Esercizi aggiuntivi

1. Programmazione strutturata

Esercizio 1.1

Esprimete con le strutture di controllo fondamentali un algoritmo per il calcolo della somma di tutti i numeri interi compresi tra x e y, estremi inclusi, dove x e y sono due interi forniti dall'utente. Se ad esempio l'utente fornisce 3 e 8 il risultato dovrà essere 33. Nella prima versione supponete che l'utente fornisca i numeri in ordine non decrescente. Nella seconda versione l'algoritmo deve calcolare la somma indipendentemente dall'ordine: se l'utente fornisce prima 8 e poi 3 il risultato deve essere di nuovo 33.

Esercizio 1.2

Esprimete con le strutture di controllo fondamentali un algoritmo per il calcolo del prodotto di due numeri interi, utilizzando esclusivamente operazioni di somma.

Esercizio 1.3

Esprimete con le strutture di controllo fondamentali un algoritmo per il calcolo del quoziente e del resto della divisione tra due numeri interi, utilizzando esclusivamente operazioni di somma e sottrazione. Ad esempio, se in ingresso vengono forniti i valori 13 e 4, in uscita dovranno essere restituiti i valori 3 e 1. Si supponga che i numeri inseriti siano positivi.

Esercizio 1.4

Esprimete con le strutture di controllo fondamentali un algoritmo per il calcolo della potenza x^y di due numeri interi x e y, utilizzando esclusivamente le 4 operazioni di somma, sottrazione, prodotto e divisione. Si supponga $y \ge 0$.

Esercizio 1.5

Ripetete l'esercizio 1.4, senza utilizzare prodotto e divisione.

Suggerimento: combinate in maniera opportuna gli algoritmi ottenuti per risolvere gli esercizi 1.2 e 1.4.

Esercizio 1.6

Esprimete con le strutture di controllo fondamentali un algoritmo per il calcolo della somma di una sequenza di interi fornita in ingresso dall'utente. Si supponga che l'inserimento di 0 indichi il termine della sequenza.

Esercizio 1.7

Esprimete con le strutture di controllo fondamentali un algoritmo per il calcolo della media di tutti i numeri pari e della media di tutti i numeri dispari in una sequenza di interi, fornita in ingresso dall'utente. Si supponga che l'inserimento di 0 indichi il termine della sequenza (0 non fa parte della sequenza). Si indichi infine quale delle due medie è più grande.

Esercizi aggiuntivi 2

Esercizio 1.8

Un numero naturale si dice perfetto se è uguale alla somma dei suoi divisori propri. Ad esempio i primi due numeri perfetti sono 6 (= 1+2+3) e 28 (= 1+2+4+7+14). Un numero si dice difettivo se è maggiore della somma dei suoi divisori propri, ad esempio il numero 10 (> 1+2+5). Un numero si dice abbondante se è minore della somma dei suoi divisori propri, ad esempio il numero 12 (< 1+2+3+4+6). Utilizzando le strutture di controllo fondamentali esprimete due algoritmi per svolgere i seguenti compiti:

- 1. Leggere un numero e stabilire se è perfetto, difettivo o abbondante.
- 2. Leggere un numero n e produrre:
 - un elenco di tutti i numeri perfetti $\leq n$,
 - un elenco di tutti i numeri difettivi $\leq n$,
 - un elenco di tutti i numeri abbondanti $\leq n$.