

Architettura degli Elaboratori Laurea triennale in Comunicazione Digitale Appello del 10 settembre 2013

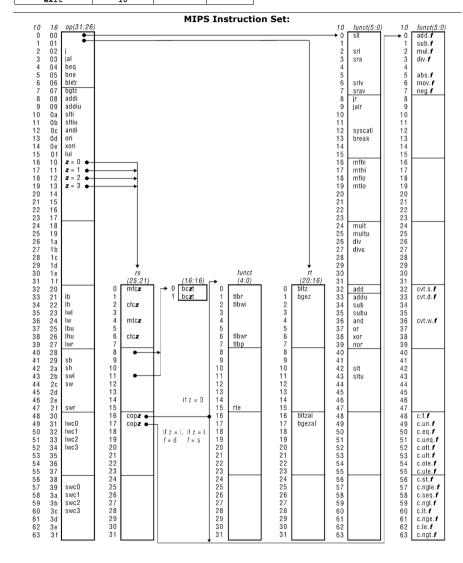
- **1.** [2] Si rappresenti il numero $N = \frac{5}{256}$ secondo lo standard IEEE-754, singola precisione, in formato esadecimale.
- **2.** [3] Dare la definizione di *mintermine* e di *implicante* di una funzione logica. Esprimere: $f(a,b,c) = a(b+\overline{c})$ in prima forma canonica.
- [4] Si tracci l'andamento dell'uscita Q(t) in corrispondenza degli ingressi in figura, considerando Q(t=0) = '0'.

- 4. [5] Si progetti un circuito caratterizzato da 3 ingressi (n2,n1,n0) rappresentanti un numero intero N con segno (in complemento a 2) e due uscite D e L. L'uscita D vale '1' se e solo se N è dispari, mentre L vale '1' se e solo se N < -1.</p>
 a) Determinare le tabelle di verità di D e L; b) esprimerle nella forma canonica più adatta; c) semplificarle mediante mappe di Karnaugh; d) semplificarle ulteriormente, se possibile, mediante semplificazioni algebriche; e) disegnare lo schema del circuito.
- 5. [7] Si sintetizzi una macchina a stati finiti di Moore sincrona, caratterizzata da una linea d'ingresso I ed una linea di uscita Y, la quale cambia valore ogni volta che all'ingresso I si presenta un fronte di discesa seguito immediatamente da un fronte di salita. Si considerino inizialmente sia I che Y a '0'.
 Si determinino: STG, STT, STT codificata e struttura circuitale del sistema completo, gestendo il segnale di clock ed avendo cura di semplificare il più possibile le funzioni prima di tradurle in circuito.
- **6.** [7] Si scriva un programma Assembly, per ambiente SPIM, che richieda all'utente da tastiera una lista di numeri interi, memorizzandoli in un array, quindi chiami una funzione, a cui si passa l'indirizzo base dell'array ed il numero di elementi, e che restituisce il valore minimo dell'array, e infine stampi tale valore minimo. Il programma deve apparire a video come nell'esempio a lato.

Num.elementi? 20
Elemento 0 = 45
Elemento 1 = 3
...
Elemento 19 = 9
Il minimo è: 3

- 7. [5] Rappresentare gli indirizzi ed il contenuto (in formato esadecimale, byte per byte) del segmento dati della memoria che viene modificato a seguito dell'esecuzione delle seguenti direttive (si ricorda che il codice ASCII numerico di "A"=65, "B"=66, ...):
 - .data 0x520 .word -25, +25 .asciiz "BACCA"
 - .space 0x6 .half -9, 0x9

Se, all'inizio del programma Assembly immediatamente seguente a tali direttive, viene chiamata una system call **sbrk**, quale sarà il valore restituito nel registro **\$v0**?


System calls

	codice (\$v0)	argomenti	Risultato
print_int	1	\$a0	
print_float	2	\$f12	
print_double	3	\$f12	
print_string	4	\$a0	
read_int	5		\$ v 0
read_float	6		\$£0
read_double	7		\$£0
read_string	8	\$a0,\$a1	
sbrk	9	\$a0	\$ v 0
exit	10		

Registri MIPS

0	zero		
1	at		
2-3	v0 - v1		
4-7	a0 - a3		
8-15	t0 - t7		
16-23	s0 - s7		

24	1-25	t8	-	t9
26	5-27	k0	-	k1
	28	Gp		
	29	Sp		
	30	s8		
	31	Ra		

