

Architettura degli Elaboratori Lauree trienn. Comunicazione Digitale / Informatica Musicale Appello del 23 febbraio 2011

Cognome, nome: Matricola: Com. Dig.

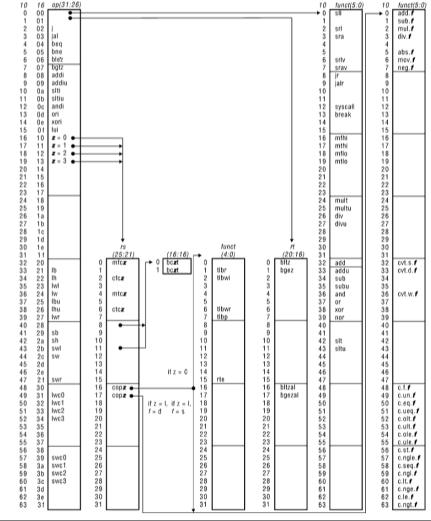
- 1. [2] Che numero decimale rappresenta il codice esadecimale: **0xBD00 0000** nel formato standard IEEE-754 a singola precisione?
- **2.** [3] Si dimostri la seguente equivalenza applicando le proprietà dell'algebra di Boole: $(a+b) \oplus c = a\overline{c} + \overline{a}b\overline{c} + \overline{a}(b \oplus c)$
- Si disegni la struttura circuitale di un registro a 4 bit e se ne descriva il funzionamento.
- **4.** [5] Si progetti un circuito caratterizzato da quattro ingressi (**a₃ a₂ a₁ a₀**) che rappresentano un numero binario **A** di 4 bit, e da un'uscita **Y** che vale '1' se e solo se:
 - il numero A è pari e compreso tra 5 e 10, oppure
 - è dispari e compreso tra 10 e 15.
 - a) Determinare la tabella di verità di Y; b) esprimerla nella forma canonica più adatta;
 - c) semplificarla mediante mappe di Karnaugh; d) semplificarla ulteriormente, se possibile, mediante semplificazioni algebriche; e) disegnarne lo schema circuitale.
- **5.** [8] Si sintetizzi una macchina a stati finiti di Moore che presenta una linea di ingresso ed una linea di uscita.
 - L'ingresso viene valutato ogni secondo. Ogni volta che l'ingresso passa da '0' a '1' e ci rimane poi per almeno 2 secondi, l'uscita si porta a '1' per 1 secondo e poi torna a '0'. Si supponga che inizialmente sia l'ingresso che l'uscita si trovino a '0'.
 - Si determinino: STG, STT, STT codificata e struttura circuitale del sistema completo, non trascurando la gestione del segnale di clock ed avendo cura di semplificare il più possibile le funzioni prima di tradurle in circuito.
- **6.** [6] Si traduca in linguaggio Assembly MIPS nativo, evitando cioè di utilizzare pseudo-istruzioni, la seguente procedura in linguaggio C. Si consideri che tale procedura si aspetta l'argomento nel registro **\$a0** e restituisce il risultato nel registro **\$v0**.

```
int StranaFunz( int n )
{
    if( n<3 )        return( n );
    else        return( 2*StranaFunz(n-2) );
}</pre>
```

7. [6] Si traduca il seguente frammento di codice Assembly MIPS in linguaggio macchina, in binario o esadecimale.

```
0x16000: beq $s0, $a0, -16
i 0x15000
```

Si determini inoltre, per ciascuna delle due istruzioni, la **gittata del salto**, cioè i valori minimo e massimo di indirizzo di memoria ai quali sarebbe possibile saltare.


System calls

	codice (\$v0)	argomenti	risultato
print_int	1	\$a0	
print_float	2	\$f12	
print_double	3	3 \$f12	
print_string	4	\$a0	
read_int	5		\$ v 0
read_float	6		\$£0
read_double	7		\$£0
read_string	8	\$a0,\$a1	
sbrk	9	9 \$a0 \$v0	
orit	10		

Registri MIPS

0	0 zero		24-25	t8 - t9
1	at		26-27	k0 - k1
2-3	v0 - v1		28	Gp
4-7	a0 - a3		29	Sp
8-15	t0 - t7		30	s8
16-23	s0 - s7		31	Ra

MIPS Instruction Set:

