = p_1^{k_1} \cdot p_2^{k_2} \cdot \ldots \cdot p_s^{k_s}$ is accepted by an nfa A with $p_1^{k_1} + p_2^{k_2} + \ldots + p_s^{k_s}$ states in its cycles, then \mathcal{L}^C requires at least λ cyclic states.

Notes:

- A has the smallest possible number of states with respect to the ultimate period of \mathcal{L}
- Nondeterminism does not allow to reduce the number of states for automata accepting \mathcal{L}^C
Proof (sketch)

W.l.o.g. \(A \) is in Chrobak Normal Form with cycles of lengths \(p_1^{k_1}, \ldots, p_s^{k_s} \)

Choose \(m_i \) and \(m \) such that:

- \(a^{m_i} \) is accepted in the \(i \)-th cycle,
- \(a^{m_i + p_i^{k_i-1}} \notin \mathcal{L} \), and
- \(\forall i \ m \equiv m_i + p_i^{k_i-1} \pmod{p_i^{k_i}} \) (Chinese Remainder Theorem).

Then:
- \(a^{m_i + p_i^{k_i}x} \in \mathcal{L} \), for \(i = 1, \ldots, s, \ x \geq 0 \),
- \(a^m \notin \mathcal{L} \).
Let p be the length of a cycle of the automaton A' accepting L^C visited during an accepting computation on a^m.

Then:

- A' accepts each a^{m+py}, with $y \geq 0$,
- A' must reject each a^{mi+p^ikix}, $i = 1, \ldots, s$, $x \geq 0$.

Hence, for $i = 1, \ldots, s$, there are no integers $x, y \geq 0$ such that

$$m + py = mi + p^ikix,$$

But $m = mi + hp^{ki} + p^{ki-1}$, for some integer h.

Hence, there are no integers $x, y \geq 0$ such that

$$hp^{ki} + p^{ki-1} = p^{ki}x - py$$

This implies that $p^{ki} | p$, for $i = 1, \ldots, s$.
Nonunary alphabets

Main Theorem cannot be extended to nonunary languages:

Theorem

A sequence \mathcal{L}_n of languages can be exhibited such that:

- $\text{nsc} (\mathcal{L}_n) = n$
- $\text{sc} (\mathcal{L}_n) = 2^n$

(\mathcal{L}_n is thus a witness of the gap between nondeterministic and deterministic automata)

and

- $\text{nsc} (\mathcal{L}_n^C) \leq n + 1$
Question
What can be said about the converse of Main Theorem?

i.e.,

does the fact that each nfa accepting L is “large” imply that L^C has a “small” nfa?

The answer is negative:

Theorem
Let $p_1^{k_1} \cdot p_2^{k_2} \cdots p_s^{k_s}$ be the prime factorization for an arbitrary integer λ and consider

$L_\lambda = \{a^m \mid \# \{i \mid p_i^{k_i} \text{ divides } m\} \text{ is even} \}$.

We have both $\text{nsc} (L_\lambda) = \lambda$ and $\text{nsc} (L_\lambda^C) = \lambda$.

The smallest nfa accepting L_λ (or L_λ^C) is actually a dfa made of a single cycle of length λ.
Sketch of the proof
in the case of $\lambda = p_1^{k_1} \cdots p_s^{k_s}$, with s even.

We show that each nfa A accepting the language
\[L_\lambda = \{ a^m | \# \{ i | p_i^{k_i} \text{ divides } m \} \text{ is even} \} \]
contains one simple cycle of at least λ states.

Consider the length ℓ of a simple cycle crossed in an accepting computation C on an input $a^{\lambda H}$, for a sufficiently large H.

Let $m_j = H\lambda + \ell \frac{\lambda}{p_j^{k_j}}$, for $j = 1, \ldots, s$.

By “pumping” the computation C with the cycle of length ℓ, we get that $a^{m_j} \in L_\lambda$.

Since each $p_i^{k_i}$, with $i \neq j$, divides m_j, this implies that even $p_j^{k_j}$ must divide m_j.

Hence, we can easily conclude that each $p_j^{k_j}$ divides ℓ and, finally, that λ divides ℓ.
Conclusions and open problems

We have been studying the problem in its “extreme” case, investigating languages that witness the gap considered.

Problem:

Bounds should be found, that simultaneously apply to \(\text{nsc}(L) \) and \(\text{nsc}(L^C) \) for unary languages.

In other words, it is of some interest to investigate the trade-off between the nondeterministic complexity of unary languages and that of their complements.