SYSTEMC

SystemC 2.0.1 Language Reference Manual

Revision 1.0

Copyright © 2003 Open SystemC Initiative
1177 Braham Lane #302
San Jose, CA 95118-3799



SystemC 2.0.1 Language Reference Manual

Acknowledgements

The SystemC 2.0.1 Language Reference Manual (LRM) was developed by
representatives from different fields including system architects, design and
verification engineers, Electronic Design Automation (EDA) companies and
universities. The primary contributors include:

El Mustapha Aboulhamid
Mike Baird

Bishnupriya Bhattacharya
David Black

Dundar Dumlogal

Abhijit Ghosh

Andy Goodrich

Robert Graulich
Thorsten Groetker
Martin Jannsen

Evan Lavelle

Kevin Kranen

Wolfgang Mueller

Kurt Schwartz

Adam Rose

Ray Ryan

Minoru Shoji

Stuart Swan

Mike Baird served as the Language Reference Manual editor.



SystemC 2.0.1 Language Reference Manual

B 1 1 oo 8o 1) o [ 1
1.1 INteNt @Nd SCOPE ..o e 1
1.2 Overview of SystemC ..o 1
1.3  Using the SystemC library ... 3

2 EXecUution SemMaNtiCS .....ccooiiiiiiceiee e 4
21 main() & SC_MAIN() cooeiiiieiee e 4
2.2 EIaboration ... 4
2.3 INItAliZatioN ... 5
2.4  Simulation semantiCs...........oooiiiiiiiii 5
2.5 Simulation FUNCLIONS .........oiiii e 6

R T o = S URRRPUPPRPR 7
K 20t T o {10 1= YU 7
3.2 Time ReSOIULION.....coiiiiiiiiie e e e eeeeeee 7
3.3 Default TIme Unit......cooooniiii e 8

I Y L PP 8
4.1 EVENt OCCUITENCE .......euiiiiie e e 9
4.2  Event Notification...........covviiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee e 9
4.3  Multiple event notifications.............cooiiii i 10
4.4  Canceling event notifications .............ccoooiiiiiiiiiii e 11

5  SC_MaiN() FUNCLON ......uiiiiiiiiiiii e 12
5.1 Module instantiation.............coooo i 13
52 Portbinding ..o 13
5.3  Simulation function usage............ccccoiiiiiiiiiiiii e 14
54  FUunCtion REIUMN .......eiiii e 14

B  DaAla By PES. . e 15
G20t B O o= = (o] TSRS 15
6.2  Unified String Representation.............ccoooviiiiiiiii e 17
6.3  Fixed-Precision Integer TYpes ..., 17
6.4  Arbitrary Precision Integer TYPes ......ccoovviiiiiiiiiiiiiee e 18
6.5  Arbitrary Width Bit VeCtors...........oooooiiiiii 18
L T o Yo [T 1Y/ o = PSPPI 18
6.7  Arbitrary Width LOgiC VECIOrS ........cooeieieiieeeeeeeeee 19
6.8  FiXed-POINt TYPES ..oovviiiiii i e e 19
6.9  User-defined types ......cooooeieeiieeeeee e 62

T MOUIES ...ttt 63
71 ModUIE STTUCLUIE ... e 63

8 Interfaces, Ports & Channels ...............uuuuiiiiiiiiiiiiee 70
8.1 ] (=T o = Lo = O 70
8.2  ChannElS ... 70
8.3 POMS o e 72

O PrOCESSES ... 74
9.1 Member Function Declaration.............ccoooooiiiiiiii e 74
9.2  Process Declaration and Registration .............ccccoooviiiiiiiiiiiiiiieee, 75
9.3  Process Static Sensitivity.........coooeeeeeiiiieee 75
9.4 Method ProCesSS........ouuuiiiii i 78



SystemC 2.0.1 Language Reference Manual

9.5  Thread PrOCESS .......ooiiiiii e 81
10 UtIHIES oo 85
10.1  Mathematical fuNClioNS...........cooiiiiiii e 85
10.2  Utility FUNCHONS ....veeeiiiieeeee e 85
10.3 Debugging SUPPOIT ......oeeiiiieiiiiiiiiieiiieeeeee ettt e et e eeeeeeeeeeeeeeees 85
11 Class FEfErENCE ......uuuuuiiiiiiiiii e 86
11,1 SC attr DASE ..o 88
11.2  SC attribUte ... 89
T1.3  SC attr CHN oo 91
T1.4  SC DIgINt oo 94
115 SC_DIGUINT oo 99
L T~ T o | PP 105
L A <Y o U1 = 112
R T =T o VP 115
11.9  SC DV _DASE .. 117
1 O T o o o o PPN 121
S T~ ==Y o | 127
11.12  sc_event finder t.......ooooiiii e 130
L P B T =T o ) o TP 132
1114 SC fifO N 137
1115 SC_fifOo iN i eeeeeeeieieeeeee e 140
1116 SC_fifO_OUL..coomiie e 142
1117 SC_fifO_OUL ifeeeeee e 145
PR TR T o [ PP 147
11.19  SC fiIX_fast oo 158
L2 T <o (Yo P 169
11.21  sc_fixed_fast.......o oo 178
11.22  SC fXCASt_ CONtEXL ..oeeeeie e 187
11.23  sc_fxcast_ SWItCh ... 189
11.24  sc_fxnum_fast observer.........cccooooiiiiiiiiii e 191
11.25  sc_fXnum_obServer.............oiiiii i 192
11.26  sC_fxtype CONteXt ......coooeiiiiiiiiii e 193
11.27  SC_fXIypPe _Params .......ooooiiiiiiiiee e 195
T1.28  SC IXVAl e 198
11.29  sc_fxval_fast ... 208
11.30 sc_fxval fast ObSEIVEr .......ccooovviiiiiiiieeeeeeee e 217
11.31  SC_fXVAl_ODSEIVEr ... 218
1 I 2 oS | o T PSPPSR 219
11.33  SC N _IESOIVEd ... .o 223
o I 7 o R | o T VPR PRRRTN: 225
T1.35  SC_INOUL.... e 227
11.36  SC INOUL r€SOIVEA ... 231
LN RS A~ T 10 | A 2 233
T1.38 SC Nt 235
11.39  SC INT DASE e 240
11,40  SC INIEITACE. ... e 245



SystemC 2.0.1 Language Reference Manual

11.41  sc_ length_context ... 247
11.42  sC_length_param ..........ooouiiiiiiiii e 248
L T <o (o o [P 250
L =T o Y 256
1145 SC IV DASE ... 258
T1.46  SC_MOAUIE.......ee e e 263
11.47  SC_MOAUIE_NAME......coieeeiiiicii e 268
T1.48  SC MULIEX . i e e e 270
LR Yo £ 01U (= G | 272
T1.50  SC ODJECE. .. e 273
15T SC OUL e 276
11.52  SC_OUL reSOIVEd ... e 278
LR 2C o o V) S Y 280
Y T o To ] o SO 282
11.55  sc_prim_channel ... 285
ST T T o 1Y/ = o1 (] PSRN 289
11.57  SC_SEMAPNOIE ...t 293
11.58  sC_SemMaphore if........coooooiiiiiiii e 296
T1.59  SC_SENSIIIVE oo 298
T1.60  SC_SIGNAL ... 300
11.61  sC_Signal_in_if ..o 305
11.62  sc_signal_inout if .........oooomiiiiii e 307
11.63  sC_Signal_resolved ..........ooouiiiiii i 308
T1.64  SC_SIgNAl IV .o 311
11.65  SC_SIGNEA...cciiiiiiiiiiiiiiiiiieeeeeeeeeee e 314
11.66  SC_SIMCONTEXL ....ciiiiee e 335
11.67  SC_SHING.ciiiiiiiiiiiiiiiiiiiieee e 337
T1.88  SC tIME.eeeeiiiii e 341
L3 T =T o U 344
T1.70  SC UfIX fast. ... 355
1 A T <o U (= o [ 366
11.72 sc Ufixed fast.......oooiiiiiiiiii e 375
% TR~ U o | 385
T1.74  SC UINE DASE...ueeiiieie e 390
1175 SC_UNSIGNEA...cciiiiiiiiiiiiiiiiiiieeeeeeeeee ettt 395
12 Global Function Reference.............ooooviiiiiiiiiiiiiiiiiiiiiieeeeeeee 413
L7220 B o ] 1§V 413
T2.2  SC ADS e 413
12.3 sc_close_vecd _trace file.......oooeeiiiiieii 414
12.4 sc _close Wif trace file......c.ccooooimiiiiiiiiiiiie e 414
12.5  SC_COPYMGNT oo 414
12.6 sc create vcd trace file.....ooooooiviiiiiiiiiiii e 414
12.7 sc_create wif_trace file ........cccoovriiiiiiii 414
12.8 SC_gEN_UNIQUE _NAIME ....cooeiiiiiiiiee et e e e e 415
12.9 sc_get_curr_SiMCONIEXt.........uuuiiiiiieiieee e 415
12.10 sc_get default_time_unit...........ccooomiiiiiii e, 415



SystemC 2.0.1 Language Reference Manual

12.11  sc_get time_resolution ..........coooov i 415
2 < T 1 1 - ) PPN 415
P20 G T T o 11 o T 416
12.14 sc_set default_time _unit ...........cciiiii i, 416
12.15  sc_set time_resolution .........ccoooeeiiiiiiiicii e 416
1216 sc_simulation_time...........ooiiiiiiii e 416
12,17 SC St e 417
T2.18 SC S 0P i 418
12.19  SC_SIOP_NEIE .o 418
12.20 SC_tiIME _StAMP .. 418
12,21 SC _rACE .o 418
L To gL =1 (o] o PPN 420
13 Global Enumerations, Typedefs and Constants...........ccccoevvviicienenenn. 420
LS TR T = 10 1= = 1o o - PR 420
13.2  TYPEAETS ..o 420
13.3  CONStANtS oo 421
14 Deprecated IteMS ......cooveeeie e 422

Vi



SystemC 2.0.1 Language Reference Manual

1 Introduction

1.1 Intent and scope

SystemC is a set of C++ class definitions and a methodology for using these
classes. The primary intent of this document is to define the constructs and
semantics of SystemC that all compliant implementation must provide. The
secondary intent is to provide detailed reference information for the standard
SystemC classes and global functions.

This document is not intended as a user's guide or to provide an introduction to
SystemC. Readers desiring user-oriented information should consult the Open
SystemC Initiative website for such information. For example such users should
consult www.systemc.org = Products & Solutions = Books.

The scope of this document encompasses the entire language definition, but
does not cover implementation issues. Neither does this document cover
methodology issues related to the use of SystemC.

This document is written under the assumption that the reader is familiar with
C++.

1.2 Overview of SystemC

This section is informative and describes in general terms a SystemC “system
and how it simulates.

The SystemC library of classes and simulation kernel extend C++ to enable the
modeling of systems. The extensions include providing for concurrent behavior,
a notion of time sequenced operations, data types for describing hardware,
structure hierarchy and simulation support.

1 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Figure 1 — SystemC Language Architecture

Methodology-Specific Layered Libraries
Libraries Verification Library
Master/Slave Library, etc. Static Dataflow, etc.

Primitive Channels
Signal, Mutex, Semaphore, FIFO, etc.

Core Language Data Types
Modules 4-valued Logic type
Ports 4-valued Logic Vectors
Processes Bits and Bit Vectors
Interfaces Arbitrary Precision Integers
Channels Fixed-point types
Events C++ user-defined types
Event-driven simulation

C++ Language Standard

Figure 1 shows the SystemC language architecture. The blocks shaded with
gray are part of the SystemC core language standard. SystemC is built on
standard C++. The layers above or on top of the SystemC standard consist of
design libraries and standards considered to be separate from the SystemC core
language. The user may choose to use them or not. Over time other standard or
methodology specific libraries may be added and conceivably be incorporated
into the core language.

The core language consists of an event-driven simulator as the base. It works
with events and processes. The other core language elements consist of
modules and ports for representing structure, while interfaces and channels are
used to describe communication.

The data types are useful for hardware modeling and certain types of software
programming.

The primitive channels are built-in channels that have wide use such as signals
and FIFOs.

A SystemC system consists of a set of one or more modules. Modules provide
the ability to describe structure. Modules typically contain processes, ports,
internal data, channels and possibly instances of other modules. All processes
are conceptually concurrent and can be used to model the functionality of the
module. Ports are objects through which the module communicates with other

2 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

modules. The internal data and channels provide for communication between
processes and maintaining module state. Module instances provide for
hierarchical structures.

Communication between processes inside different modules is accomplished
using ports, interfaces and channels. The port of a module is the object through
which the process accesses a channels interface. The interface defines the set
of access functions for a channel while the channel itself provides the
implementation of these functions. At elaboration time the ports of a module are
connected (bound) to designated channels. The interface, port, channel
structure provides for great flexibility in modeling communication and in model
refinement.

Events are the basic synchronization objects. They are used to synchronize
between processes and implement blocking behavior in channels. Processes
are triggered or caused to run based on sensitivity to events. Both dynamic and
static sensitivity are supported. Static sensitivity provides for processes
sensitivity that is defined before simulation starts. Dynamic sensitivity provides
for process sensitivity that is defined after simulation starts and can be altered
during simulation. Processes may wait for a particular event or set of events.
Dynamic sensitivity coupled with the ability of processes to wait on one or more
events provide for simple modeling at higher levels of abstraction and for efficient
simulation.

1.3 Using the SystemC library

Access to all SystemC classes and functions is provided in a single header file
named “systemc.h”. This file may include other files, but the end user is only
required to include systemc.h.

3 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

2 Execution Semantics

This section describes elaboration, initialization and the simulation semantics.
SystemC is an event based simulator. Events occur at a given simulation time.
Time starts at time = 0 and moves forward only. Time increments are based on
the default time unit and the time resolution.

21 main() & sc_main()

The function mai n() is part of the SystemC library. It calls the function
sc_mai n(), ( see Chapter 5 )which is the entry point from the library to the
user’s code.

If the mai n() function provided by the SystemC library does not meet the user’s
needs, the user will have to mimic SystemC’s mai n() . In this case the user will
have to make sure the object file containing the new main() function is linked in
before the SystemC library.

2.2 Elaboration

Elaboration is defined as the execution of the sc_nai n() function from the start
of sc_mai n() to the first invocation of sc_start ().

Elaboration may include the construction of instances (instantiation) of modules,
and channels to connect them, sc_cl ock objects and sc_t i ne variables.

The functions for changing the default time unit

(sc_set _default_time_unit(), Chapter 12.14) and the time resolution
(sc_set _tinme_resolution() , Chapter 12.15) if called, must be called
during elaboration. They must also be called before any sc_t i me objects are
constructed.

During elaboration, the structural elements of the system are created and
connected throughout the system hierarchy. This is facilitated by the C++ class
object construction behavior. When a module (or hierarchical channel) comes
into existence, it constructs any sub-modules it contains, which in turn initialize
their sub-modules, and so forth. As elaboration proceeds port to channel binding
occurs. Importantly, there are no constraints on the order in which port to channel
binding occurs during elaboration. All that is required is that if a port must be
bound to some channel, then the port must be bound by the time elaboration
completes.

Finally, the top level modules are connected via channels in the sc_mai n()
function.

SystemC does not support the dynamic creation of modules. The structure of the
system is created during elaboration time and does not change during simulation.

4 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

2.3 Initialization

Initialization is the first step in the SystemC scheduler. Each method process is
executed once during initialization and each thread process is executed until a
wait statement is encountered.

To turn off initialization for a particular process the dont _initialize()
function can be called after the SC_METHOD or SC_THREAD process
declaration inside a module constructor. A process that is not initialized is not
ready to run. That means that the process starts executing with its first
statement as soon as it is triggered by the first event.

The order of execution of processes is unspecified. The order of execution
between processes is deterministic. This means that two simulation runs using
the same version of the same simulator must yield identical results. However,
different versions or a different simulator may yield a different result if care is not
taken when writing models

2.4 Simulation semantics

The SystemC scheduler controls the timing and order of process execution,
handles event notifications and manages updates to channels. It supports the
notion of delta-cycles. A delta-cycle consists of the execution of an evaluate and
update phase. There may be a variable number of delta-cycles for every
simulation time.

SystemC processes are non-preemptive. This means that for thread processes,
code delimited by two wait statements will execute without any other process
interruption and a method process completes its execution without interruption by
another process.

The scheduler is invoked by the execution of the sc_st art () function. It may
be invoked with an explicit amount of time to simulate. Once the scheduler
returns, simulation may continue from the time the scheduler last stopped by
invoking the sc_st art () function.

The scheduler may be invoked such that it will run indefinitely. Once started the

scheduler continues until either there are no more events, or a process explicitly
stops it (by calling the sc_st op() function), or an exception condition occurs.

5 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

2.41 Scheduler Steps

The semantics of the SystemC simulation scheduler is defined by the following
eight steps. A delta-cycle consists of steps 2 through 4.

1) Initialization Phase. This step is described in Chapter 2.3.

2) Evaluate Phase. From the set of processes that are ready to run, select a
process and resume its execution. The order in which processes are selected
for execution from the set of processes that are ready to run is unspecified.

The execution of a process may cause immediate event notifications to occur,
possibly resulting in additional processes becoming ready to run in the same
evaluate phase.

The execution of a process may include calls to the r equest _updat e()
function which schedules pending calls to updat e() function in the update
phase. The request updat e() function may only be called inside member
functions of a primitive channel.

3) Repeat Step 2 for any other processes that are ready to run.

4) Update Phase. Execute any pending calls to updat e() from calls to the
request _updat e() function executed in the evaluate phase.

5) If there are pending delta-delay notifications, determine which processes are
ready to run and go to step 2.

6) If there are no more timed event notifications, the simulation is finished.

7) Else, advance the current simulation time to the time of the earliest (next)
pending timed event notification.

8) Determine which processes become ready to run due to the events that

have pending notifications at the current time. Go to step 2.

2.5 Simulation functions

A number of functions are provided for setting up and reporting the timing and
controlling the simulation execution.

6 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

2.5.1 Starting the simulation

The sc_start () function (Chapter 12.17 ) is called in sc_nmi n() to start the
scheduler.

Once the sc_st art () function returns, signifying that the scheduler is done, the
user may call sc_start () again. The simulation will continue at the time where
the scheduler last stopped.

2.5.2 Stopping the simulation

The sc_st op() function (Chapter 12.18 ) is called to stop the scheduler and
return control back to the sc_mai n() function. In this case the simulation can
not be continued anymore.

2.5.3 Obtaining Current Simulation time

Two functions are provided for the user to obtain the current simulation time,
sc_time_stanp() (Chapter 12.20 )and sc_si nul ati on_ti me() (Chapter
12.16).

3 Time

SystemC uses an integer-valued absolute time model. Time is internally
represented by an unsigned integer of at least 64-bits. Time starts at 0, and
moves forward only.

3.1 sc_time

The sc_t i me type (Chapter 11.68 ) is used to represent time or time intervals in
SystemC. A sc_ti ne object is constructed from a numeric value (of type
doubl e) and a time unit (of type sc_t i me_uni t, Chapter 13.1).

3.2 Time Resolution

The time resolution is the smallest amount of time that can be represented by all
sc_time objects in a SystemC simulation. The default value for the time
resolution is 1 picosecond (1072 seconds).

A user may set the time resolution to some other value by calling the
sc_set _time_resol ution() function (Chapter 12.15). This function, if
called, must be called before any sc_time objects are constructed.

A user may ascertain the current time resolution by calling the
sc_get time_resol ution() function (Chapter 12.11).

Any time smaller than the time resolution will be rounded off, using round-to-
nearest.

7 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

3.3 Default Time Unit

Time values may sometimes be specified with a numeric value without time unit.
The default time unit is used to specify the unit of time for the values in these
cases.

The default value for the default time unit is 1 nanosecond(10® seconds).

An example use of these types to represent a time value would be in specifying
the amount of time in the sc_st art () function.
Example:

/1 run simulation for 1000 tinme units

/1 default time unit = 1ns

sc_start(1000);

A user may set the default time unit to some other value by calling the
sc_set _default_tinme_unit() function (Chapter 12.14 ).

A user may ascertain the current default time unit by calling the
sc_get _default _time_unit() function (Chapter 12.10).

4 Events

An event is an object, represented by class sc_event (Chapter 11.11 )that
determines whether and when a process execution should be triggered or
resumed.

In more concrete terms, an event is used to represent a condition that may occur
during the course of simulation and to control the triggering of processes.

The sc_event class provides basic synchronization for processes. Event
notification causes the kernel to call a method process, or to resume a thread
process that is sensitive to the event.

Example:
sc_event ny_event ; /'l event declaration

8 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

4.1 Event Occurrence

We need to distinguish an event from the actual occurrence of an event.

There may be multiple occurrences of an event, and each occurrence is unique
though reported through the same event object. An event is usually, though not
necessarily, associated with some change of state in a process or of a channel.
The owner of the event is responsible for reporting the change to the event. The
event object, in turn, is responsible for keeping a list of processes that are
sensitive to it. Thus, when notified, the event object will inform the scheduler of
which processes to trigger.

Figure 2 Event Occurrence

Process or channel
(owner of event)

Notify immediately, after delta-delay, or
after time t.

Event

Trigger

Trigger

4.2 Event Notification

Events can be notified in three ways — immediate, delta-cycle delayed and timed.
The timing of the notification is specified at invocation of the not i f y() method

Immediate notification means that the event is triggered in the current evaluation
phase of the current delta-cycle. The not i f y method with no arguments
(notify() ) indicates immediate notification.

Delta-cycle delayed notification means that the event will be triggered during the
evaluate phase of the next delta-cycle. The not i f y method with a time
argument specified as 0 (noti fy(0, SC_NS) )or SC_ZERO_TIME
(notify(SC _ZERO TI ME) ) indicates a delta-cycle delayed notification - the
event is scheduled for the next delta-cycle.

Timed notification means that the event will be triggered at the specified time in
the future. The not i f y method with a non-zero time argument ( noti fy( 10,
SC_NS) ) indicates a timed notification. The time of notification is relative to the
time of execution of the not i f y method as opposed to an absolute time.

9 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Examples:

sc_event my_event ; /'l event declaration

sc_ tine t (10, SC_NS) /1l declaration of a 10 ns tine
/'l interval

my_event. notify(): /1 inmediate notification

'rrj/'_event .notify (SC ZERO TIME); // delta-del ay
/1 notification

'rrj/'_event.notify(t); /1l notification in 10 ns

4.3 Multiple event notifications

Events can have only one pending notification, and retain no “memory” of past
notifications. Multiple notifications to the same event, without an intermediate
trigger are resolved according to the following rule:

An earlier notification will always override one scheduled to occur later, and an
immediate notification is always earlier than any delta-cycle delayed or timed
notification.

Note that according to this rules, a potential non-determinism exists. Assume
that processes A and B are ready to run in the same delta-cycle. Process A
issues an immediate notification on an event, and process B issues a delta-cycle
delayed notification on the same event. Also, let process C be sensitive to the
event. According to the scheduler semantics, processes A and B execute in an
unspecified order.

Example

Process A { Process B { Process C{
fr'g./_event .notify(); fr'g./_event .notify(SC ZERO TI ME) ; wai t (my_event)
b }

If process A executes first, then the event is triggered immediately, causing
process C to be executed in the same delta-cycle. Then, process B is executed,
and since the event was triggered immediately, there is no conflict and the
second notification is accepted, causing process C to be executed again in the
next delta-cycle.

If, however, process B executes first, then the delta-cycle delayed notification is
scheduled first. Then, process A executes and the immediate notification
overrides the delta-cycle delayed notification, causing process C to be executed
only once, in the current delta-cycle.

10 Copyright 2003 Open SystemC Initiative. All rights reserved




SystemC 2.0.1 Language Reference Manual

4.4 Canceling event notifications

A pending delayed event notification may be canceled using the cancel ()
method . Immediate event notifications cannot be canceled, since their effect
occurs immediately.

Example
sc_event a, b, c;
sc_ tinme t(10, SC M5);

a.notify(); /'l current delta-cycle
noti fy(SC ZERO TIME, b); // next delta-cycle
notify(t, c); /1 10 ns del ay

/| Cancel an event notification

a.cancel (); // Error! Can't cancel inmediate notification
b.cancel (); // cancel notification on event b

c.cancel (); // cancel notification on event c

11 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

5 sc_main() Function

The sc_mai n(), function is the entry point from the SystemC library to the
user’s code. ltis called by the function mai n() which is part of the SystemC
library. Its prototype is:

int sc_main( int argc, char* argv[] );

The arguments ar gc and ar gv[] are the standard command-line arguments.
They are passed to sc_mai n() from mai n() in the library.

The body of sc_main() typically consists of configuring simulation variables
(default time unit, time resolution, etc.), Instantiation of the module hierarchy and
channels, simulation, clean-up and returning a status code.

Elaboration is defined as the execution of the sc_mai n() function from the start
of sc_nmmi n() to the first invocation of sc_start ().

The user defines the sc_mai n() function.

Example:

int sc_main(int argc, char* argyv]
/'l Create FIFO channels with a depth of 10
sc_fifo<int> s1(10);
sc_fifo<int> s2(10);
sc_fifo<int> s3(10);

/] Nodul e instantiations
[/ Stimulus Generator
stingen stim("stinl);
stim(sl, s2);

/1 Adder
adder add("add");
add(sl, s2, s3);

/'l Response Monitor
nmoni t or nmon("nmon") ;
nmon. re(s3);

[/ Start simulation
sc_start(); // run indefinitely

return O;
} I/ end sc_main()

12 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

5.1 Module instantiation

The construction of instance(s) (instantiation) of the top level module(s) is done
in sc_mai n() before the sc_start () function is called for the first time.

Instantiation syntax:

nodul e_type nodul e_i nstance_name(“string_nanme”);
Where:
nodul e_t ype is the module type (a class derived from sc_module).
nodul e_i nst ance_nane is the module instance name (object name).
st ri ng_name is the string the module instance is initialized with.

5.2 Port binding

After a module is instantiated in sc_mai n( ), binding of its ports to channels may
occur. There are two different ways to bind ports.

5.2.1 Named Port Binding
Named port binding explicitly binds a port to a channel.

Named port binding syntax:
nodul e_t ype nodul e_i nstance_nane(“string_nane”);
nodul e_i nstance_nane. port _nane(channel _nane) ;
Where:
nmodul e_i nst ance_nane is the instance name of the module.
port _nane is the instance name of the port being bound.
channel _nane is the instance name of the channel to which the port is bound.

Example:
sc_fifo<int> s3(10); // channel instantiation
monitor nmon("non"); // nodule instantiation
mon.re(s3); // named port binding

5.2.2 Positional Port Binding

Positional port binding implicitly binds a port to a channel by mapping the order
listing of channel instances to the order of the declaration of the ports within a
module.

Positional port binding is limited to modules with 64 or fewer ports.

13 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Positional port binding syntax:

nodul e_t ype nodul e_i nstance_name(“string_nanme”);

nodul e_i nstance_nane(channel _nanel, channel nane2, ... ) ;
Where:
nodul e_i nst ance_nane is the instance name of the module.
channel _naneXis the instance name of the channel to which the port is bound
to.
The first channel listed is bound to the first port declared in
nodul e_i nst ance_nane, the second channel listed is bound to the second
port declared in nodul e_i nst ance_nane and so forth.

Example:
sc_fifo<int> s1(10); // channel instantiation
sc_fifo<int> s2(10); // channel instantiation
sc_fifo<int> s3(10); // channel instantiation
adder add("add"); // nodule instantiation
add(sl, s2, s3); [// positional port binding
/1 s1 bound to first port
/1 s2 bound to second port
/1 s3 bound to third port

5.3 Simulation function usage

The function sc_start () ( see Chapter 12.17 for the details of sc_start () )
is called after configuration of simulation variables (default time unit, time
resolution etc.), and elaborations which creates the design structure
(instantiation of the module hierarchy and channels, and port binding etc.). This
function starts or resumes the SystemC scheduler. On return control is returned
to the sc_main() function.

5.4 Function Return
A return of O from sc_rmai n() indicates a normal return.

Example:

int sc_main(int argc, char *argv[ ])
/'l Rest of function not shown

[l Start sinmulation
sc_start(); // run indefinitely

return O;
} I/ end sc_main()

14 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

6 Data types

All C++ data types are supported. In addition SystemC provides types for
describing hardware where C++ data types are insufficient.

The copy constructor always creates a copy of the specified object, which has
the same value and the same word length.

All SystemC data types T support the streaming operator to print it onto a stream.

ostream% operator << ( ostream& T );

6.1 Operators

For SystemC data types the operator symbols always have the same meaning as
they have for the native C++ types.
e Arithmetic
+ Add the two operands.
- Subtract the second operand from the first operand.
* Multiply the two operands.
/ Divide the first operand by the second operand.
% Calculate rest of the division of the first operand by the second operand.
(modulo operation)

e Bitwise
& Calculate the bitwise AND of the two operands.
| Calculate the bitwise OR of the two operands.
A Calculate the bitwise XOR of the two operands.
¢ Arithmetic and bitwise assignment

+= = *= [= Y= &= |= A=

These operators perform the same calculation as the operators above, but they
also assign the result to their first operand.

e |Increment and decrement

++ Increment the operand by one and store the result in the operand.
-- Decrement the operand by one and store the result in the operand.

Both operators are available in a prefix and a postfix variant. While they perform
the same operation, they differ in what is returned. The prefix version performs
the operation first and returns the new value. The postfix version returns the old
value while the new value of the operation is stored in the operand.

15 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

e Equality and relation

== Return true if the operands are equal.

I= Return true if the operands are not equal.

< Return true if the first operand is less than the second operand.

<= Return true if the first operand is less than or equal to the second operand.

> Return true if the first operand is greater than the second operand.

>= Return true if the first operand is greater than or equal to the second operand.

16 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

6.2 Unified String Representation

All data types support a unified string representation. Instances can be converted
to that string representation and read from it. This string starts with a prefix that
describes the format of what follows:

Table 1 — Unified String Representation

sc nunrep | Prefix Meani ng
SC DEC od deci nmal

SC BIN 0 bi nary

SC BIN_US Obus bi nary unsi gned

SC BI N_SM Obsm bi nary sign & magnitude
SC_OCT 0o oct al

SC OCT_US Oous octal unsigned

SC OCT_SM Oosm octal sign & nmgnitude
SC HEX 0x hexadeci nal

SC HEX US Oxus hexadeci mal unsi gned
SC HEX SM Oxsm hexadeci mal sign & nmagnitude
SC CsD Ocsd canoni cal signed digit

This is followed by some signs and digits, compatible with the format specified by
the prefix.

There might be a suffix, denoting the exponent of the number. The exponent
starts with an 'E' or 'e', immediately followed by '+' or '-'. Then some decimal
digits follow, denoting the exponent. The suffix is only valid for the fixed point
data types.

All data types can be converted to an sc_st ri ng with the member function:
sc_string to_string(sc_nunrep nunrep, bool with_prefix)

Where numrep is described in Table 1 above. If with_prefix is false, the resulting
string does not contain a prefix, if it is true, the prefix is created.

6.3 Fixed-Precision Integer Types

The following fixed-precision integer types are provided:
sc_i nt <Ws (Chapter 11.38)
sc_ui nt <Ws (Chapter 11.73)

These types are considered a fixed-precision type because the maximum
precision is limited to 64 bits. The width of the integer type can be explicitly
specified. sc_i nt is a signed integer type in which the value is represented by a
2’'s complement form and all arithmetic is done in 2's complement. sc_ui nt is

17 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

unsigned. The underlying operations use 64 bits, but the result size is
determined by the type declaration.

Bit select, part select, concatenation and reduction operators are supported. The
rightmost bit is the LSB(0), and the leftmost bit is the MSB(width-1).

6.4 Arbitrary Precision Integer Types

The following arbitrary precision integer types are provided:
sc_bi gi nt <W> (Chapter 11.3)
sc_bi gui nt <Wt (Chapter 11.5)

sc_bi gi nt is a signed integer type of any size in which the value is represented
by a 2’s complement form and all arithmetic is done in 2’'s complement.
sc_bi gui nt is an unsigned integer of any size.

Bit select, part select, concatenation and reduction operators are supported. The
rightmost bit is the LSB(0), and the leftmost bit is the MSB(width-1).

6.5 Arbitrary Width Bit Vectors

The arbitrary width bit-vector type is sc_bv<W- (Chapter 11.8 ). This type has
two values:

‘0’, sc_logic 0, Log_0: Interpreted as false
‘1, sc_logic_1, Log_1: Interpreted as true

Single bit values are represented using type bool . The type sc_bv_base
defines a bit vector of any size. More than one bit is represented with the
characters within double quotes (“0011”).

Bit select, part select, concatenation and reduction operators are supported. The
rightmost bit is the LSB(0), and the leftmost bit is the MSB(width-1).

6.6 Logic Type
The logic type is sc_| ogi ¢ (Chapter 11.43 ). This type has four values:

‘0’, sc_logic_0, Log_0: Interpreted as false

‘1, sc_logic_ 1, Log_1: Interpreted as true

‘X, X', sc_logic_X, Log_X: Interpreted as unknown

“Z, 'z2', sc_logic_Z, Log Z: Interpreted as high_impedence

18 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

6.7 Arbitrary Width Logic Vectors

The arbitrary width logic vector type is sc_| v<Ws (Chapter 11.44 ). This type
has four values:

‘0’, sc_logic 0, Log_0: Interpreted as false

‘1, sc_logic_ 1, Log_1: Interpreted as true

‘X, X', sc_logic_X, Log_X: Interpreted as unknown

“Z, ‘7', sc_logic_Z, Log Z: Interpreted as high_impedence

Bit select, part select, concatenation and reduction operators are supported. The
rightmost bit is the LSB(0), and the leftmost bit is the MSB(width-1).

6.8 Fixed-point Types

A fixed-point variable that is declared without an initial value is uninitialized.
Uninitialized variables can be used anywhere initialized variables can be used.
An operation on an uninitialized variable does not produce an error or warning.
The result of such an operation is undefined.

6.8.1 Fixed-Point Format

The fixed-point format used by the fixed-point data types consists of three
parameters: wl, iwl, and enc.
?‘?lofal word length, i.e., the total number of bits
IIn\l’t\lleg.]er word length, i.e., the number of bits left from the binary point
g?gcr{ encoding, i.e., signed (two's complement) and unsigned

The total word length and integer word length parameters are parameters for the
fixed-point types. For the two sign encodings, i.e., signed and unsigned, separate
fixed-point types will be provided.
The binary point (indicated by i Wl ) can be located outside the W bits. This is
explained below.
The fixed-point format can be interpreted according to the following three cases:
iw >w
The number of zeros between the binary point and the LSB of the fixed-point
numberisi w -w . See index 1 in Table 2 for an example of this case.
O<=iw <=w
For examples of this case, see index 2, 3, 4, and 5 in Table 2 .
iw <0
There are -iwl sign extended bits between the binary point and the MSB of the
fixed- point number. Since these are sign extended bits, they are not part of the
actual fixed-point number. For the unsigned types, the sign extended bits are
always zero.
For examples of this case, see index 6 and 7 in Table 2 .

19 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

In all three cases, the MSB in the fixed-point representation of the signed types is
the sign bit. The sign bit can be behind the binary point.

The range of values for a given signed fixed-point format is as follows:
EQ 1 [ _ 2(iw|-1), 2(ivsA-1)_ 2-fvm]

The range of values for a given unsigned fixed-point format is as follows:
EQ2 [0, 2™-2™]

In both equations, f W denotes the fractional word length, i.e., the number of bits
right from the binary point.

Table 2. Examples of Fixed-Point Formats

Index| wl| iw Internal Range Range
| | representation (*) signed unsigned
W iwl
1 5 |7 [xxxxx00. [ - 64, 60] [ 0, 124]
2 5 5 XXXXX. [-16, 15] [0, 31]
3 5 3 XXX. XX [-4,3.75] [0, 7. 75]
4 5 [ X. XXXX [-1,0.9375] [0, 1. 9375]
5 5 |0 . XXXXX [-0.5,0.46875] [ 0, 0.96875]
6 5 2 . SSXxxxx [ -0.125,0.109375] [0, 0. 234375]
7 1 [1 . SX [-0.25,0] [0, 0. 25]
(*) x is an arbitrary binary digit, 0 or 1. s is a sign extended digit, 0 or 1.

6.8.2 Fixed-Point Type Casting

Type casting is essential for fixed-point types. Fixed-point type casting, from now
on referred to as type casting in this chapter, is performed by the fixed-point
types during initialization (declaration) and assignment. Type casting is
performed in two steps:

First, quantization is performed to reduce the number of bits at the LSB (least
significant bit) side, if needed.

Next, overflow handling reduces the number of bits at the MSB (most significant
bit) side, if needed

If the number of bits at the LSB side does not have to be reduced but has to be
extended, then zero extension is used. If the number of bits at the MSB side
does not have to be reduced but has to be extended, then sign extension is used.
For unsigned fixed-point types, sign extension always means zero extension.
One can choose from seven distinct quantization characteristics (from now on
referred to as quantization modes) and five distinct overflow characteristics (from
now on referred to as overflow modes).

20 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

6.8.2.1 Overflow Modes

During overflow handling, bits at the MSB side of a fixed-point number are
deleted if the fixed-point number uses more integer bits than specified by a given
fixed-point format. The result of overflow handling is a function of both the
remaining bits and the deleted bits of the original fixed-point number. The
supported and distinct overflow modes are listed in Table 3.

Table 3. Overflow Modes

Overflow Mode Name
Saturation SC_SAT
Saturation to zero SC_SAT ZERO
Symmetrical saturation SC_SAT _SYM
\Wrap-around (*) SC_WRAP
Sign magnitude wrap-around (*) [SC_WRAP_SM

(*) with O or n_bits saturated bits (n_bits > 0). The default value for n_bits is
0.

For a detailed description of each of the overflow modes, refer to Chapter
6.8.12.1.

21 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

6.8.2.2 Quantization Modes

During quantization, bits at the LSB side of a fixed-point number are deleted if
the fixed-point number uses more fractional bits than specified by a given fixed-
point format. The result of quantization is a function of both the remaining bits
and the deleted bits of the original fixed-point number.

The supported and distinct quantization modes are listed in Table 4.

Table 4. Quantization Modes

Quantization Mode Name
Rounding to plus infinity SC_RND
Rounding to zero SC_RND_ZERO
Rounding to minus infinity SC_RND_MIN_INF
Rounding to infinity SC_RND_INF
Convergent rounding SC_RND_CONV
Truncation SC_TRN
Truncation to zero SC_TRN_ZERO

6.8.3 Fixed-Point Data Types
The following fixed-point data types are provided:

sc_fixed<w ,iw , g node, o_node,n_bits>
sc_ufixed<wl ,iw , q_node, o_node, n_bits>
sc_fix

sc_ufix

Templatized type sc_fixed and unconstrained type sc_fix are signed (two's
complement) types. These types behave the same. The difference between the
two types is that the fixed-point type parameters wl, iwl, g_mode, o_mode, and
n_bits are part of the type in sc_fixed. Unconstrained type sc_fix allows
specifying these parameters as variables, while templatized type sc_fixed
requires that these parameters are constant expressions.

Templatized type sc_ufixed and unconstrained type sc_ufix are unsigned types.
These types behave the same. The difference between the two types is that the
fixed- point type parameters wl, iwl, g_mode, o_mode, and n_bits are part of the
type in sc_ufixed. Unconstrained type sc_ufix allows specifying these parameters
as variables, while templatized type sc_ufixed requires that these parameters are
constant expressions.

22 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

For a description of the initialization, operators, functions, bit and part selection,
querying the parameters, determining the state, and conversion to primitive,
character and SystemC integer types for fixed-point data types see the reference
for each in the class reference section.

sc_fixed (Chapter 11.20)

sc_fix (Chapter 11.18)

sc_fixed_fast (Chapter 11.21)

sc_fix_fast (Chapter 11.19)

sc_ufixed (Chapter 11.71)

sc_ufix (Chapter 11.69)

sc_ufixed_fast (Chapter 11.72)

sc_ufix_fast (Chapter 11.20)

6.8.3.1 Limited Precision Fixed-Point Types

All four fixed-point types are arbitrary precision types. To speed up simulations,
limited precision versions of the four fixed-point types can be used. These limited
precision fixed-point types are:

sc_fixed fast<wl ,iw ,b g _node, o_node, n_bits>
sc_ufixed fast<wl ,iw , g _node, o_node,n_bits>
sc_fix _fast

sc_ufix_fast

The limited precision types provide the same API as the corresponding arbitrary
precision types. This allows an easy exchange between arbitrary precision types
and limited precision types by changing just the types of fixed-point variables.
Furthermore, arbitrary precision types and limited precision types can be mixed
freely. Because the API is the same, the limited precision types are not described
separately.

Limited precision fixed-point types use double precision (floating-point) values
instead of arbitrary precision (floating-point) values. The mantissa of a double
precision value is limited to 53 bits, whereas the mantissa of an arbitrary
precision value is virtually unlimited. This means that bit-true behavior cannot be
guaranteed with the limited precision types.

For bit-true behavior with the limited precision types, the following guidelines
should be followed:

Make sure that the word length of the result of any operation or expression does
not exceed 53 bits.

The result of an addition or subtraction requires a word length that is one bit
more than the maximum aligned word length of the two operands.

The result of a multiplication requires a word length that is the sum of the word
lengths of the two operands.

23 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

6.8.4 Fixed-Point Value Type

Arithmetic and bitwise fixed-point operations are performed according to the
following paradigm:

First, the operations are performed in arbitrary precision.

Next, the necessary type casting is performed.

Type sc_f xval is the arbitrary precision value type. It can hold the value of any
of the fixed-point types, and it performs the arbitrary precision fixed-point
arithmetic operations. Type casting is performed by the fixed-point types
themselves. In cases where arbitrary precision is not needed or too slow, one
can use a limited precision type. Type sc_f xval _f ast is the corresponding
limited precision value type, which is limited to a mantissa of 53 bits. See
Chapter 6.8.3.1. This type has the same API as type sc_f xval . Limited
precision type sc_f xval _f ast and arbitrary precision type sc_f xval can be
mixed freely.

In some cases, such as division, using arbitrary precision would lead to infinite
word lengths. This does not apply to the limited precision type sc_f xval _f ast,
because its precision is already limited, it only applies to sc_f xval .

To limit the resulting word lengths in these cases, three parameters are provided.
See Chapter 11.28 for a complete description of these parameters. Their built-in
default values are given in Chapter 6.8.8.

div_wl - the maximum word length for the result of a division operation.

cte_wl - the maximum word length for the result of converting a decimal
character string constant into a sc_fxval variable.

max_wI - the maximum word length for the mantissa used in a sc_fxval variable.
Caution! Be careful with changing the default values of the div_wl, cte_wl, and
max_wI| parameters, as they affect both bit-true behavior and simulation
performance.

Type sc_f xval is used to hold fixed-point values for the arbitrary precision
fixed-point types. The div_wl, cte_wl, and max_wl parameters should be set
higher than the word lengths used by the fixed-point types in the user code,
otherwise bit-true behavior cannot be guaranteed. On the other hand, these
parameters should not be set too high, because that would degrade simulation
performance. Typically, the max_wl parameter should be set (much) higher than
the div_wl and cte_wl parameters.

The div_wil, cte_wl, and max_wl parameters will be used by the fixed-point value
type sc_fxval, whether used directly or as part of a fixed-point type. By default,
the built-in default values given in Chapter 6.8.8 are used. These default values
can be overruled per translation unit by specifying the compiler flags
SC_FXDIV_WL, SC_FXCTE_WL, and SC_FXMAX_WL with the appropriate
values. For example:

CC -DSC_FXDIV_WL=128 -c my_file.cpp
This compiles my _file.cpp with the div_wl parameter set to 128 bits i.s.0. 64 bits.

24 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

For a description of the initialization, operators, functions, determining the state,
and conversion to primitive, character and SystemC integer types for fixed-point
value types see the reference for each in the class reference section.

sc_fxval (Chapter 11.28)

sc_fxval_fast (Chapter 11.29)

6.8.5 Parameter Types

6.8.5.1 Parameter Type sc_fxtype_param

To configure the type parameters of a variable of fixed-point type sc_fi x, or
sc_ufi x, (and the corresponding limited precision types), a variable of type
sc_f xtype_par ans (Chapter 11.27) can be used. This variable can be passed
as an argument when initializing a fixed-point variable. See Chapters 11.18 and
11.69.

6.8.5.2 Parameter Type sc_fxcast_switch

To configure the cast switch parameter of a fixed-point variable, a variable of
type sc_f xcast _sw t ch (Chapter 11.23) can be used. This variable can be
passed as an argument when initializing a fixed-point variable See Chapters
11.18 and 11.69.

6.8.6 Contexts (informative)

This section is for informative purposes only.
This discussion focuses on the fixed-point types, but the same applies to any
type that requires additional parameters.

During declaration, the fixed-point types need a number of parameters. Most
notably the wl, iwl, o_mode, n_bits, g_mode, and cast_switch parameters. These
parameters have to be set during declaration, and they cannot change anymore
after declaration.

In some cases, it is not possible to specify these parameters. This is the case
when a fixed-point array is declared. In other cases, it becomes cumbersome to
have to specify all parameters with each fixed-point variable declaration.

Let's assume that we allow declarations of fixed-point variables where not always

all parameters are specified. These variables are therefore incompletely specified.
The first problem we face is how to make these variables completely specified. In

essence, there are two solutions:

The parameters that are not specified are set to built-in default values. An
example is a built-in default value of 32 for the wl parameter.

25 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

The parameters that are not specified are fetched from global default values. The
most important property of these global default values is that these values can be
changed during the execution of the program.

The advantage of the first solution is that all fixed-point variable declarations are
actually completely specified, because the unspecified parameters are always
the same.

The disadvantage of the first solution is that fixed-point variable declarations are
not very flexible. If the built-in default values are unsuitable for a particular use,
then the only solution is to specify all parameters with each fixed-point variable
declaration. For arrays, this is not possible.

The disadvantage of the second solution is that fixed-point variable declarations
can indeed be incompletely specified. Exchanging functions with incompletely
specified fixed-point variable declarations has to follow clear rules, such as
indicating what the global default values are that are assumed for the function.

The advantage of the second solution is its flexibility. With global default values
that can be changed, no particular target (e.g. ASIC or DSP) is assumed. Arrays
can be declared with the proper parameters. Furthermore, it is possible to
configure (through the global default values) a particular function without
affecting other functions in the program. Certain behavior for an entire function
can be changed with a single line of code. An example is fixed-point casting.
Within a function, fixed-point casting for all fixed-point variables can be switched
on or off with a single line of code.

With respect to how the global default values can be changed, the second
solution can be refined in two ways:

The user is completely responsible for changing the global default values. It is
possible to set new global default values, with the risk that the behavior of other
functions changes. This means that in almost all cases the old global default
values have to be stored by the user when setting new global default values. The
old global default values have to be restored to make sure that other functions
are not affected.

The user is responsible only for changing the global default values within a
certain part of the program, such as in a certain function and the functions that
are directly and indirectly called from this function. Storing the old global default
values when setting new global default values and restoring the old global default
values is done automatically. This effectively prevents the user from changing the
behavior of functions that are not called directly or indirectly from the actual
function.

26 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

The advantage of the first way is that it is easier to understand and more
appealing to C programmers. The disadvantage of the first way is that the
behavior of other functions can be changed. Clear rules are needed on how to
change the global default values. Enforcement of these rules may be difficult.

The disadvantage of the second way is that it is less easy to understand,
because things that are happening, such as restoring the old global default
values, are not directly visible from the code. The advantage of the second way
is that changing the behavior of other functions, which are not directly or
indirectly called from the actual function, is not possible. An exception is when
new global default values are set outside of the main function.

Contexts currently implement the second way of the second solution. It is
however possible to provide only some of the current functionality. If the first way
of the second solution is more desirable, contexts could provide storage for the
old global default values. The user would still be responsible for restoring the old
global default values

6.8.7 Fixed-Point Context Types

To configure the default behavior of the fixed-point types, a fixed-point context
type can be used. A variable of a fixed-point context type is not passed as an
argument to the fixed-point types.

During declaration of a variable of a fixed-point context type, the values specified
become the new default values. The old default values are stored. When the
variable goes out of scope, the old default values are restored. It is possible to
set the new default values after declaring the context variable. It is also possible
to restore the old default values before the context variable goes out of scope.
Two fixed-point context types are provided: sc_f xt ype_cont ext (Chapter
11.26) and sc_f xcast _cont ext (Chapter 11.22).

27 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

6.8.8 Built-in Default Values

The set of built-in default values for the parameters of the fixed-point types and
the fixed-point value type are listed in Table 5.

Table 5 — Built-in Default Values

Par anet er Val ue

W 32

i wi 32
g_node SC TRN
0_node SC_W\RAP
n bits 0

cast _switch [SC ON
div_w 64

cte w 64
max_w 1024

6.8.9 Conversion to/from Character String

For the fixed-point types and the value types, conversion to and from character
string is supported. Conversion to character string is supported with the
to_string() method. Conversion from character string is supported with
constructors, assignment operators, and binary operators.

6.8.9.1 Conversions to Character String

Conversion to character string of the fixed-point types and the value types is
supported by thet o_stri ng() method. The syntax of this method is:

var_nane.to_string([numep][,fnt])

var _name
The name of the variable, whose value is to be converted to character string.
nunr ep
The number representation to be used in the character string. The numrep
argument is of type sc_nunr ep. Valid values for nunr ep are given in Table
6. The default value for nunr ep is SC_DEC.

28 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Table 6 — Number Representations

Value Description Prefix

SC DEC decimal, sign mangnitude
SC BIN bi nary, two’s conpl enent Ob
SC BI N US bi nary, unsi gned Obus
SC BI N SM bi nary, sign nmagnitude Obsm
SC OCT octal, two's conpl enent 0o
SC OCT_US octal, unsigned Oous
SC OCT_SM |octal, sign nmagnitude Oosm
SC HEX hexadeci mal, two’ s conpl enent 0x
SC HEX US US hexadeci mal , unsi gned Oxus
SC HEX SM | hexadeci mal , sign nagnitude Oxsm
SC_CSD canonical signed digit Ocsd

fnt
Format to use for the resulting character string. The f nt argument is of type
sc_fnt . Valid values forsc_f m are:
SC F fixed
SC E scientific
The default value for f mt is SC_F for the fixed-point types. For type
sc_fxval , the default value for f nt is SC _E.

The selected format gives different character strings only when the binary point is
not located within the wi bits. In that case, either sign extension (MSB side) or
zero extension (LSB side) has to be done (sc_F format), or exponents are used
(sc_e format).

As an example, consider a fixed-point type variable with wi=4 and iw/=6.
Converting the value 20 to a two’s complement binary character string without
prefix results in:

010100 (SC_F fornmat)
010le+2 (SC E format)

In the scientific format, the + (or - ) after the ’ e’ is mandatory.
Theto_string() method returns a value of type const char *. If this return
value is to be stored for later usage, it must be copied. For short lifetime usage,
such as printing, copying is not needed.

The difference between converting fixed-point variables and value variables to
character string is the number of bits printed. For fixed-point variables, at least
the wl bits are printed. For value variables, only those bits are printed that are
necessary to uniquely represent the value.

29 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

EXAMPLE:

sc_fixed<4,2> a = -1,
printf(a.to_string()); // wit
printf(a.to_string(SCBIN)); /

6.8.9.2 Shortcut Methods

For debugging and/or convenience reasons, several shortcut methods to the
to_string method are provided for frequently used combinations of
arguments. The shortcut methods are listed in Table 7.

Table 7 — Shortcut Methods

eS “_ 1”
/ wites “0Obl1. 00"

Short cut net hod Nunber representation
to _dec() SC DEC
to _bin() SC BIN
to oct () SC COCT
to _hex() SC HEX

The shortcut methods use the default format as defined above.

EXAMPLE:
sc_fixed<4,2> a =
printf(a.to_dec()
printf(a.to_bin()

_1’
); I/ wites “-1”
)y; /] wites “0bll. 00"

6.8.9.3 Conversion from Character String

A character string can be used during initialization (declaration), assignment, and
in expressions with fixed-point variables and value variables. The character string
is converted into a value object.
Note:
A character string is seen as value, i.e., the size of the character string is not
used in any way to determine the size of a fixed-point variable.

6.8.9.4 Conversion to/from bit vector Character String

Conversion to and from bit vector character strings is done through part selection.

Conversion to a bit vector character string can be done as follows:
sc_fixed<8,8> a = -1;
printf(a.range(7,0).to_string());

[/ prints “11111111"
cout << a.range(7,0); // ditto

Conversion from a bit vector character string can be done as follows:
sc_fixed<8, 8> a;
a.range(7,0) = “11111111"; // a gets -1

Instead of specifying the full range as arguments to the range() method, the
shortcut without any arguments can be used as well.

30 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

6.8.10 Fixed-Point Array Declaration

When one declares a fixed-point variable, one can specify the appropriate
parameters as constructor arguments. When declaring an array of fixed-point
variables, however, one cannot use this method. C++ does not allow one to
declare an array of a certain type and specify constructor arguments. In this case,
the default constructor is called for each element in the array.

For the fixed-point types sc_fi x and sc_uf i x, this restriction can be
circumvented by specifying the appropriate type parameters up front as default

values with the fixed- point context type sc_f xt ype_cont ext . For example:
sc_fxtype _context c1(16,1, SC RND CONV, SC SAT _SYM ;
sc_fix a[10];

For the fixed-point types sc_fi xed and sc_uf i xed, the type parameters are
part of the type. Hence, an array of these types can be declared in a

straightforward manner. For example:
sc_fixed<32, 32> a[ 10];
sc_ufi xed<16, 1, SC_RND_CONV, SC_SAT_SYM> b[ 4];

Only the cast switch parameter is an optional argument to the constructors of the
fixed- point types. To declare a fixed-point array with casting switched off or with
casting switched with a variable, this requires that the appropriate cast switch
value is specified up front as default value with the fixed-point context type

sc_fxcast _cont ext. For example:
sc_fxcast _context no_casting(SC OFF);
sc_fixed<8, 8> a[ 10];

6.8.11 Observation

For observing fixed-point variables and fixed-point value variables, two
mechanisms are provided. First of all, the SystemC trace functions can be used
with fixed-point variables and fixed-point value variables. Second, observer
abstract base classes are provided as hooks to define one’s own observer
functionality.

The following observer abstract base classes are provided:
sc_fxnum observer
sc_fxnum fast observer
sc_fxval observer
sc_fxval fast _observer

6.8.12 Finite Word length Effects

SystemC implements fixed-point arithmetic, i.e., computations are performed with
a finite number of bits. Because of this, quantization and/or overflow occurs. In
addition to the fixed-point arithmetic, SystemC also provides a number of modes
to deal with these effects.

When applying these quantization and overflow modes, keep in mind that fixed-
point numbers in SystemC can be signed or unsigned. Some overflow and

31 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

quantization modes favor a 2’s complement representation, while others favor a
1’s complement representation.

The quantization and overflow handling process works along the following steps:
An operation is performed with a temporary result type that does not generate
any overflow or quantization effect, i.e., the operation is performed with full
precision.

During fixed-point type casting, the temporary result is quantized as specified.
Note here that overflow may occur.

The appropriate overflow behavior is then applied to the result of the process up
until now, which gives the final value.

6.8.12.1 Overflow Modes

Overflow occurs when a result of an arithmetic operation needs more bits than
can be represented. Specific overflow modes can then be used.

The supported overflow modes are listed in Table 8. They are mutually exclusive.
The default overflow mode is SC_WRAP. When using a wrap-around overflow
mode, the number of saturated bits (n_bi t s) is by default set to 0, but can be
modified.

Table 8 — Overflow Modes

Overfl ow Mode Nane
Sat urati on SC SAT
Saturation to zero SC SAT ZERO
Symmetrical saturation SC SAT SYM
W ap- around (*) SC WWRAP
Si gn magni tude wap-around (*) [SC WRAP SM

(*) with 0 or n_bi t s saturated bits (n_bi t s > 0). The default value forn_bi ts
is 0.

In what follows, each of the overflow modes will be explained in more detail. A
figure will be given to explain the behavior graphically. The x-axis shows the
input values and the y-axis represents the output values. Together they
determine what is called the overflow mode.

In order to facilitate the explanation of each overflow mode, the concepts MIN
and MAX are used:

In case of signed numbers, MIN is the lowest (negative) number that can be
represented; MAX is the highest (positive) number that can be represented with a
certain number of bits. A value x lies then in the range:

2" (= MN ¢ x e+ 2n-1 - 1 (= MAX). n indicates the
nunber of bits.

In case of unsigned numbers, MIN equals 0 and MAX equals 2n - 1.

n indicates the number of bits.

32 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

6.8.12.1.1 Overflow for Signed Fixed-Point Numbers

The following template contains a signed fixed-point number before and after an
overflow mode has been applied and a number of flags which are explained
below. The flags between parentheses indicate additional optional properties of a
bit.

Before: |x x x x x x x X X X X X X X X X X

After: X X X X X X X X X X X X

Flags: sDD D DID sRR(NRIN R R R R R R R R IR

The following flags and symbols are used in the template above and in Table :
x. A binary digit (0 or 1).

sD. Sign bit before overflow handling.

Deleted bits.

ID. Least significant deleted bit.

sR. Bit on the MSB position of the result number. For the SC_ WRAP_SM 0 and
SC_WRAP_SM 1 modes a distinction is made between the original value (sRo)
and the new value (sRn) of this bit.

N. Saturated bits. Their number is equal to the n_bits argument minus 1. They
are always taken after the sign bit of the result number. The n_bits argument is
only taken into account for the SC_WRAP and SC_WRAP_SMoverflow modes.
IN. Least significant saturated bit. This flag is only relevant for the SC_WRAP
and SC_WRAP_SMoverflow modes. For the other overflow modes these bits are
treated as R-bits. For the SC_ WRAP_SM »n_bits > 1 mode, [No represents the
original value of this bit.

R. Remaining bits.

[R. Least significant remaining bit.

There is always overflow when the value of at least one of the deleted bits (sD,
D, ID) is not equal to the original value of the bit on the MSB position of the
result (sRo). For example, a number of type sc_fi xed<31, 11> is castto a
sc_fi xed<28, 8> number. Overflow for Unsigned Fixed-Point Numbers

Bit 27, when we start counting from 0 at the LSB side of the number, equals 1. If

any of the bits 28, 29 or 30 of the initial number equals 0, there is an overflow. In
the other case, all bits except for the deleted bits are copied to the result number.

33 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Table 9 shows how a signed fixed-point number is cast (in case there is an
overflow) for each of the possible overflow modes. The operators used in the
table are “!” for a bitwise negation and “*” for a bitwise exclusive-or.

34 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Table 9 — Overflow Handling for Signed Fixed-Point Numbers

Overflow Mode Result
Sign Bit (sR) |Saturated Bits (N, /IN) Remaining Bits (R, IR)
SC_SAT sD I'sD

The result number gets the sign bit of the original number. The
remaining bits get the inverse value of the sign bit.

SC_SAT_ZERO 0 0

All bits are set to zero.

SC_SAT_SYM sD I sD,

The result number gets the sign bit of the original number. The
remaining bits get the inverse value of the sign bit, except the
least significant remaining bit, which is set to one.

SC_WRAP, (n_bits=)0 |sR X
All bits except for the deleted bits are copied to the result
number.

SC_WRAP, (n_bits=)1 [sD X

The result number gets the sign bit of the original number. The
remaining bits are simply copied from the original number.

SC_WRAP, n_bits > 1 sD I sD X

The result number gets the sign bit of the original number. The
saturated bits get the inverse value of the sign bit of the original
number. The remaining bits are sim ply copied.

SC_WRAP_SM, (n_bits |ID X A sRo " sRn
:) 0

The sign bit of the result number gets the value of the least
significant deleted bit. The remaining bits are exor-ed with the
original and the new value of the sign bit of the result number.

SC_WRAP_SM, (n_bits |sD x A sRo A sRn
:) 1

The result number gets the sign bit of the original number. The
remaining bits are exor-ed with the original and the new value
of the sign bit of the result number.

SC_WRAP_SM, n_bits > [sD I sD X A INo A1 sD
1

The result number gets the sign bit of the original number. The
saturated bits get the inverse value of the sign bit of the original
number. The remaining bits are exor-ed with the original value
of the least significant saturated bit and the inverse value of the

35 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

original sign bit.

6.8.12.1.2 Overflow for Unsigned Fixed-Point Numbers

The following template contains an unsigned fixed-point number before and after
an overflow mode has been applied and a number of flags, which are explained
below.

Before: X X x x xi x x X X X X X X X X X x
After: x X X X X X X X X X X x
Flags: D D D D IDIRRNNRINN RNN R R R R R R R R R

The following flags and symbols are used in the template above and in Table
10:

x. A binary digit (0 or 1).

Deleted bits.

ID. Least significant deleted bit.

N. Saturated bits. Their number is equal to the n_bits argument. The n_bits
argument is only taken into account for the SC_WRAP and SC_WRAP_SM
overflow modes.

R. Remaining bits.

Table 10 shows how an unsigned fixed-point number is cast in case there is an
overflow for each of the possible overflow modes.

36 Copyright 2003 Open SystemC Initiative. All rights reserved




SystemC 2.0.1 Language Reference Manual

Table 10 — Overflow Handling for Unsigned Fixed-Point Numbers

Overflow Mode Result

Saturated Bits (N) Remaining Bits (R)

SC_SAT 1 (overflow) 0 (underflow)

The remaining bits are set to 1 (overflow) or 0 (underflow).

SC_SAT_ZERO 0

The remaining bits are set to 0.

SC_SAT_SYM 1 (overflow) O (underflow)
The remaining bits are set to 1 (overflow) or 0 (underflow).

SC_WRAP, (n_bits =)0 X
All bits except for the deleted bits are copied to the result
number.

SC_WRAP, n_bits >0 1 X

The saturated bits of the result number are set to 1. The
remaining bits are copied to the result number.

SC_WRAP_SM Not defined for unsigned numbers.

During the conversion from signed to unsigned, sign extension occurs before
overflow handling, while in the unsigned to signed conversion, zero extension
occurs first.

37 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

6.8.12.2 SC_SAT

Use the SC_SAT overflow mode to indicate that the output is saturated to MAX in
case of overflow or to MIN in the case of negative overflow. The ideal situation is
represented by the diagonal dashed line, as illustrated in Figure 3.

Figure 3 - Saturation

6 -5 -4-3-24|7123 456
—t—t—t—

A+

EXAMPLE (signed):
You specify a word length of three bits. Figure 3 - Saturation
illustrates the possible values when the SC_SAT overflow mode for signed

numbers is taken into account.
0110 (6)
after saturation: 011 (3)

There is an overflow because the decimal number 6 is outside the range of
values that can be represented exactly by means of three bits. The result is then
rounded to the highest positive representable number, which is 3.

1011 (-5)

after saturation: 100 (-4)

There is an overflow because the decimal number -5 is outside the range of
values that can be represented exactly by means of three bits. The result is then
rounded to the lowest negative representable number, which is -4.

EXAMPLE (unsigned):

The result number is three bits wide.
01110 (14)
after saturation: 111 (7)

The SC_SAT mode corresponds to the SC_ WRAP and SC_WRAP_SMmodes with
the number of bits to be saturated equal to the number of kept bits.

38 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

6.8.12.3 SC_SAT ZERO

Use the SC_SAT_ZEROoverflow mode to indicate that the output is forced to
zero in case of an overflow, that is, if MAX or MIN is exceeded.

Figure 4 — Saturation to Zero

Y+s

+ 4

6 5 4 -3 -2 -1 1 2 3 4 5 6
411

EXAMPLE (signed):
You specify a word length of three bits. Figure 4 — Saturation to Zero
illustrates the possible values for this word length when sc_sat_zerois taken into

account as overflow mode.
0110 (6)
after saturation to zero: 000 (0)

There is an overflow because the decimal number 6 is outside the range of
values that can be represented exactly by means of three bits. The result is

saturated to zero.
1011 (-5)
after saturation to zero: 000 (0)

There is an overflow because the decimal number -5 is outside the range of
values that can be represented exactly by means of three bits. The result is
saturated to zero.

EXAMPLE (unsigned):

The result number is three bits wide.
01110 (14)
after saturation to zero: 000 (0)

39 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

6.8.12.4 SC_SAT _SYM

Use the SC_SAT_SYMoverflow mode to indicate that the output is saturated to
MAX in case of overflow or to -MAX (signed) or MIN (unsigned) in the case of
negative overflow. The ideal situation is represented by the diagonal dashed line,
as illustrated in Figure 5 — Symmetrical Saturation

Figure 5 — Symmetrical Saturation

6 5 -4 -3 -2-1 |12 3 4 5 6
| | | | | | 4 | | |
T T T T T T 7 T T T 1 1

EXAMPLE (signed):
You specify a word length of three bits. Figure 5 illustrates the possible values

when the SC_SAT_SYMoverflow mode for signed numbers is taken into account.
0110 (6)
after symretrical saturation: 011 (3)

There is an overflow because the decimal number 6 is outside the range of
values that can be represented exactly by means of three bits. The result is then
rounded to the highest positive representable number, which is 3.

1011 (-5)

after symretrical saturation: 101 (-3)

There is an overflow because the decimal number -5 is outside the range of
values that can be represented exactly by means of three bits. The result is then
rounded to minus the highest positive representable number, which is -3.

EXAMPLE (unsigned):
The result number is three bits wide.
01110 (14)
after symetrical saturation: 111 (7)

40 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

6.8.12.5 SC_WRAP

Use the SC_WRAP overflow mode to indicate that the output is wrapped around in
the case of overflow. Two different cases are discussed: one with the n_bits
parameter set to 0, and one with the n_bits parameter greater than 0.

SC WRAP, 0

This is the default overflow mode. All bits except for the deleted bits are copied to
the result number.

Figure 6 — Wrap-Around with n_bits =0

. .
1 I —# Pt

9 8 -7 6 5 4 -3 -2 17 1 2 3 4 5 6 7 8 9
. P .

EXAMPLE (signed):
You specify a word length of three bits. Figure 6 illustrates the possible values
for this word length when wrapping around with zero bits is taken into account as

overflow mode and when you use signed numbers.
0100 (4)
after wapping around with 0 bits: 100 (-4)

There is an overflow because the decimal number 4 is outside the range of
values that can be represented exactly by means of three bits. The MSB is
truncated and the result becomes negative: -4.

1011 (-5)
after wapping around with 0 bits: 011 (3)

There is an overflow because the decimal number -5 is outside the range of
values that can be represented exactly by means of three bits. The MSB is
truncated and the result becomes positive: 3

41 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

EXAMPLE (unsigned):

The result number is three bits wide.
11011 (27)
after wapping around with O bits: 011 (3)

SC WRAP, n_bits > 0: SC WRAP, 1

Whenever n_bi t s is greater than 0, the specified number of bits on the MSB
side of the result number are saturated with preservation of the original sign; the
other bits are simply copied. Positive numbers remain positive; negative numbers
remain negative.

Figure 7 — Wrap-Around with n_bits =1

EXAMPLE (signed):

You specify a word length of three bits for the result. Figure 7 — Wrap-Around
with n_bits = 1

illustrates the possible values for this word length when wrapping around with
one bit is taken into account for the overflow mode.

0101 (5)
after wapping around with 1 bit: 001 (1)

There is an overflow because the decimal number 5 is outside the range of
values that can be represented exactly by means of three bits. The sign bit is
kept, so that positive numbers remain positive.

1011 (-5)
after wapping around with 1 bit: 111 (-1)

42 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

There is an overflow because the decimal number -5 is outside the range of
values that can be represented exactly by means of three bits. The MSB is
truncated, but the sign bit is kept, so that negative numbers remain negative.

EXAMPLE (unsigned):
For this example the sc wrap, 3 mode is applied. The result number is five bits
wide. The 3 bits at the MSB side are set to 1; the remaining bits are copied.

0110010 (50)
after wapping around with 3 bits: 11110 (30)

6.8.12.6 SC_WRAP_SM

Use the SC_WRAP_SMoverflow mode to indicate that the output is sign
magnitude wrapped around in the case of overflow. The n_bits parameter again
indicates the number of bits (for example, 1) on the MSB side of the cast number
that are saturated with preservation of the original sign.
Below, you get two different cases of SC_ WRAP_SM

C _WRAP_SMwith parameter n_bits = 0

SC_WRAP_SMwith parameter n_bits > 0

SC_ WRAP SM 0

The MSBs outside the required word length are deleted. The sign bit of the result
number gets the value of the least significant of the deleted bits. The other bits
are inverted in case the original and the new values of the most significant of the
kept bits differ. Otherwise, the other bits are simply copied from the original to the
result number.

Figure 8 — Sign Magnitude Wrap-Around with n_bits =0

y +5

14

+3 o’ .
12 ,f/ .

1 1,,,~"/

& | Il Il Il Il Il (
* T T T T T U
9 8 -7 6 5 4 -3 -2 -1 1 2 3 4 5

O+ e
~N-»

EXAMPLE:

43 Copyright 2003 Open SystemC Initiative. All rights reserved

®co |



SystemC 2.0.1 Language Reference Manual

If you want to cast a decimal number 4 into three bits and you use the overflow
mode SC_WRAP_SM 0, this is what happens:

0100 (4)
The original representation is truncated in order to be put in a three bit number:

100 (-4)

The new sign bit is 0. This is the value of least significant deleted bit.
Because the original and the new value of the new sign bit differ, the values of
the remaining bits are inverted:

011 (3)

This principle can be applied to all numbers that cannot be represented exactly
by means of three bits.

44 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Table 11 - Sign Magnitude Wrap-Around with n_bits = 0 for a Three Bit
Number

Deci mal | Bi nary

8 111

000
6 001
5 010
4 011
3 011
2 010
1 001
0 000
-1 111
-2 110
-3 101
-4 100
-5 100
-6 101
-7 110

SC WRAP_SM n_bits > 0

The first n_bi t s bits on the MSB side of the result number are:
Saturated to MAX in case of a positive number
Saturated to MIN in case of a negative number

Positive numbers remain positive and negative numbers remain negative.

In case n_bits equals 1 the other bits are copied and exor-ed with the original and
the new value of the sign bit of the result number. In case n_bits is greater than 1,
the remaining bits are exor-ed with the original value of the least significant
saturated bit and the inverse value of the original sign bit.

SC WRAP SM n_bits > 0: SC WRAP_ SM 3

The first three bits on the MSB side of the cast number are saturated to MAX or
MIN.

If you want to cast the decimal number 234 into five bits and you use the
overflow mode SC WRAP_SM 3, this is what happens:

45 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

011101010 (234)
The original representation is truncated to five bits:

01010

The original sign bit is copied to the new MSB (bit position 4, starting from bit
position 0):

01010

The bits at position 2, 3 and 4 are saturated; they are converted to the maximum
value you can express with three bits without changing the sign bit:

01110

The original value of the bit on position 2 was 0. The remaining bits at the LSB
side (10) are exor-ed with this value and with the inverse value of the original
sign bit, that is, with 0 and 1 respectively.

01101 (13)
SC WRAP_ SM n_bits > 0: SC WRAP_SM 1

The first bit on the MSB side of the cast number gets the value of the original
sign bit. The other bits are copied and exor-ed with the original and the new
value of the sign bit of the result number.

Figure 9 — Sign Magnitude Wrap-Around with n_bits =1

® o+
1
e 00O
1
~
1
-+
1
o=
1
L
1
W
1
. M__
L,
L
-_—
N--
w1
N
6, NN
(o]
~N-»
Co&

46 Copyright 2003 Open SystemC Initiative. All rights reserved

O+ e



SystemC 2.0.1 Language Reference Manual

If you want to cast the decimal number 12 into three bits and you use the
overflow mode SC_ WRAP_SM 1, this is what happens.

01100 (12)
The original representation is truncated to three bits.
100

The original sign bit is copied to the new MSB (bit position 2, starting from bit
position 0).

000

The two remaining bits at the LSB side are exor-ed with the original (1) and the
new value (0) of the new sign bit.

011

This principle can be applied to all numbers that cannot be represented exactly
by means of three bits.

47 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Table 12 — Sign Magnitude Wrap-around with n_bits = 1 for a Three Bit

Number
Deci mal | Bi nary
9 001
8 000
7 000
6 001
5 010
4 011
3 011
2 010
1 001
0 000
-1 111
-2 110
-3 101
-4 100
-5 100
-6 101
-7 110
-8 111
-9 111

48 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

6.8.12.7 Quantization Modes

Aside from overflow modes, also quantization modes can be used to
approximate a higher precision.

The supported quantization modes are listed in Table . They are mutually
exclusive. The default quantization mode is SC_TRN.

Table 13 — Quantization Modes

Quanti zati on Mode Nane
Rounding to plus infinity |SC RND
Roundi ng to zero SC_RND ZERO
Rounding to minus infinity |[SC RND M N_I NF
Rounding to infinity SC _RND | NF
Conver gent roundi ng SC_RND_CONV
Truncati on SC_TRN
Truncation to zero SC_TRN_ZERO

Each of the following quantization modes is followed by a figure. On the x-axis
you find the input values, on the y-axis the output values. Together they
determine what is called the quantization mode. In each figure, the quantization
mode specified by the respective keyword is combined with the ideal
characteristic. This ideal characteristic is represented by the diagonal dashed line.
Before each quantization mode is discussed in detail, an overview is given of

how the different quantization modes deal with quantization for signed and
unsigned fixed-point numbers.

49 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

6.8.12.7.1 Quantization for Signed Fixed-Point Numbers

The following template contains a signed fixed-point number in 2’'s complement
representation before and after a quantization mode has been applied and a
number of flags. These are explained below.

Before: |[x x x x x X X X Xi X X X X X X
After: X X X X X X X X X

Flags: SR R R R R R R R RmDD D D D D

The following flags and symbols are used in the template above and in Table :
x. A binary digit (0 or 1).
sR. Sign bit.
R. Remaining bits.
[R. Least significant remaining bit.
mD. Most significant deleted bit.
Deleted bits.
r. Logical or of the deleted bits except for the mD bit in the template above.
When there are no remaining bits, r is false. This means that r is false when the
two nearest numbers are at equal distance.

Table 14 shows how a signed fixed-point number is cast for each of the possible
quantization modes in case there is quantization. If the two nearest representable
numbers are not at equal distance, the result is, of course, the nearest
representable number. This can be found by applying the sc_rRND mode, that is, by
adding the most significant of the deleted bits to the remaining bits.

The right hand column in Table contains the expression that has to be added to
the remaining bits. It always evaluates to a one or a zero. The operators used in
the table are “!” for a bitwise negation, ”|” for a bitwise or, and “&” for a bitwise
and.

50 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Table 14 — Quantization Handling for Signed Fixed-Point Numbers

Quanti zati on Expression to Be Added
Mbde
SC_RND nD

Add the nost significant deleted bit to
the renmaining bits.

SC_RND_ZERO m & (sR| r)

If the nost significant deleted bit is 1
and either the sign bit or at |east one
other deleted bit is 1, add 1 to the
remai ning bits.

SC_RND M N_I NF m & r

If the nost significant deleted bit is 1
and at | east one other deleted bit is 1
add 1 to the remaining bits.

SC_RND_| NF m & (! sR| r)

If the nost significant deleted bit is 1

and either the inverted value of the sign

bit or at |east one other deleted bit is
1, add 1 to the remaining bits.

SC_RND_CONV m & (IR] )

If the nost significant deleted bit is 1
and either the | east significant of the
remaining bits or at |east one other
deleted bit is 1, add 1 to the remaining
bits.

SC_TRN 0

Just copy the remaining bits.

SC_TRN_ZERO SR& (mD| r)

If the sign bit is 1, and either the nost
significant deleted bit or at |east one
other deleted bit is 1, add 1 to the
remai ning bits.

51 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

6.8.12.7.2 Quantization for Unsigned Fixed-Point Numbers

The following template contains an unsigned fixed-point number before and after
a quantization mode has been applied, and a number of flags. These are
explained below.

Before: X X X X X X X X Xi X X X X X X
After: X X X X X X X X X
Flags: R R R R R R R R IRmDD D D D D

The following flags and symbols are used in the template above and in Table :
x. A binary digit (0 or 1).
R. Remaining bits.
[R. Least significant remaining bit.
mD. Most significant deleted bit.
Deleted bits.
r. Logical or of the deleted bits except for the mD bit in the template above.
When there are no remaining bits, r is false. This means that r is false when the
two nearest numbers are at equal distance.

Table shows how an unsigned fixed-point number is cast for each of the
possible quantization modes in case there is quantization. If the two nearest
representable numbers are not at equal distance, the result is, of course, the
nearest representable number. This can be found for all the rounding modes by
applying the sc_rRnD mode, that is, by adding the most significant of the deleted
bits to the remaining bits.

The right hand column in Table contains the expression that has to be added to
the remaining bits. It always evaluates to a one or a zero. The “&” operator used
in the table stands for a bitwise and, and the “|” for a bitwise or.

52 Copyright 2003 Open SystemC Initiative. All rights reserved




SystemC 2.0.1 Language Reference Manual

Table 15 — Quantization Handling for Unsigned Fixed-Point Numbers

Quantization Expression to Be Added
Mode
SC_RND mD
Add the most significant deleted bit to the left bits.
SC_RND_ZERO 0
Just copy the remaining bits.
SC_RND_MIN_INF 0
Just copy the remaining bits.
SC_RND_INF mD
Add the most significant deleted bit to the left bits.
SC_RND_CONV mD & (IR | r)

If the most significant deleted bit is 1, and either the
least significant of the remaining bits or at least one
other deleted bit is 1, add 1 to the remaining bits.

SC_TRN 0
Just copy the remaining bits.
SC_TRN_ZERO 0

Just copy the remaining bits.

Note:
For all rounding modes, overflow can occur. One extra bit on the MSB side is
needed to represent the result in full precision.

53 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

6.8.12.7.3 SC_RND

The result is rounded to the nearest representable number by adding the most
significant of the deleted LSBs to the remaining bits. This rule is used for all
rounding modes when the two nearest representable numbers are not at equal
distance. When the two nearest representable numbers are at equal distance,
this rule implies that there is rounding towards +_..

Figure 10 — Rounding to Plus Infinity

A Yy
3q 1 -—-—
29T °-—
—l 9 29 3q X

In Figure 10, the symbol “q” refers to the quantization step, i.e., the resolution of
the data type.
EXAMPLE (signed):

Numbers of type sc_f i xed<4, 2> are assigned to numbers of type
sc_fixed<3, 2, SC_ RND>.

54 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

(1.25)
after rounding to plus infinity: 01.1 (1.5)

There is quantization because the decimal number 1.25 is outside the range
of values that can be represented exactly by means of a

sc_fixed<3, 2, SC_RND> number. The most significant of the deleted
LSBs (1) is added to the new LSB.

10. 11 (-1.25)
after rounding to plus infinity: 11.0 (-1)

There is quantization because the decimal number -1.25 is outside the
range of values that can be represented exactly by means of a
sc_fixed<3, 2, SC_RND> number. The most significant of the deleted
LSBs (1) is added to the new LSB.

EXAMPLE (unsigned):

00100110. 01001111 (38.30859375)
after rounding to plus infinity: 00100110. 0101 (38.3125)

55 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

6.8.12.7.4 SC_RND_ZERO

In case the two nearest representable numbers are not at equal distance, the
SC_RND mode is applied.

In case the two nearest representable numbers are at equal distance, the output
is rounded towards 0. For positive numbers the redundant bits on the LSB side
are deleted. For negative numbers the most significant of the deleted LSBs is
added to the remaining bits.

Figure 11 — Rounding to Zero

AY
39T ——0
201 —
o N EENTIN
-+ 9 29 3q X

EXAMPLE (signed):
Numbers of type sc_f i xed<4, 2> are assigned to numbers of type
sc_fixed<3, 2, SC RND ZERGC>.

(1.25)
after rounding to zero: 01.0 (1)

There is quantization because the decimal number 1.25 is outside the range of
values that can be represented exactly by means of a
sc_fixed<3, 2, SC_ RND _ZERGC> number. The redundant bits are omitted.

10.11 (-1.25)
after rounding to zero: 11.0 (-1)

There is quantization because the decimal number -1.25 is outside the range of
values that can be represented exactly by means of a

sc_fixed<3, 2, SC_ RND_ZERGC> number. The most significant of the omitted
LSBs (1) is added to the new LSB.

56 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

EXAMPLE (unsigned):

000100110. 01001 (38.28125)
after rounding to zero: 000100110. 0100 (38.25)

6.8.12.7.5 SC_RND_MIN_INF

In case the two nearest representable numbers are not at equal distance, the
SC_RND mode is applied.

In case the two nearest representable numbers are at equal distance, there is
rounding towards -] by omitting the redundant bits on the LSB side.

Figure 12 — Rounding to Minus Infinity

AY
3q T —--
21 —%
A VA .
—<e q 29 3q X

—e 1

EXAMPLE (signed):
Numbers of type sc_f i xed<4, 2> are assigned to numbers of type
sc_fixed<3,2,SC_ RND M N_I NF>.

01.01 (1.25)
after rounding to mnus infinity: 01.0 (1)

There is quantization because the decimal number 1.25 is outside the range of
values that can be represented exactly by means of a
sc_fixed<3, 2, SC_ RND M N_I NF> number. The surplus bits are truncated.

10. 11 (-1.25)
after rounding to mnus infinity: 10.1 (-1.5)

There is quantization because the decimal number -1.25 is outside the range of

values that can be represented exactly by means of a
sc_fixed<3, 2, SC_ RND M N_|I NF> number. The surplus bits are truncated.

57 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

EXAMPLE (unsigned):

000100110. 01001 (38.28125)
after rounding to mnus infinity: 000100110. 0100
(38.25)

6.8.12.7.6 SC_RND_INF

In case the two nearest representable numbers are not at equal distance, the
SC_RND mode is applied.

In case the two nearest representable numbers are at equal distance, the output
is rounded to +1 or -], depending on whether the number is positive or negative,
respectively. For positive numbers the most significant of the deleted LSBs is
added to the remaining bits. For negative numbers the surplus bits on the LSB
side are omitted.

Figure 13 — Rounding to Infinity

1 tﬁf
3q 1 -——
2q 1+ --—
——t—t— —
—<et 4 29 3q X
744 1

EXAMPLE (signed):
Numbers of type sc_f i xed<4, 2> are assigned to numbers of type
sc_fixed<3, 2, SC_ RND_| NF>.

01.01 (1.25)
after rounding to infinity: 01.1 (1.5)

There is quantization because the decimal number 1.25 is outside the range of
values that can be represented exactly by means of a

sc_fixed<3, 2, SC_RND I NF> number. The most significant of the deleted
LSBs (1) is added to the new LSB.

10.11 (-1.25)
after rounding to infinity: 10.1 (-1.5)

58 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

There is quantization because the decimal number -1.25 is outside the range of
values that can be represented exactly by means of a
sc_fixed<3, 2, SC_RND | NF> number. The surplus bits are truncated.

EXAMPLE (unsigned):

000100110. 01001 (38.28125)
after rounding to infinity: 000100110.0101 (38.3125)

6.8.12.7.7 SC_RND_CONV

In case the two nearest representable numbers are not at equal distance, the
SC_RND mode is applied.

In case the two nearest representable numbers are at equal distance, there is
rounding towards +[ if the LSB of the remaining bits is 1. There is rounding
towards -, if the LSB of the remaining bits is 0.

Figure 14 — Convergent Rounding

EXAMPLE (signed):
Numbers of type sc_f i xed<4, 2> are assigned to numbers of type
sc_fixed<3, 2, SC_ RND_CONV>.

00. 11 (0.75)
after convergent rounding: 01.0 (1)

There is quantization because the decimal number 0.75 is outside the range of
values that can be represented exactly by means of a

59 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

sc_fixed<3, 2, SC_ RND CONV> number. The surplus bits are truncated and
the result is rounded towards +_.

10.11 (-1.25)
after convergent rounding: 11.0 (-1)

There is quantization because the decimal number -1.25 is outside the range of
values that can be represented exactly by means of a

sc_fixed<3, 2, SC_ RND CONV> number. The surplus bits are truncated and
the result is rounded towards +.

EXAMPLE (unsigned):

000100110. 01001 (38.28125)
after convergent roundi ng: 000100110. 0100 (38.25)

000100110. 01011 ( 38.34375)
after convergent roundi ng: 000100110. 0110 (38.375)

6.8.12.7.8 SC_TRN

SC _TRNis the default quantization mode. The result is rounded towards -], that
is, the superfluous bits on the LSB side are deleted. A number is then
represented by the first representable number that is lower within the required bit
range. In scientific literature it is usually called “value truncation.”

Figure 15 - Truncation

39 + -—
2q + i—
ol £
—
._ q 29 3q X
‘_ T
'_ T
-_ T

EXAMPLE (signed):
Numbers of type sc_f i xed<4, 2> are assigned to numbers of type
sc_fixed<3, 2, SC_ TRN\>.

60 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

01.01 (1.25)
after truncation: 01.0 (1)

There is quantization because the decimal number 1.25 is outside the range of
values that can be represented exactly by means of asc_fi xed<3, 2, SC_ TR\N>
number. The LSB is truncated.

10.11 (-1.25)
after truncation: 10.1 (-1.5)

There is quantization because the decimal number -1.25 is outside the range of
values that can be represented exactly by means of asc_fi xed<3, 2, SC_ TR\N>
number. The LSB is truncated.

EXAMPLE (unsigned):
00100110. 01001111 (38.30859375)
after truncation: 00100110. 0100 (38.25)

6.8.12.7.9 SC_TRN_ZERO

For positive numbers this quantization mode corresponds to SC_TRN. For
negative numbers the result is rounded towards zero (SC_RND_ZERO), that is,
the superfluous bits on the right hand side are deleted and the sign bit is added
to the left LSBs, but only in case at least one of the deleted bits differs from zero.
A number is then approximated by the first representable number that is lower in
absolute value. In scientific literature this is usually called “magnitude truncation.”

Figure 16 — Truncation to Zero

3q + S~
2q + ‘—
ol L
— ——+—+—
— 4 1 a9 29 3q X
— 1
-f,/’ 1

61 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

EXAMPLE (signed):
A number of type sc_fi xed<4, 2> is assigned to a number of type
sc_fixed<3, 2, SC TRN ZERGC>.

10.11 (-1.25)
after truncation to zero: 11.0 (-1)

There is quantization because the decimal number -1.25 is outside the range of
values that can be represented exactly by means of a

sc_fixed<3, 2, SC_ TRN ZERGC> number. The LSB is truncated and then the
sign bit (1) is added at the LSB side.

EXAMPLE (unsigned):

00100110. 01001111 (38.30859375)
after truncation to zero: 00100110.0100 (38.25)

6.9 User-defined types

New data types may be created by using the enum types and struct or class
types. Channels of type sc_fi f 0, sc_si ghal and so forth may be declared to
be of such a type. However in such cases certain functions may be required to
be overloaded for the user-defined type if those functions are used.

For example a channel of type sc_si gnal (Chapter 11.60 )requires the
following to be overloaded:

operator = (assignnent)
operator == (equality)
operator << (stream output)
sc_trace()

62 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

7 Modules

A Module is the basic structural building block in SystemC. It is a container class
in which processes and other modules are instantiated. Modules may contain:
e Ports (Chapter 8.3) for communication
Data members
Channel ( Chapter 8.2 )members
Processes (Chapter 9 )
Member functions not registered as processes
Instances of other modules

7.1 Module structure

A new type of module is created by publicly deriving from class sc_module.
Example:

class ny_nodule : public sc_nmodule { . . . };

Alternatively, a module may be created with use of the SC_MODULE macro as
follows:

SC_MODULE( nodul e_nane) {
/1l ports, data nenbers, nenber functions
/'l processes etc.
SC CTOR(nodul e_nane) { // Constructor
/1 body of constructor
[l process registration, sensitivity lists
/1 nmodul e instantiations, port binding etc.

}
b

711 SC_MODULE

The SC_MODULE macro provides a simple form of module definition. Use of the
SC_MODULE macro is not required. It is defined as follows:

#defi ne SC_MODULE(user _nodul e_nane) \
struct user_nodul e name : sc_nodul e

It simply derives the class user nodul e_nane from the base class
sc_nodul e (Chapter 11.45).

63 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

7.1.2 Module Constructors

Modules (classes derived from sc_module) require a constructor. The macro
SC_CTOR declares a constructor and is provided for convenience.

If the SC_CTOR macro does not meet the needs of the user, for example if a
second constructor argument is required, then the constructor must be explicitly
declared by the user.

If the user explicitly creates the constructor then one argument must be type
sc_nodul e_nane. The sc_nodul e_nane class is used to manage the string
names for (hierarchical) objects.

Example:
SC MODULE( my_nodul e) {

/'l ports, channels, data nenbers

i nt some_paraneter;

/'l processes etc.

nmy_nodul e (sc_nodul e_nanme nane, int sone_val ue):
sc_nodul e( nane) ,
sone_par anet er (sone_val ue){
/1 constructor body

}
b

If a module has processes and the SC_CTOR macro is not used then the module
must contain the SC_HAS_PROCESS macro.

7121 SC_CTOR
The SC_CTOR macro has one argument which is the name of the module.

SC_CTOR provides for the management of the module name.

SC_CTOR declares a special symbol for use with the SC_METHOD (Chapter
9.4 ) and SC_THREAD (Chapter 9.5 ) macros.

7.1.3 SC_HAS_PROCESS

SC_HAS PROCESS is required in the module when the user does not include
the SC_CTOR macro and the module has processes.

SC_HAS_PROCESS declares a special symbol for use with the SC_METHOD
(Chapter 9.4 ) and SC_THREAD (Chapter 9.5) macros.

64 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

7.1.4 Module instantiation

Modules may be instantiated inside of other modules to create hierarchy. To
create a module instance two steps are required, the declaration of the module
and the initialization of the module. A third step, port binding is required if the
module has any ports. It is possible to instantiate a module which has no ports,
which would not require port binding.

There are two valid approaches for module instantiation inside of another module.
One approach uses pointers and the other does not. In the two approaches the
declaration and initialization steps are different but the syntax for port binding is
the same.

A module requires that a string name be provided as part of instantiation. The
string name is not required to match the instance name. The string name is used
by SystemC to assign a hierarchical name to the instance automatically. This
hierarchical name is formed by the concatenation of the parent’s hierarchical
name and the string name of the child.

7.1.41 Module Instantiation Not Using Pointers

71411 Declaration

The module instance is declared as a data member of the parent module.
Example:

SC_MODULE( ex3) {
/'l Ports
sc_fifo_in<int> a;
sc_fifo_out<int> b;
/'l Internal channel
sc_fifo<int> chil;
/1l Instances of nodule types ex1l and ex2
exl ex1l_instance;
ex2 ex2_instance;
/'l Modul e Constructor
SC _CTOR(ex3){
/1l Constructor body not shown

/'l Rest of the nodul e body not shown

65 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

71.41.2 Initialization

The module instance is initialized in the initialization list of the constructor.
Example:

SC_MODULE( ex3) {

/'l Ports

sc_fifo_in<int> a;

sc_fifo_ out<int> b;

/1 Internal channel

sc_fifo<int> chi;

/'l I nstances of nodule type exl and ex2

ex1l ex1l instance;

ex2 ex2_instance;

/'l Modul e Constructor

SC CTOR(ex3):
ex1l instance("exl_ instance"),
ex2_instance("ex2_instance")

/'l Rest of constructor body not shown

/'l Rest of the nodul e body not shown

7.1.4.2 Module Instantiation Using Pointers

7.1.4.21 Declaration

The module instance is declared as a pointer to the module type in the parent
module.
Example:

SC MODULE(ex3) {
/'l Ports
sc_fifo_ in<int> a;
sc_fifo out<int> b;
/'l Internal channel
sc_fifo<int> chi;
/1l Pointers to instances of nodule type exl
/1 and ex2
exl *exl instance;
ex2 *ex2_instance;
/1 Modul e Constructor
SC CTOR(ex3){
/| Constructor body not shown

/'l Rest of the nodul e body not shown

66 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

7.1.4.2.2 Allocation and Initialization

The module instance is allocated using the new command and initialized inside
the body of the constructor.
Example

SC_MODULE( ex3) {

/'l Ports

sc_fifo_in<int> a;

sc_fifo_out<int> b;

/1l I nternal channel

sc_fifo<int> chi;

/'l Pointers to instances of nodul e type exl

/1l and ex2

exl *exl instance;

ex2 *ex2_instance;

/1 Modul e Constructor

SC CTOR(ex3){
/'l allocate and initialize both instances
exl instance = new ex1(”ex1l _in_ex3");
ex2_instance = new ex2("ex2_in_ex3");
/'l Rest of constructor body not shown

/'l Rest of the nodul e body not shown

¥

Objects allocated with new should later be deleted again. This can be done in the
module destructor.
Example:

SC_MODULE( ex3) {
/'l Rest of the nodul e not shown
~ex3() {
del ete ex1l_instance;
del ete ex2_i nstance;
}
3

67 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

7.1.43 Port Binding

Port binding occurs in the body of the constructor. The port binding syntax is the
same for either instantiation approaches (with or without pointers). There are two
different ways of port binding provided: named and positional.

The ports of a child module instance may be bound to a channel instance local to
the parent module or to a port of the parent module.

7.1.4.31 Named Port Binding
Named binding explicitly binds a named port to a channel.

Named binding syntax:
nodul e_i nstance_nane. port _name(channel _or _port nane) ;

Where:

nodul e_i nst ance_nane is the instance name of the module.

port _nane is the name of the port being bound

channel _or _port _nane is either the instance name of the channel or the
name of the parent port the port is being bound to.

Example:
SC_MODULE( ex3) {

sc_fifo_in<int> a;

sc_fifo_out<int> b;

sc_fifo<int> chi;

/'l I nstances of nodul e type exl and ex2

ex1l ex1_instance;

ex2 ex2_instance;

/'l Modul e Constructor

SC CTOR(ex3):
ex1l _instance("exl_instance"),
ex2_instance("ex2_instance")

{
/'l Named connection for exl
exl instance.m(a); // bind to parent port
exl instance.n(chl); // bind to channel
/'l Positional binding for ex2
ex2_instance(chl, b);
/'l Rest of constructor body not shown

}

68 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

7.1.4.3.2 Positional Port Binding

Positional binding connection implicitly binds a port to a channel by mapping the
ordered list of channels and ports to corresponding ports within the module. The
module ports are selected according to their declaration order within the module.

Named connection syntax:
nmodul e_i nstance_nane(channel _or_port_nanel,
channel _or_port_nanme2, ... ) ;

Where:
nodul e_i nst ance_nane is the instance name of the module.
channel _or _port _naneXis either the instance name of the channel or
the name of the parent port the port is being bound to The first channel or
port listed is bound to the first port declared in nodul e_i nst ance_nane,
the second channel or port listed is bound to the second port declared in
nodul e_i nst ance_nane and so forth.

Example:
SC_MODULE( ex3) {
sc_fifo_in<int> a;
sc_fifo_ out<int> b;
sc_fifo<int> chi;
/'l I nstances of nodule type exl and ex2
ex1l ex1l_instance;
ex2 ex2_instance;
/'l Modul e Constructor
SC CTOR(ex3):
ex1l instance("exl instance"),
ex2_instance("ex2_instance")

/1 Nanmed connection for exl

ex1l instance. ma);

ex1l instance.n(chl);

/'l Positional binding for ex2
ex2_instance(chl, b);

/'l Rest of constructor body not shown

69 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

8 Interfaces, Ports & Channels

The basic modeling elements for communication for inter-module communication
consists of interfaces, ports and channels. An interface defines the set of access
functions (methods) for a channel. A channel implements the interface methods.
A port is a proxy object through which access to a channel is facilitated.

8.1 Interfaces

An interface defines a set of (member) functions. It is purely functional, that is it
does not provide the implementation of the functions, but only specifies the
signature of each function. It specifies the name, parameters and return type of
the function but does not specify how the operations are implemented.

There are a number of interfaces provided by SystemC. Future revisions may
provide additional interfaces:

sc_fifo_in_if (Chapter 11.15)

sc_fifo_out_if (Chapter 11.17)

sc_nut ex_i f (Chapter 11.49)

sc_semaphore_if (Chapter 11.49)

sc_signal _in_if (Chapter 11.61)

sc_signal _inout _if (Chapter 11.62)

8.2 Channels

Channels define how the functions (methods) of an interface are implemented.
Channels provide the communication between modules or within a module
provide the communication between processes.

Channels may implement one or more interfaces.

Different channels may implement the same interface in different ways.

There are two general classes of channels: primitive and hierarchical.

There are a number of primitive channels provided by SystemC. Future revisions
may provide additional channels.

sc_buffer (Chapter 11.6)

sc_fifo (Chapter11.12)

sc_nut ex (Chapter 11.47)

sc_senpahor e (Chapter 11.56 )

sc_si gnal (Chapter 11.60 )

sc_signal _resol ved (Chapter 11.63)

sc_signal _rv (Chapter 11.64)

70 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

8.2.1 Primitive Channels

A base class, sc_pri m channel () (Chapter 11.55) is provided from which
primitive channels are derived. A primitive channel is one that supports the
request-update method of access and has no SystemC structures.

sc_pri m channel () provides two methods for implementation of the request-
update scheme. r equest _updat e() is a non-virtual function which can be
called during the evaluate phase of a delta-cycle. This instructs the scheduler
(Chapter 2.4.1 ) to place the channel in an update queue. updat e() is a virtual
function that must be specified by the derived channel as its behavior is
dependent upon the derived channel’s functionality. During the update phase of
the delta-cycle, the scheduler takes the channels from the update queue and
calls updat e() on each of them.

8.2.2 Hierarchical Channels

A channel that has SystemC structures is defined as a hierarchical channel.
Structures may include ports, instances of modules, other channels, and
processes. The channel itself may appear to be a module. This structure
provides for greater flexibility in the definition of a channel in comparison to a
primitive channel.

71 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

8.3 Ports

A port is an object that provides a module with a means for connection and
communication with its surroundings. Through a port a module can
communicate with one or more channels.

A port requires an interface. All ports are directly or indirectly derived from the

template class sc_port (Chapter 11.54 ). An example port declaration is:
SC_MODULE( my_nodul e) {
sc_port<lF, N > port_nane ;

/! rest of nodule not shown

};

sc_port takes two template parameters: an interface (Chapter 8.1 ) | F to
which the port may be connected, and an optional integer N that specifies the
maximum number of interfaces that may be attached to the port.

If N = O then an arbitrary number of interfaces may be connected to the port.
The default value of Nis one. A port of value one is referred to as a simple port.
A port of value greater than one is referred to as a multiport.

A function (interface method) of an interface connected to a port is invoked using
the operator - > which returns a pointer to the interface the port is bound to.
Example:
/'l Gven:
sc_port<sc_signal _in_if<int> > a; //port declaration
/'l then:
a->read();//calls the read() interface nethod
/1 of the channel connected to port a

To access individual interfaces on a multiport the [ ] operator is used.

Example:

/'l Gven:
/1l port declaration, a is bound to two channels
sc_port<sc_signal _in_if<int> 2 > a;

/'l then:
/1l calls the read() interface nethod of the
/1 2™ channel connected to port a
a[ 1] ->read();
/1l calls the read() interface nmethod of the
/1 1% channel connected to port a
a[0]->read(); // or a->read();

72 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

8.3.1 Specialized ports

Specialized ports are ports derived from the base class sc_port which are
customized for use with a particular (set of) interface(s). These ports typically
provide additional support for use with a channel or for ease of use. SystemC
provides several specialized ports. Future revisions may provide additional
specialized ports. The specialized ports include:
Forsc_buffer (Chapter11.6)and sc_si gnal (Chapter 11.60 ) channels

sc_i n (Chapter 11.32)

sc_i nout (Chapter 11.35)

sc_out (Chapter 11.51)

Forsc_fifo (Chapter 11.12 ) channel

sc_fifo_in (Chapter 11.14)

sc_fifo_out (Chapter 11.16 )

For sc_si gnal _rv (Chapter 11.64 ) channel

sc_in_rv (Chapter 11.34)

sc_i nout _rv (Chapter 11.37)

sc_out _rv (Chapter 11.53)

Forsc_si gnal _resol ved (Chapter 11.63 ) channel

sc_in_resol ved (Chapter 11.33)

sc_i nout _resol ved (Chapter 11.36)

sc_out _resol ved (Chapter 11.52))

73 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

9 Processes

Functionality is described in processes. Processes must be contained in a
module.

A process is a member function of a module. It is registered as a process with
the SystemC kernel using a process declaration in the module constructor.

Processes are not called directly from user code. A process is invoked based on
its sensitivity list, which consists of zero, one, or more events, which can change
during simulation run time .

Processes are not hierarchical.

SystemC has two kinds of processes: method processes and thread processes.
Two macros are provided to register a member function as a process:
SC_METHOD and SC_THREAD. Although not strictly required, the use of these
macros is strongly recommended.

During the initialization phase (Chapter 2.3 ) all processes are executed. To
avoid execution of a process during initialization, the dont_initialize() function
(Chapter 11.45) is invoked in the module constructor following the
corresponding process declaration.

9.1 Member Function Declaration

A process is declared as a member function of a module. It has a return type of
voi d and has no arguments.
Example:
SC_MODULE( my_nodul e) {
/I ports, channels etc. not shown
/'l Process function declaration

void ny_proc();
/! rest of nodule not shown

¥

74 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

9.2 Process Declaration and Registration

A member function of a module is declared and registered as a process with the

SystemC kernel using either the SC_METHOD or the SC_THREAD macro. The
declaration occurs in the body of the module constructor. Both macros take one

argument which is the name of the function which is to be declared as a process.
The syntax for the declaration is shown below.

Declaration syntax:
SC_MODULE( ny_nodul e) {
void ny_thread_proc(); //nmenber function declaration
voi d ny_method_proc(); //nmenber function declaration
SC CTOR(nmy_nodul e) {
/'l thread process declaration and registration
SC THREAD( ny_t hread_proc);
/'l method process declaration and registration
SC_METHOD( ny_net hod_pr oc);
/'l rest of constructor not shown

[/ rest of npbdul e not shown

¥

9.3 Process Static Sensitivity

A process is declared as statically sensitive to an event using sensitive in
the module constructor after the process declaration and before the next process
declaration. That is aftera SC_METHOD or SC_THREAD statement and before
the next one.

The static sensitivity list for a particular process is the collection of events
declared in the module constructor for that process.

In the sc_module base class (Chapter 11.45 ) an object named sensi ti ve of
type sc_sensi ti ve (Chapter 11.59 ) is defined for use in creating static
sensitivity lists for processes. Both the () and the << operators are
overloaded for objects of the sc_sensi ti ve class. These operators provide for
both a functional notation and a streaming style notation for defining static
sensitivity lists. These styles are described below.

75 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

9.3.1 Functional Notation Syntax

The functional notation takes a single argument (event ), which is the event the
process is sensitive too.

Syntax:
sensitive(event);

Example:
SC_MODULE( ny_nodul e) {

sc_event c;

void ny_thread_proc();

SC CTOR(nmy_nodul e) {
SC THREAD( ny_t hread_proc);

/1l declare static sensitivity |ist

sensitive(c); [// sensitive to event c

[/ rest of npbdule not shown

¥

If the process is sensitive to more than one event, then multiple sensi ti ve()
statements are required.

Example:
SC_MODULE( ny_nodul e) {

sc_event c;

sc_event d;

void ny_thread_proc();

SC CTOR(nmy_nodul e) {
SC THREAD( ny_t hread_proc);

/1l declare static sensitivity |ist

sensitive(c); // sensitive to event c
sensitive(d); //sensitive to event d

[/ rest of npbdul e not shown

76 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

9.3.2 Streaming Style Notation Syntax

The streaming style notation supports multiple events
sensitive << event 1 << event 2 ... ;

Example:
SC_MODULE( ny_nodul e) {

sc_event c;

sc_event d;

void ny_thread_proc();

SC CTOR(ny_nodul e) {
SC THREAD( ny_t hread_proc);
/1l declare static sensitivity |ist
sensitive << ¢ << d; // sensitive to events ¢ & d

[/ rest of npbdule not shown

¥

9.3.3 Multiple Processes in a Module

When multiple processes are declared, the pattern is declaration followed by
sensitivity list followed by declaration followed by sensitivity list and so on.

Example:
SC_MODULE( ny_nodul e) {
sc_event c, d;
void proc_1();
void proc_2();
voi d proc_3();
SC CTOR(nmy_nodul e) {
SC_THREAD( proc_1);
sensitive << ¢ << d; //proc_1 sensitivetoc &d
SC THREAD(proc_2); // no static sensitivity
SC_THREAD( proc_3);
sensitive << d ; // proc_3 sensitive to d

/! rest of nodule not shown

77 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

9.4 Method Process

When made to run, the entire body of the method process is executed. Upon
completion it returns control to the SystemC kernel. The process does not
maintain its state implicitly, meaning that all local variables are automatic and
lose their value when the function returns. The user must manage process state
explicitly by using state variables that are data members of the module in which
the process resides.

A method process may not be explicitly suspended (may not have calls to
wai t () ).

A method process may use static sensitivity, dynamic sensitivity or both.
Dynamic sensitivity is created using the next _tri gger () function (Chapter
11.45 ) with one or more arguments. The next _tri gger () function may be
called in the body of the method process code, or it may be called in a function
called by the method process that is either a member function of the module or a
method of a channel.

A member function of a module is registered with the SystemC kernel as a
method process using the SC_METHOD macro in the module constructor.

The SC_METHOD macro has one argument. The argument is the name of the
member function to be declared as a method process and registered with the
SystemC kernel.

Example:
SC_MODULE( my_nodul e) {
sc_event c;
/| process nenber function declaration
void ny_nethod _proc();

SC CTOR(nmy_nodul e) {
/'l method process declaration & registration
SC_METHOD( ny_net hod_pr oc);
/'l declare static sensitivity list
sensitive(c); // sensitive to event c
dont _initialize(); // don’t run at initialization

}
// Rest of npdul e not shown

78 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

9.4.1 Method Process Dynamic Sensitivity

When triggered, the entire body of the method process is executed. Execution of
anext _trigger() statement sets the sensitivity for the next trigger for the
method process. It does not cause the method process to end prematurely. The
function next _tri gger () specifies the event, event list or time delay that is the
next trigger condition for the method process.

If multiple next _tri gger (arg) statements are executed, the last one
executed before the method process is finished executing determines the next
trigger condition (i.e. last one wins).

After completion the process is invoked again when the event(s) specified by the
sensitivity list are notified.

9.4.1.1 Trigger on Static Sensitivity List

If the next _tri gger () function is called without an argument, then the next
trigger is the static sensitivity list of the method process. In this case, if there is
no static sensitivity list specified then the method process will not be triggered
again during the simulation. Syntax for triggering on the static sensitivity list:

next _trigger();

9.41.2 Trigger On A Single Event

If the next _trigger() function is called with a single event argument then
the process will be triggered when that event is triggered. Syntax for triggering
on a single event:

sc_event el; /'l event
next _trigger(el);

79 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

9.4.1.3 Trigger After A Specific Amount Of Time

If the next _tri gger () function is called with a time value argument then the
process will be triggered after a delay of the specified time. Syntax for triggering
after a specific amount of time:

sc_tine t(200, SCNS); // variable t of type sc_tinme
next trigger(t); // trigger 200 ns |later
next trigger(200, SCNS); // trigger 200 ns |ater

If the time value argument is zero then the process will be triggered after one
delta-cycle (Chapter 2.4.1 ). Syntax for triggering after one delta-cycle delay:

next trigger( 0, SC NS),
next trigger( SC ZERO TI ME ) ;
/ variable t of type sc_tine
trigger the next delta-cycle
Il ditto

)y: 1/ ditto

sc_time t(0, SCNS); /
next _trigger( t ); 71
next trigger( O, SCN
next trigger( SC ZERO T

\
i

r
)
| ME

9.41.4 Trigger On One Event In A List Of Events

If the next _tri gger () function is called with an OR-list of events then the
process will be triggered when one event in the list of events has been triggered.
Syntax for triggering on one event in a list of events:

sc_event el, e2, e3; /'l events
next _trigger(el | e2 | e3); //trigger on el, e2 or e3

9.4.1.5 Trigger On All Events In A List Of Events

If the next _tri gger () function is called with an AND-list of events, then the
process will be triggered when all events in the list of events have been triggered.
The events do not have to be triggered in the same delta-cycle or at the same
time. Syntax for triggering on all events in a list of events:

sc_event el, e2, e3; /'l events
next _trigger(el & e2 & e3);//trigger on el, e2 and e3

80 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

9.4.1.6 Trigger On An Event In A List Of Events With Timeout

If the next _tri gger () function is called with a combination of a specific
amount of time and an OR-list of events, then the process will be triggered when
one event in the list of events has been triggered or after the specified amount of
time which ever occurs first. Syntax for triggering on one event in a list of events
with timeout:

sc_tine t(200, SCNS); // variable t of type sc_tine
/1l trigger on el, e2, or e3, tineout after 200 ns
next _trigger(t, el | e2 | e3);

/1l trigger on el, e2, or e3, tineout after 200 ns
next _trigger(200, SCNS, el | e2 | e3);

9.4.1.7 Trigger On All Events In A List Of Events With Timeout

If the next _tri gger () function is called with a combination of a specific
amount of time and an AND-list of events then the process will be triggered either
when all events in the list of events have been triggered or after the specified
amount of time which ever occurs first. Syntax for triggering on all events in a list
of events with timeout:

sc_tine t(200, SCNS); // variable t of type sc_tinme
/1l trigger on el, e2, and e3, timeout after 200ns
next _trigger(t, el & e2 & e3);

/1l trigger on el, e2, and e3, tinmeout after 200ns
next trigger(200, SC NS, el & e2 & e3);

9.5 Thread Process

A thread process is invoked only once (during simulation initialization). The
process executes until a wai t () is executed where upon the process is
suspended. Upon suspension the state of the process is implicitly saved. The
process is resumed based upon its sensitivity list. Its State is then restored and
execution of the process resumes from the point of suspension (statement
following wai t () ).

If the body or parts of the body of the thread process are required to be executed
more than once then it must be implemented with a loop, typically an infinite loop.
This ensures that the process can be repeatedly reactivated.

If a thread process does not have an infinite loop and does not call wait() in any
way then the process will execute entirely and exit within the same delta-cycle.

If a thread process does have an infinite loop but does not call wait() in any way

then the process will continuously execute during the same delta-cycle. No other
process will execute.

81 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

A thread process may use static sensitivity, dynamic sensitivity or both. Dynamic
sensitivity is created using the wai t () function (Chapter 11.45). with one ore
more arguments. The wai t () function can be called in the body of the thread
process code, or can be called in a function called by the method process that is
either of a member function of the module or a method of a channel.

A member function of a module is registered with the SystemC kernel as a thread
process using the SC_THREAD macro declaration in the module constructor.

The SC_THREAD macro has one argument. The argument is the name of the
member function that is to be declared as a thread process and registered with
the SystemC kernel.

Example:
SC MODULE( my_nodul e) {
sc_event c;
/'l process nenber function declaration

void my_thread_proc();

SC CTOR(nmy_nodul e) {
/'l thread process declaration & registration
SC METHOD( ny_t hread_proc);
/'l declare static sensitivity |ist
sensitive(c); // sensitive to event c
dont _initialize(); // don’t run at initialization

// Rest of nodul e not shown

¥

9.5.1 Thread Process Dynamic Sensitivity

When triggered, a thread process is executed until awai t () statementis
executed where upon the process is suspended. Execution of awai t ()
statement specifies the sensitivity of a thread process, that is, it specifies the
condition for resuming the thread process.

The wai t () function can be called with different arguments as described in the
following sections.

82 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

9.5.1.1 Resume On Static Sensitivity List

If the wait() function is called without any argument then a thread process is
resumed depending on the static sensitivity list of the thread process. In this
case, if there is no static sensitivity list specified then the thread process will not
be resumed again during the simulation. Syntax for resuming on the static
sensitivity list:

wai t();

9.5.1.2 Resume On A Single Event

If the wait() function is called with a single event argument then the process will
be resumed when that event is triggered. Syntax for resuming on a single event:

sc_event el; /'l event
wait(el);

9.5.1.3 Resume After A Specific Amount Of Time

If the wait() function is called with a time value argument then the process will be
resumed after a delay of the specified time. Syntax for resuming after a specific
amount of time:

sc_tinme t(200, SCNS); // variable t of type sc_tine
wait(t); // trigger 200 ns |later
wait (200, SCNS); // trigger 200 ns |later

If the time value argument is zero then the process will be resumed after one
delta-cycle (Chapter 2.4.1 ). Syntax for resuming after a delta-cycle delay:

sc_tinme t(0, SCNS); // variable t of type sc_tine
wait( t ); // resume after a delta-cycle del ay
wait( 0, SCNS); // ditto

wait( SC ZEROTIME ); // ditto

9.5.1.4 Resume On An Event In A List Of Events

If the wait() function is called with an OR-list of events then the process will be
resumed when one event in the list of events has been triggered. Syntax for
resuming on one event in a list of events:

sc_event el, e2, e3; /'l events
wait(el | e2 | e3); //resune on el, e2 or e3

83 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

9.5.1.5 Resume On All Events In A List Of Events

If the wait() function is called with an AND-list of events then the process will be
resumed when all events in the list of events has been triggered. The events do
not have to be triggered in the same delta-cycle or at the same time. Syntax for
resuming on all events in a list of events:

sc_event el, e2, e3; /'l events
wait(el & e2 & e3);//trigger on el, e2 and e3

9.5.1.6 Resume On An Event In A List Of Events With Timeout

If the wait() functions is called with a combination of a specific amount of time
and an OR-list of events then the process will be resumed either when one event
in the list of events has been triggered or after the specified amount of time which
ever occurs first. Syntax for resuming on one event in a list of events with
timeout:

sc_tine t(200, SCNS); // variable t of type sc_tinme
/] resume on el, e2, or e3, tineout after 200 ns
wait(t, el | e2 | e3);

/] resume on el, e2, or e3, tineout after 200 ns
wait (200, SCNS, el | e2 | el3);

9.5.1.7 Resume On All Events In A List Of Events With
Timeout

If the wait() function is called with a combination of a specific amount of time and
an AND-list of events then the process will be resumed either when all events in
the list of events have been triggered or after the specified amount of time which
ever occurs first.. Syntax for resuming on all events in a list of events with
timeout:

sc_tinme t(200, SCNS); // variable t of type sc_tine
/1l trigger on el, e2, and e3, timeout after 200ns
wait(t, el & e2 & e3);

/1l trigger on el, e2, and e3, timeout after 200ns
wait (200, SC NS, el & e2 & e3);

84 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

10 Utilities

10.1 Mathematical functions

The global functions sc_abs() (Chapter12.1), sc_mi n() (Chapter 12.13)
and sc_max() (Chapter 12.12 ) are provided.

10.2 Utility functions

The following global functions provide information about or the status of the
simulator

sc_copyright() (Chapter12.7)
sc_version() (Chapter12.22)

10.3 Debugging support

10.3.1 Tracing

Tracing data in a channel or the data member of a module consists of three steps:
1) Create a trace file

2) Register the variables to be traced

3) Close the trace file before returning from sc_mai n() .

To create a trace file the global function sc_create_vcd_trace_fil e()
(Chapter 12.4 ) is provided. This function creates a file and returns a pointer to it.
The trace files may be created in the sc_mai n() function or the constructor of a
module. The requirement is that the trace file must be created before the
registration of the variables to be traced.

Registration of the variable to be traced is done using the sc_trace() function
(Chapter 12.21 ). Only variables with a lifetime of the complete simulation may
be traced. This means local variables within a function may not be traced.
SystemC provides built-in support for tracing variables, ports and certain
channels.

To close a trace file the function sc_cl ose_vcd_trace_fil e() (Chapter 12.3)
is provided.

85 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11 Class reference

The class reference is an alphabetical listing of classes. The entry for each
class contains:
e Synopsis
o Pseudo-class declaration

e Description
o Description of the class
o Sample use

¢ Functions and operators
o Description of functionality
e Depending upon the class other information may be provided
o Interfaces implemented by a channel
o Specialized ports associated with the channel
o Disabled member functions

Class Hierarchy. The classes are documented with the inheritance hierarchy
from the reference implementation intact. Unless explicitly noted this inheritance
hierarchy is not required for other implementations.

Base classes. In some cases base classes are referred to but are not
documented. The purpose of these base classes in the reference implementation
is to provide a single point for polymorphic access to derived template classes.
For example, when one of these base classes is specified as an argument type,
it means that any instantiated template class derived from this base class can be
used for that argument. In these cases, the public base class methods are
documented as if they belong to the derived class. These base classes are

showninanital i ¢ font with a superscript dagger ( T ). They are not required
for other implementations.

Member functions are organized in categories according to general use, such
as public methods, public constructors and so forth. The categories are not part
of the C++ language but are used as a way to organize the functions.

Within the general categories member functions are listed alphabetically.
Functions for each class fall into these general types:
e Functions unique to a class. Complete documentation for these functions
are in the class where they occur
e Functions inherited from a documented base class without being redefined.
These functions are not listed in the derived class. Complete
documentation for these functions is in the defining base class.
e Functions inherited from an undocumented base class. Complete
documentation for these functions will be in the derived class.

86 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

e Functions that are redefined in a derived class. Documentation contains
relevant information in the derived class, but may also direct to the base
class.

87 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.1 sc_attr_base

Synopsis
cl ass sc_attr_base

-

public:
/1 constructors & destructor
sc_attr_base( const sc_string& name_ );
sc_attr_base( const sc_attr_base& );
virtual ~sc_attr_base();

/| other nethods
const sc_string& nanme() const;
private:
/1 disabled
sc_attr_base();
sc_attr_base& operator = ( const sc_attr_base& );

b

Description
sc_attr _base is the attribute base class, which provides the key of a
(key,value) attribute. The key (name) is of type sc_st ri ng. Classes derived
from sc_at t r _base should provide the value of a (key,value) attribute.

Public Constructors & Destructor
sc_attr_base( const sc_string& name_ );

Sets the attribute name to nane_.

sc_attr_base( const sc_attr_base& );
Copy constructor.

virtual ~sc_attr_base();
Does nothing but enabling derived classes to define their own virtual

destructors.

Public Member Functions
const sc_string& nanme() const;
Returns a reference to the attribute name.

Disabled Member Functions
sc_attr_base();
Default constructor.

sc_attr_base& operator = ( const sc_attr_base& );
Default assignment operator.

88 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.2 sc_attribute

Synopsis
tenpl ate <class T>
class sc_attribute
public sc_attr_base

1
public:
/1l constructors & destructor
sc_attribute( const sc_string& nane_ );
sc_attribute( const sc_string& nane_,
const T& value_ );
sc_attribute( const sc_attribute<T>& a );
virtual ~sc_attribute();
public:
T val ue;
private:
/] disabled
sc_attribute();
sc_attribute<T>& operator = ( const
sc_attribute<T>& );

1
b
Description

sc_attri but e is atemplate class that describes an attribute. An attribute
has a name and a value. Attributes can be attached to any sc_object.

Example
sc_attribute<int> a( “answer”, 42 );
cout << a.nane() << “,” << a.value; // prints ‘answer, 42’

Public Constructors & Destructor
sc_attribute( const sc_string& name_ );
Sets the attribute name to nane_, default construction for value.

sc_attribute( const sc_string& nane_, const T& value_);
Sets the attribute name to nane_ and val ue to val ue_.

sc_attribute( const sc_attribute<T>& );
Copy constructor.

vi rt ual

~sc_attribute();
Virtual destructor. Does nothing by default.

Public Data Members
T val ue;

89 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Provides direct access to the attribute value.

Disabled Member Functions
sc_attribute();
Default constructor.
sc_attribute& operator = ( const sc_attribute<T>& );
Default assignment operator.

90 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.3 sc_attr_cltn

Synopsis
class sc_attr_cltn

{

public:
[l typedefs
typedef sc_attr_base* el em type;
typedef sc_attr_ base* iterator;

t ypedef const sc_attr_base* const __iterator;

/'l constructors & destructor
sc_attr_cltn();

sc_attr_cltn( const sc_attr_cltn& );
~sc_attr_cltn();

/1 other nethods

bool push_back( sc_attr_base* );

sc_attr_base* operator [] ( const sc_string& nane_ );
const sc_attr_base* operator [] ( const sc_string&
name_ ) const;

sc_attr_base* renpove( const sc_string& nane_ );
void renmove_al |l ();

int size() const ;

iterator begin();

const _iterator begin() const ;

iterator end();

const _iterator end() const ;

private:
/'l disabl ed
sc_attr_cltn& operator = ( const sc_attr_cltn& );
3
Description

sc_attr_cltn isa collection of (pointers to) attributes. All SystemC objects
that inherit from sc_object have an attribute collection available. This allows
users to attach attributes to any such object.

Type Definitions
typedef sc_attr_base* el em type;
typedef sc_attr_base* iterator;
t ypedef const sc_attr_base* const _iterator;

Public Constructors & Destructor
sc_attr_cltn();
Default constructor.

sc_attr_cltn( const sc_attr_cltn& );
Copy constructor.

91 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

~sc_attr_cltn();
Destructor.

Public Member Functions
iterator
begi n() ;
Returns an iterator pointing at the beginning of the collection.

const _iterator
begi n() const;
Returns a const-iterator pointing at the beginning of the collection.

iterator
end() ;
Returns an iterator pointing at the end of the collection.

const iterator
end() const;
Returns a const-iterator pointing at the end of the collection.

iterator
operator []( const sc_string& nanme ) ;

Allows random access to attributes indexed by name. If the name does not
exist, returns 0.

4
const sc_attr _base *
operator []( const sc_string& nane ) const ;
Allows constant random access to attributes indexed by name. If the name
does not exist, returns 0.

bool

push_back( sc_att r_baseJr * new attr ) ;
Appends new_attr to the end of the collection and returns true if the name is
unique. If the name already exists in the collection, the attribute is not
added and the function returns false.

+
sc_attr_base *
remove( const sc_string& nane ) ;
Removes the specified attribute from the collection. Returns a pointer to the
removed attribute, or O if an attribute with the specified name does not exist.

voi d
remove_all () ;
Removes all attributes from the collection.

i nt
size() const ;
Returns the number of attributes stored in the collection.

92 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Disabled Member Functions
sc_attr_cltn&
operator = ( const sc_attr_cltn&);

Default assignment operator.

93 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.4 sc_bigint

Synopsis
cl ass sc_bi gi nt

public sc_signed

public:

94

/1l constructors & destructors

sc_bigint();

sc_bigint( const sc_bigint<W& v );
sc_bigint( const sc_signed& v );

sc_bigint( const sc_signed _subref& v );

tenpl ate <class T1, class T2>;

sc_bigint( const sc_signed concref<Tl, T2>& a );
sc_bigint( const sc_unsigned& v );

sc_bigint( const sc_unsigned subref& v );
tenpl ate <class T1, class T2>;

sc_bigint( const sc_unsigned _concref<Tl, T2>& a );
sc_bigint( const char* v );

sc_bigint( int64 v );

sc_bigint( uinté4 v );

sc_bigint( long v );

sc_bigint( unsigned long v );

sc_bigint( int v );

sc_bigint( unsigned int v );

sc_bigint( double v );

sc_bigint( const sc_bv_base& v );

sc_bigint( const sc_|Iv_base& v );

explicit sc_bigint( const sc_fxval& v );
explicit sc_bigint( const sc_fxval _fast& v );
explicit sc_bigint( const sc_fxnum& v );
explicit sc_bigint( const sc_fxnumfast& v );
~sc_bigint();

/| assignnent operators
sc_bi gi nt <W-& operator = ( const sc_bigint<W& v );
sc_bi gi nt <W-& operator = ( const sc_signed& v );
sc_bi gi nt <W-& operator = (const

sc_signed _subref& v );
tenpl ate <class T1, class T2>
sc_bi gi nt <W-& operator = ( const

sc_signed _concref<Tl, T2>& a );
sc_bi gi nt <W-& operator = ( const sc_unsigned& v );
sc_bi gi nt <W-& operator = ( const

sc_unsi gned_subref& v );
tenpl ate <class T1, class T2>
sc_bi gi nt <W-& operator = ( const

sc_unsi gned_concref<T1, T2>& a );
sc_bi gi nt <Wt& oper at or const char* v );

sc_bi gi nt <W-& oper at or intéd4 v );
sc_bi gi nt <W-& oper at or uintés4 v );
sc_bi gi nt <W-& oper at or long v );

I n
NSNS

sc_bi gi nt <W-& oper at or unsigned long v );

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Sc_bi gi nt <We& operator = ( int v );
sc_bi gi nt <W,& operator = ( unsigned int v );
sc_bi gi nt <W-& operator = ( double v );
sc_bi gi nt <W-& operator = ( const sc_bv_base& v );
sc_bi gi nt <W-& operator = ( const sc_|v_base& v );
sc_bi gi nt <W-& operator = ( const sc_int_base& v );
sc_bi gi nt <W-& operator = ( const sc_uint_base& v );
sc_bi gi nt <W-& operator = ( const sc _fxval& v );
sc_bi gi nt <W-& operator = ( const sc_fxval _fast& v );
sc_bi gi nt <W-& operator = ( const sc_fxnum& v );
sc_bi gi nt <W-& operator = ( const sc_fxnumfast& v );
3
Description

sc_bi gi nt <W is an arbitrary sized signed integer. The word length is built
into the type and can never change. Methods allow for addressing an
individual bit or a sub range of bits.

Example
SC_MODULE( my_nodul e) {
/1l data types
SC_ui nt<3> a;
SC_ui nt <44> b;
sc_bi gi nt <88> c;
sc_bigi nt<123> d;
/'l process
void nmy_proc();

SC _CTOR( ny_nodul e)
a(0), // init
c(7654321) // init

33; // set value

2300; // set val ue

C_THREAD( ny_pr oc);

b

d

S
}

};

void my_nodul e::ny_proc() {

a = 1,
b[30] = a[0];

cout << b.range(7,0) << endl;
cout << ¢ << endl;
d[ 122] = b;

wai t (300, SC_NS);
sc_stop();

95 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Public Constructors
sc_bigint();
Create an sc_bi gi nt instance with an initial value of 0.

sc_bigint( T a) ;
T in { sc_bigint<Ws, sc_[un]signed_subref T,
sc_[un] si gned_concr ef T, const char*, [u]int64,
[ unsi gned] |ong, [unsigned] int, double, sc_bv_base,
sc_|v_base, sc_fxval, sc fxval _fast, sc_fix[ed][_fast]}
Create an sc_bi gi nt with value a. If the word length of a is greater then W,
a gets truncated to W bits.

Copy Constructor
sc_bigint( const sc_bigint&) ;

Methods

bool
i szero() const ;

Return true if the value of the sc_bi gi nt instance is zero.

i nt
| ength() const ;
Return the word length.

voi d
print( ostrean& os = cout ) const ;
Print the sc_bi gi nt instance to an output stream.

voi d

reverse() ;
Reverse the contents of the sc_bi gi nt instance. l.e. LSB becomes MSB
and vice versa.

voi d
scan( istream& is = cin ) ;
Read an sc_bi gi nt value from an input stream.

bool
sign() const ;
Return f al se.

Assignment Operators
sc_bi gi nt <W-& operator = ( T ) ; )
Tin { sc_bigint<W, sc_[un]signed subref,
sc_[un] si gned_concr ef T, const char*, [u]int64,

[ unsi gned] |ong, [unsigned] int, double, sc_bv_base,
sc_|v_base, sc_fxval, sc fxval fast, sc fix[ed][ _fast]}

96 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Assign the value of the right-hand side to the left-hand side. The value is
truncated, if its word length is greater than W.

Increment and Decrement Operators
sc_bi gi nt <W-& operator ++ ()
const sc_bi gi nt <Wt oper at or - (int ) ;

The operatlon is performed as done for type unsigned int.

sc_bi gi nt <W-& operator -- () ;
const sc_bigint<Ws operator -- ( int ) ;
The operation is performed as done for type unsigned int.

Bit Selection
sc_signed_bitref ! operator [] ( int i ) ;
sc_signed_bitref P operator [] ( int i ) const ;
sc_si gned_bi trefT bit( int i) ;
sc_signed_bitref r bit( int i) const ;

Return a reference to a single bit at index i.

Part Selection
sc_si gned_subr ef ! range( int high, int low)
sc_signed_subref - range( int high, int low) const
sc_signed_subr efT operator () ( int high, int low)
sc_si gned_subr ef _rT operator () ( int high, int low)
const
Return a reference to a range of bits. The MSB is set to the bit at position
high, the LSB is set to the bit at position low.

Explicit Conversion
double to_double() const ;

i nt to_int() const ;

i nt 64 to_int64() const ;

| ong to long() const ;

uint64 to_uint64() const ;

unsi gned i nt to_uint() const ;

unsi gned | ong to_ulong() const ;

Converts the value of sc_bigint instance into the corresponding data type. If
the requested type has less word length than the sc_bigint instance, the
value gets truncated accordingly. If the requested type has greater word
length than the sc_bigint instance, the value gets sign extended, if
necessary.

to string( sc_nunrep = SC DEC ) const

to_string( sc_nunrep, bool ) const
Convert the sc_bigint instance into its string representation.

97 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Arithmetic Operators
friend sc_bigint operator OP ( sc_biguint
friend sc_bigint operator OP ( sc_bigint ,
sc_biguint )friend sc_bigint operator OP ( sc_bigint,
sc_bigint ) ;
friend sc_bigint operator OP ( sc_bigint , T) ;
friend sc_bigint operator OP ( T, sc_bigint )
OPin{ +-*/ %N&| " ==1=<<=>>=}
Tin { sc [u]int_base, [u]int64, [unsigned] |ong,
[unsigned] int}
The operation OP is performed and the result is returned.

, SC_bigint )

sc_bigint& operator OP (T)
OPin{ +=-=*= /=0 & |= "=} ;
Tin { sc_[un]signed, sc [u]int _base, [u]int64, [unsigned]
| ong, unsigned] int }
The operation OP is performed and the result is assigned to the left hand
side.

Shift Operators

friend sc_biguint operator OP ( sc_biguint a , sc_bigint

b);

friend sc_bigint operator OP ( sc_bigint a, sc_bigint b );
friend sc_bigint operator OP ( sc_bigint a, T b );
in{ << >}

in{ sc_[u]int_base, [u]int64, [unsigned] |ong,

[ unsigned] int }
Shift a to the left/right by b bits and return the result.

sc_bigint& operator OP ( T i );
OPin { <<= >>=}
Tin { sc_[un]signed, sc_[u]int_base, [u]int64, [unsigned]
l ong, [unsigned] int } ;
Shift the sc_bigint instance to the left/right by i bits and assign the result to
the sc_bigint instance.

Bitwise not
friend sc_bigint
operator ~ ( sc_bigint a);
Return the bitwise not of a;

98 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.5 sc_biguint

Synopsis
cl ass sc_bi gui nt
public sc_unsi gned

public:
/'l constructors
sc_biguint();
sc_biguint( const sc_biguint<W& v );
sc_biguint( const sc_unsigned& v );
sc_biguint( const sc_unsigned subref& v );
tenpl ate <class T1, class T2>;
sc_biguint( const sc_unsigned _concref<Tl, T2>& a );
sc_biguint( const sc_signed& v );
sc_biguint( const sc_signed_subref& v );
tenpl ate <class T1, class T2>;
sc_biguint( const sc_signed_concref<Tl,T2>& a );
sc_biguint( const char* v );
sc_biguint( int64 v );
sc_biguint( uint64 v );
sc_biguint( long v );
sc_biguint( unsigned long v );
sc_biguint( int v );
sc_biguint( unsigned int v );
sc_biguint( double v );
sc_biguint( const sc_bv_base& v );
sc_biguint( const sc_|v_base& v );
explicit sc_biguint( const sc_fxval& v );
explicit sc_biguint( const sc_fxval _fast& v );
explicit sc_biguint( const sc_fxnum& v );
explicit sc_biguint( const sc_fxnumfast& v );
~sc_biguint();

/| assignnent operators
sc_bi gui nt <Wk& oper at or ( const sc_bigui nt<W& v);
sc_bi gui nt <Wk& oper at or ( const sc_unsigned& v );
sc_bi gui nt <W-& oper at or ( const

sc_unsi gned_subref& v );
tenpl ate <class T1, class T2>
sc_bi gui nt <W-& operator = ( const

sc_unsi gned_concref<T1, T2>& a );
sc_bi gui nt <Wt& operator = ( const sc_signed& v );
sc_bi gui nt <W-& operator = ( const

sc_signed _subref& v );
tenpl ate <class T1, class T2>
sc_bi gui nt <W-& operator = ( const

sc_signed _concref<Tl, T2>& a );
sc_bi gui nt <W-& oper at or const char* v ) ;

sc_bi gui nt <Wt& oper at or intéd4 v );
sc_bi gui nt <Wt& oper at or uintés4 v );
sc_bi gui nt <Wt& oper at or long v );

I n
NSNS

sc_bi gui nt <Wt& oper at or unsigned long v );

99 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

¥

nt <Wk&
nt <Wk&
nt <Wk&
nt <Wk&
nt <Wk&
nt <Wk&
nt <Wk&
nt <Wk&
nt <Wk&
nt <Wk&
nt <Wk&

sc_bi gui
sc_bi gui
sc_bi gui
sc_bi gui
sc_bi gui
sc_bi gui
sc_bi gui
sc_bi gui
sc_bi gui
sc_bi gui
sc_bi gui

oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or

Description

NN NANAN NN NN NN

int v) ;

unsigned int v ) ;
double v );

const sc_bv_base& v );
const sc_lv_base& v );
const sc_int_base& v );
const sc_uint_base& v );
const sc_fxval& v );
const sc_fxval _fast& v);
const sc_fxnum& v );
const sc_fxnumfast& v);

sc_bi gui nt <Wt is an arbitrary sized unsigned integer. The word length is
built into the type and can never change. Methods allow for addressing an
individual bit or a sub range of bits.

Example
SC_MODULE( my_nodul e) {

b

/1l data types
SC_ui nt<3> a;
SC_ui nt <44> b;
sc_bi gui nt <88> c;
sc_bi gui nt <123> d;

/'l process
void nmy_proc();

SC _CTOR( ny_nodul e)
a(0), // init
c(7654321) // init

33; // set value

2300; // set val ue

C_THREAD( ny_pr oc);

b
d
S
}

void nmy_nodul e::ny_proc() {

100

a = 1,
b[ 30]

a[ 0] ;

cout << b.range(7,0) << endl;

cout << ¢ << endl;
d[ 122] b;

wai t (300, SC_NS);
sc_stop();

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Public Constructors
sc_biguint();
Create an sc_bi gui nt instance with an initial value of 0.

sc_biguint( T a) ;
T in { sc_biguint<Ws, sc_[un]signed_subref T,
sc_[un] signed_concref , const char*, [u]int64,
[ unsi gned] |ong, [unsigned] int, double, sc_bv_base,
sc_|v_base, sc_fxval, sc fxval _fast, sc_fix[ed][_fast]}
Create an sc_bi gui nt with value a. If the word length of a is greater then
W, a gets truncated to W bits.

Copy Constructor
sc_biguint( const sc_biguint& ) ;

Methods

bool
i szero() const ;

Return true if the value of the sc_bi gui nt instance is zero.

i nt
| engt h() const ;
Return the word length.

voi d
print( ostrean& os = cout ) const ;
Print the sc_bi gui nt instance to an output stream.

voi d

reverse() ;
Reverse the contents of the sc_bi gui nt instance. l.e. LSB becomes MSB
and vice versa.

voi d
scan( istream& is = cin ) ;
Read an sc_bi gui nt value from an input stream.

bool
sign() const ;
Return false.

Assignment Operators
sc_bi gui nt <W&
operator = ( T ) ; "
T in { sc_biguint<Ws,, sc_[un]signhed subref |,
sc_[un] signed_concref , const char*, [u]int64,
[ unsi gned] |ong, [unsigned] int, double, sc_bv_base,
sc_lv_base, sc_fxval, sc_fxval _fast, sc_fix[ed][_fast]}

101 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Assign the value of the right-hand side to the left-hand side. The value is
truncated, if its word length is greater than W.

Arithmetic Assignment Operators

sc_bi gui nt <W&

operator OP ( uint64 ) ;

OPin{ += -=*=/= % }
The operation of OP is performed and the result is assigned to the lefthand
side. If necessary, the result gets truncated.

Bitwise Assignment Operators
sc_bi gui nt <W&
operator OP ( uint64 ) ;
OPin{ & |= "= <<= >>=}
The operation of OP is performed and the result is assigned to the left hand
side. The result gets truncated.

Prefix and Postfix Increment and Decrement Operators
sc_bi gui nt <Wk& operator ++ () ;
const sc_bigui nt<Ws- operator ++ ( int ) ;
The operation of OP is performed as done for type unsigned int.

sc_bi gui nt <Wt& operator -- () ;
const sc_bigui nt<W operator -- ( int ) ;
The operation is performed as done for type unsigned int.

Relational Operators
friend bool operator OP (sc_biguint, sc_biguint ) ;
OD|n{ ::!=<<=>>=}
These functions return the boolean result of the corresponding equality/
inequality check.

Arithmetic Operators
friend sc_biguint operator OP ( sc_biguint, sc_biguint ) ;
friend sc_biguint operator OP ( sc_biguint , T) ;
friend sc_biguint operator OP ( T, sc_biguint ) ;
oPin{ +-*/] %&| N ==1=
Tin { sc_[u]int_base, [u]int64, [unsigned] |ong,
[ unsigned] int }
The operation OP is performed and the result is returned.

sc_biguint& operator OP (T)
OPin{ +=-=*=/=U% & |= "=} ;
Tin { sc_[un]signed, sc [u]int _base, [u]int64, [unsigned]
[ ong, [unsigned] int }
The operation OP is performed and the result is assigned to the left hand
side.

102 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Shift Operators
friend sc_biguint operator OP ( sc_biguint a, sc_biguint
b );
friend sc_biguint operator OP ( sc_biguint a, T b );

e

OPin{ << >

Tin { sc [u]int_base, [u]int64, [unsigned] |ong,
[unsigned] int }

Shift a to the left/right by b bits and return the result.

sc_biguint& operator OP ( T i );
OPin{ <<= >>=}
Tin { sc_[un]signed, sc [u]int _base, [u]int64, [unsigned]
l ong, [unsigned] int } ;
Shift the sc_bi gui nt instance to the left/right by i bits and assign the result
to the sc_bi gui nt instance.

Bitwise not
friend sc_biguint
operator ~ ( sc_biguint a);
Return the bitwise not of a;

Bit Selection
sc_unsi gned_bitref ! operator [] ( int i ) ;
sc_unsi gned_bitref 1L_rJr operator [] ( int i ) const ;
sc_unsi gned_bi tref bit( int i) ;
sc_unsi gned_bitref _rJr bit( int i) const ;

Return a reference to a single bit at index i.

Part Selection
sc_unsi gned_subr ef ! range( int high, int low)
sc_unsi gned_subr ef P range( int high, int low) const
sc_unsi gned_subr efjr_ operator () ( int high, int low)

sc_unsi gned_subr ef _rJr operator () ( int high, int low)
const
Return a reference to a range of bits. The MSB is set to the bit at position
high, the LSB is set to the bit at position low.

Explicit Conversion
double to_double() const ;

i nt to_int() const ;

i nt 64 to_int64() const ;

| ong to long() const ;

uinté4 to_uint64() const ;

unsi gned i nt to_uint() const ;

unsi gned | ong to_ulong() const ;

103 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Converts the value of sc_biguint instance into the corresponding data type.
If the requested type has less word length than the sc_biguint instance,

the value gets truncated accordingly. If the requested type has greater word
length than the sc_bi gui nt instance, the value gets sign extended, if
necessary.

to _string( sc_nunrep = SC DEC ) const
to string( sc_nunrep, bool ) const

104

Convert the sc_Dbi gui nt instance into its string representation.

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.6 sc_bit
Synopsis
class sc_bit
{
publi c:
/'l const
sc_bit()
explicit
explicit
explicit
explicit
~sc_bit(

105

ructors
"sc_bit(
sc_bit(
sc_bit(
sc_bit(
);

& destructor

bool a );
int a);
char a );

const sc _logic& a );

/1 copy constructor
sc_bit( const sc_bit& a );

/| assignment operators
( const sc_bit& b );

sc_bit& operator =

sc_bit& operator = ( int b );
sc_bit& operator = ( bool b );
sc_bit& operator = ( char b );
sc_bit& operator = (

/1l bitw se assignnent operators
sc_bit& operator &= (

sc_bit& operator & ( int b );
sc_bit& operator &= ( bool b );
sc_bit& operator & ( char b );
sc_bit& operator | = (

sc_bit& operator |= ( int b );
sc_bit& operator |= ( bool b );
sc_bit& operator |= ( char b );
sc_bit& operator "= (

sc_bit& operator "= ( int b );
sc_bit& operator "= ( bool b );
sc_bit& operator = ( char b );
[l inplicit conversion to bool
operator bool () const ;

bool operator ! () const ;

const sc logic& b );

const sc_bit& b );

const sc_bit& b );

const sc_bit& b );

/1l explicit conversions

bool

to_bool () const

char to_char() const

[/ relat

friend bool

sc_bit&

friend bool
friend bool
friend bool
friend bool

i onal

b);

oper at or
oper at or
oper at or
oper at or

I
1
AUNNNAN

const

const
const
const
int a,

operators and functions
oper at or

sc_bit& a, const

sc_bit& a, int b);
sc_bit& a, bool b );
sc_bit& a, char b );

const sc_bit& b );

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

106

friend
friend
friend
friend
friend
friend
friend
friend
friend
friend

bool
bool
bool
bool
bool
bool
bool
bool
bool
bool

sc_bit& b );

friend
friend
friend
friend
friend
friend
friend
b);

friend
friend
friend
friend
friend
friend

bool
bool
bool
bool
bool
bool
bool

bool
bool
bool
bool
bool
bool

operator == ( bool a, const sc_bité&
operator == ( char a, const sc_bité&
equal ( const sc_bit& a, const sc_bit
equal ( const sc_bit& a, int b);

equal ( const sc_bit& a, bool b );
equal ( const sc_bit& a, char b );
equal ( int a, const sc_bit& b );
equal ( bool a, const sc_bit& b );
equal ( char a, const sc_bit& b );
operator != ( const sc_bit& a, const
operator != ( const sc_bit& a, int b );
operator != ( const sc_bit& a, bool
operator != ( const sc_bit& a char
operator !'= ( int a, const sc_bit& b );
operator != ( bool a, const sc bit&b
operator != ( char a, const sc_bit&b
not _equal ( const sc blt& a, const sc_b
not _equal ( const sc_bit& a, int b );
not equal ( const sc_bit& a, bool b );
not equal ( const sc_bit& a, char b );
not _equal ( int a, const sc_bit& b );
not _equal ( bool a, const sc_bit& b );
not _equal ( char a, const sc_bit& b );

/1l bitw se conpl enent
friend const sc_bit operator ~ ( const sc_bit& a );
sc_bit& b_not();

friend void b_not( sc_bit&r,

const sc_bit& a );

friend const sc_bit b _not( const sc _bit& a );

/] bitw se or

friend

const

sc_bit& b );

frlend

const

const

const

const

const

const

const

sc_bit& b );

friend
friend
friend
friend
friend

const
const
const
const
const

sc_hit
sc_hit
sc_hit
sc_hit
sc_hit
sc_hit
sc_hit
sc_hit
sc_hit
sc_hit
sc_hit

sc_hit
sc_hit

oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
b_or(
b_or(
b_or(
b_or(

b_or(
b_or(

const

const
const
const
int a,
bool

sc_bit& a,

sc_bit& a,

const
const
const
const
int a,
bool a,

char a,

sc_bit& a,
sc_bit& a,
sc_bit& a,

sc_bit& a,

)i
)i
b);

b );
)
it&

const
i nt
bool

char

const sc_bit&

const sc_bit&

const sc_bit&

const

sc_bit& a, boo

sc_bit& a,
const sc_bit& b );
const sc bit& b

a,

char

Copyright 2003 Open SystemC Initiative. All rights reserved

int b);

N N

)



SystemC 2.0.1 Language Reference Manual

friend const sc_bit b_or( char a, const sc_bit& b );
friend void b_or( sc_bit& r, const sc_bit& a, const
sc_bit& b );

friend void b_or( sc_bit& r, const sc_bit&a, int b);
friend void b _or(sc_bit&r, const sc_bit& a, bool b );
friend void b_or( sc_bit& r, const sc_bit& a, char b );
friend void b_or( sc_bit&r, int a, const sc_ bit& b );
friend void b _or( sc_bit& r, bool a, const sc_bit& b );
friend void b _or( sc_bit& r, char a, const sc_bit& b );

/1l bitw se and
friend const sc_bit operator & ( const sc_bit& a, const

sc_bit& b );

friend const sc_bit operator & ( const sc_bit& a, int
Pr?énd const sc_bit operator & ( const sc_bit& a, bool
Pr?énd const sc_bit operator & ( const sc_bit& a, char
Pr?énd const sc_bit operator & ( int a, const sc_bité&
Pr?énd const sc_bit operator & ( bool a, const sc_bit&
Pr?énd const sc_bit operator & ( char a, const sc_bit&
Pr?énd const sc_bit b_and( const sc_bit& a, const
sc_bit& b );

friend const sc_bit b_and( const sc_bit&a, int b);
friend const sc_bit b_and( const sc_bit& a, bool b );
friend const sc_bit b_and( const sc_bit& a, char b )
friend const sc_bit b_and( int a, const sc_bit& b );
friend const sc_bit b_and( bool a, const sc_bit& b );
friend const sc_bit b_and( char a, const sc_bit& b );
friend void b_and( sc_bit& r, const sc_bit& a, const
sc_bit& b );

friend void b_and( sc_bit&
friend void b_and( sc_bit&
friend void b_and( sc_bit&
friend void b_and( sc_bit&
friend void b_and( sc_bit&
friend void b_and( sc_bit&

, const sc_bit& a, int b);
, const sc_bit& a, bool b);
, const sc_bit& a, char b);
, int a, const sc_bit& b );
, bool a, const sc_bit& b);
, char a, const sc_bit& b);

—_—— = = =y

[l bitw se exor

friend const sc_bit operator *
sc_bit& b );

friend const sc_bit operator *

)
|

const sc_bit& a, const
const sc _bit& a, int

[
)

(
(

nd const sc_bit operator  ( const sc_bit& a, bool
( const sc_bit& a, char
(

nd const sc_bit operator 7 int a, const sc_bit&

b
frie
b);
friend const sc_bit operator *
b);
frie
b);

i
)

107 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

friend const sc_bit operator ~ ( bool a, const sc_bit&
b);

friend const sc_bit operator » ( char a, const sc_bit&
b);

friend const sc_bit b_xor( const sc_bit& a, const
sc_bit& b );

friend const sc_bit b_xor( const sc_bit&a, int b);
friend const sc_bit b_xor( const sc_bit& a, bool b
friend const sc_bit b_xor( const sc_bit& a, char b
friend const sc_bit b _xor( int a, const sc_bit& b );
friend const sc_bit b_xor( bool a, const sc_bit& b );
friend const sc_bit b_xor( char a, const sc_bit& b );
friend void b_xor( sc_bit& r, const sc_bit& a, const
sc_bit& b );

friend void b _xor( sc_bit&
friend void b _xor( sc_bit&
friend void b _xor( sc_bit&
friend void b _xor( sc_bit&
friend void b _xor( sc_bit&
friend void b _xor( sc_bit&

N’ N’ =

, const sc_bit& a, int b);

, const sc_bit& a, bool b);
, const sc_bit& a, char b);
, int a, const sc_bit& b );
, bool a, const sc_bit& b);
, char a, const sc_bit& b);

—— = = =

/1 other functions
void print( ostream& os = cout ) const ;
void scan( istrean& = cin );

3
Description

Instances of sc_bi t can have the values 0 and 1. This maps to other types as
follows:

_ |
bool false | true
i nt 0 [ 1
char O A I

For T in { sc_bit bool int char }. Values of type T not found in the table produce
undefined behavior.

Public Constructors
sc_bit() ;
Create an sc_bit with the value set to zero.

explicit

sc bit( Ta) ;

Tin { sc_bit bool int char }
Create an sc_bit with the converted contents of a. If a is not specified the
value is zero.

explicit

108 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

sc_bit( sc_logic ) ;
If initilized with an sc_logic instance, which is neither Log_0 nor Log_1, a
warning is printed at runtime.

Copy Constructor
sc_bit( const sc_bit&)

Public Member Functions & Operators
ostrean&
operator << ( ostrean®, sc_bit );
Print the sc_bi t value to an output stream.

i stream&
operator >> ( istream& sc_bit&);
Read an sc_bi t value from an input stream.

voi d
print( ostream& os = cout ) const ;
Print the sc_bi t value to an output stream.

voi d
scan( istream& is = cin ) ;
Read an sc_bi t value from an input stream.

Assignment Operators
sc_bit& operator = ( T ) ;
Tin { sc_bit bool int char }
If assigned with an sc_logic instance, which is neither Log_0 nor Log_1, a
warning is printed at runtime.

Bitwise Assignment Operators
sc_bit& operator &= ( T)
sc_bit& operator |= ( T)
sc_bit& operator = ( T)

These operators calculate the boolean value of the AND, OR and XOR function
and assign the result to the left-hand side.

Conversions
operator bool () const ;
Convert an sc_bit implicitly to type bool.

bool
operator ! () const ;

The NOT operator returns a value of type bool. This is the negated value of the
sc_bit instance.

bool

to_bool () const ;

109 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Convert an sc_bit explicitly to type bool.

char
to_char() const ;

Convert an sc_bit explicitly to type char.

Test for Equality
friend bool operator == ( sc_bit, T);
friend bool operator == ( T, sc_bit );
friend bool equal ( sc_bit, T);
friend bool equal( T, sc_bit );

Test for Inequality
friend bool operator !
friend bool operator ! _bi
friend bool not _equal ( sc b|t T);
friend bool not_equal ( T, sc_b it )

Bitwise Complement
friend const sc_bit operator ~ ( sc_bit );
sc_bit& b_not();
friend const sc_bit b_not( sc_bit );

This functions return their result in the first argument:

friend void b not( sc_bit& sc bit ) ;
Bitwise Or

friend const sc_bit operator | ( c bit, T);

friend const sc_bit operator | ( T 3 SC_ bi t );

friend const sc_bit b_or( sc_bit, T);

friend const sc_bit b_or( T, sc_ bi t );

These functions return their result in the first argument:
friend void b _or( sc_bit& sc bit, T);
friend void b_or( sc_bit& T, sc_bit );

Bitwise And

friend const sc_bit operator | ( c _bit, T);
friend const sc_bit operator | ( T . sc b|t );
friend const sc_bit b_or( sc_bit, T);

friend const sc_bit b or( T, sc_ bi t )

These functions return their result in the first argument:
friend void b_and( sc_bit& sc_bit, T);
friend void b_and( sc_bit& T, sc _bit );

Bitwise Xor
friend const sc_bit operator » ( sc_bit, T);
friend const sc_bit operator » ( T, sc_bit );
friend const sc_bit b xor( sc bit, T);

110 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

friend const sc_bit b_xor( T, sc_bit );
These functions return their result in the first argument:

friend void b _xor( sc_bit& sc bit, T);
friend void b _xor( sc_bit& T, sc bit );

111 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.7 sc_buffer

Synopsis
tenpl ate <class T>
class sc_buffer
public sc_signal <T>

{
public:
/1l constructors
sc_buffer();
explicit sc_buffer( const char* nane_ );

[/ interface nethods
virtual void wite( const T& );

/1 other nethods

sc_buffer<T>& operator = ( const T& a );
sc_buffer<T>& operator = ( const base type& a );
sc_buffer<T>& operator = ( const this type& a );
static const char* const kind_string;

virtual const char* kind() const;

pr ot ect ed:
virtual void update();

private:
/] disabled
sc_buffer( const sc_buffer<T>& );

b

Description
sc_buf f er is a primitive channel that implements the sc_si gnal _i nout i f.
Its behavior is the same as the sc_si gnal channel with the exception of its
write behavior and related events.

sc_buf f er is a primitive channel that implements the sc_si gnal _i nout _i f
interface.

In the description of sc_buf f er, current_value refers to the value of the
sc_buf f er instance, new_value is the value to be written and old_value is
the previous value. Chapter 2.4.1 describes the scheduler steps referred to in
the description of sc_buf f er.

Initialization

The initial current_value of a sc_buf f er instance is dependent upon type T
and is undefined. The current_value may be explicitly initialized in the sc_main
function or in the constructor of the module where it is created.

112 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

A sc_buf f er may be written by only one process, but may be read by
multiple processes.

sc_buf f er writes and reads follows evaluate-update semantics suitable for
describing hardware.

Write

The write method is executed during the evaluate phase of a delta-cycle during
which an update is requested. During the update phase the current_value is
assigned the new_value and an event occurs.

The evaluate-update is accomplished using the r equest _updat e() and
updat e() methods. request updat e() is called during the execution of
the write method (in the evaluate phase) indicating to the kernel that an update
is required. During the update phase the kernel calls the update method
provided by the sc_buf f er channel.

Multiple writes in same delta-cycle

If multiple writes by a process to the same sc_buf f er occur during a
particular evaluate phase of a delta-cycle, the last write executed determines
the new_value the sc_buf f er will receive in the update phase of the same
delta-cycle.

Read
A read is executed during the evaluate phase of a delta-cycle and returns the
current_value. It does not consume the data.

Simultaneous reads and writes

If during the evaluate phase of a delta-cycle a read and write occur to the same
sc_buf f er, the read will return the current_value. The new_value from the
write will not be available to read until the next delta-cycle as described above.

Example
/'l G4 VEN
sc_buffer<int>m // channel of type int
/'l channel of type sc_uint<12>
sc_buffer<sc_uint<12> > n;
sc_buffer<bool > clk; // channel of type bool

int i;

/| THEN

mwite(i); [/wite mw th val ue of i
n.wite(8); /[/wite n wwth value of 8
if(clk.posedge() ) // was there a posedge?

i = mread(); /1 assign value of mto i
/1 wait for posedge of clk
wai t (cl k. posedge_event () ) ;

Public Constructors

113 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

sc_buffer() ;
Create a sc_buf f er instance.

explicit
sc_buffer( const char* nane_ ) ;
Create a sc_buf f er instance with the string name initialized to nane_.

Public Member Functions
virtual const char*
ki nd() const ;
Returns “sc_buffer”.

virtual void
wite( const T& val);

Schedules an update with val as new_value.

Public Operators
sc_buffer<T>&
operator = ( const T& val ) ;
Schedules an update with val as the new_value of the left hand side.
Returns a reference to the instance.

sc_buffer<T>&

operator = ( const sc_buffer<T>& val ) ;
Schedules an update with the current_value of val as the new_value of
the left hand side. Returns a reference to the instance.

sc_buf fer<T>&

operator = ( const sc_signal <T>& ) ;
Schedules an update with the current_value of val as the new_value of
the left hand side. Returns a reference to the instance.

Protected Member Functions
virtual void
updat e() ;
Assigns new_value to current_value and causes an event to occur. Called
by the kernel during the update phase in response to the execution of a
request_update method.

Disabled Member Function
sc_buffer( const sc_buffer<T>& );

114 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.8 sc_bv

Synopsis
tenplate <int W
class sc_bv

public sc_bv_base

{

public:
/'l constructors
sc_bv();
explicit sc_bv( bool init_value );
explicit sc_bv( char init_value );
sc_bv( const char* a );
sc_bv( const bool* a );
sc_bv( const sc _logic* a);
sc_bv( const sc_unsigned& a );
sc_bv( const sc_signed& a );
sc_bv( const sc_uint_base& a );
sc_bv( const sc_int_base& a );
sc_bv( unsigned long a );
sc_bv( long a );
sc_bv( unsigned int a);
sc_bv( int a);
sc_bv( uinté4 a);
sc_bv( int64 a );
sc_bv( const sc_bv_base& a );
sc_bv( const sc_bv<W& a );

/| assignnment operators
tenpl ate <class X>

sc_bv<W,& operator = ( const sc_bv_base& a );
sc_bv<W,& operator = ( const sc_bv<W& a );
sc_bv<W,& operator = ( const char* a );
sc_bv<W,& operator = ( const bool* a );
sc_bv<W,& operator = ( const sc_logic* a );
sc_bv<W,& operator = ( const sc_unsigned& a );
sc_bv<W,& operator = ( const sc_signed& a );
sc_bv<W,& operator = ( const sc_uint_base& a );
sc_bv<W,& operator = ( const sc_int_base& a );
sc_bv<W,& operator = ( unsigned long a );
sc_bv<W,& operator = ( long a );
sc_bv<W,& operator = ( unsigned int a );
sc_bv<We& operator = ( int a);
sc_bv<We& operator = ( uint64 a );
sCc_bv<We& operator = ( int64 a );
1
Description

sc_bv< W > is a bit vector of arbitary length. Its word length is set at
construction time and can not change later.

Public Constructors

115

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

sc_bv() ;
Create an sc_bv with all bits set to zero.

explicit
sc_bv( bool a ) ;
Create an sc_bv with all bits set to a.

explicit
sc_bv( char a ) ;
Create an sc_bv with all bits set to a, while a can be '0' or '1'.

sc_ bv( T a) ;

Tin { const char*, const bool*, const sc_logic*, const
sc_unsi gned&, const sc_signed& const sc_[u]int_base&,
unsi gned long, long, unsigned int, int, [u]lint64 }

Create an sc_bv with the converted contents of a. If the length of a is
greater than the length of sc_bv, a gets truncated. If the length of a is less
than the length of sc_bv, the MSBs get padded with Log_0.

Copy Constructor
sc_bv( const sc_bv<W& )

Assignment Operators

sc_bv<Ws& operator = ( const sc_bv<W& a )

sc_bv<Ws& operator = ( T a ) ;

Tin { const char*, const bool*, const sc_|logic*, const
sc_unsi gned&, const sc_signed& const sc_[u]int_base&,
unsigned long, long, unsigned int, int, [u]int64 }

The value of the righthand side is assigned to the sc_bv. If the length of a is
greater than the length of sc_bv, a gets truncated. If the length of a  is less
than the length of sc_bv, the MSBs get padded with Log_0.

116 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.9 sc_bv_base

Synopsis
cl ass sc_bv_base

{
public:
[/ constructors

explicit sc_

explicit sc_bv_base( boo

i nt

tenpl ate <cl

bv_base(

ass X>

i nt
sc_length _param().len() );

| engt

a,

i nt

h =

length_ = sc_length_paranm().len() );
sc_bv_base( const char* a )
sc_bv_base( const char* a,

length_ );

sc_bv_base( const sc_bv_base& a );

Vi rtua

/| assignment operators

tenpl ate <cl
sc_bv_base&
sc_bv_base&
sc_bv_base&
sc_bv_base&
sc_bv_base&
sc_bv_base&
sc_bv_base&
sc_bv_base&
sc_bv_base&
sc_bv_base&
sc_bv_base&
sc_bv_base&
sc_bv_base&

sc_bv_base&
/1 met hods
i nt
bool
};
Description

ass x>

oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or

| engt h() const;
is 01() const;

~sc_bv_base();

NN NNAN NN NN NN NN

const
const
const
const
const
const
const
const

sc_bv_base& a );
char* a );

bool* a );
sc_logic* a);
sc_unsi gned& a );
sc_signed& a );
SC_uint_base& a );
sc_int_base& a );

unsigned long a );

| ong

a);

unsigned int a);
int a);

uint64 a );

int64 a );

sc_bv_base is a bit vector of arbitrary length. Its word length is set at
construction time and can not change later.

For sc_bv_base description:

Tin { const char*,
sc_[un] si gned,

117

[ unsi gned] i

nt,

const bool *,
sc_[u]int_base [unsignhed]
[u]int64d }

const sc_l ogic*,
| ong,

Pointer arguments are arrays. In the case of 'const bool* and 'const
sc_logic* the size has to be at least as large as the length of the bitvector.

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Public Constructors
explicit
sc_bv_base( int = sc_length_param().len() ) ;
Create an sc_bv_base of specified length. All bits are set to zero.

explicit
sc_bv_base( bool a, int = sc_length_paran().len() ) ;
Create an sc_bv_base of specified length. All bits are set to a.

sc_bv_base( const char* a ) ;
Create an sc_bv_base with the contents of a. The character string a must
be convertible into a binary string. The length of the newly created
sc_bv_base is identical to the length of the binary representation of a.

sc_bv_base( const char* a, int b ) ;
Create an sc_bv_base with the contents of a. The character string a must
be convertible into a binary string. The length of the newly created
sc_bv_base is set to b. Sign extension takes place, if b is greater than the
bit length of a. If b is less then the length of a, a gets truncated.

Copy Constructor
sc_bv_base( sc_bv_base ) ;

Methods
i nt
| engt h() const ;
Return the length of the bit vector.

voi d
print( ostream& os = cout ) const ;
Print the sc_bv_base instance to an output stream.

void _ _
scan( istream& is = cin ) ;
Read an sc_bv_base value from an input stream.

Assignment Operators
sc_bv_base& operator = ( const sc_bv_base& ) ;
sc_bv_base& operator = ( T ) ;

The value of the right-hand side is assigned to the left-hand side. The length

of the left-hand side does not change. This means that the right-hand side
gets either truncated or sign extended.

Bitwise Operators
sc_bv_base& operator &= ( T ) ;

118 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Calculate the bitwise AND operation and assign the result to the left-hand
side. Both operands have to be of equal length.

const sc_bv_base operator & ( T ) const ;
Return the result of the bitwise AND operation. Both operands have to be of
equal length.

sc_bv_base& operator |=( T ) ;
Calculate the bitwise OR operation and assign the result to the left-hand
side. Both operands have to be of equal length.

const sc_bv_base operator | ( T ) const ;
Return the result of the bitwise OR operation. Both operands have to be of
equal length.

sc_bv_base& operator = ( T ) ;
Calculate the bitwise XOR operation and assign the result to the left-hand
side. Both operands have to be of equal length.

const sc_bv_base operator ~ ( T ) const ;
Return the result of the bitwise XOR operation. Both operands have to be of
equal length.

sc_bv_base& operator <<= ( int i ) ;
Shift the contents of the left-hand side operand i bits to the left and assign
the result to the left-hand side operand. Zero bits are inserted at the LSB
side.

const sc_bv_base operator << ( int i ) const ;
Shift the contents of the left-hand side operand i bits to the left and return
the result. Zero bits are inserted at the LSB side.

sc_bv_base& operator >>= ( int i ) ;
Shift the contents of the left-hand side operand i bits to the right and
assign the result to the left-hand side operand. Zero bits are inserted at the
MSB side.

const sc_bv_base operator >> ( int i ) const ;

Shift the contents of the left hand side operand i bits to the right and
return the result. Zero bits are inserted at the MSB side.

Bitwise Rotation & Reverse Methods
sc_bv_base&
[rotate( int i ) ;
Rotate the contents of the bit vector i bits to the left.

sc_bv_base&

119 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

rrotate( int i ) ;
Rotate the contents of the bit vector i bits to the right.

sc_bv_base&
reverse() ;

Reverse the contents of the bit vector. LSB becomes MSB and vice versa.
Bit Selection

sc_bitref T<sc_bv_base> operator [] ( int i ) ;
sc_bitref rT<sc_bv_base> operator [] ( int i ) const ;
sc_bitref T<sc_bv_base> bit( int i ) ;

sc_bitref r T<sc_bv_base> bit( int i ) const ;

Return a reference to the i-th bit. Return an r-value if the bit vector is
constant.

Part Selection

sc_subref T<sc_bv_base> operator () ( int, int ) ;
sc_subref rT<sc_bv_base> operator () ( int, int ) const ;
sc_subref T<sc_bv_base> range( int, int ) ;

sc_subref r T<sc_bv_base> range( int, int ) const ;

Return a reference to a range of bits. Return an r-value if the bit vector is
constant.

Reduction Methods

sc_logic_value_t and _reduce() const ;
sc_logic_value_t nand_reduce() const ;
sc_logic _value_ t or_reduce() const ;
sc_logic_value_t nor_reduce() const ;
sc_logic_value_t xor_reduce() const ;
sc_logic_value_t xnor_reduce() const ;

Return the result of function F with all bits of the bit vector as input
arguments.

Fin { and nand or nor xor xnor }

Relational Operators

bool operator == ( T ) const ;
Return true if the two bit vectors are equal.

120 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Explicit Conversion

i nt to_int() const ;
| ong to_long() const ;
unsi gned i nt to uint() const ;

unsi gned | ong to_ulong() const ;

Convert the bit vector into an int, unsigned int, long or unsigned long
respectively. The LSB of the bit vector is put into the LSB of the returned
value, etc.

Explicit Conversion to Character String

const sc_string to_string() const ;
Convert the bit vector into a string representing its contents. Every character
represents a bit. MSBs are on the left.

const sc_string to_string( sc_nunrep nr ) const ;
Convert the bit vector into a string representing its contents. The nr
argument specifies the base of the number string. A prefix ensures that the
string can be read back without changing the value.

const sc_string to_string( sc_nunrep, bool prefix ) const
Convert the bit vector into a string representing its contents. The nr
argument specifies the base of the number string. A prefix ensures that the
string can be read back without changing the value. If prefix is false, no
prefix is pre-pended to the value string.

11.10 sc_clock

Synopsis
class sc_cl ock
public sc_signal _in_if<bool >,
public sc_nodul e

publi c:
/'l constructors & destructor
sc_clock();
explicit sc_clock( sc_nodul e name nane_ );
sc_cl ock( sc_nodul e_name nane_,
const sc_time& period_,
doubl e duty cycle_ = 0.5,
const sc tine& start _tinme_ = SC ZERO TI ME,
bool posedge first_ = true );
sc_cl ock( sc_nodul e_name nane_,
doubl e period_ v_,
sc_tinme_unit period tu_,
doubl e duty cycle_ = 0.5 );
sc_cl ock( sc_nodul e_nanme nane_,
doubl e period_ v_,

121 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

sc_time_unit period_tu_,
doubl e duty_cycle_,

double start_tinme_v_,
sc_tinme_unit start _tinme_ tu_,

bool posedge first_ = true );
sc_cl ock( sc_nodul e_nanme nane_,
doubl e period_,
doubl e duty cycle_ = 0.5,
doubl e start _tinme_ = 0.0,
bool posedge first_ = true

);virtual ~sc_clock();

/1l interface nethods

virtual const sc_event & default_event() const;
virtual const sc_event & val ue_changed_event () const;
virtual const sc_event & posedge_event () const;
virtual const sc_event & negedge_event () const;
virtual const bool & read() const;

virtual const bool & get _data_ref() const;

virtual bool event() const;

virtual bool posedge() const;

virtual bool negedge() const;

/'l other nmethods

operator const bool & () const;

const sc_tinme& period() const;

doubl e duty _cycle() const;

virtual void print( ostrean& ) const;
virtual void dunp( ostream& ) const;
virtual const char* kind() const;

private:
/'l disabl ed
sc_cl ock( const sc_clock& );
sc_cl ock& operator = ( const sc_clock& );

¥

Description
The sc_cl ock hierarchical channel implements the
sc_signal _in_if<bool > interface.

An sc_cl ock instance (clock) has the same semantics used in describing
hardware clocks.

In the description of sc_cl ock, string_name refers to the string name of the
instance, period refers to amount of time between two edges of the same
polarity, duty cycle is the percentage of the period the clock is true expressed
as a number of type double (0.5 = 50%), start_time is the simulation time
when the first edge of the clock occurs, posedge first refers to if the first edge
of the clock is a positive edge or not, current_value refers to the value of the

122 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

clock. Chapter 2.4.1 describes the scheduler steps referred to in the
description of sc_cl ock.

The period must have a value greater than zero. The duty_cycle must have a
value between 0 and 1.0.

Clock objects may be created only in the sc_main function (Chapter 5 ).

Examples
/1 G VEN

/1l variables of type sc_tine
sc_tinme t (10, SCNS), t2 (5, SC.NS);

/1 THEN
/1l period of 10ns, 50% duty cycle, start at tinme = 5ns,
[/first edge positive
sc_clock clk1("clk1", t, 0.5, t2);
/1l period of 1, 50% duty cycle, start at tinme = 0,
/1l first edge positive
sc_clock clk2("cl k2") ;
/1l period = 20ns,50% duty cycle, start at tinme = 0O,
/1l first edge positive
sc_clock cl k3("cl k3", 20, SC NS);

Public Constructors & Destructor
sc_clock();
Create an sc_cl ock instance with an initialization of:
string_name = auto-generated unique string
period = 1 default time unit
duty cycle =0.5
start_time = SC_ZERO TI ME
posedge_first = true
current_value =f al se

explicit
sc_clock( sc_nodul e nanme n );
Create an sc_cl ock instance with an initialization of:
string_name =n
period = 1 default time unit
duty cycle = 0.5
start_time = SC_ZERO TI ME
posedge_first = true
current_value = f al se

sc_cl ock( sc_nodul e_nane n,
const sc_time& p ,

doubl e dc = 0.5,
const sc_ tinme& st = SC ZERO TI ME,
bool pf = true );

123 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Create an sc_cl ock instance with a initialization of:
string_name =n
period = p
duty cycle =dc
start_time = st
posedge_first = pf

sc_cl ock( sc_nodul e_nane n,

doubl e p_val,
sc_time_unit p_tu,
doubl e dc = 0.5 );

Create an sc_cl ock instance with an initialization of:
string_name =n
period =sc_time(p_val, p_tu)
duty_cycle =dc0.5
start_time = SC_ZERO TI MEO,
posedge_first=true
current_value = f al se

sc_cl ock( sc_nodul e _nanme n ,

doubl e p_val,

sc_ tinme_unit p_tu,

doubl e dc,

doubl e st _val,

sc_ tinme_unit st _tu,

bool pf = true );

Create an sc_cl ock instance with a initialization of:
string_name =n
period =sc_time(p_val, p_tu)
duty_cycle = dc
start_ time=sc_tinme(st_val, st_tu)
posedge_first = pf
current_value = ! pf

sc_cl ock( sc_nodul e_name n,

doubl e p_val,

doubl e dc = 0.5,
doubl e st = 0.0,
bool pf = true );

Create an sc_cl ock instance with a initialization of:
string_name =n
period = p_val default time units
duty cycle =dc
start_time = st
posedge_first = pf
current_value = ! pf

124 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

~sc_cl ock();
Destructor (does nothing).

Public Member Functions
virtual const sc_eventé&
default _event () const;

Returns a reference to an event that occurs when the value of the clock
changes.

doubl e
duty cycle() const ;
Returns duty_cycle of the clock.

virtual void
dunp( ostrean®& ) const;
Prints the name and value of the clock to an output stream.

virtual bool
event () const;

Returns true if an event occurred in the previous delta-cycle.

virtual const bool &
get _data ref() const ;
Returns a reference to current_value.

virtual const char*
ki nd() const ;
Returns the character string “sc_clock”.

virtual bool

negedge() const;
Returns true if an event occurred in the previous delta-cycle and
current_value is false.

virtual const sc_event&
negedge event () const ;

Returns a reference to an event, if an event occurred in the previous delta-
cycle and current_value is false.

operator const bool & () const ;
Returns a reference to the current_value.

const sc_tine&
period() const ;
Returns period.

virtual bool
posedge() const;

Returns true if an event occurred in the previous delta-cycle and
current_value is true.

125 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

virtual const sc_eventé&
posedge_event () const;

Returns a reference to an event if an event occurred in the previous delta-
cycle and current_value is true.

virtual void
print( ostream& ) const;
Prints current_value to an output stream.

virtual const bool &
read() const;
Returns a reference to the current_value.

static const sc_tinme&
time_stanp();
Returns the current simulation time.

voi d
trace( sc_trace file* tf ) const;
Adds a trace of current_value to the trace file t f .

virtual const sc_eventé&
val ue_changed _event () const;

Returns a reference to an event that occurs when the current_value of the
clock changes.

Disabled Member Functions
sc_cl ock( const sc_clock& );
Copy constructor.

sc_cl ock&

operator = ( const sc_clock& );
Default assignment operator.

126 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.11 sc_event

Synopsis
cl ass sc_event

{

public:
/] constructors & destructor
sc_event ();
~sc_event ();

/'l met hods

voi d cancel ();

void notify();

void notify( const sc_tine&);

void notify( double, sc_tine_unit );

/'l operators
sc_event _or_|list& operator | ( const

sc_event & ) const;
sc_event _and |ist& operator & ( const

sc_event & ) const;

private:
/] disabled
sc_event( const sc_eventé& );
sc_event & operator = ( const sc_event& );

b

Description
An sc_event instance (event) determines when and whether a process
execution is triggered.

In the description of sc_event, event refers to the sc_event object, delta-
delay refers to a delay of one delta-cycle, notify_method refers to the methods
that causes event notification and pending_notification_time refers to the
simulation time the notification or occurrence of the event is scheduled for.

Chapter 2.4.1 describes the scheduler steps referred to in the description of
sc_event.

The event keeps a list of processes that are sensitive to occurrences of the
event. Execution of the notify_method schedules or causes the occurrence of
an event. Upon occurrence of the event, the event causes processes sensitive
to the event to trigger. When the event occurrence happens relative to the
execution of the notify_method is dependent upon the type of notification.
There are three types of notification:

Immediate notification.

127 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Event occurs in the same evaluate phase within a delta-cycle as the
notify_method execution causing processes sensitive to the event to be
triggered in the same evaluate phase within the delta-cycle.

Delta-delay notification.
Event occurs in the evaluate phase within the next delta-cycle as the
notify_method execution causing processes sensitive to the event to be
triggered in the evaluate phase in the next delta-cycle.

Non-zero delay notification (timed notification).
Event occurs delayed by the time value supplied by the notify _method
causing processes sensitive to the event to be triggered after the
designated amount of time.

A given sc_event object can have at most one pending notification at any point.
If multiple notifications are made to an event that would violate this rule, the
“earliest notification wins” rule is applied to determine which notification is
discarded.

Public Constructors
sc_event ();
Create an sc_event instance.

Public Member Functions
voi d
cancel ();
Removes pending notification of the event.

voi d
notify();
Causes notification of the event in the current delta-cycle.

voi d

notify( const sc_ tinme& t_var );
Ift _var = 0 then causes notification in the next delta-cycle else schedules
notification at current time +t _var.

voi d

notify( double t _val , sc_time_unit tu);
If t _val =0 then causes notification in the next delta-cycle else schedules
notification at current time + (t _val , tu).

128 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Public Operators

sc_event _or _|ist T&
operator | ( const sc_event& ev ) const ;

Adds ev tothe sc_event _or i st T referenced on the left hand side.

sc_event _and_|i st T&
operator & ( const sc_event& ev ) const ;

Adds ev tothe sc_event _and_|i st T referenced on the left hand side.

Disabled Member Functions
sc_event( const sc_event& ) ;
Copy constructor.

sc_event &

operator = ( const sc_event& ) ;
Default assignment operator.

129 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.12 sc_event_finder_t

Synopsis
tenpl ate <class | F>
cl ass sc_event _finder_t

public sc_event_finderT

{
publ i c:
/'l constructors and destructor )
sc_event _finder t( const sc_port base & port _,
const sc_event& (IF::*event_nmethod_ ) () const )
virtual ~sc_event _finder_t()

/! net hods

+
const sc_port_base & port() const;
virtual const sc_event& find_event() const;

private:
/] disabled
sc_event _finder_t();
sc_event _finder_t( const sc_event _finder_t<IF>& );
sc_event _finder t<lIF>& operator = ( const
sc_event _finder_t<IF>& );

b

Description

sc_event finder _t isaclass thatis used to allow a port or port method to be
used in a static sensitivity list. It provides deferred access to channel events
through an interface function that returns a sc_event.

Example
/'l A special port nmethod that can be used in
/] static sensitivity
sc_event _finder& data witten( ) const

{
return *new sc_event finder_t<in_if_type>( *this,
& n_if _type::data witten_event func );
}

Public Constructor and Destructor

sc_event finder _t( const sc_port_baseT&, const sc_event &
(I'F::*event _nmethod_) () const );
Creates an event finder object and registers the port and event method in
question.

virtual ~sc_event _finder_t();
Virtual destructor. Does nothing by default.

Public Member Functions

130 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

const sc_port _baseT&
port () const;
Returns the port that was registered with this event finder.

virtual const sc_eventé&
find _event() const;

Returns a reference to the event returned by the registered event method.
Can only be called when the associated port is bound.

Disabled Member Functions
sc_event _finder _t();
Default constructor.

sc_event _finder t( const sc_event finder t<IF>&);
Copy constructor.

sc_event _finder _t<lIF>& operator = ( const

sc_event _finder t<IF>& );
Default assignment operator.

131 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.13 sc_fifo

Synopsis
tenpl ate <class T>
class sc_fifo
public sc_fifo_in_if<T>,
public sc_fifo_out_if<T>,
public sc_primchannel

public:
/| constructors and destructor
explicit sc_fifo( int size_ = 16 );
explicit sc_fifo( const char* nane_, int size_=16);

virtual ~sc fifo();

/1l interface nethods

virtual void read( T& );

virtual T read();

virtual bool nb read( T& );

virtual int num avail abl e() const;

virtual const sc_event& data witten_event() const;
virtual void wite( const T& );

virtual bool nb wite( const T& );

virtual int numfree() const;

virtual const sc_event& data read event() const;

/| other nethods

operator T ();

sc_fifo<T>& operator = ( const T& a );
void trace( sc_trace file* tf ) const;
virtual void print( ostrean& ) const;
virtual void dunp( ostream% ) const;
static const char* const kind_string;
virtual const char* kind() const;

pr ot ect ed:

virtual void update();
private:

/] disabled

sc_fifo( const sc_fifo<T>& );
sc_fifo& operator = ( const sc_fifo<T>& );

b

Description
sc_fi fois a primitive channel that implementsthe sc fifo in_if and
sc_fifo_out _if interfaces. Itimplements the behavior of a FIFO having a
fixed maximum size which is set at the point of construction.

132 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

In the description of sc_fi f o, element refers to an entry in the FIFO, size
refers to the maximum number of entries the FIFO may have. Chapter 2.4.1
describes the scheduler steps referred to in the description of sc_fi f o.

Initialization.
The size of the FIFO may be explicitly set to any value. If no size is specified
the value defaults to 16.

A sc_fi f o channel may be connected to only one output (write) and one input
(read) port. Multiple different processes may write andread asc_fifo
channel.

sc_fi f o writes and reads follow the evaluate-update semantics. Both
blocking and non-blocking reads and writes are provided.

Blocking write.

The write method is executed during the evaluate phase of a delta-cycle. If the
FIFO is full then the write method suspends until space is available. If space is
available an update is requested. During the update phase the value is
inserted into the FIFO.

The evaluate-update is accomplished using the r equest _updat e() and
updat e() methods. request updat e() is called during the execution of
the write method indicating to the kernel that an update is required. During the
update phase the kernel calls the update method provided by the sc_fifo
channel.

Non-blocking write.
If the FIFO is full then the non-blocking write method does nothing. If there is
space available then it behaves the same as a blocking write.

Multiple writes in same delta-cycle.

If multiple writes to the same sc_f i f o occur during a particular evaluate phase
of a delta-cycle, all values will be inserted during update phase of the same
delta-cycle in the order they were written. No data is lost.

Blocking read.

A read is executed during the evaluate phase of a delta-cycle. If the FIFO is
not empty, the read returns the value of the element and requests an update.
During the update phase the element is deleted from the FIFO. The evaluate-
update is accomplished using the r equest _updat e() and updat e()
methods.

Non-blocking read.

If the FIFO is empty then the non-blocking read method does nothing. If there
is data available then it behaves the same as a blocking read.

133 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Multiple reads in same delta-cycle.

If multiple reads to the same sc_fi f o occur during a particular evaluate phase
of a delta-cycle, all values will be returned during the evaluate phase, in the
order they were written to the FIFO. The elements are deleted during update
phase of the same delta-cycle. Every element that is read is thus deleted from
the FIFO.

Simultaneous reads and writes.

Assume a sc_f i f o channel of depth 1. If during the evaluate phase of a
delta-cycle a write followed by a read occur to the same sc_f i f o, the write will
complete, scheduling a value to be inserted on the FIFO. The read will
suspend as the FIFO is empty. During the update phase the write value will be
inserted and the FIFO status updated. The read will resume in the next delta-
cycle where it will return the value written the previous delta-cycle.

Example
/1 G VEN
sc_fifo<int>m // channel of type int
/'l channel of type sc_uint<12>
sc_fifo<sc_uint<l12> > n;
int i;

/ | THEN
mwite(i); //wite value of i into the FIFO m
/1l wait for data witten to n
wait(n.data witten_event() ) ;
i = n.read(); /'l read a value fromand assign to i
if (mnumfree() > 0) // check for roomin the FIFO
mwite(8); // wite the value 8 to into the FIFO

Public Constructors

explicit
sc_fifo( int size_ =16 ) ;
Create a sc_fifo instance with size initialized to 16.
explicit
sc_fifo( const char* nane_, int size = 16 ) ;

Create a sc_fifo instance with size initialized to 16 and the string name
initialized to nane_.

Public Member Functions
virtual const sc_eventé&
data_read_event () const ;
Returns a reference to an event that occurs when an element is read.

virtual const sc_event&

data written_event() const ;
Returns a reference to an event that occurs when an element is written.

134 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

virtual void

dunp( ostream& ) const;
Prints the string name and all the element values of the sc_f i f o instance
to an output stream.

virtual const char*
ki nd() const ;
Returns “sc_fifo”.

virtual bool
nb_read( T& val );

Returns f al se if the FIFO is empty. Returns tr ue, places the element
value in val and schedules the elements deletion if the FIFO is not empty.

vi rtual bool

nb_wite( const T& val ) ;
Returns f al se if the FIFO is full. Returnstr ue and schedules an insertion
of val as an element if the FIFO is not full.

virtual int
num avai |l abl e() const ;

Returns the number of elements that are currently in the FIFO. However
elements written in the current evaluate phase will not affect the value
returned by num_available() until the next evaluate phase.

virtual int

num free() const ;
Returns the number of free spaces currently in the FIFO. However elements
read in the current evaluate phase will not affect the value returned by
num_free() until the next evaluate phase.

virtual void
print( ostream& ) const;
Prints all the element values of the sc_f i f o instance to an output stream.

virtual T
read();

Returns an element value from the FIFO and schedules the elements
deletion. If the FIFO is empty it suspends until an element is written on the
FIFO.

virtual void

read( T& val );
Places an element value from the FIFO in val and schedules the elements
deletion

virtual void
regi ster _port( sc_port_base& const char* );

135 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Checks to ensure at most only one input and one output port is connected
tothe sc_fi f o instance.

voi d
trace( sc_trace file* tf ) const;
Adds a trace for each element to the trace file t f .

virtual void

wite( const T& val ) ;
Schedules an insertion of val as an element on the FIFO. If the FIFO is full
it suspends until an element is read from the FIFO.

Public Operators
operator T () ;
Returns an element value from the FIFO and schedules the elements
deletion. If the FIFO is empty it suspends until an element is written on the
FIFO.

sc_fifo<T>&

operator = ( const T& val ) ;
Schedules an insertion of val into the sc_fifo instance on the left hand side.
If the FIFO is full it suspends until an element is read from the FIFO.
Returns a reference to the instance.

Protected Member Functions
virtual void
updat e() ;

Disabled Member Functions
sc_fifo( const sc_fifo<T>& );

sc_fifo&
operator = ( const sc_fifo<T>& );

136 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.14 sc_fifo_in

Synopsis
tenpl ate <class T>
class sc_fifo_in
public sc_port<sc fifo_ in_if<T> 0>

{
public:
/| constructors and destructor
sc_fifo_in();
sc_fifo_in( const char* nane_ );
sc fifo_in(sc fifo in if<T>& interface_);
sc_fifo_in( const char* nane_,
sc_fifo_in_if<T>& interface_ );
sc_fifo_in(sc_port_67<sc_fifo_in_if<T> >& parent _ );
sc_fifo_in( const chanf name_,
sc_port_b <sc_fifo_in_if<T> >& parent_ );
sc_fifo_in( sc_fifo_in<T>& parent_ );
sc_fifo_in( const char* nane_,
sc_fifo_in<T>& parent_ );
virtual ~sc_fifo_in();

/'l met hods

void read( T& value_ );

T read();

bool nb_read( T& value_ );

i nt num avail abl e() const ;

const sc_event& data_witten_event() const ;
sc_event finder& data witten() const ;
static const char* const kind_string;
virtual const char* kind() const

private:
/'l disabl ed
sc_fifo_in( const sc fifo_in<T>& );
sc_fifo_in<T>& operator = ( const sc_fifo_in<T>& );

}

Description
sc_fifo_inisaspecialized port for use with sc_fi f o channels ( Chapter
11.13 ). Its behavior is that of a sc_port which has only one interface that is of
typesc _fifo_in_if<T> It has additional methods for convenience in
accessing the FIFO channel connected to the port.

In the description of sc_fifo_in, portreferstothesc fifo_ininstance
and FIFO refers to the fifo channel connected to the port.

Example
SC_MODULE( ny_nodul e) {
/| output port

137 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

sc_fifo_out<int> output;
sc_fifo_in<int> input;
int a;

/'l process
void ny_proc();

SC CTOR(nmy_nodul e) {
SC_THREAD( ny_proc) ;
sensitive << input.data_witten();

}
¥

void nmy_nodul e::ny_proc() {
out put->wite(5);
output.wite(6);
wait (i nput->data witten_event() );
i nput ->nb_read(a);

a = input->read();
a = input.read();
sc_stop();

}

Protected Constructor
sc_fifo_in() ;
Default constructor

explicit
sc_ fifo_in( const char* name_ ) ;
Create asc_fifo_in instance with the string name initialized to name_.

Public Member functions
const sc_event &
data written_event() const ;
Returns a reference to an event that occurs when an element is written to

the FIFO.

sc_event _finder T&

data written() const ;
Returns a reference to an sc_event ﬁnderT that finds the event that occurs
when an element is written to FIFO. For use with static sensitivity list of a
process.

virtual const char*
ki nd() const ;

Returns “sc_fifo_in”.

bool
nb_read( T& value_ ) ;
Returns f al se if the FIFO is full. Returns t r ue and schedules an insertion

of val ue_ as an element if the FIFO is not full.

138 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

i nt
num avai |l abl e() const ;
Returns the number of elements that are in the FIFO.

voi d

read( T& value ) ;
Places an element value from the FIFO in val ue_ and schedules the
elements deletion

T
read() ;
Returns an element value from the FIFO and schedules the elements
deletion. If the FIFO is empty it suspends until an element is written on the
FIFO.

Disabled Member Functions
sc fifo_in( const sc fifo in<T>& ) ;

sc_fifo_in<T>&
operator = ( const sc_fifo in<T>& ) ;

139 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.15 sc_fifo_in_if

Synopsis
tenpl ate <class T>
class sc_fifo_in_if
virtual public sc_interface

{
public:
virtual void read( T& ) = O;
virtual T read() = O;
virtual bool nb read( T& ) = O;
virtual int num.avail able() const = 0O;
virtual const sc_event &
data witten_event() const = O;

private:
/'l disabl ed
sc_fifo_in_if( const sc_fifo_ in_if<T>& );
sc_fifo_in_if<T>&
operator = ( const sc_fifo_in_if<T>& );

b

Description
Thesc_fifo_in_if class provides the signatures of the functions for the
sc_fifo_in_if interface. See Chapter 8.1 and sc_fi f o for a description of
interfaces. Implemented by the sc_f i f o channel (Chapter 11.12))

Example
SC_MODULE( ny_nodul e) {
sc_port<sc _fifo_ in_if<int> > pl; // “read” FIFO port

tenpl ate <class T>

class sc_fifo
public sc fifo_ in_if<T>,
public sc _fifo out if<T>,
public sc_primchannel

{ ... .k

Protected Constructor
sc fifo_in_if();
Createasc_fifo_in_if instance.

Public Member functions
virtual const sc_eventé&
data written_event() const = O;

vi rtual bool
nb_read( T& ) = O;

virtual int

140 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

num avai |l abl e() const = O;

virtual T
read() = O;

virtual void
read( T& ) = O;

Disabled Member Functions
sc fifo_in_if( const sc fifo in if<T>&);

sc_ fifo_in_if<T>&
operator = ( const sc_fifo_in_if<T>& );

141 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.16 sc_fifo_out

Synopsis
class sc_fifo_out
public sc_port<sc_fifo_out _if<T> 0>

public:

/| constructors and destructor
sc_fifo_out();
sc_fifo_out( const char* nane_ );
sc_fifo_out(sc_fifo out if<T>& interface_ );
sc_fifo_out( const char* nane_,

sc_fifo_qut_if<T>& interface_ );
sc_fifo_out(sc_port_b<sc fifo_out if<T> >& parent );
sc_fifo_out( const char* nane_,

sc_port_b <sc_fifo_out_if<T> >& parent_);
sc fifo_ out( sc_fifo_out<T>& parent_ );
sc_fifo_out( const char* nane_,

sc_fifo_out<T>& parent_ );
virtual ~sc_fifo_out();

/'l met hods

void wite( const T& value_ );

bool nb_wite( const T& value_ );

int numfree() const;

const sc_event & data_read_event() const;
sc_event _finder& data_read() const;
static const char* const kind_string;
virtual const char* kind() const;

private:
/'l disabl ed
sc_fifo_out( const sc_fifo out<T>& );
sc_fifo_out<T>& operator = ( const sc_fifo_out<T>&);

}

Description
sc_fifo_out is aspecialized port for use with sc_f i f o channels ( Chapter
11.13 ). Its behavior is that of a sc_port which has only one interface that is of
type sc_fifo_out if<T> Ithas additional methods for convenience in
accessing the channel connected to the port.

In the description of sc_fifo _out, portreferstothesc fifo_out instance
and FIFO refers to the fifo channel connected to the port.

Example
SC MODULE( my_nodul e) {
/| output port
sc_fifo_out<int> output;
sc fifo_in<int> input;

142 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

int a;
/'l process
void ny_proc();

SC CTOR(nmy_nodul e) {
SC_THREAD( ny_proc) ;
sensitive << input.data_witten();

}
¥

voi d nmy_nodul e::ny_proc() {
out put->wite(5);
output.wite(6);
wait (i nput->data witten_event() );
i nput ->nb_read(a);
a = input->read();
a = input.read();
sc_stop();
}

Protected Constructor
sc_fifo_out() ;
Default constructor.

explicit
sc_fifo_out( const char* nanme_ ) ;
Create asc_fifo_out instance with the string name initialized to nane_.

Public Member Functions
const sc_event &
data_read_event () const ;
Returns a reference to an event that occurs when an element is read from

FIFO.

sc_event _finder T&

data _read() const ;
Returns a reference to an sc_event ﬁnderT that finds the event that occurs
when an element is read from FIFO. For use with static sensitivity list of a
process.

virtual const char*
ki nd() const ;

Returns "sc_fifo_out".

bool

nb_wite( const T& value_ ) ;
Returns f al se if the FIFO is full. Returnst r ue and schedules an insertion
of val as an element if the FIFO is not full.

i nt

143 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

num free() const ;
Returns the number of elements that can be written to the FIFO.

voi d

wite( const T& value_ ) ;
Schedules an insertion of val ue_ as an element on the FIFO. If the FIFO
is full it suspends until an element is read from the FIFO.

Disabled Member Functions
sc_fifo_out( const sc_fifo_out<T>& ) ;

sc_fifo_out<T>&
operator = ( const sc_fifo_out<T>&) ;

144 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.17 sc_fifo_out _if

Synopsis
tenpl ate <class T>
class sc_fifo_out _if
virtual public sc_interface

1
public:
virtual void wite( const T& ) = O;
virtual bool nb wite( const T& ) = O;
virtual int numfree() const = 0;
virtual const sc_event& data read event() const = O;

private:
/] disabled
sc_fifo_out if( const sc_fifo_out if<T>& );
sc_fifo_out _if<T>& operator =
( const sc fifo out if<T>& );

b

Description
The sc_fifo_out _if class provides the signatures of the functions for the
sc_fifo_out if interface. See Chapter 8.1 and sc_fi f o for a description
of interfaces. Implemented by the sc_f i f o channel (Chapter 11.12)

Example
SC_MODULE( my_nodul e) {
sc_port<sc fifo out if<int> > pl; // “wite” FIFO port

tenpl ate <class T>

class sc fifo
public sc_fifo_in_if<T>,
public sc_fifo_out _if<T>,
public sc_primchannel

{ .. .. %

Protected Constructor
sc_fifo_ out if();
Createasc fifo_ in_if instance.

Public Member Functions
virtual const sc_eventé&
data read_event () const = O;

virtual bool
nb_ wite( const T& ) = 0;

virtual int
num free() const = 0O;

145 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

virtual void
wite( const T& ) = 0;

Disabled Member Functions
sc_ fifo_out if( const sc _fifo_out if<T>& );

sc_ fifo_ out if<T>&
operator = ( const sc_fifo out if<T>& );

146 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.18 sc_fix
Synopsis
. . T
class sc_fix : public sc_fxnum

publ i c:

/1 constructors and destructor
sc_fix( sc_fxnumobserver* = 0 );
sc_fix( int, int,

);

sc_fxnum observer* = 0
sc_fix( sc_g_node, sc_o_node,
sc_fxnum observer* = 0 );

sc_fix( sc_g_node, sc_o_node, int,

sc_fxnum observer* = 0 );

sc_ fix( int, int, sc_q_node, sc_o_node,

sc_fxnum observer* = 0 );

sc_fix( int, int, sc_q_node, sc_o_node, int,

sc_fxnum observer* = 0 );
sc_fix( const sc_fxcast_swtchég&,

sc_fxnum observer* = 0 );
sc_fix( int, int,

const sc_fxcast _swtch&,

sc_fxnum observer* = 0 );
sc_fix( sc_g_node, sc_o_node,

const sc_fxcast _sw tch&,

sc_fxnum observer* = 0 );

sc_fix( sc_g_node, sc_o_node, int,

const sc_fxcast _sw tch&,
sc_fxnum observer* = 0 );

sc_fix( int, int, sc_q_node, éc_o_nnde,

const sc_fxcast _sw tch&,
sc_fxnum observer* = 0 );

sc_fix( int, int, sc_q_node, éc_o_nnde, int,

const sc_fxcast _sw tch&,
sc_fxnum observer* = 0 );
sc_fix( const sc_fxtype_parans&,
sc_fxnum observer* = 0 );
sc_fix( const sc_fxtype_parans&,
const sc_fxcast _sw tch&,
sc_fxnum observer* = 0 );

#define DECL_CTORS T(tp) \

147

sc_ fix( tp, int, int, \
sc_fxnum observer* = 0 ); \
sc_fix( tp, sc_g_node, sc_o_node,
sc_fxnum observer* =0 ); \
sc_fix( tp, sc_g_node, sc_o_node,
sc_fxnum observer* = )
sc_ fix( tp, int, int, sc_qg_node,
sc_fxnum observer* = \
sc_ fix( tp, int, int, sc_qg_node,
sc_fxnum observer* =0 ); \

Copyright 2003 Open SystemC Initiative

int, \
sc_o_node, \

sc_o_node, int,

. All rights reserved



SystemC 2.0.1 Language Reference Manual

sc_fix( tp, const sc_fxcast_switch& \
sc_fxnum observer* =0 ); \

sc_fix( tp, int, int, const sc_fxcast_switch& \
sc_fxnum observer* =0 ); \

sc_fix( tp, sc_qgq_node, sc_o_node, \
const sc_fxcast_switch& \
sc_fxnum observer* =0 ); \

sc_fix( tp, sc_qg_node, sc_o_node, int, \
const sc_fxcast_switch& \
sc_fxnum observer* =0 ); \

sc fix( tp, int, int, sc_qg _node, sc_o_node, \
const sc_fxcast_switch& \
sc_fxnum observer* =0 ); \

sc_fix( tp, int, int, sc_q _node, sc_o _node, int, \
const sc_fxcast_switch& \
sc_fxnum observer* =0 ); \

sc_fix( tp, const sc fxtype parans&, \
sc_fxnum observer* = 0 );

sc_fix( tp, const sc fxtype parans&, \
const sc_fxcast_switch& \
sc_fxnum observer* = 0 );

#define DECL_CTORS T A(tp) \
sc_fix( tp, sc_fxnumobserver* =0 ); \
DECL_CTORS_T(tp)

#define DECL_CTORS T B(tp) \
explicit sc_fix( tp, sc_fxnumobserver* =0 ); \
DECL_CTORS_T(tp)

DECL_CTORS_T_A(i nt)
DECL_CTORS_T_A(unsigned int)
DECL_CTORS_T_A(l ong)
DECL_CTORS_T_A(unsi gned | ong)
DECL_CTORS_T_A( doubl e)
DECL_CTORS_T_A(const char*)
DECL_CTORS T _A(const sc_fxval &)
DECL_CTORS T A(const sc_fxval fast&)
DECL_CTORS_T_A(const sc_fxnumg)
DECL_CTORS T A(const sc_fxnum fast &)
DECL_CTORS_T B(i nt 64)
DECL_CTORS_T_B(ui nt 64)

DECL_CTORS T B(const sc_int_base&)
DECL_CTORS_T B(const sc_uint_base&)
DECL_CTORS_T B(const sc_si gned&)
DECL_CTORS_T B(const sc_unsi gned&)
sc_fix( const sc_fix&);

/1l unary bitw se operators
const sc_fix operator ~ () const;

/1l unary bitw se functions
friend void b_not( sc_fix& const sc fix&);

148 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

/1l binary bitw se operators

friend
friend
friend
friend
friend
friend
friend
friend

friend

const

const

const

const

const

const

const

const

const

sc_fix operator & ( const

const sc_fix&);

sc_fix operator & ( const

const sc_fix fast& );

sc_fix operator & ( const

const sc_fix& );

sc_fix operator | ( const

const sc_fix&);

sc_fix operator | ( const

const sc_fix fasté& );

sc_fix operator | ( const

const sc_fix&);

sc_fix operator ™ ( const

const sc_fix& );

sc_fix operator ™ ( const

const sc_fix fast& );

sc_fix operator ™ ( const

const sc_fix& );

/1l binary bitw se functions

friend
friend
friend
friend
friend
friend
friend
friend

friend

voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d

voi d

const sc_fix&);

b_and( sc_fix& const sc_fi

const sc_fix fasté& );

b _and( sc_fix& const sc_fi

const sc_fix&);

b or ( sc_fix& const sc_fi

const sc_fix&);

b or ( sc_fix& const sc_fi

const sc_fix fast& );

b or ( sc_fix& const sc_fi

const sc_fix&);

b xor( sc_fix& const sc_fi

const sc_fix&);

b xor( sc_fix& const sc_fi

const sc_fix fast& );

const sc_fix&);

sc_fix& operator = ( const sc_fix&);

#define DECL_ASN OP_T(op,tp) \
sc_fix& operator op ( tp );

#defi ne DECL_ASN OP_OTHER(op) \

DECL_ASN OP_T(op,int64) \

DECL_ASN OP_T(op, ui nt64) \

DECL_ASN OP_T(op, const sc_int_base&) \

DECL_ASN OP_T(op, const sc_uint_base&) \

DECL_ASN OP_T(op, const sc_signed&) \
DECL_ASN OP_T(op, const sc_unsi gned&)

#defi ne DECL_ASN OP(op) \

149

sc_fix&,
sc_fixé&,
sc_fix _fast&,
sc_fixé&,
sc_fixé&,
sc_fix _fast&,
sc_fix&,
sc_fix&,

sc_fix fast&,

b_and( sc_fix& const sc_fixg&,

X&,
x_fast &,
X&,
X&,
x_fast &,
X&,
X&,

b xor( sc_fix& const sc_fix_ fastg&,

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

DECL_ASN OP_T(op,int) \

DECL_ASN OP_T(op, unsigned int) \
DECL_ASN_OP_T( op, l ong) \
DECL_ASN_OP_T(op, unsi gned | ong) \
DECL_ASN_OP_T( op, doubl e) \
DECL_ASN_COP_T(op, const char*)\
DECL_ASN_OP_T(op, const sc_fxval &\
DECL_ASN OP_T(op, const sc_fxval _fast&)\
DECL_ASN_OP_T(op, const sc_fxnum&) \
DECL_ASN_OP_T(op, const sc_fxnum fast&) \
DECL_ASN_OP_OTHER( op)

DECL_ASN OP(=)

DECL_ASN OP(*=)

DECL_ASN_OP(/ =)

DECL_ASN_OP( +=)

DECL_ASN_OP( - =)

DECL_ASN OP_T(<<=,int)

DECL_ASN OP_T(>>=,int)

DECL_ASN _OP_T( &=, const sc_fix&)
DECL_ASN OP_T(&=, const sc_fix_fast&)
DECL_ASN OP_T(| =, const sc_fix&)
DECL_ASN OP T(| =, const sc_fix_fast&)
DECL_ASN_CP_T("— const sc_fix&)
DECL_ASN OP_T(”=, const sc_fix_fast&)

const sc_fxval operator ++ ( int );
const sc_fxval operator -- ( int );
sc_fix& operator ++ ();
sc_fix& operator -- ();

3

Description

Unconstrained type sc_fi x is a signed (two's complement) type. sc_fi x
allows specifying the fixed-point type parameters wl, iwl, g_mode, o_mode, and
n_bits as variables. See Chapter 6.8.12.1.

Declaration Syntax
sc_fix wvar_name([init_val]
[,W,iw]
[, g_node, o_node[,n_bits]]
[, cast _sw tch]
[, observer]);

sc_fix wvar_name([init_val]
, type_par ans
[, cast _sw tch]
[, observer]);

Examples
sc_fix a(l.5);
sc_fix c(16,1, SC RND_CONV, SC _SAT_SYM ;

150 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

sc fix b =-1;

Public Constructors

sc_fix (
[type_ init_val]
[,int W,int iw]
[,sc_q_node g_node, sc_o_nobde o_node[,int n_bits]]
[, const sc_fxcast_sw tch& cast_sw tch]
, Sc_fxnum observer* observer) ;

type_in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, float, douple, const char*, intaﬂ,
ui nt 64, const sc_int _base & const sc_uint_base &,
const sc_signed&, const sc_unsigned, const sc_fxval &,
const sc_fxval fast& const sc_[u]fix& const
sc_ [u]fix fast& }

sc_fix (
[type_ init_val]
, const sc_fxtype_ param& type_parans
[,sc_fxcast_switch cast_sw tch]
, Sc_fxnum observer* observer) ;

type_in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, float, douple, const char*, intGﬂ,
ui nt 64, const sc_int _base & const sc_uint_base &,
const sc_signed&, const sc_unsigned, const sc_fxval &,
const sc_fxval fast& const sc_[u]fix& const
sc_[u]fix fast& }

Notes ontype_

For all typesintype_ ,exceptsc_[u]fixandsc_[u]fix_fast, only the
value of the argument is taken, that is, any type information is discarded. This
ensures that initialization during declaration and initialization after declaration
behave identical.

A fixed-point variable can be initialized with a C/C++ character string (type
const char*) either when the number will be expressed in binary form or when
the number is too large to be written as a C/C++ built-in type literal

init_val

The initial value of the variable. If the initial value is not specified, the instance
is uninitialized.

wi

The total number of bits in the fixed-point format. W\ must be greater than zero,
otherwise, a runtime error is produced. The default value for W is obtained
from the fixed-point context type sc_f xt ype_cont ext . See Chapter 11.26.
The total word length parameter cannot change after declaration.

iwl

The number of integer bits in the fixed-point format. i W can be positive or
negative. The default value fori wl is obtained from the fixed-point context type

151 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

sc_f xtype_cont ext . See See Chapter 11.26. The number of integer bits
parameter cannot change after declaration.

gq_mode

The quantization mode to use. Valid values for q_node are given in Section 0 .
The default value for g_node is obtained from the fixed-point context type
sc_fxtype _context. See See Chapter 11.26. The quantization mode
parameter cannot change after declaration.

0_mode

The overflow mode to use. Valid values for o_node are given in Section 0. The
default value for o_node is obtained from the fixed-point context type
sc_fxtype_cont ext. See Chapter 11.26. The overflow mode parameter
cannot change after declaration.

n_bits

The number of saturated bits parameter for the selected overflow mode.
n_bits must be greater than or equal to zero, otherwise a runtime error is
produced. If the overflow mode is specified, the default value is zero. If the
overflow mode is not specified, the default value is obtained from the fixed-point
context type sc_f xt ype_cont ext. See Chapter 11.26. The number of
saturated bits parameter cannot change after declaration.

type_params

A fixed-point type parameters object.

cast_switch

The cast switch, which allows to switch fixed-point type casting on or off. Valid
values for cast _swi t ch are:

SC_COFF for casting off

SC _ON for casting on

The default value for cast _swi t ch is obtained from the fixed-point context
type sc_f xcast cont ext. The cast _swi t ch parameter cannot change
after declaration.

observer

A pointer to an observer object. The obser ver argument is of type
sc_fxnum observer*. See Chapter 11.25. The default value for obser ver
is O (null pointer). The obser ver parameter cannot change after declaration.

Copy Constructor
sc_fix( const sc_fix&);

Operators
The operators defined for the sc_fi x are given in Table 16.

Table 16. Operators for sc_fix

Oper at or OQperators in class
cl ass

Bitw se ~ & M|

Arithmetic ¥/ o+ - << S>> 4+ --

152 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Equal ity == | =

Rel at i onal <<= >>=

ASsi gnnent = *= [= 4= -= <<= >>= &= "= | =
Note:

Operators << and operator >> define arithmetic shifts, not bitwise shifts. The
difference is that no bits are lost and proper sign extension is done.

In expressions with the non-bitwise operators from Table 16, fixed-point types
can be mixed with all types given:
type_in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, fl oat, douple, const char*, intaﬁ,
ui nt 64, const sc_int _base & const sc_uint_base &,
const sc_signed&, const sc_unsigned, const sc_fxval &,
const sc_fxval fast& const sc_[u]fix& const
sc_ [u]fix fast& }

The return type of any arithmetic operation is the fixed-point value type, which
guarantees that the operation is performed without overflow or quantization.

A floating-point variable or a fixed-point value variable can contain one of the
special values +Inf (plus infinity), -Inf (minus infinity), or Nan (not a number).
Assignment of one of these special values to a fixed-point variable will produce
a runtime error.

For the fixed-point types, a minimal set of bitwise operators is defined. These
bitwise operators are only defined on either the signed fixed-point types or the
unsigned fixed- point types. Mixing between signed and unsigned fixed-point
types is not allowed. Mixing with any other type is also not allowed.

The semantics of the bitwise operators is as follows. For the unary ~ operator,
the type of the result is the type of the operand. The bits in the two’s
complement mantissa of the operand are inverted to get the mantissa of the
result. For the binary operators, the type of the result is the maximum aligned
type of the two operands, that is, the two operands are aligned by the binary
point and the maximum integer word length and the maximum fractional word
length is taken. The operands are temporarily extended to this type before
performing a bitwise and, bitwise exclusive-or, or bitwise or.

Member Functions
The functions defined for sc_f i x are given in Table 17.

Table 17. Functions for sc_fix

Functi on Functions in cl ass
cl ass
Bitw se b not, b_and, b _xor, b _or

153 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Arithmetic |neg, mult, div, add, sub, Ishift, rshift

The functions in Table 17 have return type void. The first argument of these
functions is a reference to the result object. The remaining arguments of these
functions are the operands.

For the bitwise functions, the result object and the operands are of the same
type, which is either sc_fi x or sc_ufi x.

The neg arithmetic function takes one operand, the other arithmetic functions

take two operands. At least one of the operands of the arithmetic functions

should have a fixed- point type, the other operand can have any of the types

given:

type_in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, float, double, const char*, int64,

ui nt 64, const sc_int _base & const sc_ui nt_baseT&,
const sc_signed& const sc_unsigned, const sc_fxval &,
const sc_fxval fast& const sc_[u]fix& const

sc [u]fix fast& }

The arithmetic functions are defined twice: once with the result object of type
sc_fxval, and once with the result object of type sc_fix or sc_ufix.

Bit Selection .
const sc_f xnum_?i tref operator [] ( int i) const;
sc_fxnum bitref operator [] ( int i);

const sc_fxnum_pi tref' bi t( int i) const;
sc_fxnum bitref bit( int i);

These functions take one argument of type int, which is the index into the fixed-
point mantissa. The index argument must be betweenw -1 (MSB) and 0
(LSB). Otherwise, a runtime error is produced. The return type of the bit

selection functions is (const or non- const) sc_f xnum bi t r ef T, which is a
proxy class. The proxy class allows bit selection to be used both as r val ue
(for reading) and | val ue (for writing). For bit selection, the fixed-point binary
point is ignored.

Part Selection .

const sc_fxnum subref operator () ( int, int ) const;
T . .

sc_fxnum subr ef operator () ( int, int );

T . .
const sc_fxnum_fubr ef range( int, int ) const;
sc_f xnum subr ef range( int, int );

154 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

These functions take two arguments of type i nt , which are the begin and end
indices into the fixed-point mantissa. The index arguments must be between
w -1 (MSB) and 0 (LSB). Otherwise, a runtime error is produced. The return

type of the part selection functions is (const or non-const) sc_f xnum subr ef T,
which is a proxy class that behaves like type sc_bv_base. The proxy class
allows part selection to be used both as r val ue (for reading) and | val ue (for
writing). All operators and methods that are available for type sc_bv_base are
also available for part selection. For part selection, the fixed-point binary point

is ignored.

const sc_fxnum_subrefJr operator () () const;
T
sc_fxnum subr ef operator () ();

+
const sc_fxnum_§ubref range() const;
sc_fxnum subr ef range() ;

As a shortcut for part selection of the complete mantissa, operator () and the
range() method can be called without any arguments.

Query Parameters
const sc_fxcast_sw tch&
cast _switch() const;
Returns the cast switch parameter.

i nt
iw () const;
Returns the integer word length parameter.

i nt
n_bits() const;
Returns the number of saturated bits parameter.

sc_o_node
o_node() const;
Returns the overflow mode parameter.

sc_g_node
g_node() const;

Return the quantization mode parameter.

const sc_fxtype_paranms&
type params() const;

Returns the type parameters.
i nt
W () const;

155 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Returns the total word length parameter.

Query Value
bool
is_neg() const;
Returns true if the variable holds a negative value. Returns false otherwise.

bool
is_zero() const;
Returns true if the variable holds a zero value. Returns false otherwise.

bool

overflow flag() const;
Returns true if the last write action on this variable caused overflow. Returns
false otherwise.

bool
guanti zation_flag() const;

Returns true if the last write action on this variable caused quantization.
Returns false otherwise.

const sc_fxval
val ue() const;

Returns the value.

Implicit Conversion
oper at or doubl e() const;
Implicit conversion to the implementation type doubl e. The value does not
change.

Explicit Conversion

short to_short() const;
unsi gned short to_ushort() const;
i nt to_int() const;
unsi gned i nt to uint() const;
| ong to | ong() const;
unsi gned | ong to_ul ong() const;
f | oat to_float() const;
doubl e t o_doubl e() const

const sc_string to_string() const;

const sc_string to_string( sc_nunrep ) const;

const sc_string to_string( sc_nunrep, bool ) const;

const sc_string to_string( sc_fnt ) const;

const sc_string to_string( sc_nunrep, sc_fnt ) const;

const sc_string to_string( sc_nunrep, bool, sc_fnt ) const;
The value of a fixed-point variable can be converted to a character string
with the to_string() method. This method takes different arguments for

156 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

formatting purposes. See Chapter 6.8.8 for more information on converting
fixed-point variables to/from character strings. Furthermore, writing to C++

output streams with operator << is supported, e.g. cout << a;, where a is a
fixed-point variable. The decimal number representation is used in this case.

const sc_string to_dec() const;
const sc_string to_bin() const;
const sc_string to_oct() const;
const sc_string to_hex() const;
Shortcut methods for conversion to a character string. See Chapter 6.8.9.2.

Print or dump content
voi d
print( ostream& = cout ) const;
Print the sc_fi x instance value to an output stream.

voi d
scan( istream& = cin );
Read an sc_fi x value from an input stream.

voi d
dunp( ostrean& = cout )
const ;
Prints the sc_f i x instance value, parameters and flags to an output stream.

ostreami
operator << ( ostreanm& os, const sc fix& a )

Print the instance value of a to an output stream os.

157 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.19 sc_fix_fast
Synopsis .
class sc_fix _fast : public sc_fxnumfast

publ i c:

/1l constructors

sc_fix _fast( sc_fxnumfast_observer* = 0 );

sc_fix fast( int, int,
sc_fxnum fast_observer* =0 );

sc_fix fast( sc_qg_node, sc_o_node,
sc_fxnum fast _observer* =0 );

sc_fix fast( sc_qg_node, sc_o _node, int,
sc_fxnum fast _observer* =0 );

sc_ fix fast( int, int, sc_qg_node, sc_o_node,
sc_fxnum fast_observer* =0 );

sc_ fix fast( int, int, sc_qg_node, sc_o_node,
sc_fxnum f ast observer* =0);

sc_fix_fast( const sc fxcast smntch&
‘'sc_fxnum fast_observer* =0 );

sc_fix _fast( int, int,
const sc_fxcast _sw tch&,
sc_fxnum fast_observer* =0 );

sc_fix fast( sc_qg_node, sc_o_node,
const sc_fxcast _sw tch&,
sc_fxnum fast_observer* =0 );

sc_fix fast( sc_qg_node, sc_o _node, int,
const sc_fxcast _sw tch&,
sc_fxnum fast observer* = )

sc_ fix fast( int, int, sc_qg_node, sc_o_node,
const sc_fxcast_sw tch&,
sc_fxnum fast_observer* = 0 );

sc_fix _fast( int, int, sc_g_node, sc_o_node,
const sc_fxcast_smﬂtch&
sc_fxnum fast_observer* =0 );

sc_fix _fast( const sc_fxtype_ paransg&,
sc_fxnum fast_observer* =0 );

sc_fix _fast( const sc_fxtype_ paransg&,
const sc_fxcast _sw tch&,
sc_fxnum fast_observer* =0 );

#define DECL_CTORS T(tp) \

158

sc_ fix fast( tp, int, int, \
sc_fxnum fast _observer* =0 ); \

sc fix fast( tp, sc_g_node, sc_o_node, \
sc_fxnum fast _observer* =0 ); \

sc fix fast( tp, sc_q_node, sc_o_node, int,
sc_fxnum fast _observer* =0 ); \

i nt,

i nt,

\

sc_fix fast( tp, int, int, sc_q_node, sc_o_node,

sc_fxnum fast _observer* =0 ); \
sc_fix fast( tp, \
int, int, sc_qg node, sc_o _node, int, \

Copyright 2003 Open SystemC Initiative. All rights reserved

\



SystemC 2.0.1 Language Reference Manual

sc_fxnum fast_observer* =0 ); \
sc_fix_fast( tp, const sc_fxcast_sw tch&\
sc_fxnum fast_observer* =0 ); \
sc_fix_fast( tp, int, int, \
const sc_fxcast_switch&\
sc_fxnum fast_observer* =0 ); \
sc_fix fast( tp, sc_g_node, sc_o_node, \
const sc_fxcast_switch&\
sc_fxnum fast_observer* =0 ); \
sc fix fast( tp, sc_g_node, sc_o _node, int, \
const sc_fxcast_switch&\
sc_fxnum fast_observer* =0 ); \
sc_fix fast( tp, int, int, sc_q_node, sc_o_node, \
const sc_fxcast_switch&\
sc_fxnum fast_observer* =0 ); \
sc_fix fast( tp, int, int, sc_q_node, sc_o_node, int, \
const sc_fxcast_switch&\
sc_fxnum fast_observer* =0 ); \
sc_fix fast( tp, const sc_fxtype paransg&,\
sc_fxnum fast_observer* =0 );
sc_fix fast( tp, const sc_fxtype paransg&,\
const sc_fxcast_switch&\
c_fxnumfast_observer* =0 );

#define DECL_CTORS T A(tp) \
sc_fix _fast( tp, sc_fxnumfast_observer* =0 ); \
DECL_CTORS T(tp)

#define DECL_CTORS T B(tp) \
explicit sc_fix fast( tp, \
sc_fxnum fast_observer* =0 ); \
DECL_CTORS_T(tp)

DECL_CTORS_T_A(i nt)
DECL_CTORS_T_A(unsigned int)
DECL_CTORS_T_A(l ong)
DECL_CTORS_T_A(unsi gned | ong)
DECL_CTORS_T_A(doubl e)
DECL_CTORS_T_A(const char*)
DECL_CTORS T _A(const sc_fxval &)
DECL_CTORS T A(const sc_fxval fast&)
DECL_CTORS _T_A(const sc_fxnumg)
DECL_CTORS T A(const sc_fxnum fast &)
DECL_CTORS_T B(i nt 64)
DECL_CTORS_T_B(ui nt 64)

DECL_CTORS T B(const sc_int_base&)
DECL_CTORS_T B(const sc_ui nt_base&)
DECL_CTORS_T B(const sc_si gned&)
DECL_CTORS_T B(const sc_unsi gned&)

/'l copy constructor
sc_fix fast( const sc_fix fast& );

/| operators

159 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

const sc_fix _fast operator ~ () const;

friend void b _not( sc_fix fast& const
sc_ fix fast& );

friend const sc_fix fast operator & ( const
sc_fix_fasté&,
const sc_fix fast& );

friend const sc_fix fast operator ~ ( const
sc_fix_fasté&,
const sc_fix fast& );

friend const sc_fix fast operator | ( const
sc_fix_fasté&,
const sc_fix fast& );

friend void b_and( sc_fix fast& const sc_fix_fasté&,
const sc_fix fasté& );

friend void b_or ( sc_fix fast& const sc_fix_fasté&,
const sc_fix fast& );

friend void b _xor( sc_fix fast& const sc_fix_fastég&,
const sc_fix fast& );

sc_fix fast& operator = ( const sc_fix fast& );

#define DECL_ASN OP _T(op,tp) \
sc_fix fast& operator op ( tp );

#defi ne DECL_ASN OP_OTHER(op) \
DECL_ASN OP_T(op, i nt 64) \
DECL_ASN_OP_T(op, ui nt 64) \
DECL_ASN_OP_T(op, const sc_int_base&)\
DECL_ASN_OP_T(op, const sc_ui nt_base&)\
DECL_ASN_OP_T(op, const sc_si gned&)\
DECL_ASN OP_T(op, const sc_unsi gned&)

#defi ne DECL_ASN OP(op) \

DECL_ASN OP_T(op,int) \

DECL_ASN OP_T(op, unsigned int) \
DECL_ASN OP_T(op, long) \

DECL_ASN OP_T(op, unsi gned | ong) \
DECL_ASN OP_T(op, doubl e) \

DECL_ASN OP_T(op, const char*)\
DECL_ASN OP_T(op, const sc_fxval &\
DECL_ASN OP_T(op, const sc_fxval _fast&)\

DECL_ASN_OP_T(op, const sc_fxnum&)\
DECL_ASN OP_T(op, const sc_fxnum fast &)\
DECL_ASN_OP_OTHER( op)

DECL_ASN OP(=)
DECL_ASN_OP( *
DECL_ASN_OP(/
DECL_ASN_OP( +=)
DECL_ASN_OP( - =)

DECL_ASN OP_T(<<=,int)

DECL_ASN OP_T(>>=,int)

DECL_ASN _OP_T( &=, const sc_fix&)
DECL_ASN OP_T( &=, const sc_fix_fast&)
DECL_ASN OP_T(| =, const sc_fix&)

160 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

,const sc_fix_ fastg&)
,const sc_fix&)
,const sc_fix_ fast&)

DECL_ASN_OP_T(
DECL_ASN_OP_T(
DECL_ASN_OP_T(

I
N
N

const sc_fxval _fast operator ++ ( int );
const sc_fxval fast operator -- ( int );
sc_fix fast& operator ++ ();
sc_fix fast& operator -- ();

3

Description

sc_fix_fast is a signed (two's complement) limited precision type.
sc_fix_fast allows specifying the fixed-point type parameters wl, iwl, q_mode,
o_mode, and n_bits as variables. See Chapter 6.8.1.

sc_fix_fast provides the same APlas sc_fi x.

sc_fix_fast uses double precision (floating-point) values. The mantissa of a
double precision value is limited to 53 bits. This means that bit-true behavior
cannot be guaranteed with the limited precision types. For bit-true behavior with
the limited precision types, the following guidelines should be followed:

Make sure that the word length of the result of any operation or expression does
not exceed 53 bits.

The result of an addition or subtraction requires a word length that is one bit
more than the maximum aligned word length of the two operands.

The result of a multiplication requires a word length that is the sum of the word
lengths of the two operands.

Declaration Syntax
sc_fix_fast var_name([init_val]
[, W, 1w ]
[, g_node, o_node[,n_bits]]
[, cast _swi tch]
[, observer]);

sc_fix_fast var_name([init_val]
, type_par ans
[, cast _sw tch]
[, observer]);

Examples
sc_fix _fast a(l.5);
sc_fix fast c(16,1, SC RND CONV, SC SAT_SYM;
sc_fix fast b = -1;

Public Constructors
sc_fix fast (
[type_ init_val]
[,int W,int iwW]

161 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

[,sc_q_node g_node, sc_o_node o_node[,int n_bits]]
[,const sc_fxcast_sw tch& cast_sw tch]
, sc_fxnum fast_observer* observer)

type_ in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, float, douple, const char*, intaﬁ,
ui nt 64, const sc_int_base & const sc_uint_base &,
const sc_signed& const sc_unsigned, const sc_fxval &,
const sc_fxval _fast& const sc_[u]fix& const
sc_[u]fix fasté& }

sc_fix fast (
[type_ init_val]
, const sc_fxtype_param& type_parans
[,sc_fxcast_switch cast_sw tch]
, sc_fxnum fast_observer* observer)

type_ in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, float, double, const char*, int64,
ui nt 64, const sc_int_base & const sc_uint_base &,
const sc_signed&, const sc_unsigned, const sc_fxval &,
const sc_fxval _fast& const sc_[u]fix& const
sc_[u]fix fast& }

Notes ont ype_

For all typesintype_ ,exceptsc_[u]fixandsc_[u]fix_fast, only the
value of the argument is taken, that is, any type information is discarded. This
ensures that initialization during declaration and initialization after declaration
behave identical.

A fixed-point variable can be initialized with a C/C++ character string (type
const char*) either when the number will be expressed in binary form or when
the number is too large to be written as a C/C++ built-in type literal

init_val

The initial value of the variable. If the initial value is not specified, the instance
is uninitialized.

wil

The total number of bits in the fixed-point format. W\ must be greater than zero,
otherwise, a runtime error is produced. The default value for W is obtained
from the fixed-point context type sc_f xt ype_cont ext . See Chapter 11.26.
The total word length parameter cannot change after declaration.

iwl

The number of integer bits in the fixed-point format. i W can be positive or
negative. The default value fori wl is obtained from the fixed-point context type
sc_f xtype_cont ext. See See Chapter 11.26. The number of integer bits
parameter cannot change after declaration.

q_mode

The quantization mode to use. Valid values for q_node are given in Section O .
The default value for g_node is obtained from the fixed-point context type
sc_f xtype_cont ext. See See Chapter 11.26. The quantization mode
parameter cannot change after declaration.

162 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

0_mode

The overflow mode to use. Valid values for o_node are given in Section 0. The
default value for o_node is obtained from the fixed-point context type
sc_fxtype_cont ext. See Chapter 11.26. The overflow mode parameter
cannot change after declaration.

n_bits

The number of saturated bits parameter for the selected overflow mode.
n_bits must be greater than or equal to zero, otherwise a runtime error is
produced. If the overflow mode is specified, the default value is zero. If the
overflow mode is not specified, the default value is obtained from the fixed-point
context type sc_f xt ype_cont ext. See Chapter 11.26. The number of
saturated bits parameter cannot change after declaration.

type_params

A fixed-point type parameters object.

cast_switch

The cast switch, which allows to switch fixed-point type casting on or off. Valid
values for cast _swi t ch are:

SC_OFF for casting off

SC_ON for casting on

The default value for cast _swi t ch is obtained from the fixed-point context
type sc_f xcast _context. The cast _sw t ch parameter cannot change
after declaration.

observer

A pointer to an observer object. The obser ver argument is of type
sc_fxnum fast _observer*. See Chapter 11.24. The default value for
obser ver is 0 (null pointer). The obser ver parameter cannot change after
declaration.

Copy Constructor
sc_fix_fast( const sc_fix_fast& );

Operators
The operators defined for the sc_fi x_f ast are given in Table 18.

Table 18. Operators for sc_fix_fast

Oper at or OQperators in class
cl ass
Bitw se ~ & M|
Arithmetic ¥/ o+ - << S>> 4+ --
Equal ity == | =
Rel at i onal <<= >>=
ASsi gnnent = *= [= 4= -= <<= >>= &= "= | =

Note:

163 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Operators << and operator >> define arithmetic shifts, not bitwise shifts. The
difference is that no bits are lost and proper sign extension is done.

In expressions with the non-bitwise operators from Table 18, fixed-point types
can be mixed with all types given:
type_in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, fl oat, douple, const char*, intaﬁ,
ui nt 64, const sc_int _base & const sc_uint_base &,
const sc_signed&, const sc_unsigned& const sc_fxval &,
const sc_fxval fast& const sc_[u]fix& const
sc_ [u]fix fast& }

The return type of any arithmetic operation is the fixed-point value type, which
guarantees that the operation is performed without overflow or quantization.

A floating-point variable or a fixed-point value variable can contain one of the
special values +Inf (plus infinity), -Inf (minus infinity), or Nan (not a number).
Assignment of one of these special values to a fixed-point variable will produce
a runtime error.

For the fixed-point types, a minimal set of bitwise operators is defined. These
bitwise operators are only defined on either the signed fixed-point types or the
unsigned fixed- point types. Mixing between signed and unsigned fixed-point
types is not allowed. Mixing with any other type is also not allowed.

The semantics of the bitwise operators is as follows. For the unary ~ operator,
the type of the result is the type of the operand. The bits in the two’s
complement mantissa of the operand are inverted to get the mantissa of the
result. For the binary operators, the type of the result is the maximum aligned
type of the two operands, that is, the two operands are aligned by the binary
point and the maximum integer word length and the maximum fractional word
length is taken. The operands are temporarily extended to this type before
performing a bitwise and, bitwise exclusive-or, or bitwise or.

Member Functions
The functions defined for sc_fi x_f ast are given in Table 19.

Table 19. Functions for sc_fix_fast

Functi on Functions in cl ass
cl ass
Bitw se b not, b_and, b _xor, b _or

Arithmetic |neg, mult, div, add, sub, Ishift, rshift

The functions in Table 19 have return type void. The first argument of these
functions is a reference to the result object. The remaining arguments of these
functions are the operands.

164 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

For the bitwise functions, the result object and the operands are of the same
type, which is either sc_fi x_fast orsc_ufix_fast.

The neg arithmetic function takes one operand, the other arithmetic functions

take two operands. At least one of the operands of the arithmetic functions

should have a fixed- point type, the other operand can have any of the types

given:

type_ in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, float, double, const char*, int64,

ui nt 64, const sc_i nt_baseT&, const sc_ui nt_baseT&,
const sc_signed& const sc_unsigned, const sc_fxval &,
const sc_fxval _fast& const sc_[u]fix& const
sc_[u]fix fasté& }

The arithmetic functions are defined twice: once with the result object of type
sc_fxval, and once with the result object of type sc_fix_fast.

Bit Selection
const sc_fxnum bitref ! operator [] ( int i) const;
sc_fxnum bitref ! operator [] ( int i);

const sc_fxnum_?i tref' bi t( int i) const;
sc_fxnum bitref bit( int i);

These functions take one argument of type int, which is the index into the fixed-
point mantissa. The index argument must be betweenw -1 (MSB) and 0
(LSB). Otherwise, a runtime error is produced. The return type of the bit

selection functions is (const or non- const) sc_f xnum bi t r ef T, which is a
proxy class. The proxy class allows bit selection to be used both as r val ue
(for reading) and | val ue (for writing). For bit selection, the fixed-point binary
point is ignored.

Part Selection .

const sc_fxnum subref operator () ( int, int ) const;
t ) )

sc_f xnum subr ef operator () ( int, int );

const sc_fxnum_fubrefJr range( int, int ) const;
sc_fxnum subr ef range( int, int );

These functions take two arguments of type i nt , which are the begin and end
indices into the fixed-point mantissa. The index arguments must be between
w - 1 (MSB) and 0 (LSB). Otherwise, a runtime error is produced. The return

type of the part selection functions is (const or non-const) sc_f xnum subr ef T,

165 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

which is a proxy class that behaves like type sc_bv_base. The proxy class
allows part selection to be used both as r val ue (for reading) and | val ue (for
writing). All operators and methods that are available for type sc_bv_base are
also available for part selection. For part selection, the fixed-point binary point
is ignored.

const sc_fxnum_subrefJr operator () () const;
T
sc_fxnum subr ef operator () ();

const sc_fxnum_§ubrefJr range() const;
sc_fxnum subr ef range() ;

As a shortcut for part selection of the complete mantissa, operator () and the
range() method can be called without any arguments.

Query Parameters
const sc_fxcast_switch&
cast _switch() const;

Returns the cast switch parameter.

i nt
iw () const;
Returns the integer word length parameter.

i nt
n_bits() const;
Returns the number of saturated bits parameter.

sc_o_node
o_node() const;
Returns the overflow mode parameter.

sc_g_node
g_node() const;

Return the quantization mode parameter.

const sc_fxtype_parans&
type_parans() const;
Returns the type parameters.
i nt
w () const;
Returns the total word length parameter.

Query Value
bool
i s_neg() const;
Returns true if the variable holds a negative value. Returns false otherwise.

166 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

bool
is zero() const;
Returns true if the variable holds a zero value. Returns false otherwise.

bool

overflow flag() const;
Returns true if the last write action on this variable caused overflow. Returns
false otherwise.

bool

guanti zation_flag() const;
Returns true if the last write action on this variable caused quantization.
Returns false otherwise.

const sc_fxval
val ue() const;

Returns the value.

Implicit Conversion
oper at or doubl e() const;
Implicit conversion to the implementation type doubl e. The value does not
change.

Explicit Conversion

short to_short() const;
unsi gned short to_ushort() const;
i nt to_int() const;
unsi gned i nt to uint() const;
| ong to | ong() const;
unsi gned | ong to_ul ong() const;
fl oat to float() const;
doubl e t o_doubl e() const

const sc_string to_string() const;

const sc_string to_string( sc_nunrep ) const;

const sc_string to_string( sc_nunrep, bool ) const;

const sc_string to_string( sc_fm ) const;

const sc_string to_string( sc_nunrep, sc_fmt ) const;

const sc_string to_string( sc_nunrep, bool, sc_fnt ) const;

The value of a fixed-point variable can be converted to a character string
with the to_string() method. This method takes different arguments for
formatting purposes. See Chapter 6.8.8 for more information on converting
fixed-point variables to/from character strings. Furthermore, writing to C++
output streams with operator << is supported, e.g. cout << a;, where a is a
fixed-point variable. The decimal number representation is used in this case.

const sc_string to_dec() const;

167 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

const sc_string to_bin() const;
const sc_string to_oct() const;
const sc_string to_hex() const;
Shortcut methods for conversion to a character string. See Chapter 6.8.9.2.

Print or dump content
voi d
print( ostream& = cout ) const;
Print the sc_fi x_f ast instance value to an output stream.

voi d
scan( istrean& = cin );
Read ansc_fi x_fast value from an input stream.

voi d
dunp( ostrean& = cout )
const;
Prints the sc_f i x_f ast instance value, parameters and flags to an output

stream.
ostrean&

operator << ( ostream& os, const sc fix fast& a )
Print the instance value of a to an output stream os.

168 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.20 sc_fixed

Synopsis
tenplate <int W int I,
sc_qg_node Q = SC DEFAULT_Q MODE _,
sc_o_nmode O = SC DEFAULT O MODE , int N =
SC DEFAULT_N BI TS >
class sc_fixed : public sc_fix

1
public:
/'l constructors
sc_fixed( sc_fxnumobserver* =0 );
sc_fixed( const sc_fxcast_swtchg&,
sc_fxnum observer* = 0 );

#define DECL_CTORS T A(tp) \
sc_fixed( tp, sc_fxnumobserver* =0 ); \
sc_fixed( tp, const sc_fxcast_sw tchg&,
sc_fxnum observer* = 0 );

#define DECL_CTORS T B(tp) \
sc_fixed( tp, sc_fxnumobserver* =0 ); \
sc_fixed( tp, const sc_fxcast_sw tchg&,
sc_fxnum observer* = 0 );

DECL_CTORS_T_A(i nt)

DECL_CTORS T _A(unsi gned int)
DECL_CTORS _T_A(!| ong)

DECL_CTORS T _A(unsi gned | ong)
DECL_CTORS_T_A(doubl e)

DECL_CTORS T _A(const char*)
DECL_CTORS T A(const sc_fxval &)
DECL_CTORS T _A(const sc_fxval _fast&)
DECL_CTORS T _A(const sc_fxnunmg)
DECL_CTORS_T_A(const sc_fxnum fast &)
DECL_CTORS_T_B(i nt 64)
DECL_CTORS_T_B(ui nt 64)

DECL_CTORS T B(const sc_int_base&)
DECL_CTORS T B(const sc_ui nt_base&)
DECL_CTORS T B(const sc_signed&)
DECL_CTORS T _B(const sc_unsi gned&)
sc_fixed( const sc_fixed<WI,Q O N>& );

/'l operators
sc_fixed& operator = ( const sc_fixed<WI,Q O N>& );

#define DECL_ASN OP _T(op,tp) \
sc_fixed& operator op ( tp );

#defi ne DECL_ASN OP_OTHER(op) \
DECL_ASN OP_T(op, i nt64) \
DECL_ASN OP T(op, ui nt 64) \
DECL_ASN _OP_T(op, const sc_int_base&)\

169 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

DECL_ASN OP_T(op, const sc_uint_base&)\
DECL_ASN OP_T(op, const sc_signed&)\
DECL_ASN OP_T(op, const sc_unsi gned&)

#defi ne DECL_ASN OP(op) \
DECL_ASN _OP_T( op, int) \
DECL_ASN OP_T(op, unsigned int) \
DECL_ASN_OP_T( op, | ong) \
DECL_ASN_OP_T(op, unsi gned | ong) \
DECL_ASN_OP_T( op, doubl e) \
DECL_ASN_OP_T(op, const char*) \
DECL_ASN_OP_T(op, const sc_fxval & \
DECL_ASN _OP_T(op, const sc_fxval _fast& \
DECL_ASN_OP_T(op, const sc_fxnum&) \
DECL_ASN_OP_T(op, const sc_fxnumfast&) \
DECL_ASN_OP_OTHER( op)

DECL_ASN_OP( =)
DECL_ASN_OP(*
DECL_ASN_OP(/
DECL_ASN_OP( +=)
DECL_ASN_OP(- =)

DECL_ASN OP_T(<<=,int)

DECL_ASN OP_T(>>=,int)

DECL_ASN _OP_T( &=, const sc_fix&)
DECL_ASN OP_T(&=, const sc_fix_fast&)
DECL_ASN OP_T(| =, const sc_fix&)
DECL_ASN _CP T(|— const sc_fix_fast&)
DECL_ASN _OP_T(”=, const sc_fix&)
DECL_ASN OP_T(" ,const sc_fix_fast&)

const sc_fxval operator ++ ( int );
const sc_fxval operator -- ( int );
sc_fixed& operator ++ ();
sc_fixed& operator -- ();

3

Description

Templatized type sc_fi xed is a signed (two's complement) type. The fixed-
point type parameters wl, iwl, _mode, o_mode, and n_bits are part of the type in
sc_fixed. ltis required that these parameters be constant expressions. See
Chapter 6.8.1.

Declaration syntax

sc_ fixed <wl,iw[,qg_node[,o _node[,n_bits]]]>
var_nane([init_val][,cast_sw tch])
[, observer]);

wi

170 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

The total number of bits in the fixed-point format. The wl argument is of type int
and must be greater than zero. Otherwise, a runtime error is produced. The wl
argument must be a constant expression. The total word length parameter
cannot change after declaration.

iwl

The number of integer bits in the fixed-point format. The iwl argument is of type
int and can be positive or negative. See Chapter 6.8.1. The iwl argument must
be a constant expression. The number of integer bits parameter cannot change
after declaration.

gq_mode

The quantization mode to use. The q_mode argument is of type sc_q_mode.
Valid values for g_mode are given in Chapter 6.8.2.2 . The q_mode argument
must be a constant expression. The default value for g_mode is obtained from
the set of built-in default values. See Chapter 6.8.8. The quantization mode
parameter cannot change after declaration.

0_mode

The overflow mode to use. The o_mode argument is of type sc_o_mode. Valid
values for o_mode are given in Chapter 6.8.2.1 . The o_mode argument must
be a constant expression. The default value for o_mode is obtained from the
set of built-in default values. See Chapter 6.8.8. The overflow mode parameter
cannot change after declaration.

n_bits

The number of saturated bits parameter for the selected overflow mode. The
n_bits argument is of type int and must be greater than or equal to zero.
Otherwise, a runtime error is produced. The n_bits argument must be a
constant expression. If the overflow mode is specified, the default value is zero.
If the overflow mode is not specified, the default value is obtained from the set
of built-in default values. See Chapter 6.8.8. The number of saturated bits
parameter cannot change after declaration.

Examples

sc_fixed<32, 32> a;
sc_fixed<8,1, SC RND> c(b);

Public Constructor

explicit sc_fixed ([type_ init_val]
[, const sc_fxcast_sw tch& cast_sw tch]
[, sc_fxnum observer* observer]);

type_ in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, float, douple, const char*, intaﬂ,
ui nt 64, const sc_int _base & const sc_uint_base &,
const sc_signed&, const sc_unsigned, const sc_fxval &,
const sc_fxval _fast& const sc_[u]fix& const
sc_[u]fix fast& }

171 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Notesontype_

For all typesintype_ ,exceptsc_[u]fixandsc [u]fix_fast, onlythe
value of the argument is taken, that is, any type information is discarded. This
ensures that initialization during declaration and initialization after declaration
behave identical.

A fixed-point variable can be initialized with a C/C++ character string (type
const char*) either when the number will be expressed in binary form or when
the number is too large to be written as a C/C++ built-in type literal

init_val

The initial value of the variable. If the initial value is not specified, the instance
is uninitialized.

cast_switch

The cast switch, which allows to switch fixed-point type casting on or off. Valid
values for cast _swi t ch are:

SC_OFF for casting off

SC_ON for casting on

The default value for cast _swi t ch is obtained from the fixed-point context
type sc_f xcast _context. The cast _sw t ch parameter cannot change
after declaration.

observer

A pointer to an observer object. The obser ver argument is of type
sc_fxnum observer*. See Chapter 11.25. The default value for obser ver
is O (null pointer). The obser ver parameter cannot change after declaration.

Copy Constructor
sc_fixed( const sc_fixed<WI,Q O N>& );

Operators
The operators defined for the sc_f i xed are given in Table 20.

Table 20. Operators for sc_fixed

Oper at or OQperators in class
cl ass
Bi tw se ~ & M|
Arithmetic o+ - << S>> 4+ --
Equal ity == | =
Rel at i onal <<= >>=
Assi gnnent = *= [= 4= -= <<= >>= &= = | =

Note:
Operator << and operator >> define arithmetic shifts, not bitwise shifts. The
difference is that no bits are lost and proper sign extension is done.

In expressions with the non-bitwise operators from Table 20, fixed-point types
can be mixed with all types given:

172 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

type_ in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, float, douple, const char*, intaﬁ,
ui nt 64, const sc_int_base & const sc_uint_base &,
const sc_signed& const sc_unsigned, const sc_fxval &,
const sc_fxval _fast& const sc_[u]fix& const
sc_[u]fix fasté& }

The return type of any arithmetic operation is the fixed-point value type, which
guarantees that the operation is performed without overflow or quantization.

A floating-point variable or a fixed-point value variable can contain one of the
special values +Inf (plus infinity), -Inf (minus infinity), or Nan (not a number).
Assignment of one of these special values to a fixed-point variable will produce
a runtime error.

For the fixed-point types, a minimal set of bitwise operators is defined. These
bitwise operators are only defined on either the signed fixed-point types or the
unsigned fixed- point types. Mixing between signed and unsigned fixed-point
types is not allowed. Mixing with any other type is also not allowed.

The semantics of the bitwise operators is as follows. For the unary ~ operator,
the type of the result is the type of the operand. The bits in the two’s
complement mantissa of the operand are inverted to get the mantissa of the
result. For the binary operators, the type of the result is the maximum aligned
type of the two operands, that is, the two operands are aligned by the binary
point and the maximum integer word length and the maximum fractional word
length is taken. The operands are temporarily extended to this type before
performing a bitwise and, bitwise exclusive-or, or bitwise or.

Member Functions
The functions defined for sc_f i xed are given in Table 21.

Table 21. Functions for sc_fixed

Functi on Functions in cl ass
cl ass
Bitw se b not, b_and, b _xor, b _or

Arithmetic |neg, mult, div, add, sub, Ishift, rshift

The functions in Table 21 have return type void. The first argument of these
functions is a reference to the result object. The remaining arguments of these
functions are the operands.

For the bitwise functions, the type of the result is sc_fixed, and the type of the

operands are either both sc_fi xed oramix of sc_fi xed and
sc_fixed_fast.

173 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

The neg arithmetic function takes one operand, the other arithmetic functions

take two operands. At least one of the operands of the arithmetic functions

should have a fixed- point type, the other operand can have any of the types

given:

type_ in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, float, double, const char*, int64,

ui nt 64, const sc_int_base & const sc_uint_base &,
const sc_signed& const sc_unsigned, const sc_fxval &,
const sc_fxval _fast& const sc_[u]fix& const
sc_[u]fix fasté& }

The arithmetic functions are defined twice: once with the result object of type
sc_fxval, and once with the result object of type sc_fixed or sc_ufixed.

Bit Selection
const sc_fxnum bitref ! operator [] ( int i) const;
sc_fxnum bitref ! operator [] ( int i);

const sc_fxnum_?i tref' bi t( int i) const;
sc_fxnum bitref bit( int i);

These functions take one argument of type int, which is the index into the fixed-
point mantissa. The index argument must be betweenw -1 (MSB) and 0
(LSB). Otherwise, a runtime error is produced. The return type of the bit
selection functions is (const or non- const) sc_f xnum bi tref *, which is a
proxy class. The proxy class allows bit selection to be used both as r val ue
(for reading) and | val ue (for writing). For bit selection, the fixed-point binary
point is ignored.

Part Selection .

const sc_fxnum subref operator () ( int, int ) const;
T . .

sc_f xnum subr ef operator () ( int, int );

const sc_fxnum_fubrefJr range( int, int ) const;
sc_fxnum subr ef range( int, int );

These functions take two arguments of type i nt , which are the begin and end
indices into the fixed-point mantissa. The index arguments must be between
w - 1 (MSB) and 0 (LSB). Otherwise, a runtime error is produced. The return

type of the part selection functions is (const or non-const) sc_f xnum subr ef T,
which is a proxy class that behaves like type sc_bv_base. The proxy class
allows part selection to be used both as r val ue (for reading) and | val ue (for
writing). All operators and methods that are available for type sc_bv_base are

174 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

also available for part selection. For part selection, the fixed-point binary point
is ignored.

const sc_fxnum_subrefT operator () () const;
T
sc_fxnum subr ef operator () ();

+
const sc_fxnum_gubref range() const;
sc_fxnum subr ef range();

As a shortcut for part selection of the complete mantissa, operator () and the
range() method can be called without any arguments.

Query Parameters
const sc_fxcast_sw tch&
cast _switch() const;
Returns the cast switch parameter.

i nt
iw () const;
Returns the integer word length parameter.

i nt
n_bits() const;
Returns the number of saturated bits parameter.

sc_o_node
o_node() const;
Returns the overflow mode parameter.

sc_qg_node
g_node() const;
Return the quantization mode parameter.

const sc_fxtype_parans&
type_parans() const;
Returns the type parameters.
i nt
W () const;
Returns the total word length parameter.

Query Value
bool
i s_neg() const;
Returns true if the variable holds a negative value. Returns false otherwise.

bool
is zero() const;

175 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Returns true if the variable holds a zero value. Returns false otherwise.

bool
overflow flag() const;

Returns true if the last write action on this variable caused overflow. Returns
false otherwise.

bool

guanti zation_flag() const;
Returns true if the last write action on this variable caused quantization.
Returns false otherwise.

const sc_fxval
val ue() const;
Returns the value.

Implicit Conversion
oper at or doubl e() const;
Implicit conversion to the implementation type doubl e. The value does not
change, if the wordlength of the sc_fi xed is less than or equal to 53 bits.

Explicit Conversion

short to_short() const;
unsi gned short to_ushort() const;
i nt to int() const;
unsi gned i nt to_uint() const;
| ong to_long() const;
unsi gned | ong to_ul ong() const;
f | oat to float() const;
doubl e t o_doubl e() const

const sc_string to_string() const;

const sc_string to_string( sc_nunrep ) const;

const sc_string to_string( sc_nunrep, bool ) const;

const sc_string to_string( sc_fnt ) const;

const sc_string to_string( sc_nunrep, sc_fnt ) const;

const sc_string to_string( sc_nunrep, bool, sc_fnt ) const;
The value of a fixed-point variable can be converted to a character string
with the to_string() method. This method takes different arguments for
formatting purposes. See Chapter 6.8.8 for more information on converting
fixed-point variables to/from character strings. Furthermore, writing to C++
output streams with operator << is supported, e.g. cout << a;, where a is a
fixed-point variable. The decimal number representation is used in this case.

const sc_string to_dec() const;
const sc_string to_bin() const;
const sc_string to_oct() const;
const sc_string to_hex() const;
Shortcut methods for conversion to a character string. See Chapter 6.8.9.2.

176 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Print or dump content
voi d
print( ostrean& = cout ) const;
Print the sc_fi xed instance value to an output stream.

voi d
scan( istrean& = cin );
Read an sc_f i xed value from an input stream.

voi d
dunp( ostrean& = cout )
const;
Prints the sc_f i xed instance value, parameters and flags to an output

stream.
ostrean®&

operator << ( ostream& os, const sc_fixed& a )
Print the instance value of a to an output stream os.

177 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.21 sc_fixed_fast

Synopsis
tenplate <int W int I,
sc_g_node Q = SC _DEFAULT_Q MODE_,
sc_o_node O = SC DEFAULT O MODE , int N =
"SC_DEFAULT_N BI TS >
class sc_fixed_fast : public sc_fix_fast

{
public:
[/ constructors

sc_fixed fast( sc_fxnumfast observer* = 0 );
sc_fixed fast( const sc_fxcast_sw tch&,
sc_fxnum fast observer* = 0 );

#define DECL_CTORS T A(tp) \
sc_fixed fast( tp, sc_fxnumfast observer* =0 ); \
sc_fixed fast( tp, const sc_fxcast sSw tchg&, \
sc_fxnum fast observer* = 0 );

#define DECL_CTORS T B(tp) \
sc_fixed fast( tp, sc_fxnumfast_observer* =0 ); \
sc_fixed fast( tp, const sc_fxcast_switch& \
‘sc_fxnum fast_observer* = 0 );

DECL_CTORS_T_A(i nt)

DECL_CTORS T_A(unsigned int)
DECL_CTORS T _A(I| ong)

DECL_CTORS T _A(unsi gned | ong)
DECL_CTORS_T_A(doubl e)

DECL_CTORS T _A(const char*)
DECL_CTORS T A(const sc_fxval &)
DECL_CTORS T _A(const sc_fxval _fast&)
DECL_CTORS T _A(const sc_fxnunmg)
DECL_CTORS_T_A(const sc_fxnum fast &)
DECL_CTORS_T_B(i nt 64)
DECL_CTORS_T_B(ui nt 64)

DECL_CTORS T B(const sc_int_base&)
DECL_CTORS T B(const sc_ui nt_base&)
DECL_CTORS T B(const sc_signed&)
DECL_CTORS T B(const sc_unsi gned&)

sc_fixed fast( const sc _fixed fast<WIl,Q O N>& );
/'l operators
sc_fixed_fast& operator = ( const
sc_fixed fast<WI,Q O N>& );

#define DECL_ASN OP _T(op,tp) \
sc_fixed fast& operator op ( tp );

#defi ne DECL_ASN OP_OTHER(op) \

178 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

DECL_ASN OP_T(op,int64) \

DECL_ASN OP_T(op, ui nt64) \

DECL_ASN _OP_T(op, const sc_int_base&) \
DECL_ASN_OP_T(op, const sc_ui nt_base&) \
DECL_ASN_OP_T(op, const sc_signed&) \
DECL_ASN OP_T(op, const sc_unsi gned&)

#defi ne DECL_ASN OP(op) \
DECL_ASN _OP_T( op, int) \
DECL_ASN OP_T(op, unsigned int) \
DECL_ASN_OP_T( op, | ong) \
DECL_ASN_OP_T(op, unsi gned | ong) \
DECL_ASN_OP_T( op, doubl e) \
DECL_ASN_OP_T(op, const char*) \
DECL_ASN_OP_T(op, const sc_fxval & \
DECL_ASN _OP_T(op, const sc_fxval _fast& \
DECL_ASN_OP_T(op, const sc_fxnum&) \
DECL_ASN_OP_T(op, const sc_fxnumfast&) \
DECL_ASN_OP_OTHER( op)

DECL_ASN_OP( =)
DECL_ASN _OP(*
DECL_ASN_OP(/
DECL_ASN_OP( +=)
DECL_ASN_OP(- =)

DECL_ASN OP_T(<<=,int)

DECL_ASN OP_T(>>=,int)

DECL_ASN _OP_T( &=, const sc_fix&)
DECL_ASN OP_T( &=, const sc_fix_fast&)

DECL_ASN OP_T(| =, const sc_fix&)
DECL_ASN OP_T(| :, const sc_fix_fast&)
DECL_ASN _OP_T(”=, const sc_fix&)
DECL_ASN OP_T(”~=,const sc_fix_fast&)
const sc_fxval _fast operator ++ ( int );
const sc_fxval fast operator -- ( int );
sc_fixed fast& operator ++ ();
sc_fixed fast& operator -- ();
3
Description

Templatized type sc_fi xed_f ast is a signed (two's complement) type. The
fixed-point type parameters wl, iwl, g_mode, o_mode, and n_bits are part of the
typeinsc_fi xed_fast. Itisrequired that these parameters be constant
expressions. See Chapter 6.8.1.

sc_fixed_fast provides the same APl as sc_fi xed.

sc_fixed_fast uses double precision (floating-point) values. The mantissa of
a double precision value is limited to 53 bits. This means that bit-true behavior

179 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

cannot be guaranteed with the limited precision types. For bit-true behavior with
the limited precision types, the following guidelines should be followed:

Make sure that the word length of the result of any operation or expression does
not exceed 53 bits.

The result of an addition or subtraction requires a word length that is one bit
more than the maximum aligned word length of the two operands.

The result of a multiplication requires a word length that is the sum of the word
lengths of the two operands.

Declaration syntax

sc_fixed fast <w,iw [, q _node[,o node[,n_bits]]]>
var_nane([init_val][,cast_sw tch])
[, observer]);
wi
The total number of bits in the fixed-point format. The wl argument is of type int
and must be greater than zero. Otherwise, a runtime error is produced. The wl
argument must be a constant expression. The total word length parameter
cannot change after declaration.
iwl
The number of integer bits in the fixed-point format. The iwl argument is of type
int and can be positive or negative. See Chapter 6.8.1. The iwl argument must
be a constant expression. The number of integer bits parameter cannot change
after declaration.
gq_mode
The quantization mode to use. The q_mode argument is of type sc_q_mode.
Valid values for g_mode are given in Chapter 6.8.2.2 . The q_mode argument
must be a constant expression. The default value for g_mode is obtained from
the set of built-in default values. See Chapter 6.8.8. The quantization mode
parameter cannot change after declaration.
0_mode
The overflow mode to use. The o_mode argument is of type sc_o_mode. Valid
values for o_mode are given in Chapter 6.8.2.1 . The o_mode argument must
be a constant expression. The default value for o_mode is obtained from the
set of built-in default values. See Chapter 6.8.8. The overflow mode parameter
cannot change after declaration.
n_bits
The number of saturated bits parameter for the selected overflow mode. The
n_bits argument is of type int and must be greater than or equal to zero.
Otherwise, a runtime error is produced. The n_bits argument must be a
constant expression. If the overflow mode is specified, the default value is zero.
If the overflow mode is not specified, the default value is obtained from the set
of built-in default values. See Chapter 6.8.8. The number of saturated bits
parameter cannot change after declaration.

Examples

180 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

sc_fixed fast<32, 32> a;
sc_fixed fast<8, 1, SC RND> c(b);
sc_fixed fast<8,8> ¢ “0.17;
sc_fixed fast<8,8> d
sc_ufixed<l16,8> e = 2;

sc_fixed fast<16,16>f = d + e;
d *= 2;

Public Constructor

explicit sc_fixed fast ([type_ init_val]
[, const sc_fxcast_sw tch& cast_sw tch]
[, sc_fxnum fast_observer* observer]);

type_in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, float, douple, const char*, intaﬂ,
ui nt 64, const sc_int _base & const sc_uint_base &,
const sc_signed&, const sc_unsigned, const sc_fxval &,
const sc_fxval fast& const sc_[u]fix& const
sc_ [u]fix fast& }

Notes ontype_

For all typesintype_ ,exceptsc_[u]fixandsc_[u]fix_fast, only the
value of the argument is taken, that is, any type information is discarded. This
ensures that initialization during declaration and initialization after declaration
behave identical.

A fixed-point variable can be initialized with a C/C++ character string (type
const char*) either when the number will be expressed in binary form or when
the number is too large to be written as a C/C++ built-in type literal

init_val

The initial value of the variable. If the initial value is not specified, the instance
is uninitialized.

cast_switch

The cast switch, which allows to switch fixed-point type casting on or off. Valid
values for cast _swi t ch are:

SC_COFF for casting off

SC _ON for casting on

The default value for cast _swi t ch is obtained from the fixed-point context
type sc_f xcast _context. The cast _sw t ch parameter cannot change
after declaration.

observer

A pointer to an observer object. The obser ver argument is of type
sc_fxnum fast observer*. See Chapter 11.24. The default value for
obser ver is 0 (null pointer). The obser ver parameter cannot change after
declaration.

Copy Constructor

181 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

sc_fixed fast( const sc _fixed fast<WIl,Q O N>& );

Operators
The operators defined for the sc_fi xed_f ast are given in Table 22.

Table 22. Operators for sc_fixed_fast

Oper at or OQperators in class
cl ass
Bitw se ~ & N
Arithmetic o/ o+ - << >> 4+ --
Equality == | =
Rel at i onal <<= >>=
Assi gnnent = *= [= 4= -= <<= >>= &= = | =

Note:
Operator << and operator >> define arithmetic shifts, not bitwise shifts. The
difference is that no bits are lost and proper sign extension is done.

In expressions with the non-bitwise operators from Table 22, fixed-point types
can be mixed with all types given:
type_ in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, float, doupl e, const char*, int 6T4,
ui nt 64, const sc_int _base & const sc_uint_base &,
const sc_signed&, const sc_unsigned, const sc_fxval &,
const sc_fxval _fast& const sc_[u]fix& const
sc_[u]fix fast& }

The return type of any arithmetic operation is the fixed-point value type, which
guarantees that the operation is performed without overflow or quantization.

A floating-point variable or a fixed-point value variable can contain one of the
special values +Inf (plus infinity), -Inf (minus infinity), or Nan (not a number).
Assignment of one of these special values to a fixed-point variable will produce
a runtime error.

For the fixed-point types, a minimal set of bitwise operators is defined. These
bitwise operators are only defined on either the signed fixed-point types or the
unsigned fixed- point types. Mixing between signed and unsigned fixed-point
types is not allowed. Mixing with any other type is also not allowed.

The semantics of the bitwise operators is as follows. For the unary ~ operator,
the type of the result is the type of the operand. The bits in the two’s
complement mantissa of the operand are inverted to get the mantissa of the
result. For the binary operators, the type of the result is the maximum aligned
type of the two operands, that is, the two operands are aligned by the binary
point and the maximum integer word length and the maximum fractional word

182 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

length is taken. The operands are temporarily extended to this type before
performing a bitwise and, bitwise exclusive-or, or bitwise or.

Member Functions
The functions defined for sc_fi xed_f ast are given in Table 23.

Table 23. Functions for sc_fixed_fast

Functi on Functions in cl ass
cl ass
Bitw se b not, b_and, b_xor, b _or

Arithmetic |neg, mult, div, add, sub, Ishift, rshift

The functions in Table 23 have return type void. The first argument of these
functions is a reference to the result object. The remaining arguments of these
functions are the operands.

For the bitwise functions, the type of the resultis sc_fi xed_f ast and the
type of the operands are either both sc_fi xed_fast oramixofsc_fi xed
andsc_fixed_fast.

The neg arithmetic function takes one operand, the other arithmetic functions

take two operands. At least one of the operands of the arithmetic functions

should have a fixed- point type, the other operand can have any of the types

given:

type_in {short, unsigned short, int, unsigned int, |ong,
unsi gned |l ong, float, double, const char*, int64,

ui nt 64, const sc_i nt_baseT&, const sc_ui nt_baseT&,
const sc_signed& const sc_unsigned, const sc_fxval &,
const sc_fxval fast& const sc_[u]fix& const

sc [u]fix fast& }

The arithmetic functions are defined twice: once with the result object of type
sc_fxval, and once with the result object of type sc_fixed_ fast or sc_ufixed_fast.

Bit Selection .
const sc_f xnum_?i tref operator [] ( int i) const;
sc_fxnum bitref operator [] ( int i);

const sc_fxnum_?i tref' bi t( int i) const;
sc_fxnum bitref bit( int i);

These functions take one argument of type int, which is the index into the fixed-
point mantissa. The index argument must be betweenw -1 (MSB) and 0
(LSB). Otherwise, a runtime error is produced. The return type of the bit

selection functions is (const or non- const) sc_f xnum bi t r ef T, which is a

183 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

proxy class. The proxy class allows bit selection to be used both as r val ue
(for reading) and | val ue (for writing). For bit selection, the fixed-point binary
point is ignored.

Part Selection .

const sc_fxnum subref operator () ( int, int ) const;
T . .

sc_fxnum subr ef operator () ( int, int );

const sc_fxnum_?ubrefJr range( int, int ) const;
sc_f xnum subr ef range( int, int );

These functions take two arguments of type i nt , which are the begin and end
indices into the fixed-point mantissa. The index arguments must be between

w - 1 (MSB) and 0 (LSB). Otherwise, a runtime error is produced. The return
type of the part selection functions is (const or non-const) sc_f xnum subr ef T,
which is a proxy class that behaves like type sc_bv_base. The proxy class
allows part selection to be used both as r val ue (for reading) and | val ue (for
writing). All operators and methods that are available for type sc_bv_base are
also available for part selection. For part selection, the fixed-point binary point

is ignored.

const sc_fxnum_subrefJr operator () () const;
T
sc_fxnum subr ef operator () ();

+
const sc_fxnum_§ubref range() const;
sc_fxnum subr ef range() ;

As a shortcut for part selection of the complete mantissa, operator () and the
range() method can be called without any arguments.

Query Parameters
const sc_fxcast_switch&
cast _switch() const;

Returns the cast switch parameter.
i nt
iw () const;
Returns the integer word length parameter.
i nt
n_bits() const;
Returns the number of saturated bits parameter.

sc_o_node

184 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

o_node() const;
Returns the overflow mode parameter.

sc_qg_node
g_node() const;
Return the quantization mode parameter.

const sc_fxtype_parans&
type_parans() const;

Returns the type parameters.

i nt
W () const;
Returns the total word length parameter.

Query Value
bool
is_neg() const;
Returns true if the variable holds a negative value. Returns false otherwise.

bool
is zero() const;
Returns true if the variable holds a zero value. Returns false otherwise.

bool
overflow flag() const;

Returns true if the last write action on this variable caused overflow. Returns
false otherwise.

bool
guanti zation_flag() const;

Returns true if the last write action on this variable caused quantization.
Returns false otherwise.

const sc_fxval
val ue() const;

Returns the value.

Implicit Conversion
oper at or doubl e() const;
Implicit conversion to the implementation type doubl e. The value does not
change, if the wordlength of the sc_fi xed_f ast is less than or equal to 53
bits.

Explicit Conversion

short to_short() const;
unsi gned short to_ushort() const;
i nt to_int() const;
unsi gned i nt to uint() const;

185 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

| ong to_long() const;

unsi gned | ong to_ul ong() const;
f | oat to float() const;
doubl e t o_doubl e() const

const sc_string to_string() const;

const sc_string to_string( sc_nunrep ) const;

const sc_string to_string( sc_nunrep, bool ) const;

const sc_string to_string( sc_fm ) const;

const sc_string to_string( sc_nunrep, sc_fmt ) const;

const sc_string to_string( sc_nunrep, bool, sc_fnt ) const;
The value of a fixed-point variable can be converted to a character string
with the to_string() method. This method takes different arguments for
formatting purposes. See Chapter 6.8.8 for more information on converting
fixed-point variables to/from character strings. Furthermore, writing to C++
output streams with operator << is supported, e.g. cout << a;, where a is a
fixed-point variable. The decimal number representation is used in this case.

const sc_string to_dec() const;
const sc_string to_bin() const;
const sc_string to_oct() const;
const sc_string to_hex() const;
Shortcut methods for conversion to a character string. See Chapter 6.8.9.2.

Print or dump content
voi d
print( ostream& = cout ) const;
Print the sc_fi xed_f ast instance value to an output stream.

voi d
scan( istrean& = cin );
Read ansc_fi xed_fast value from an input stream.

voi d
dunp( ostrean& = cout )
const ;
Prints the sc_fi xed_f ast instance value, parameters and flags to an

output stream.
ostream&

operator << ( ostream& os, const sc fixed fast& a )
Print the instance value of a to an output stream os.

186 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.22 sc_fxcast_context

Synopsis
tenpl ate <cl ass sc_fxcast_sw tch>
cl ass sc_cont ext

1
public:
/1 constructors and destructor
sc_context( const sc_fxcast_sw tchg&,
sc_context _begin = SC NOW);
~sc_context();

/'l met hods
voi d begin();
void end();
static const sc_fxcast_swtch& default_val ue();
const sc_fxcast_sw tch& val ue() const;

/'l disabl ed

private:
sc_context( const sc_context<sc_fxcast_switch>& );
voi d* operator new size_t );

b

t ypedef sc_context<sc fxcast_switch> sc_fxcast_context;

Description
sc_f xcast cont ext instance is used to set a new default value for the fixed-
point cast switch cast_switch. This new default value affects the behavior of
fixed-point types sc_fixed, sc_ufixed, sc_fix, sc_ufix, sc_fixed_fast,
sc_ufixed_fast, sc_fix_fast, and sc_ufix_fast. When declaring a variable of any
of these types without specifying the cast_switch argument, it is obtained from
the current default value.

Examples
sc_fxcast _context no_casti ng(SC OFF, SC LATER)

{

no_casti ng. begi n();
sc_fix a; // no casting
no_casting. end();

sc_fix b; // casting

}

Public Constructor

sc_fxcast _context (
sc_fxcast _switch cast _switch
[, sc_cont ext begin context _begin]);

187 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

cast_switch
A cast switch object, which contains the new default value.
context_begin
A context begin object. Valid values for context_begin are:
SC_NOW (set new default value now)
SC_LATER (set new default value later)
The default value for context_begin is SC_NOW, which means to set the new
default value during declaration of the fixed-point context variable.

Public Member Functions

voi d

begi n() ;
Sets the default fixed-point cast switch value to the value specified when
declaring a sc_f xcast _cont ext variable var_name. The old default
fixed-point cast switch value is stored. The begi n() method can be called
either after var_name has been declared with the context_begin argument
set to SC_LATER, or after calling the end() method on var_name.
Otherwise, a runtime error is produced.

static const T&
defaul t _val ue();
Returns the default fixed-point cast switch value.

voi d

end() ;
Restores the old default fixed-point cast switch value. The end method can
be called either after the sc_f xcast _cont ext variable var_name has
been declared with the context_begin argument set to SC_NOW (or not
specified at all), or after calling the begi n() method on var_name.
Otherwise, a runtime error is produced.

const T&
val ue() const;
Returns the fixed-point cast switch value specified with the instance.

Disabled Member Functions
sc_context( const sc_context<sc_fxcast_switch>& );
voi d* operator new size_t );

188 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.23 sc_fxcast_switch

Synopsis
cl ass sc_fxcast_sw tch

1

public:

/'l constructors
sc_fxcast _switch();
sc_fxcast_switch( sc_switch );
sc_fxcast_switch( const sc_fxcast_switch& );
sc_fxcast_swtch( sc_w thout_context );

/'l operators
sc_fxcast_switch& operator = ( const
sc_fxcast_switch& );

friend bool operator == ( const sc_fxcast_sw tché&,
const sc_fxcast_switch& );
friend bool operator !'= ( const sc_fxcast_sw tché&,

const sc_fxcast_switch& );

/'l met hods
const sc_string to_string() const;
void print( ostrean& = cout ) const;
voi d dunp( ostreanm& = cout ) const;

b

Description
sc_fxcast _sw t ch variable is used to configure the type parameters of a
variable of fixed-point type sc_fi x and sc_uf i x (and the corresponding
limited precision types).

A sc_fxcast_switch variable can be initialized with another sc_fxcast_switch
variable. Variables of this type can also be used in assignment to a
sc_fxcast_switch variable.

Examples
sc_fxcast_switch ny_casting(SC _OFF);
sc_fixed<12, 4> a(ny_casting);

Public Constructors
sc_fxcast_switch [(sc_switch cast_switch)];

cast_switch

The cast switch value. The cast_switch argument is of type sc_sw t ch. Valid
values for cast_switch are:

SC_OFF for casting off

SC_ON for casting on

189 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

The default value for cast_switch is obtained from the fixed-point context type
sc_fxcast _context.

Public Member Functions
voi d
print( ostream& = cout ) const;
Print the sc_f xcast _swi t ch instance value to an output stream.

voi d
dunp( ostrean& = cout ) const;
Print the sc_f xcast _swi t ch instance value to an output stream.

Explicit Conversion

const sc_string
to_string() const;

The value of the sc_f xcast _swi t ch value is converted to a character
string

Operators
sc_fxcast _switch&
operator = ( const sc_fxtype_ parans& cast_switch );
cast _swi t ch is assigned to the left hand side.

friend bool
operator == (const sc_fxcast_switch& switch_a , const
sc_fxcast_switch& switch_b) ;
Returns true if swi t ch_a is equal to swi t ch_b else false.

friend bool
operator != ( const sc_fxcast_switch& switch_a ,
const sc_fxcast _switch& switch b );
Returns true if swi t ch_a is not equal to swi t ch_b else false.

ostream&

operator << ( ostream& os, const sc_fxcast_switch& a )
Print the instance value of a to an output stream os.

190 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.24 sc_fxnum_fast_observer

Synopsis
class sc_fxnum fast_observer

pr ot ect ed:

sc_fxnum fast _observer() {}
virtual ~sc_fxnumfast_observer() {}

public:

b

/'l met hods

virtual void construct( const sc_fxnumfast& );
virtual void destruct( const sc_fxnumfasté& );
virtual void read( const sc _fxnumfast& );

virtual void wite( const sc_fxnumfast& )

static sc_fxnumfast observer* (*default observer)()

Description
sc_fxnum fast _observer is an abstract base class provided as a hook to
define one’s own observer functionality.

Public Methods

virtual void construct( const sc_fxnumfasté& );
virtual void destruct( const sc_fxnumfast& );
virtual void read( const sc_fxnumfasté& );
virtual void wite( const sc_fxnumfast& );

These methods allow to observe construction, destruction, read, and write
actions on a particular variable. The destruct and read methods are called
before the action takes place, while the construct and write methods are called
after the action has taken place. Each of these methods can query the variable
under observation, which is passed as the single argument to the methods.

The default behavior of the methods is to do nothing (and return).

191

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.25 sc_fxnum_observer

Synopsis
cl ass sc_f xnum observer

pr ot ect ed:

sc_fxnum observer () {}
virtual ~sc_fxnum observer() {}

public:

b

/'l met hods

virtual void construct( const sc_fxnun& );
virtual void destruct( const sc_fxnum& );
virtual void read( const sc_fxnun& );

virtual void wite( const sc_fxnum& );

static sc_fxnumobserver* (*default_observer) ();

Description
sc_fxnum obser ver is an abstract base class provided as a hook to define
one’s own observer functionality.

Public Methods

virtual void construct( const sc_fxnum & );
virtual void destruct( const sc_fxnum & );
virtual void read( const sc_fxnum& );
virtual void wite( const sc_fxnum & );

These methods allow to observe construction, destruction, read, and write
actions on a particular variable. The destruct and read methods are called
before the action takes place, while the construct and write methods are called
after the action has taken place. Each of these methods can query the variable
under observation, which is passed as the single argument to the methods.

The default behavior of the methods is to do nothing (and return).

192

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.26 sc_fxtype_context

Synopsis
tenpl ate <cl ass sc_fxtype_parans>
cl ass sc_cont ext

1
public:
/1 constructors and destructor
sc_context( const sc_fxtype_ parans&,
sc_context _begin = SC NOW);
~sc_context();

/'l met hods
voi d begin();
void end();
static const sc_fxtype_ parans& default _val ue();
const sc_fxtype_parans& val ue() const;

/] disabled
sc_context( const sc_context< sc_fxtype parans >& );
voi d* operator new size_t );

b

t ypedef sc_context<sc fxtype_ parans> sc_fxtype_cont ext;

Description
sc_f xtype_cont ext variable is used to set new default values for the fixed-
point type parameters wl, iwl, _mode, o_mode, and n_bits. These new default
values affect the behavior of fixed-point types sc_fi x, sc_ufi x,
sc_fix_fast,andsc_ufix_fast.When declaring a variable of these types,
any type parameter that is missing as argument is obtained from the current
default values.

Examples
sc_fxtype_parans pl(16, 16, SC TRN, SC WRAP)
sc_fxtype_parans p2(16, 1, SC RND CONV, SC _SAT) ;

{
sc_fxtype_context cl(pl);
sc_fxtype_context c2(p2, SC LATER)

sc_fix a, [/ uses pl

c2. begin();

sc_fix b; // uses p2
c2.end();

sc_fix c; [/ uses pl

}

Public Constructor
sc_fxtype_context (

193 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

sc_f xtype_parans type_parans
[, sc_cont ext _begi n context_begin]);

type_params
A fixed-point type parameters object, which contains the new default values.
The type _params argument is of type sc_fxtype params.
context_begin
A context begin object. The optional context _begin argument is of type
sc_cont ext _begi n. Valid values for context_begin are:

SC_NOW (set new default values now)

SC_LATER (set new default values later)
The default value for context_begin is SC_NOW, which means to set the new
default values during declaration of the fixed-point context variable.

Public Member Functions

voi d

begi n() ;
Sets the default fixed-point type values to the values specified when
declaring the sc_f xt ype_cont ext instance var_name . The old default
fixed-point type values are stored. The begi n() method can be called
either after var_name has been declared with the cont ext _begi n
argument set to SC_LATER, or after calling the end() method on
var_name. Otherwise, a runtime error is produced.

static const T&
def aul t _val ue();

Returns the default fixed-point type values.

voi d

end() ;
Restores the old default fixed-point type values. The end() method can be
called either after the sc_f xcast _cont ext instance var_name has been
declared with the cont ext _begi n argument set to SC_NOW (or not
specified at all), or after calling begi n() method on var_name. Otherwise,
a runtime error is produced.

const T&
val ue() const;
Returns the fixed-point type values specified with the instance.

194 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.27

sc_fxtype_params

Synopsis
cl ass sc_fxtype_parans

{
public:
[/ constructors and destructor

sc_fxtype_parans();

sc_fxtype_parans( int, int );
sc_fxtype_parans( sc_g_node,
sc_fxtype_parans( int, int,

int =0);
sc_fxtype_parans( const
sc_fxtype_parans( const

int, int );
sc_fxtype_parans( const

sc_g_node, sc_o_nbde, int

sc_g_nvode,

sc_o _node, int =0 )

SC_0_ nDd

sc_fxtype parans& );
sc_fxtype_parans&,

sc_fxtype_parans&,
:O)

sc_fxtype_ paranB( sc MAthOUt _context );

/'l operators

sc_fxtype_parans& oper at or
sc_fxtype_parans& );

friend bool operator ==
const sc_fxtype_ parans& );

friend bool operator
const sc_fxtype_ parans& );

/1 et hods

b

int W () const;

void w( int );

int iwl() const;

void iw( int );
sc_g_node g_node() const;
void g _node( sc_qg_node );
sc_o_node o_node() const;
void o _node( sc_o_node );
int n_bits() const;

void n_bits( int );

= ( const
( const sc_fxtype_ parans&,

I= ( const sc_fxtype_parans&,

const sc_string to_string() const;
void print( ostrean& = cout ) const;
voi d dunp( ostream& = cout ) const;

Description
sc_f xtype_par ans variable is used to configure the type parameters of a
variable of fixed-point type sc_fi x and sc_uf i x (and the corresponding
limited precision types).

An sc_fxtype_params variable can be initialized with another sc_fxtype params
variable. Variables of this type can also be used in assignment to an
sc_fxtype params variable.

195

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Public Constructors
sc_fxtype_parans ([int W,int iw]
[,sc_g_node g _node,sc_o _node o_node[,int n_bits]] ) ;

wi

The total number of bits in the fixed-point format. W must be greater than zero,
otherwise, a runtime error is produced. The default value for W is obtained
from the fixed-point context type sc_f xt ype_cont ext . See Chapter 11.26.
iwl

The number of integer bits in the fixed-point format. i W can be positive or
negative. The default value fori wl is obtained from the fixed-point context type
sc_fxtype_cont ext. See See Chapter 11.26.

gq_mode

The quantization mode to use. Valid values for q_node are given in Chapter
6.8.12.7. The default value for q_node is obtained from the fixed-point context
type sc_f xt ype_cont ext. See See Chapter 11.26

0_mode

The overflow mode to use. Valid values for o_node are given in Chapter
6.8.12.1. The default value for o_node is obtained from the fixed-point context
type sc_f xt ype_cont ext. See Chapter 11.26.

n_bits

The number of saturated bits parameter for the selected overflow mode.

n_bi t s must be greater than or equal to zero, otherwise a runtime error is
produced. If the overflow mode is specified, the default value is zero. If the
overflow mode is not specified, the default value is obtained from the fixed-point
context type sc_f xt ype_cont ext. See Chapter 11.26.

Public Member Functions
i nt
iw () const;
Returns the i Wl value.

voi d
iw( int val );
Sets the i Wl value to val .
i nt
n_bits() const;
Returns the n_bi t s value.

voi d
n_bits( int );
Sets the n_bi t s value to val .

sc_o_node

o_node() const;
Returns the o_node.

196 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

voi d
o_node( sc_o_node node );
Sets the o_nopde to node.

sc_qg_node
g_node() const;
Returns the g_node.

voi d
g_node( sc_g_node node);
Sets the g_node to node.

i nt
W () const;
Returns the Wl  value.

voi d
w( int val);
Sets the wl value to val .

Operators
sc_fxtype_parans&
operator = ( const sc_fxtype_ parans& param_ );

The wl, iwl, g_mode, o_mode and n_bits of param_ are assigned to the left
hand side.

friend bool
operator == ( const sc_fxtype_parans& param a, const
sc_fxtype_parans& paramb);
Returns true if the wl, iwl, _mode, o_mode and n_bits of param a are
equal to the corresponding values of par am b else false.

friend bool
operator != ( const sc_fxtype_ parans&,

const sc_fxtype paramsé& )
Returns true if all of wl, iwl, _mode, o_mode and n_bits of param a are
not equal to the corresponding values of par am b else false.

ostrean&

operator << ( ostream& os, const sc_fxtype_ parans& a )
Print the instance value of a to an output stream os.

197 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.28 sc_fxval

Synopsis
cl ass sc_fxval

pr ot ect ed:
sc_fxval _observer* observer() const;
public:

/1 Constructors and destructor
sc_fxval ( sc_fxval _observer* = 0 );
sc_fxval ( int,

sc_fxval observer* = 0 );
sc_fxval ( unsigned int,

sc_fxval observer* = 0 );
sc_fxval ( |ong,

sc_fxval observer* = 0 );
sc_fxval ( unsigned | ong,

sc_fxval observer* = 0 );
sc_fxval ( doubl e,

sc_fxval observer* = 0 );
sc_fxval ( const char*,

sc_fxval observer* = 0 );
sc_fxval ( const sc_fxval &,

sc_fxval observer* = 0 );
sc_fxval ( const sc_fxval _fast&,

sc_fxval observer* = 0 );
sc_fxval ( const sc_fxnung,

sc_fxval observer* = 0 );
sc_fxval ( const sc_fxnum fast&,

sc_fxval observer* = 0 );
sc_fxval ( int64,

sc_fxval observer* = 0 );
sc_fxval ( uint64,

sc_fxval observer* = 0 );
sc_fxval ( const sc_int_base&,

sc_fxval observer* = 0 );
sc_fxval ( const sc_uint_baseg&,

sc_fxval observer* = 0 );
sc_fxval ( const sc_signed&,

sc_fxval observer* = 0 );
sc_fxval ( const sc unS|gned&

sc_fxval observer* =0 );
~sc_fxval ();

/1l unary operators
const sc_fxval operator - () const;
const sc_fxval & operator + () const;
friend void neg( sc_fxval & const sc_fxval & );

/1l binary operators
#define DECL_BIN OP_T(op,tp) \
friend const sc_fxval operator op ( const \
sc_fxval & tp ); \

198 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual
friend const sc_fxval operator op ( tp, const \
sc_fxval & );

#define DECL_BI N_OP_OTHER(op) \
(op,int64) \

NOPT
DECL_BI N_OP_T(op, ui nt 64) \
DECL_BI N OP_T(op, const sc_int_base&) \
DECL_BI N _OP_T(op, const sc_uint_base&) \
DECL_BI N_OP_T(op, const sc_signed&) \

DECL_BI N_OP_T(op, const sc_unsi gned&)

#define DECL_BI N _OP(op, dumy) \
friend const sc_fxval operator op ( const \
sc_fxval & const sc_fxval & ); \
DECL_BI N_OP_T( op, |nt) \
DECL_BI N _OP_T(op, unsigned int) \
DECL_BIN_OP_T(op, | ong) \

DECL_BI N_OP_T(op, unsi gned | ong) \
DECL_BI N_OP_T( op, doubl e) \

DECL_BI N_OP_T(op, const char*) \

DECL_BI N OP_T(op, const sc_fxval fast& \
DECL_BIN_CP T(op const sc_fxnumfast&) \

DECL_BI N_OP_OTHER( op)

DECL_BI N_OP(*, mul t)
DECL_BI N _OP( +, add)
DECL_BI N_OP( -, sub)
DECL BINCP(/,div)
DECL_BI N_OP_T(/,int)

DECL_BIN OP_T(/,unsigned int)
DECL_BIN_OP_T(/, | ong)
DECL_BIN_OP_T(/, unsi gned | ong)
DECL_BIN OP_T(/, doubl e)
DECL_BIN_OP_T(/, const char*)

DECL_BIN OP_T(/,const sc_fxval fast&)
DECL_BIN OP_T(/,const sc_fxnumfast&)
DECL_BIN OP_T(/,int64) \

DECL_BI N_OP_T(/, ui nt 64) \

DECL_BIN OP_T(/,const sc_int_base& \
DECL_ BIN OP_T(/,const sc_uint_base&) \
DECL_BIN OP_T(/,const sc_signed& \
DECL_BIN OP_T(/,const sc_unsigned&)

friend const sc_fxval operator << ( const sc_fxval &,
int );

friend const sc_fxval operator >> ( const sc_fxval &,
int );

/'l binary functions
#define DECL_BIN FNC T(fnc,tp) \

friend void fnc ( sc_fxval& const sc_fxval & tp );\
friend void fnc ( sc_fxval & tp, const sc_fxval & );

199 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

#define DECL_BI N FNC OTHER(fnc) \
DECL_BI N _FNC T(fnc, int64) \
DECL_BI N_FNC T(f nc, ui nt 64) \
DECL_BI N _FNC T(fnc, const sc_int_base&) \
DECL_BI N _FNC T(fnc, const sc_uint_base&) \
DECL_BI N_FNC T(fnc, const sc_si gned&) \
DECL_BI N_FNC T(fnc, const sc_unsi gned&)

#defi ne DECL_BI N _FNC(fnc) \
friend void fnc ( sc_fxval & const sc_fxval & const\
sc_fxval & ); \
DECL_BI N _FNC T(fnc,int) \
DECL_BI N FNC T(fnc,unsigned int) \
DECL_BI N_FNC T(fnc, ong) \
DECL_BI N_FNC T(f nc, unsi gned | ong) \
DECL_BI N_FNC T(f nc, doubl e) \
DECL_BI N _FNC T(fnc, const char*) \
DECL_BI N _FNC T(fnc, const sc_fxval fast&) \
DECL_BI N _FNC T(fnc, const sc_fxnumfast&) \
DECL_BI N_FNC_OTHER( f nc)

DECL_BI N_FNC(nul t)
DECL_BI N_FNC( di v)
DECL_BI N_FNC( add)
DECL_BI N_FNC( sub)

friend void Ishift( sc_fxval & const sc_fxval &int );
friend void rshift( sc_fxval & const sc_fxval &int )

/1l relational (including equality) operators
#define DECL_REL _OP _T(op,tp) \

friend bool operator op ( const sc_fxval& tp ); \
friend bool operator op ( tp, const sc_fxval & );

#define DECL_REL_OP_OTHER(op) \
DECL_REL_OP_T(op,int64) \
DECL_REL_OP_T(op, ui nt 64) \
DECL_REL_OP_T(op, const sc_int_base&) \
DECL_REL_OP T(op, const sc_uint_base&) \
DECL_REL_OP_T(op, const sc_si gned&) \
DECL_REL_OP_T(op, const sc_unsi gned&)

#define DECL_REL_OP(op) \

friend bool operator op ( const sc_fxval & const \
sc_fxval & ); \

DECL_REL_CP T(op int) \
DECL_REL_OP_T(op, unsigned int) \
DECL_REL_OP_T(op, | ong) \
DECL_REL_OP_T(op, unsi gned | ong) \
DECL_REL_OP_T(op, doubl e) \
DECL_REL_OP_T(op, const char*) \
DECL_REL_OP T(op, const sc_fxval fast&) \
DECL_REL_OP_T(op, const sc_fxnum fast&) \
DECL_REL_OP_OTHER( op)

200 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

DECL_REL_OP( <)
DECL_REL_OP( <=)
DECL_REL_OP( >)
DECL_REL_OP( >=)
DECL_REL_OP( ==
DECL_REL_OP(! =)

/| assignnment operators
#define DECL_ASN OP_T(op,tp) \
sc_fxval & operator op( tp );

#define DECL_ASN OP_OTHER(op) \
DECL_ASN OP_T(op, i nt 64) \
DECL_ASN_OP_T(op, ui nt 64) \
DECL_ASN _OP_T(op, const sc_int_base&) \
DECL_ASN_OP_T(op, const sc_ui nt_base&) \
DECL_ASN_ CP  T(op, const sc_si gned&) \
DECL_ASN_OP_T(op, const sc_unsi gned&)

#define DECL_ASN OP(op) \

DECL_ASN OP _T(op,int) \

DECL_ASN OP_T(op, unsigned int) \
DECL_ASN OP_T(op, long) \

DECL_ASN OP_T(op, unsi gned | ong) \
DECL_ASN OP_T(op, doubl e) \

DECL_ASN OP_T(op, const char*) \
DECL_ASN OP_T(op, const sc_fxval & \
DECL_ASN OP_T(op, const sc_fxval fast&) \
DECL_ASN OP_T(op, const sc_fxnum&) \

DECL_ASN_OP_T(op, const sc_fxnumfast&) \
DECL_ASN _OP_OTHER( op)

DECL_ASN_OP( =
DECL_ASN_OP( *
DECL_ASN_OP(/
DECL_ASN_OP( +=)
DECL_ASN_OP( - =)

DECL_ASN OP_T(<<=,int)
DECL_ASN OP_T(>>=,int)

/1 auto-increnment and auto-decrenent
const sc_fxval operator ++ ( int );
const sc_fxval operator -- ( int );
sc_fxval & operator ++ ();
sc_fxval & operator -- ();

[l inplicit conversion
oper at or doubl e() const;

[l explicit conversion to primtive types

short to_short() const;
unsi gned short to_ushort() const;

201 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

i nt to_int() const;
unsi gned i nt to uint() const;
| ong to | ong() const;
unsigned long to_ulong() const;
f | oat to float() const;
doubl e to_doubl e() const;

/'l explicit conversion to character string
const sc_string to_string() const;
const sc_string to_string( sc_nunrep ) const;
const sc_string to_string( sc_nunrep, bool ) const;
const sc_string to_string( sc_fnt ) const;
const sc_string to_string( sc_nunrep,sc_fm ) const;
const sc_string to_string( sc_nunrep, bool,

sc_fm ) const;
const sc_string to_dec() const;
const sc_string to_bin() const;
const sc_string to_oct() const;
const sc_string to_hex() const;

/'l met hods
bool is_neg() const;
bool is_zero() const;
bool is_nan() const;
bool is_inf() const;
bool is_normal () const;
bool rounding flag() const;
void print( ostream& = cout ) const;
void scan( istrean& = cin );
voi d dunp( ostrean& = cout ) const;
pr ot ect ed:
sc_fxval _observer* | ock_observer() const;
voi d unl ock_observer( sc_fxval observer* ) const;
void get _type( int& int& sc_enc& ) const;
const sc_fxval quantization( const scfx_paransg&,
bool & ) const;
const sc_fxval overflow const scfx_parans&,
bool & ) const;

¥

Description

Type sc_f xval is the arbitrary precision value type. It can hold the value of any
of the fixed-point types, and it performs the arbitrary precision fixed-point
arithmetic operations. Type casting is performed by the fixed-point types
themselves. Limited precision type sc_f xval _f ast and arbitrary precision type
sc_fxval can be mixed freely.

See Chapter 6.8.4.

In some cases, such as division, using arbitrary precision would lead to infinite

word lengths. To limit the resulting word lengths in these cases, three parameters
are provided:

202 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

div_wl

The maximum word length for the result of a division operation. If the result of a
division exceeds div_wl, it will be convergent rounded to div_wl bits. The div_wl
argument is of type int. It must be greater than zero. Otherwise, a runtime error is
produced. The default value for div_wl is obtained from the set of built-in default
values. See 6.8.8. This default value can be overruled with compiler flag
SC_FXDIV_WL.

cte_wl

The maximum word length for the result of converting a decimal character string
constant into a sc_fxval variable. If the result of such a conversion exceeds
cte_wil, it will be convergent rounded to cte_wil bits. The cte_wl argument is of
type int. It must be greater than zero. Otherwise, a runtime error is produced. The
default value for cte_wl is obtained from the set of built-in default values. See
6.8.8. This default value can be overruled with compiler flag SC_FXCTE_WL.
max_wl

The maximum word length for the mantissa used in a sc_fxval variable. If the
result of an operation exceeds max_wil, it will be convergent rounded to max_wl
bits. The max_wl argument is of type int. It must be greater than zero, or minus
one. Otherwise, a runtime error is produced. Minus one is used to indicate no
maximum word length. The default value for max_wil is obtained from the set of
built-in default values. See 6.8.8. This default value can be overruled with
compiler flag SC_FXMAX_WL.

Caution!

Be careful with changing the default values of the div_wl, cte_wl, and max_wl
parameters, as they affect both bit-true behavior and simulation performance.

Type sc_fxval is used to hold fixed-point values for the arbitrary precision fixed-
point types. The div_wl, cte_wl, and max_wl parameters should be set higher
than the word lengths used by the fixed-point types in the user code, otherwise
bit-true behavior cannot be guaranteed. On the other hand, these parameters
should not be set too high, because that would degrade simulation performance.
Typically, the max_wl parameter should be set (much) higher than the div_wl and
cte_wl parameters.

The div_wil, cte_wl, and max_wl parameters will be used by the fixed-point value

type, whether used directly or as part of a fixed-point type. By default, the built-in

default values given in Chapter 6.8.8 are used. These default values can be

overruled per translation unit by specifying the compiler flags SC_FXDIV_WL,

SC_FXCTE_WL, and SC_FXMAX_WL with the appropriate values. For example:
CC -DSC_FXDIV_WL=128 -c my_file.cpp

This compiles my_file.cpp with the div_wl parameter set to 128 bits i.s.o0. 64 bits.

A sc_fxval variable that is declared without initial value is uninitialized, unless it is

declared as a static variable, which is always initialized to zero. Uninitialized
variables can be used anywhere initialized variables can be used. An operation

203 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

on an uninitialized variable does not produce an error or warning. The result of
such an operation is undefined.

Examples
sc_fxval a = 1;
sc_fxval b = 0.5;
sc_fixed<8,8> ¢ = 1.25;
sc_fxval d = c;
sc_bi gui nt<16> e = 8;
sc_fxval f = g

sc_fxval j;
sc_fxval k(0.5);
sc_fxval | = 0
sc_fxval m= 1;
sc_fxval n = 2;

sc_ fxval p =m/ n;
n *= 1.25;

Public Constructors
sc_fxval ( [type_ init_val]
[, sc_fxnum observer* observer] ) ;

type_in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, float, double, const char*, intaﬁ,
ui nt 64, const sc_int _base & const sc_uint_base &,
const sc_signed& const sc_unsigned, const sc_fxval &,
const sc_fxval _fast& const sc_[u]fix& const
sc_[u]fix fasté& }

Notes ont ype_
For all types in t ype_ only the value of the argument is taken, that is, any type
information is discarded.
A variable of type sc_fxval can be initialized with a C/C++ character string (type
const char*) either when the number will be expressed in binary form or when
the number is too large to be written as a C/C++ built-in type literal.

init_val
The initial value of the variable. If the initial value is not specified, the variable is
uninitialized.

observer

A pointer to an observer object. The observer argument is of type
sc_fxval_observer*. See Chapter 11.31. The default value for observeris 0
(null pointer). The observer parameter cannot change after declaration.

Operators
The operators defined for the sc_f xval are given in Table 24.

Table 24. Operators for sc_fxval

| perator | perators in class |

204 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

cl ass
Arithmetic o/ o+ - << >> 4+ --
Equality == | =
Rel at i onal <<= >>=
Assi gnment = *= [= 4= -= <<= >>=

Note:

Operator << and operator >> define arithmetic shifts, not bitwise shifts. The
difference is that no bits are lost and proper sign extension is done. Hence,
these operators are well defined also for signed types, such as sc_fxval.

In expressions with the operators from Table 24, variables of type sc_fxval can
be mixed with all types given:
type_in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, fl oat, douple, const char*, intaﬁ,
ui nt 64, const sc_int _base & const sc_uint_base &,
const sc_signed& const sc_unsigned, const sc_fxval &,
const sc_fxval fast& const sc_[u]fix& const
sc [u]fix fast& }

The return type of any arithmetic operation is sc_f xval .

Member Functions
The functions defined for sc_f xval are given in Table 25.

Table 25. Functions for sc_fxval

Functi on Functions in cl ass
cl ass

Arithmetic |neg, mult, div, add, sub, Ishift, rshift

The functions in Table 25 have return type void. The first argument of these
functions is a reference to the result object. The remaining arguments of these
functions are the operands.

The neg arithmetic function takes one operand, the other arithmetic functions
take two operands. At least one of the operands of the arithmetic functions
should have a fixed- point value type, the other operand can have any of the
types given:
type_ in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, float, double, const char*, int64,
ui nt 64, const sc_int _baseT&, const sc_uint _baseT&,
const sc_signed& const sc_unsigned, const sc_fxval &,
const sc_fxval _fast& const sc_[u]fix& const
sc_[u]fix fasté& }

The arithmetic are defined with the result object of type sc_fxval.

205 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Query Value
bool
is_inf() const;
Returns true if the variable holds an (plus or minus) infinity value. Returns
false otherwise.

bool

i s_nan() const;
Returns true if the variable holds not-a-number value. Returns false
otherwise.

bool
is_neg() const;
Returns true if the variable holds a negative value. Returns false otherwise.

bool
is_zero() const;
Returns true if the variable holds a zero value. Returns false otherwise.

bool

roundi ng_flag() const;
Returns true if the last write action on this variable caused rounding to
div_wl, cte_wl, or max_wl. Returns false otherwise.

bool
is_normal () const;

Returns true if bothi s_nan() andi s_i nf () return false. Returns false
otherwise.

Implicit Conversion
oper at or doubl e() const;
Implicit conversion to the implementation type doubl e. The value does not
change.

Explicit Conversion

short to_short() const;
unsi gned short to_ushort() const;
i nt to_int() const;
unsi gned i nt to uint() const;
| ong to_long() const;
unsi gned | ong to_ul ong() const;
f | oat to float() const;
doubl e t o_doubl e() const

const sc_string to_string() const;

const sc_string to_string( sc_nunrep ) const;

const sc_string to_string( sc_nunrep, bool ) const;
const sc_string to_string( sc_fm ) const;

206 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

const sc_string to_string( sc_nunrep, sc_fm ) const;

const sc_string to_string( sc_nunrep, bool, sc_fnt ) const;
The value of a fixed-point variable can be converted to a character string
with the to_string() method. This method takes different arguments for
formatting purposes. See Chapter 6.8.8 for more information on converting
fixed-point variables to/from character strings. Furthermore, writing to C++
output streams with operator << is supported, e.g. cout << a;, where a is a
fixed-point variable. The decimal number representation is used in this case.

const sc_string to_dec() const;
const sc_string to_bin() const;
const sc_string to_oct() const;
const sc_string to_hex() const;
Shortcut methods for conversion to a character string. See Chapter 6.8.9.2.

Print or dump content
voi d
print( ostream& = cout ) const;
Print the sc_f xval instance value to an output stream.

void _
scan( istrean& = cin );
Read an sc_f xval value from an input stream.

voi d
dunp( ostream& = cout )
const ;
Prints the sc_f xval instance value, parameters and flags to an output

stream.

ostreami
operator << ( ostreanm& os, const sc fix& a )

Print the instance value of a to an output stream os.

207 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.29 sc_fxval_fast

Synopsis
cl ass sc_fxval _fast

pr ot ect ed:
sc_fxval fast_ observer* observer() const;

public:
sc_fxval fast( sc_fxval _fast_observer* =0 );
sc_fxval _fast( int,
sc_fxval _fast_observer* =0 );
sc_fxval fast( unsigned int,
sc_fxval _fast_observer* =0 );
sc_fxval _fast( |ong,
sc_fxval _fast_observer* =0 );
sc_fxval _fast( unsigned | ong,
sc_fxval _fast_observer* =0 );
sc_fxval fast( doubl e,
sc_fxval fast observer* =0 );
sc_fxval _fast( const char*,
sc_fxval fast_ observer* =0 );
sc_fxval _fast( const sc_fxval &,
sc_fxval fast_ observer* =0 );
sc_fxval fast( const sc_fxval _fast§&,
sc_fxval fast_ observer* =0 );
sc_fxval _fast( const sc_fxnumg,
sc_fxval fast_ observer* =0 );
sc_fxval fast( const sc_fxnumfast§&,
sc_fxval fast_ observer* =0 );
sc_fxval _fast( int64,
sc_fxval fast_ observer* =0 );
sc_fxval _fast( uint64,
sc_fxval fast_ observer* =0 );
sc_fxval fast( const sc_int_baseé&,
sc_fxval fast_ observer* =0 );
sc_fxval fast( const sc_uint_baseg&,
sc_fxval fast observer* =0 );
sc_fxval fast( const sc_signedg&,
sc_fxval _fast_observer* =0 );
sc_fxval fast( const sc unS|gned&
sc_fxval fast_observer* =0 );
~sc_fxval _fast();

/1l unary operators

const sc_fxval _fast operator - () const;

const sc_fxval _fast& operator + () const;

/1 unary functions

friend void neg( sc_fxval _fast& const
sc_fxval fast&);

/1l binary operators

208 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

#define DECL_BIN OP_T(op,tp) \
friend const sc_fxval _fast operator op ( const \
sc_fxval _fast& tp ); \
friend const sc_fxval _fast operator op ( tp, const \
sc_fxval _fast&);

#define DECL_BIN OP_OTHER(op) \
DECL_BI N _OP_T(op, i nt 64) \

DECL_BI N_OP_T(op, ui nt 64) \

DECL_BI N OP_T(op, const sc_int_base&) \
DECL_BI N OP_T(op, const sc_uint_base&) \
DECL_BI N_OP_T(op, const sc_signed&) \
DECL_BI N_OP_T(op, const sc_unsi gned&)

#define DECL_BI N _OP(op, dumy) \
friend const sc_fxval _fast operator op ( const \
sc_fxval _fasté& const sc_fxval _fast& ); \
DECL_BI N _OP_T(op, int) \
DECL_BI N _OP_T(op, unsigned int) \
DECL_BIN OP_T(op, | ong) \
DECL_BI N _OP_T(op, unsi gned | ong) \
DECL_BI N_OP_T( op, doubl e) \
DECL_BI N_OP T(op, const char*) \
DECL_BI N_OP_OTHER( op)

%%

DECL_BI N_OP(*, mul t)
DECL_BI N _OP( +, add)
DECL_BI N_OP( -, sub)
DECL_BI N_OP(/, di V)

DECL_BI N_OP_T(/,int)

DECL_BIN_OP_T(/, unsi gned int)
DECL_BIN OP_T(/, | ong)
DECL_BIN_OP_T(/, unsi gned | ong)
DECL_BIN OP_T(/, doubl e)
DECL_BIN_OP_T(/, const char*)

DECL_BI N_OP_OTHER(/)
DECL_BIN_OP_T(/,int64) \
DECL_BIN_OP_T(/, ui nt 64) \

DECL_BIN _OP_T(/,const sc_int_base&) \
DECL_ BIN OP_T(/,const sc_uint_base&) \
DECL_BIN OP_T(/,const sc_signed& \

DECL_BIN_OP_T(/, const sc_unsi gned&)

friend const sc_fxval _fast operator << ( const
sc_fxval _fast& int );

friend const sc_fxval _fast operator >> ( const
sc_fxval _fast& int );

/'l binary functions
#define DECL_BIN FNC T(fnc,tp) \
friend void fnc ( sc_fxval _fasté& const \
sc_fxval _fast& tp ); \
friend void fnc ( sc_fxval _fast& tp, const \
sc_fxval _fast&);

209 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

#define DECL_BI N FNC OTHER(fnc) \

DECL_BI N _FNC T(fnc, int64) \

DECL_BI N_FNC T(f nc, ui nt 64) \

DECL_BI N _FNC T(fnc, const sc_int_base&) \
DECL_BI N _FNC T(fnc, const sc_uint_base&) \
DECL_BI N_FNC T(fnc, const sc_si gned&) \
DECL_BI N_FNC T(fnc, const sc_unsi gned&)

#define DECL_BI N FNC(fnc) \

friend void fnc ( sc_fxval_fast& const \

sc_fxval fast& const sc_fxval fast& ); \
DECL_BI N _FNC T(fnc, int) \
DECL_BI N_FNC T(fnc, unsigned int) \
DECL_BI N_FNC T(f nc, | ong) \
DECL_BI N_FNC T(f nc, unsi gned | ong) \
DECL_BI N_FNC T(f nc, doubl e) \
DECL_BI N _FNC T(fnc, const char*) \
DECL_BI N_FNC T(fnc, const sc_fxval & \
DECL_BI N_FNC T(fnc, const sc_fxnum&) \
DECL_BI N_FNC_OTHER( f nc)

DECL_BI N_FNC(nul t)
DECL_BI N_FNC( di v)
DECL_BI N_FNC( add)
DECL_BI N_FNC( sub)

friend void Ishift( sc_fxval _fasté& const

sc_fxval fast& int );

friend void rshift( sc_fxval fast& const

sc_fxval fast& int );

/'l relational (including equality) operators

#define DECL_REL _OP _T(op,tp) \

friend bool operator op ( const sc_fxval _fast&tp);\
friend bool operator op ( tp, const sc_fxval _fast& );

#define DECL_REL_OP_OTHER(op) \

DECL_REL_OP_T(op,int64) \
DECL_REL_OP_T(op, ui nt 64) \
DECL_REL_OP_T(op, const sc_int_base&) \
DECL_REL_OP T(op, const sc_uint_base&) \
DECL_REL_OP_T(op, const sc_si gned&) \
DECL_REL_OP_T(op, const sc_unsi gned&)

#define DECL_REL_OP(op) \

210

friend bool operator op ( const sc_fxval _fasté& \

const sc_fxval _fast& ); \
DECL_REL_OP_T(op,int) \
DECL_REL_OP_T(op, unsigned int) \
DECL_REL_OP_T( op, | ong) \
DECL_REL_OP_T(op, unsi gned | ong) \
DECL_REL_OP_T(op, doubl e) \
DECL_REL_OP_T(op, const char*) \

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

DECL_REL_OP_OTHER( op)

DECL_REL_OP( <)
DECL_REL_OP( <=)
DECL_REL_OP( >)
DECL_REL_OP( >=)
DECL_REL_OP( ==

DECL_REL_OP(! =)

/| assignment operators
#define DECL_ASN OP _T(op,tp) \
sc_fxval _fast& operator op( tp );

#define DECL_ASN OP_OTHER(op) \
DECL_ASN OP_T(op, i nt 64) \
DECL_ASN_OP_T(op, ui nt 64) \
DECL_ASN _OP_T(op, const sc_int_base&) \
DECL_ASN_OP_T(op, const sc_ui nt_base&) \
DECL_ASN_OP_T(op, const sc_signed&) \

DECL_ASN_OP_T(op, const sc_unsi gned&)
#defi ne DECL_ASN OP(op) \

DECL_ASN OP_T(op, i nt) \

DECL_ASN OP_T(op, unsigned int) \

DECL_ASN OP_T(op, long) \

DECL_ASN OP_T(op, unsi gned | ong) \

DECL_ASN OP_T(op, doubl e) \

DECL_ASN OP_T(op, const char*) \

DECL_ASN OP_T(op, const sc_fxval & \

DECL_ASN OP_T(op, const sc_fxval _fast& \

DECL_ASN_OP_T(op, const sc_fxnum&) \

DECL_ASN_OP_T(op, const sc_fxnumfast&) \

DECL_ASN _OP_OTHER( op)

DECL_ASN_OP(

=)
DECL_ASN_OP( * =)
DECL_ASN OP(/ =
DECL_ASN_OP( +=)
DECL_ASN_OP( - =)
DECL_ASN OP_T(<<=,int)
DECL_ASN OP_T(>>=,int)

/1 auto-increnment and auto-decrenent
const sc_fxval _fast operator ++ ( int );
const sc_fxval fast operator -- ( int );
sc_fxval _fast& operator ++ ();

sc_fxval _fast& operator -- ();

[l inplicit conversion
oper at or doubl e() const;

/[l explicit conversion to primtive types

short to_short() const;
unsi gned short to_ushort() const;

211 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

i nt to_int() const;
unsigned int to_uint() const;

| ong to_long() const;
unsigned long to_ulong() const;
f | oat to float() const;
doubl e to_doubl e() const;

/'l explicit conversion to character string
const sc_string to_string() const;
const sc_string to_string( sc_nunrep ) const;
const sc_string to_string( sc_nunrep, bool ) const;
const sc_string to_string( sc_fnt ) const;
const sc_string to_string( sc_nunrep,

sc_fm ) const;
const sc_string to_string( sc_nunrep, bool,

sc_fm ) const;
const sc_string to_dec() const;
const sc_string to_bin() const;
const sc_string to_oct() const;
const sc_string to_hex() const;

/| other nethods

bool is_neg() const;

bool is_zero() const;

bool is_nan() const;

bool is_inf() const;

bool is_normal () const;

bool rounding flag() const;

void print( ostream& = cout ) const;
voi d scan( istrean& cin);

voi d dunp( ostrean& = cout ) const;

¥

Description

Type sc_f xval _f ast is the fixed precision value type and is limited to a
mantissa of 53 bits. It can hold the value of any of the fixed-point types, and it
performs the fixed precision fixed-point arithmetic operations. Type casting is
performed by the fixed-point types themselves. Limited precision type
sc_fxval_fast and arbitrary precision type sc_fxval can be mixed freely.

See Chapter 6.8.4.

Type sc_fxval is used to hold fixed-point values for the fixed precision fixed-point
types.

A sc_fxval variable that is declared without initial value is uninitialized, unless it is
declared as a static variable, which is always initialized to zero. Uninitialized
variables can be used anywhere initialized variables can be used. An operation
on an uninitialized variable does not produce an error or warning. The result of
such an operation is undefined.

212 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Examples
sc_fxval fast a
sc_fxval fast b
sc_fixed<8,8> c
sc_fxval fast d ;
sc_biguint<16> e = 8§;

sc_fxval fast f = g;
sc_fxval fast j;
sc_fxval _fast k(0.5);
sc_fxval fast | = 0;
sc_fxval _fast m= 1;
sc_fxval fast n = 2;
sc_fxval _fast p = m/ n;

n *= 1.25;

Public Constructors
sc_fxval _fast ( [type_ init_val]

[,sc_fxval fast_observer* observer] ) ;
type_in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, float, douple, const char*, intGﬂ,
ui nt 64, const sc_int_base & const sc_uint_base &,
const sc_signed&, const sc_unsigned, const sc_fxval &,

const sc_fxval fast& const sc_[u]fix& const
sc_[u]fix fast& }

Notes ontype_

For all types int ype_ only the value of the argument is taken, that is, any type
information is discarded.

A variable of type sc_f xval _f ast can be initialized with a C/C++ character
string (type const char*) either when the number will be expressed in binary
form or when the number is too large to be written as a C/C++ built-in type
literal.

init_val

The initial value of the variable. If the initial value is not specified, the variable is
uninitialized.

observer

A pointer to an observer object. The observer argument is of type
sc_fxval _fast observer*. See Chapter 11.30. The default value for observer is
0 (null pointer). The observer parameter cannot change after declaration.

Operators
The operators defined for the sc_f xval are given in Table 26.

Table 26. Operators for sc_fxval _fast

Oper at or Operators in class
cl ass

213 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Arithnetic ) 4+ - << >> ++ --

Equality == | =

Rel ati onal <<= >>=

Assi gnment = *= [= 4= -= <<= >>=
Note:

Operator << and operator >> define arithmetic shifts, not bitwise shifts. The
difference is that no bits are lost and proper sign extension is done. Hence,
these operators are well defined also for signed types, such as sc_fxval_fast.

In expressions with the operators from Table 26, variables of type sc_fxval_fast
can be mixed with all types given:
type_ in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, float, douple, const char*, intaﬁ,
ui nt 64, const sc_int_base & const sc_uint_base &,
const sc_signed&, const sc_unsigned, const sc_fxval &,
const sc_fxval _fast& const sc_[u]fix& const
sc_[u]fix fast& }

The return type of any arithmetic operation is sc_f xval _f ast.

Member Functions
The functions defined for sc_f xval _fast are given in Table 27.

Table 27. Functions for sc_fxval_fast

Functi on Functions in cl ass
cl ass

Arithnmetic |neg, mult, div, add, sub, Ishift, rshift

The functions in Table 27 have return type void. The first argument of these
functions is a reference to the result object. The remaining arguments of these
functions are the operands.

The neg arithmetic function takes one operand, the other arithmetic functions
take two operands. At least one of the operands of the arithmetic functions
should have a fixed- point value type, the other operand can have any of the
types given:
type_in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, fl oat, douple, const char*, intaﬁ,
ui nt 64, const sc_int _base & const sc_uint_base &,
const sc_signed&, const sc_unsigned, const sc_fxval &,
const sc_fxval fast& const sc_[u]fix& const
sc_ [u]fix fast& }

The arithmetic are defined with the result object of type sc_fxval_fast.

Query Value

214 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

bool

is_inf() const;
Returns true if the variable holds an (plus or minus) infinity value. Returns
false otherwise.

bool

is_nan() const;
Returns true if the variable holds not-a-number value. Returns false
otherwise.

bool
i s_neg() const;
Returns true if the variable holds a negative value. Returns false otherwise.

bool
is zero() const;
Returns true if the variable holds a zero value. Returns false otherwise.

bool
roundi ng_flag() const;

Returns true if the last write action on this variable caused rounding to
div_wl, cte_wl, or max_wl. Returns false otherwise.

bool

is_normal () const;
Returns true if bothi s_nan() andi s_i nf () return false. Returns false
otherwise.

Implicit Conversion
oper at or doubl e() const;
Implicit conversion to the implementation type doubl e. The value does not
change.

Explicit Conversion

short to_short() const;
unsi gned short to_ushort() const;
i nt to_int() const;
unsi gned i nt to uint() const;
| ong to I ong() const;
unsi gned | ong to_ul ong() const;
f | oat to float() const;
doubl e t o_doubl e() const

const sc_string to_string() const;

const sc_string to_string( sc_nunrep ) const;

const sc_string to_string( sc_nunrep, bool ) const;
const sc_string to_string( sc_fnt ) const;

const sc_string to_string( sc_nunrep, sc_fnt ) const;

215 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

const sc_string to_string( sc_nunrep, bool, sc fnt ) const;
The value of a fixed-point variable can be converted to a character string
with the to_string() method. This method takes different arguments for
formatting purposes. See Chapter 6.8.8 for more information on converting
fixed-point variables to/from character strings. Furthermore, writing to C++
output streams with operator << is supported, e.g. cout << a;, where a is a
fixed-point variable. The decimal number representation is used in this case.

const sc_string to_dec() const;
const sc_string to_bin() const;
const sc_string to_oct() const;
const sc_string to_hex() const;
Shortcut methods for conversion to a character string. See Chapter 6.8.9.2.

Print or dump content
voi d
print( ostream& = cout ) const;
Print the sc_f xval _f ast instance value to an output stream.

voi d
scan( istrean& = cin );
Read an sc_f xval fast value from an input stream.

voi d
dunp( ostrean& = cout )
const;
Prints the sc_f xval _f ast instance value, parameters and flags to an

output stream.
ostream&

operator << ( ostream& os, const sc fix& a )
Print the instance value of a to an output stream os.

216 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.30 sc_fxval_fast_observer

Synopsis
class sc_fxval fast_observer

pr ot ect ed:
sc_fxval fast _observer() {}
virtual ~sc_fxval fast_observer() {}

public:
virtual void construct( const sc_fxval fast&);
virtual void destruct( const sc fxval fast& );
virtual void read( const sc_fxval fast&);
virtual void wite( const sc_fxval fast& );
static sc_fxval fast_observer*
(*defaul t _observer) ();

b

Description
sc_fxval fast_observer is an abstract base class provided as a hook to
define one’s own observer functionality.

Public Methods

virtual void construct( const sc_fxval _fast& );
virtual void destruct( const sc_fxval fast& );
virtual void read( const sc_fxval fast& );
virtual void write( const sc fxval fast&);:

These methods allow to observe construction, destruction, read, and write
actions on a particular variable. The destruct and read methods are called
before the action takes place, while the construct and write methods are called
after the action has taken place. Each of these methods can query the variable
under observation, which is passed as the single argument to the methods.

The default behavior of the methods is to do nothing (and return).

217 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.31 sc_fxval_observer

Synopsis
cl ass sc_fxval _observer

pr ot ect ed:
sc_fxval _observer() {}
virtual ~sc_fxval observer() {}

public:
virtual void construct( const sc_fxval & );
virtual void destruct( const sc_fxval & );
virtual void read( const sc_fxval & );
virtual void wite( const sc_fxval & )
static sc_fxval observer* (*default obser ver) ();

b

Description
sc_fxval observer is an abstract base class provided as a hook to define
one’s own observer functionality.

Public Methods

virtual void construct( const sc_fxval & );
virtual void destruct( const sc_fxval & );
virtual void read( const sc_fxval & );
virtual void write( const sc_fxval & );

These methods allow to observe construction, destruction, read, and write
actions on a particular variable. The destruct and read methods are called
before the action takes place, while the construct and write methods are called
after the action has taken place. Each of these methods can query the variable
under observation, which is passed as the single argument to the methods.

The default behavior of the methods is to do nothing (and return).

218 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.32 sc_in

Synopsis
tenpl ate <class T>
class sc_in
public sc_port<sc_signal _in_if<T> 1>

-
public:

/| constructors and destructor
sc_in();
sc_in( const char* nane_ );
sc_in( const sc_signal _in_if<T>& interface_ );
sc_in( const char* nane_,
const sc_signal _in if<T>& interface_);
sc_in(sc_port<sc_signal _in_if<T> >& parent_ );
sc_in( const char* nane_,
sc_port<sc_signal _in_if<T> >& parent_ );
sc_in(sc_port<sc_signal _inout _if<T> >& parent_ );
sc_in( const char* nane_,
sc_port<sc_signal _inout _if<T> >& parent_ );
sc_in( sc_in<T>& parent_ );
sc_in( const char* nane_, sc_in<T>& parent_ );
virtual ~sc_in();

/'l met hods
voi d bind( const sc_signal _in_if<T>& interface_ );
voi d operator () ( const
sc_signal _in if<T>& interface_ );
voi d bind( sc_port< sc_signal _in_if<T> >& parent_ );
voi d operator () (
sc_port< sc_signal _in_if<T> >& parent_ );
voi d bi nd(
sc_port<sc_signal _inout _if<T> >& parent_ );
voi d operator () (
sc_port<sc_signal _inout _if<T> >& parent_ );
const sc_event & default_event() const;
const sc_event & val ue_changed_event () const;
const T& read() const;
operator const T& () const;
bool event() const;
sc_event _finder& val ue_changed() const;
virtual void end_of el aboration();
static const char* const kind_string;
virtual const char* kind() const;
void add_trace( sc_trace file*,
const sc_string& ) const;

1
Description

Sc_i nis a specialized port for use with sc_si gnal channels ( Chapter 11.59 ).
Its behavior is that of a sc_port which has only one interface that is of type

219 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

sc_signal _in_if<T>. It has additional methods for convenience in
accessing the channel connected to the port.

In the description of sc_i n, port refers to the sc_i n instance, current _value
refers to the value of the sc_si gnal instance connected to the port,
new_value is the value to be written and old_value is the previous value.
Chapter 2.4.1 describes the scheduler steps referred to in the description of
sSc_i nout.

Public Constructors
sc_in();
Create asc_i n instance.

explicit
sc_in( const char* nane_ ) ;
Create a sc_i n instance with the string name initialized to nane_.

Public Member Functions
voi d ;
add_trace( sc_trace file*, const sc_string& ) const;

voi d
bi nd( const sc_signal _in_ if<T>& interface_ ) ;
Binds i nt er f ace_ to the port. For port to channel binding.

voi d
bi nd( sc_port<sc_signal _in_if<T> 1 >& parent_ ) ;
Binds par ent _ to the port. For port to port binding.

voi d
bi nd( sc_port<sc_signal _inout if<T> 1 >& parent_ );
Binds par ent _ to the port. For port to port binding.

const sc_event &

defaul t _event () const ;
Returns a reference to an event that occurs when new_value on a write is
different from current_value.

bool
event () const ;
Returns true if an event occurred in the previous delta-cycle.

virtual void

end_of _el aboration();
Called at the end of the elaboration phase, after ports have been bound to
channels. If a trace has been requested on this port during elaboration, then
end_of _elaboration adds a trace using the attached channel’s data.

virtual const char*

220 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

ki nd() const ;
Returns “sc_in”.

sc_event _finder '&
neg() const ;
Type bool and sc_| ogi ¢ only. Returns a reference to an

sc_evem‘_ﬁnderT that occurs when new_value on a write is false and the
current_value is not false. For use with static sensitivity list of a process.

bool

negedge() const ;
Type bool and sc_| ogi ¢ only. Returns true if an event occurred in the
previous delta-cycle and current_value is false.

const sc_event &

negedge_event () const ;
Type bool and sc_| ogi ¢ only. Returns a reference to an event that
occurs when new_value on a write is false and the current_value is not false.

sc_event _finder T&
pos() const ;
Type bool and sc_| ogi ¢ only. Returns a reference to an

sc_event_ﬁnderJr that occurs when new_value on a write is true and the
current_value is not true. For use with static sensitivity list of a process.

bool

posedge() const ;
Type bool and sc_| ogi ¢ only. Returns a reference to an event that
occurs when new_value on a write is true and the current_value is not true.

const sc_event &

posedge_event () const ;
Type bool and sc_| ogi ¢ only. Returns a reference to an event that
occurs when new_value on a write is true and the current_value is not true.

const T&
read() const ;

Returns a reference to current_value.

sc_event _finder '&
val ue_changed() const ; +

Returns a reference to an sc_event finder' that occurs when new_value on
a write is different from current_value. For use with static sensitivity list of a
process.

const sc_event &
val ue_changed_event () const ;

221 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Returns a reference to an event that occurs when new_value on a write is
different from current_value.

Public Operators
voi d
operator () ( const sc_signal _in_if<T>& ) ;
Binds i nt er f ace_ to the port. For port to channel binding.

voi d
operator () (sc_port<sc_signal _in_ if<T> 1 >&)
Binds par ent _ to the port. For port to port binding.

voi d
operator () (sc_port<sc_signal _inout if<T> 1 >&)
Binds par ent _ to the port. For port to port binding.

operator const T& () const

Disabled Member Functions

sc_in( const sc_in<T>& );
SC_i n<T>& operator = ( const sc_in<T>& );

222 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.33 sc_in_resolved

Synopsis
class sc_in_resol ved
public sc_in<sc_|ogic>

public:
/| constructors and destructor

sc_in_resol ved();
sc_in_resol ved( const char* nane_ );
sc_in_resol ved( const

sc_signal _in_if<sc logic>& interface_);
sc_in_resolved( const char* nane_,

const sc_signal _in_if<sc logic>& interface_);
sc_in_resol ved(

sc_port<sc_signal _in_if<sc |ogic> >& parent_ );
sc_in_resolved( const char* nane_,

sc_port<sc_signal _in_if<sc |ogic> >& parent_ );
sc_in_resol ved(

sc_port<sc_signal _inout if<sc |logic> >& parent_ );
sc_in_resol ved( const char* nane_,

sc_port<sc_signal _inout if<sc |logic> >& parent_ );
sc_in_resolved(sc_in_resol ved& parent _ );
sc_in_resolved( const char* nane_,

sc_in_resol ved& parent _ );
virtual ~sc_in_resolved();

/'l met hods
virtual void end of el aboration();
static const char* const kind_string;
virtual const char* kind() const;

/] disabled
sc_in_resolved( const sc_in_resol ved& );
sc_in_resol ved& operator = (const sc_in_resol ved& );

b

Description
sc_i n_resol ved is a specialized port for use with sc_si gnal _resol ved
channels ( Chapter 11.63 ). Its behavior is that of a sc_port which has only one
interface that is of type sc_si gnal _i n_i f<sc_I ogi ¢c>. It has additiona
methods for convenience in accessing the channel connected to the port.

In the description of sc_i n_resol ved, portreferstothesc _in_resol ved

instance.

Public Constructors
sc_in_resol ved() ;
Create asc_i n_resol ved instance.

223 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

explicit

sc_in_resolved( const char* );
Create asc_i n_resol ved instance with the string name initialized to
name_.

Public Member Functions
virtual void
end_of el aboration() ;

Checks to make sure the channel bound to the port is of type
sc_signal resol ved.

virtual const char*
ki nd() const ;
Returns “sc_in_resolved”.

Disabled Member Functions
sc_in_resolved (const sc_in_resol ved& );
sc_in_resol ved& operator = ( const sc_in_resolved& );

224 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.34 sc_in_rv

Synopsis
tenplate <int W
class sc_in_rv
public sc_in<sc_|v<W >

_
public:
[l constructors and destructor
sc_in_rv();
sc_in_rv( const char* name_ );
sc_in_rv( const
sc_signal _in_if<sc |v<Ws >& interface_ );
sc_in_rv( const char* name_,
const sc_signal _in_if<sc |v<W >& interface_ );
sc_in_rv(
sc_port< sc_signal _in_if<sc |v<Ws > >& parent_ );
sc_in_rv( const char* name_,
sc_port< sc_signal _in_if<sc |v<Ws > >& parent_ );
sc_in_rv(
sc_port<sc_signal _inout if<sc |v<Ws > >& parent );
sc_in_rv( const char* name_,
sc_port<sc_signal _inout if<sc |v<Ws > >& parent );
sc_in_rv( sc_in_rv<W& parent_ );
sc_in_rv( const char* name_, sc_in_rv<Ws& parent_ );
virtual ~sc_in_rv();

/'l met hods
virtual void end of el aboration();
static const char* const kind_string;
virtual const char* kind() const;

private:
/'l disabl ed
sc_in_rv( const sc_in_rv<We& );
sc_in_rv<We& operator = ( const sc_in_rv<Wé& );

b

Description
sc_i n_rv is a specialized port for use with sc_si gnal _rv channels
( Chapter 11.63 ). Its behavior is that of a sc_port which has only one interface
that is of type sc_si gnal _in_i f<sc_| v<Ws- >, It has additional methods
for convenience in accessing the channel connected to the port.

In the description of sc_i n_rv, portreferstothe sc in_rv instance.

Public Constructors
sc_in_rv() ;
Create asc_i n_rv instance.

225 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

explicit
sc_in_rv( const char* );
Create asc_i n_rv instance with the string name initialized to nane_.

Public Member Functions
virtual void
end_of el aboration() ;
Checks to make sure the channel bound to the port is of type
sc_signal rv.

virtual const char*
ki nd() const ;

Returns “sc_in_rv”.
Disabled Member Functions

sc_in_rv( const sc_in_ rv<Wé& );
sc_in_rv<We& operator = ( const sc_in_rv<Wé& );

226 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.35 sc_inout

Synopsis
tenpl ate <class T>
cl ass sc_i nout
public sc_port<sc_signal _inout_if<T> 1>

{
public:
[/ constructors and destructor

sc_inout();
sc_inout( const char* name_ );
sc_inout(sc_signal _inout _if<T>& interface_ );
sc_inout( const char* nane_,
sc_signal _inout if<T>& interface_ );
sc_inout (sc_port<sc_signal _inout if<T> >& parent_ );
sc_inout( const char* nane_,
sc_port<sc_signal _inout _if<T> >& parent_ );
sc_inout( sc_inout<T>& parent_ );
sc_inout( const char* nanme_, sc_inout<T>& parent_ );
virtual ~sc_inout();

/'l met hods
const sc_event & default_event() const;
const sc_event & val ue_changed_event () const;
const T& read() const;
operator const T& () const;
bool event() const;
sc_inout<T>& wite( const T& value_ );
SC_i nout <T>& operator = ( const T& value_);
Sc_i nout <T>& operator = ( const
sc_signal _in if<T>& interface_);
Sc_i nout <T>& operator = ( const
sc_port< sc_signal _inout _if<T> >& port_ );
Sc_i nout <T>& operator = ( const
sc_port< sc_signal _inout _if<T> >& port_ );
SC_i nout <T>& operator = (const sc_inout<T>& port_ );
void initialize( const T& value_ );
void initialize( const
sc_signal _in if<T>& interface_ );
virtual void end _of el aboration();
sc_event _finder& val ue_changed() const
static const char* const kind_string;
virtual const char* kind() const;
void add_trace( sc_trace file*,
const sc_string& ) const;

1
Description

sSc_i nout is a specialized port for use with sc_signal channels ( Chapter
11.59 ). Its behavior is that of a sc_port which has only one interface that is of

227 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

type sc_signal_inout_if<T>. It has additional methods for convenience in
accessing the channel connected to the port.

In the description of sc_i n, portrefers to the sc_i nout instance,
current_value refers to the value of the sc_si gnal instance connected to the
port, new_value is the value to be written and old_value is the previous value.

Chapter 2.4.1 describes the scheduler steps referred to in the description of
sSc_i nout.

Public Constructors
sc_inout ();
Create a sc_i nout instance.

explicit
sc_inout( const char* ) ;
Create a sc_i nout instance with the string name initialized to nane_.

Public Member Functions
voi d
add trace( sc_trace file*, const sc_string& ) const;

const sc_event &
default _event() const ;

Returns a reference to an event that occurs when new_value on a write is
different from current_value.

virtual void
end_of el aboration();
Sets up tracing of the port.

bool
event () const ;

Returns true if an event occurred in the previous delta-cycle.

voi d
initialize( const T& val );
Sets current_value to val .

voi d

initialize( const sc_signal _in_ if<T>& interface_ ) ;
Sets current_value to the current_value of the channel argument
interface._.

virtual const char*

ki nd() const ;
Returns “sc_inout”.

sc_event fi nder '&
neg() const ;

228 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Type bool and sc_| ogi ¢ only. Returns a reference to an

sc_evem‘_ﬁnderT that occurs when new_value on a write is false and the
current_value is not false. For use with static sensitivity list of a process.

bool

negedge() const ;
Type bool and sc_| ogi ¢ only. Returns true if an event occurred in the
previous delta-cycle and current_value is false.

const sc_event &
negedge_event () const ;

Type bool and sc_| ogi ¢ only. Returns a reference to an event that
occurs when new_value on a write is false and the current_value is not false.

sc_event finder T&
pos() const ;
Type bool and sc_| ogi ¢ only. Returns a reference to an

sc_evem‘_ﬁnderT that occurs when new_value on a write is true and the
current_value is not true. For use with static sensitivity list of a process.

bool

posedge() const ;
Type bool and sc_| ogi ¢ only. Returns a reference to an event that
occurs when new_value on a write is true and the current_value is not true.

const T&
read() const ;

Returns a reference to current_value.

sc_event _finder T&
val ue_changed() const ;
For use with static sensitivity list for a process. Returns a reference to an

sc_evenz‘_ﬁnderJr that occurs when new_value on a write is different from
current_value. For use with static sensitivity list of a process.

const sc_event&
val ue_changed _event () const ;

Returns a reference to an event that occurs when new_value on a write is
different from current_value.

SCc_i nout <T>&

wite( const T& val ) ;
If val is not equal to current_value then schedules an update with val as
new_value.

Public Operators
operator const T& () const ;

229 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Returns current_value.

Sc_i nout <T>&
operator = ( const Type_ & val) ;
Type_in {T, sc_signal _in_if<T> sc_port<
sc_signal _in_if<T> > sc_port< sc_signal _inout_if<T> >,
sc_inout <T> }
If val is not equal to current_value of the left hand side, then an update is
scheduled with val as the new_value of the left hand side. Returns a
reference to the instance.

Disabled Member Function
sc_inout( const sc_inout<T>& );

230 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.36 sc_inout_resolved

Synopsis
class sc_inout _resolved
public sc_inout<sc_|ogic>

public:
/| constructors and destructor
sc_i nout _resol ved();
sc_i nout _resolved( const char* nane_ );
sc_i nout _resol ved(
sc_signal inout if<sc |logic>& interface_ );
sc_inout _resolved( const char* nane_,
sc_signal _inout if<sc logic>& interface_ );
sc_i nout _resol ved(
sc_port<sc_signal _inout_if<sc_logic> >& parent_);
sc_inout _resolved( const char* nane_,
sc_port<sc_signal _inout_if<sc_logic> >& parent_);
sc_inout _resolved( sc_inout _resol ved& parent _ );
sc_inout _resolved( const char* nane_,
sc_inout _resol ved& parent_ );
virtual ~sc_inout_resolved();

/'l met hods
sc_i nout _resol ved& operator = ( const
sc_l ogi c& value_ );
sc_i nout _resol ved& operator = ( const
sc_signal __in_if<sc_Logic>& interface_ );
sc_i nout _resol ved& operator = ( const
sc_port<sc_signal _in_if<sc |ogic> >& port_ );
sc_i nout _resol ved& operator = ( const
sc_port<sc_signal _inout_if<sc_|logic> >& port_ );
sc_i nout _resol ved& operator = ( const
sc_i nout _resol ved& port_ );
virtual void end _of el aboration();
static const char* const kind_string;
virtual const char* kind() const;
private:
/] disabled
sc_inout _resol ved( const sc_inout_resol ved& );

b

Description
sc_i nout _resol ved is a specialized port for use with
sc_signal _resol ved channels ( Chapter 11.63 ). Its behavior is that of a
sc_port which has only one interface that is of type
sc_signal _inout if<sc_logic>. Ithas additional methods for
convenience in accessing the channel connected to the port.

Public Constructors
sc_inout _resolved() ;

231 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Create asc_i nout _resol ved instance.

explicit

sc_inout _resolved( const char* );
Create asc_i nout _resol ved instance with the string name initialized to
name_.

Public Member Functions
virtual void
end_of el aboration() ;

Checks to make sure the channel bound to the port is of type
sc_signal resol ved.

virtual const char*
ki nd() const ;

Returns “sc_inout_resolved”.

Public Operators

sc_i nout _resol ved&

operator = ( const Type & val ) ;

Type_in {sc_logic, sc_signal _inout if<sc_l|logic> sc_port<

sc_signal inout if <sc logic> > sc_inout _resolved& }

If val is not equal to current_value of the left hand side, then an update is
scheduled with val as the new_value of the left hand side. Returns a
reference to the instance.

Disabled Member Function
sc_inout _resolved (const sc_inout_resol ved& );

232 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.37 sc_inout_rv

Synopsis
tenplate <int W
class sc_inout_rv
public sc_inout<sc_|v<W >

_
public:
/| constructors and destructor
sc_inout _rv();
sc_inout _rv( const char* nane_ );
sc_i nout _rv(
sc_signal _inout _if<sc_|v<Ws >& interface_ );
sc_inout_rv( const char* nane_,
sc_signal _inout _if<sc_|v<Ws >& interface_ );
sc_i nout _rv(
sc_port<sc_signal _inout if<sc |v<Ws > >& parent );
sc_inout_rv( const char* nane_,
sc_port<sc_signal _inout if<sc |v<Ws > >& parent );
sc_inout_rv( sc_inout_rv<We& parent_ );
sc_inout _rv( const char* nane_,
sc_inout _rv<W,& parent );
virtual ~sc_inout_rv();

/'l met hods
sc_i nout _rv<W,& oper at or
sc_| veWt& val ue_ );
sc_i nout _rv<Ws& operator = ( const
sc_signal __in_if<sc_|v<Ws >& interface_ );
sc_inout _rv<We& operator = ( const
sc_port<sc_signal _in_if<sc |v<W > >& port_ );
sc_i nout _rv<W,& operator = ( const
sc_port<sc_signal _inout_if<sc_|v<Ws > >& port_ );
sc_i nout _rv<Ws& operator = ( const
sc_inout rv<We& port_);
virtual void end _of el aboration();
static const char* const kind_string;
virtual const char* kind() const;
private:
/'l disabl ed
sc_inout_rv( const sc_inout_rv<W& );

( const

b

Description
sc_i nout _rv is a specialized port for use with sc_si gnal _rv channels
( Chapter 11.63 ). Its behavior is that of a sc_port which has only one interface
that is of type sc_si gnal _i nout _i f <sc_| v<W¢ >. It has additional
methods for convenience in accessing the channel connected to the port.

In the description of sc_i nout _rv, portrefers tothe sc_i nout rv instance.

233 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Public Constructors
sc_inout_rv() ;
Create asc_i nout _rv instance.

explicit
sc_inout_rv( const char* );
Create asc_i nout _rv instance with the string name initialized to nane_.

Public Member Functions
virtual void
end_of el aboration() ;

Checks to make sure the channel bound to the port is of type
sc_signal _rv.

virtual const char*
ki nd() const ;

Returns “sc_inout_rv”.

Public Operators

Sc_i nout _rv<wW&

operator = ( const Type & val ) ;

Type_ in {sc_|v<Ws, sc_signal inout if<T> sc_port<

sc_signal _inout if<T> 1> sc_inout_rv<W }

If val is not equal to current_value of the left hand side, then an update is
scheduled with val as the new_value of the left hand side. Returns a
reference to the instance.

Disabled Member Functions
sc_inout_rv( const sc_inout_rv<W& );

234 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.38 sc_int

Synopsis
tenplate <int W
class sc_int

public sc_int_base

-
public:

235

/'l constructors

sc_int();

sc_int( int64 v );

sc_int( const sc_int<W& a );

sc_int( const sc_int_base& a );

sc_int( const sc_int_subref_r& a);

tenpl ate <class T1, class T2>

sc_int( const sc_int_concref_r<Tl,T2>& a );
sc_int( const sc_signed& a );

sc_int( const sc_unsigned& a );

explicit sc_int( const sc_fxval & a );
explicit sc_int( const sc_fxval _fast& a );
explicit sc_int( const sc_fxnum& a );
explicit sc_int( const sc_fxnumfast& a );
sc_int( const sc_bv _base& a );

sc_int( const sc_|v _base& a );

sc_int( const char* a );

sc_int( unsigned long a );

sc_int( long a );

sc_int( unsigned int a);

sc_int( int a);

sc_int( uinté4 a );

sc_int( double a);

/| assignment operators

Sc_i nt <Wt& oper at or (int64 v );

sc_i nt <Wk& oper at or ( const sc_int _base& a );
sc_i nt <Wk& oper at or ( const sc_int_subref r& a);
sc_i nt <Wk& oper at or ( const sc_int<W& a );

tenpl ate <class T1, class T2>

Sc_i nt <Wt& oper at or ( const sc_int_concref _r<T1, T2>&
a);

Sc_i nt <Wt& oper at or
Sc_i nt <Wt& oper at or
Sc_i nt <Wt& oper at or
Sc_i nt <Wt& oper at or
Sc_i nt <Wt& oper at or
Sc_i nt <Wt& oper at or
Sc_i nt <Wt& oper at or
Sc_i nt <Wt& oper at or
Sc_i nt <Wt& oper at or
Sc_i nt <Wt& oper at or

o mniani

const sc_signed& a );
const sc_unsigned& a );
const sc_fxval & a );
const sc_fxval fast& a );
const sc_fxnun& a );
const sc_fxnumfast& a );
const sc_bv_base& a );
const sc_|lv_base& a );
const char* a );

unsigned long a );

AONTNNNN NN NN NN

Sc_i nt <Wt& oper at or long a );
Sc_i nt <Wt& oper at or unsigned int a);
Sc_i nt <Wt& oper at or int a);

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Sc_i nt <W,& oper at or (uint64 a);

Sc_i nt <Wt& oper at or ( double a );
[l arithmetic aSS|gnnent operators
sc_i nt <Wk& oper at or (int64 v );
sc_i nt<Wk& operator -= ( int64 v );
SC_int<W,& operator *= ( int64 v );
ScC_int<W,& operator /= ( int64 v );
SC_int<W,& operator % ( int64 v );
/'l bitw se assignnent operators
SC_int<W,& operator &= ( int64 v );
Sc_int<W,& operator |=( int64 v );
SC_int<W,& operator "= ( int64 v );
sc_int<W,& operator <<= ( int64 v );
sc_int<Wt& operator >>= ( int64 v );

[l prefix and postfix increnment and decrenment operators
sc_int<We& operator ++ (); // prefix
const sc_int<Ws operator ++ ( int ); // postfix

sc_int<We& operator -- (); // prefix

const sc_int<Ws operator -- ( int ); // postfix
b
Description

sc_i nt <Wk is an integer with a fixed word length W between 1 and 64 bits.
The word length is built into the type and can never change. If the chosen word
length exceeds 64 bits, an error is reported and simulation ends. All operations
are performed with 64 bits of precision with the result converted to appropriate
size through truncation.

Methods allow for addressing an individual bit or a sub range of bits.

Example
SC_MODULE( ny_nodul e) {

236

/1 data types

sc_int<3> a;
sc_int<44> b;
sc_bi gui nt <88> c;
sc_bi gui nt <123> d;

/'l process

void ny_proc();
SC_CTOR( ny_nodul e)

a(0), //7init
c(7654321) [/ init

b 33; [/ set value
d 2300; // set val ue
SC_THREAD( ny_proc) ;

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

void ny_nodul e::nmy_proc() {

a = ’
b[30] = a[0];
cout << b.range(7,0) << endl;

cout << ¢ << endl;
d[ 122] = b;

wai t (300, SC_NS);
sc_stop();

}

Public Constructors
sc_int();
Create an sc_i nt instance with an initial value of 0.

sc_int( int64 a) ;
Create an sc_i nt with value a. If the word length of a is greater then W, a
gets truncated to W bits.

sc_int( Ta) ;

Tin{ sc_int, sc_int_base, sc_int_subref T, sc_int_concref T,
sc_[un]si gnedT, sc_fxval, sc_fxval fast,
sc_fix[ed][_fast], sc_bv_base, sc_|v_base, const char*,
[ unsi gned] |ong, [unsigned] int, int64, double }

Create an sc_i nt with value a. If the word length of a is greater then W, a
gets truncated to W bits.

Copy Constructor
sc_int( const sc_int&)

Methods
i nt
| ength() const ;
Return the word length.

voi d
print( ostream& os = cout ) const ;
Print the sc_i nt instance to an output stream.

void _ _
scan( istream& is =cin ) ;
Read an sc_i nt value from an input stream.

Reduction Methods

bool and_reduce() const;
bool nand_reduce() const ;

237 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

bool or _reduce() const ;
bool nor_reduce() const ;
bool xor_reduce() const ;
bool xnor_reduce() const ;
Fin { and nand or nor xor xnor }
Return the result of function F with all bits of the sc_i nt instance as input

arguments.

Assignment Operators
sc_i nt <W&
operator = ( int64 ) ;

sc_i nt <Wk&

operator = ( T ) ; ) )

Tin { sc_int, s%_int_base, sc_int_subref , sc_int_concref |,
sc_[un]signed, sc_fxval, sc_fxval fast,
sc_fix[ed][_fast], sc_bv_base,
sc_|v_base, const char*, [unsigned] |ong, [unsigned]
int, int64, double }

Assign the value of the right-hand side to the left-hand side. The value is
truncated, if its word length is greater than W.

Arithmetic Assignment Operators

sc_i nt <W&
operator OP ( int64 ) ;
OPin{ += -=*=/= % }

The operation of OP is performed and the result is assigned to the lefthand
side. If necessary, the result gets truncated.

Bitwise Assignment Operators

sc_i nt <Wk&
operator OP ( uint64 ) ;
OPin{ & |= "= <<= >>=}

The operation of OP is performed and the result is assigned to the left hand
side. The result gets truncated.

Prefix and Postfix Increment and Decrement Operators
Sc_i nt<Wt& operator ++ () ;
const sc_int<Ws operator ++ ( int ) ;
The operation of OP is performed as done for type int.

sc_i nt <W,& operator -- () ;

const sc_int<Ws operator -- ( int ) ;
The operation is performed as done for type int.

Relational Operators
friend bool operator OP (sc_int, sc_int ) ;

238 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

C]D|n{ ::!:<<:>>:}
These functions return the boolean result of the corresponding equality/
inequality check.

Bit Selection
sc_int_bitref ! operator [] ( int i ) ;
sc_int_bitref T_rJr operator [] ( int i ) const ;
sc_int_bitref bit( int i) ;
sc_int_bitref _rJr bit( int i) const ;

Return a reference to a single bit at index i.

Implicit Conversion
operator int64() const
Implicit conversion to the implementation type uint64. The value does not
change.

Explicit Conversion
i nt 64
val ue() const ;
Returns the value without changing it.

i nt to_int() const ;
double to_double() const ;
i nt 64 to_int64() const ;

| ong to_long() const ;
uint64 to_uint64() const ;
unsi gned i nt to uint() const ;

unsi gned | ong to_ul ong() const ;

Converts the value of sc_int instance into the corresponding data type. If
the requested type has less word length than the sc_int instance, the
value gets truncated accordingly. If the requested type has greater word
length than the sc_int instance, the value gets sign extended, if necessary.

239 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.39

sc_int_base

Synopsis
class sc_int_base

{
public:
// constructors & destructors

240

explicit sc_int_base(
sc_int_base( int64 v,

i nt
i nt

w = sc_l ength_param().
w)

len() )

sc_int_base( const sc_int_base& a)

explicit sc_int_base( const sc_int_subref
cl ass T2>
explicit sc_int_base( const sc_int_concref

tenpl ate <class T1,

r& a)
_r<T1,T2>& a )

explicit sc_int_base( const sc_signed& a );
explicit sc_int_base( const sc_unsigned& a );

~sc_i nt_base()

/| assignnment operators

sc_int_base& operator = ( int64 v )

sc_int_base& operator = ( const sc_int_base& a )
sc_int_base& operator = ( const sc_int_subref r& a)
tenpl ate <class T1, class T2>

sc_int_base& operator = ( const
sc_int_concref_r<T1,T2>& a)

sc_int_base& operator = ( const sc_signed& a );
sc_int_base& operator = ( const sc_unsigned& a );
sc_int_base& operator = ( const sc_fxval & a );
sc_int_base& operator = ( const sc_fxval _fast& a );
sc_int_base& operator = ( const sc_fxnum& a );
sc_int_base& operator = ( const sc_fxnumfast& a );
sc_int_base& operator = ( const sc_bv_base& a );
sc_int_base& operator = ( const sc_|v_base& a );
sc_int_base& operator = ( const char* a );
sc_int_base& operator = ( unsigned long a )
sc_int_base& operator = ( long a)

sc_int_base& operator = ( unsigned int a )
sc_int_base& operator = ( int a)

sc_int_base& operator = ( uint64 a )
sc_int_base& operator = ( double a )

[l arithmetic assignnment operators

sc_int_base& operator += ( int64 v )
sc_int_base& operator -= int64 v )
sc_int_base& operator *= ( int64 v )
sc_int_base& operator /= ( int64 v )
sc_int_base& operator % ( int64 v )

/1l bitw se assignnent operators

sc_int_base& operator & ( int64 v

sc_int_base& operator |= ( int64 v )
sc_int_base& operator = ( int64 v )
sc_int_base& operator <<= ( int64 v )
sc_int_base& operator >>= ( int64 v )

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

241

/'l prefix and postfix increment
sc_int_base& operator ++ ()

and decrenent operators

const sc_int_base operator ++ ( int ) // postfix

sc_int_base& operator -- () //
const sc_int_base operator --

/'l relational operators

prefix

(int ) // postfix

friend bool operator == ( const sc_int_base& a, const
sc_int_base& b )

friend bool operator != ( const sc_int_base& a, const
sc_int_base& b )

friend bool operator < ( const sc_int_base& a, const
sc_int_base& b )

friend bool operator <= ( const sc_int_base& a, const
sc_int_base& b )

friend bool operator > ( const sc_int_base& a, const
sc_int_base& b )

friend bool operator >= ( const sc_int_base& a, const
sc_int_base& b )

/1l bit selection

sc_int_bitref operator [] ( int i

sc_int_bitref_r operator [] ( int i ) const;
sc_int_bitref bit( int i );

sc_int_bitref r bit( int i ) const;

/1l part selection

sc_int_subref operator () ( int left, int right );
sc_int_subref_r operator () ( int left, int right )
const ;

sc_i nt_subref range( int left, int right );
sc_int_subref _r range( int left, int right ) const;

/] bit access

bool test( int i ) const
void set( int i

void set( int i, bool v )
/'l Met hods

int length() const

bool and_reduce() const;
bool nand_reduce() const
bool or_reduce() const;
bool nor _reduce() const
bool xor_reduce() const;
bool xnor_reduce() const

operator int64() const

i nt 64 val ue() const

int to_int() const

unsigned int to_uint() const
long to_long() const

unsi gned | ong to_ul ong() const
int64 to_int64() const

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

uint64 to_uint64() const
doubl e to_doubl e() const
const sc_string to_string( sc_nunrep numep = SC DEC )

const;

const sc_string to_string( sc_nunrep nunrep, bool
w_prefix ) const;

void print( ostream& os = cout ) const

void scan( istrean& is = cin );

¥

Description
sc_i nt _base is an integer with a fixed word length between 1 and 64 bits.

The word length is set when construction takes place and cannot be changed
later.

Public Constructors
explicit
sc_int_base( int = sc_length_param().len() );
Create an sc_i nt _base instance with specified word length. Its initial value is

0.

sc_int_base( int64 a, int b );
Create an sc_i nt _base instance with value a and word length b.

sc_int_base( T a) ;

Tin { sc_int_subref T, sc_i nt_concr ef T, sc_[un] signed }
Create an sc_i nt _base with value a. The word length of a must not exceed
64 bits. If it does, an error is reported and simulation ends.

Copy Constructor
sc_int_base( const sc_int_base& )

Methods
i nt
| engt h() const ;
Return the word length.

voi d
print( ostream& os = cout ) const ;
Print the sc_i nt _base instance to an output stream.

voi d
scan( istream& is = cin ) ;
Read a sc_i nt _base value from an input stream.

Reduction Methods
bool and _reduce() const;
bool nand_reduce() const ;

242 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

bool nor_reduce() const ;

bool or_reduce() const ;

bool xnor_reduce() const ;

bool xor _reduce() const;

Fin { and nand or nor xor xnor }
Return the result of function F with all bits of the sc_i nt _base instance as
input arguments.

Assignment Operators

sc_int_base& operator = ( int64 ) ;

sc_int_base& operator = ( T ) ;

Tin { sc_int_base, sc_int_subref , sc_int_concreft
sc_[un]signed, sc_fxval, sc_fxval _fast, sc_fxnum
sc_fxnum fast, sc_bv _base, sc_|v_base, char*, [unsigned]
| ong, [unsigned] int, uint64, double }

Assign the value of the right-hand side to the left-hand side. The value is
truncated, if its word length does not fit into the sc_int_base instance on the left
hand side . If not, the value is sign extended.

Arithmetic Assignment Operators

sc_int_base&

operator OP ( int64 ) ;

OPin{ += -=*= /= % }
The operation of OP is performed and the result is assigned to the lefthand
side. If necessary, the result gets truncated or sign extended.

Bitwise Assignment Operators
sc_int_base&
operator OP ( int64 ) ;
OPin{ & |= "= <<= >>=}
The operation of OP is performed and the result is assigned to the lefthand
side. The result gets truncated or sign extended.

Prefix and Postfix Increment and Decrement Operators
sc_int_base<W& operator ++ () ;
const sc_int_base<Ws operator ++ ( int ) ;
The operation is performed as done for type unsigned int.

sc_i nt _base<Ws& operator -- () ;
const sc_int<W operator ~-- ( int ) ;
The operation is performed as done for type unsigned int.

Relational Operators
friend bool operator OP (sc_int _base, sc_int_base ) ;
OPin{ ==!=<<=>>=}
These functions return the boolean result of the corresponding equality/
inequality check.

243 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Bit Selection
sc_int_bitref
sc_int _bitref _r
sc_int _bitref
sc_int _bitref r

oper at or
operator
bit( int
bit( int

[1 (int i) ;
_[](inti)const;
) ¢

onst ;

Return a reference to a single bit at index i.

Implicit Conversion
operator int64() const ;
Implicit conversion to the implementation type i nt 64. The value does not

change.

Explicit Conversion

double to_double() const

i nt to_int() const

i nt 64 to_int64() const

| ong to I ong() const

uint64 to_uint64() const

unsi gned i nt
unsi gned | ong

to_uint() const ;
to_ulong() const ;

Converts the value of sc_i nt _base instance into the corresponding data
type. If the requested type has less word length than the sc_i nt _base
instance, the value gets truncated accordingly.

244 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.40 sc_interface

Synopsis
class sc_interface

_
public:
virtual void register_port( sc_port_base& port _,
const char* if_typenane_ );
virtual const sc_event& default _event() const;
virtual ~sc_interface();

pr ot ect ed:
/| constructor
sc_interface();

private:
/] disabled
sc_interface( const sc_interface& );
sc_interface& operator = ( const sc_interface& );

b

Description
Class sc_i nterface isthe abstract class for interfaces. Users inherit from
this class to create their own interfaces. The methods def aul t _event () and
regi st er _port () are “placeholders” for classes that inherit from
sc_interface. Classes that directly derive from sc_i nt er f ace must do
this virtual.

Example
/1l define an interface
class ny _if : virtual public sc_interface {
publi c:
virtual int read() = O;
3

/'l define a channel inplenenting interface my_if
class ny_ch : public nmy_if, public sc_channel {
publi c:

virtual int read() { return muval;
virtual const sc_event& default_event() const { return
mev; }

¥

Protected Constructor
sc_interface();
Default constructor.

Public Member Functions

245 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

virtual const sc_eventé&
defaul t _event () const;

Except produce a warning message, does nothing by default. Can be
defined by channels.

virtual void
regi ster _port( sc_port_base'& const char* );
Does nothing by default. Can be defined by channels for registering ports.

Disabled Member Functions
sc_interface( const sc_interface& );
Copy constructor.

sc_interface& operator = ( const sc_interface& );
Default assignment operator.

246 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.41 sc_length_context

Synopsis
t ypedef sc_context<sc_|l ength_paran> sc_| engt h_cont ext;

Description
sc_| engt h_cont ext manage a stack of sc_| engt h_par amobjects. When
anew sc_| engt h_cont ext is created, it gets stacked together with its
sc_I| engt h_par amobject. When the sc_I| engt h_cont ext leaves scope, it
gets destructed, and therefore removed from that global stack.

Public Constructors
explicit
sc_length_context( const sc_|ength _param& a,
sc_context _begin b = SC NOW);
Create an sc_length_context with sc_length_param a. If b equals SC_NOW,
which is the default, it gets pushed onto the global sc_length_context stack.
If b equals SC_LATER, it is not pushded onto that stack.

Public Methods

voi d

begi n() ;
Push the sc_length_context object onto the stack. An sc_length_context
must not be pushed more than once onto the stack.

voi d

end() ;
Remove the sc_length_context object from the stack. It must be the top
most object on that stack.

static const sc_I|ength_param&
defaul t _val ue();

Return the default length parameter.
const sc_l ength_param&

val ue() const;
Return the sc_length_param object of the sc_length_context object.

247 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.42 sc_length_param
Synopsis
{cl ass sc_l ength_param
public:

sc_l ength_paran();

sc_length_paran( int );

sc_l ength_paran{ const sc_|l ength_param& );
explicit sc_length_paranm( sc_w thout_context );

sc_l ength_paran& operator = ( const sc_length_paran& );

friend bool operator == ( const sc_| ength_paramg,
const sc_length _paran& );
friend bool operator !'= ( const sc_| ength_paramg,

const sc_length_paran® );

int len() const;

void len( int );

const sc_string to_string() const;
void print( ostrean& = cout ) const;
voi d dunp( ostream& = cout ) const;

b

Description
Instances of sc_length_param define the default word length of newly created
sc_[u]int_base, sc_[un]signed, sc_bv_base and sc_Iv_base objects. This is
especially needed to construct arrays of those data types, because this is the
only way to pass the length parameter to these objects.

With the help of sc_length_context objects, sc_length_params are put onto a
stack. If, for example, an sc_bv_base is constructed by using its default
constructor, which gets the word length from the top element of that stack.

Public Constructors
sc_|l ength_paran();
Create an sc_| engt h_par amwith the default word length of 32.

sc_length_paran( int n) ;
Create an sc_| engt h_par amwith n as the word length withn > 0.

explicit

sc_length_paran( sc_w thout_context ) ;
Create an sc_| engt h_par amwith the default word length of 32.

Copy Constructor
sc_length_paran( const sc_length_param& );

248 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Public Methods
i nt
l en() const;
Get the word length stored in the sc_| engt h_par am

voi d
len( int n);
Set the word length of the sc_| engt h_par amto n, withn > 0.

const sc_string
to_string() const;

Convert the sc_I| engt h_par aminto its string representation.

voi d
print( ostream& = cout ) const;
Print the contents to a stream.

Public Operators
sc_| engt h_paran&
operator = ( const sc_length param& a )
Assign the word length value of a to the lefthand side sc_| engt h_par am
instance.

friend bool
operator == ( const sc_length paran& a, sc_|ength_param&
b );

Return true if the stored lengths of a and b are equal.

friend bool
operator != ( const sc_|ength _paran& a, const
sc_length_param& b );

Return true if the stored | engt hs of a and b are not equal.

249 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.43

Synopsis
class sc_logic

sc_logic

{

public:
/'l constructors & destructor
sc_logic();
sc_logic( const sc_logic& a );
sc_logic( sc_logic value t v );
explicit sc_logic( bool a);
explicit sc_logic( char a );
explicit sc_logic( int a);
explicit sc_logic( const sc_bit& a );
~sc_logic();

/| assignnment operators

sc_logic& operator = ( const sc_logic& a );
sc_logic& operator = ( sc_logic value t v );
sc_logic& operator = ( bool a);

sc_logic& operator = ( char a);

sc_logic& operator = ( int a);

sc_logic& operator = ( const sc_bit& a );

/1l bitw se assignnent operators

sc_logic& operator & ( const sc _logic& b );
sc_|l ogi c& operator & ( sc_logic value t v );
sc_l ogi c& operator &= ( bool b );

sc_logic& operator & ( char b );

sc_logic& operator & ( int b );

sc_logic& operator |= ( const sc_logic& b );
sc_logic& operator |= ( sc_logic_value_t v );
sc_logic& operator |= ( bool b );

sc_logic& operator |= ( char b );

sc_logic& operator |= ( int b );

sc_logic& operator = ( const sc_logic& b );
sc_logic& operator "= ( sc_logic _value t v );
sc_l ogi c& operator ~= ( bool b );

sc_l ogi c& operator = ( char b );

sc_logic& operator "= ( int b );

/1 bitw se conpl enent

const sc_logic operator ~ () const ;

sc_logic& b_not ();

/1l bitw se and

friend const sc _|logic operator & (
const sc _logic& b );

friend const sc _|logic operator & (
sc_logic value t b );

friend const sc _|logic operator & (
bool b );

const sc_logic& a,
const sc_logic& a,

const sc_logic& a,

250 Copyright 2003 Open SystemC Initiative. All rights reserved



friend const sc_| ogi
char b );
friend const sc_| ogi
int b);

friend const sc_| ogi
const sc_logic& b );
friend const sc_| ogi
sc_logic& b );
friend const sc_| ogi
sc_logic& b );
friend const sc_| ogi
sc_logic& b );

/[l bitw se or

friend const sc_| ogi
const sc_logic& b );
friend const sc_| ogi

sc_logic_value_ t b );

friend const sc_| ogi
bool b );

friend const sc_| ogi
char b );
friend const sc_| ogi
int b);

friend const sc_| ogi
const sc_logic& b );
friend const sc_| ogi
sc_logic& b );
friend const sc_| ogi
sc_logic& b );
friend const sc_| ogi
sc_logic& b );

[l bitw se xor

friend const sc_| ogi
const sc_logic& b );
friend const sc_| ogi

sc_logic_value_ t b );

friend const sc_| ogi
bool b );

friend const sc_| ogi
char b );
friend const sc_| ogi
int b);

friend const sc_| ogi
const sc_logic& b );
friend const sc_| ogi
sc_logic& b );
friend const sc_| ogi
sc_logic& b );
friend const sc_| ogi
sc_logic& b );

/] relationa

c

SystemC 2.0.1 Language Reference Manual

operator & (

operator & (

operator & (

operator & (

operator & (

operator & (

oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or

oper at or

oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or

oper at or

const sc_logicé& a,
const sc_logicé& a,
sc_l ogic_value_t a,
bool a, const
char a, const
int a, const
const sc_logicé& a,
const sc_logicé& a,
const sc_l ogicé& a,
const sc_l ogicé& a,
const sc_l ogicé& a,
sc_l ogic_value_t a,
bool a, const
char a, const
int a, const
const sc_logicé& a,
const sc_l ogicé& a,
const sc_l ogicé& a,
const sc_l ogicé& a,
const sc_l ogicé& a,
sc_l ogic_value_t a,
bool a, const
char a, const

int a, const

operators and functions

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

friend bool operator ==
sc_logic& b );
friend bool operator ==
sc_logic_value_ t b );
friend bool operator ==
friend bool operator ==
friend bool operator ==
friend bool operator ==
sc_logic& b );
friend bool operator ==
friend bool operator ==
friend bool operator ==
friend bool operator
sc_logic& b );
friend bool operator
sc_logic_value_ t b );
friend bool operator
friend bool operator

|

|

const sc_logic& a, const
const sc_l ogicé& a,

const sc_logic& a, bool

const sc_logic& a, const

const sc_logicé& a,
const sc_logic& a, bool

friend bool operator
friend bool operator
sc_logic& b );
friend bool operator
friend bool operator
friend bool operator

NN AUNTNNAN ~ AUNTNNAN AUNTNNAN ~ ~

/1l explicit conversions

sc_l ogic_value_t value() const ;
bool is_01()const ;

bool to_bool ()const ;

char to_char()const ;

/| other nethods
void print( ostream& os = cout ) const ;
void scan( istrean& is = cin );

/1l menory (de);allocation

static void* operator new size_t, void* p); //
pl acenent new

static void* operator new size t sz );

static void operator delete( void* p, size t sz );
static void* operator new [] ( size_t sz );

const sc_logic& a, char b );
const sc_logic& a, int b);
sc_logic_value_t a, const

bool a, const sc_logic& b )
char a, const sc_logic& b );
int a, const sc_logic& b );

const sc_logic& a, char b );
const sc_logic& a, int b);
sc_logic_value_t a, const

bool a, const sc_logic& b );
char a, const sc_logic& b );
int a, const sc_logic& b );

static void operator delete [] ( void* p, size t sz );

private:
/'l disabl ed
explicit sc_logic( const char* );
sc_l ogi c& operator = ( const char* );

3
Description

Instances of type sc_| ogi ¢ can have the values shown in Table 28.

252 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Table 28 —sc_| ogi c Values

Type Values

sc_logic_value _t Log 0 Log 1 Log Z Log X

bool false true n/a n/a

int 0 1 n/a n/a

char ‘0’ 1’ Z X
Values of types not found in Table 28 (sc_| ogi c_val ue_t, bool, int,

char ) produce undefined behavior.

Public Constructors
sc_logic() ;
sc_logic( sc_logic ) ;
sc_logic( sc_logic_value_t ) ;

explicit
sc _logic( T) ;
Tin { sc_logic, bool, int, char }

If not otherwise specified, an sc_| ogi c is initialized with Log_X.

General functions
bool
is_01() const ;
Return true if the sc_logic instance is either Log_0 or Log_1, else return
false.

friend ostream&
operator << ( ostream& sc _logic ) ;
Print the value of the sc_| ogi ¢ object to a stream.

friend istrean&
operator >> ( istream& sc_logic& ) ;
Read the next value from a stream.

voi d
print( ostream& os = cout ) const ;
Print the value of the sc_| ogi ¢ object to a stream.

voi d

scan( istream& is = cin ) ;
Read the next value from a stream.

bool

to_bool () const ;

Explicit conversion.to type bool .
char
to_char() const ;

Explicit conversion.to type char

sc_|l ogi c_val ue_t

253 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

val ue() const ;
Explicit conversion.to type sc_| ogi ¢c_val ue_t . Value remains the same.

Assignment Operators

sc_logic& operator = ( sc_logic value t ) ;
sc_logic& operator = ( sc_bit ) ;
sc_logic& operator = ( T ) ;

Tin { sc_logic, bool, int, char }

Bitwise Assignment Operators

sc_logic& operator & ( sc_logic value t v ) ;
sc_logic& operator &= ( T ) ;

sc_logic& operator |= ( sc_logic_value_ t v ) ;
sc_logic& operator |=( T) ;

sc_logic& operator "= ( sc_logic_value t v ) ;
sc_|logic& operator "= ( T ) ;

Tin { sc_logic, bool, int, char }

These operators calculate the four logic value of the AND, OR and XOR
function and assign the result to the left-hand side.

Bitwise complement
const sc_logic operator ~ () const ;
sc_logic& b_not() ;

Bitwise AND
friend const sc_logic operator
sc_logic value_ t ) ;
friend const sc_|ogic operator
sc_logic ) ;

& ( sc_logic,

& (
friend const sc_logic operator & ( sc _logic, T) ;

:

sc_logic_value_t,

friend const sc_logic operator T, sc_logic ) ;
Tin { sc_logic, bool, int, cha

Bitwise OR

friend const sc_logic operator
sc_logic value_ t ) ;

friend const sc_logic operator
sc_logic ) ;

friend const sc | ogic operator

friend const sc_logic operator

Tin { sc_logic, bool, int, char

Bitwise XOR
friend const sc_|ogic operator » ( sc_logic,
sc_logic_value_ t ) ;
friend const sc _|logic operator » ( sc_logic_value_t,
sc_logic ) ;

sc_| ogi c,

sc_logic_value_t,

(
(
( sc_logic, T) ;
§ T, sc_logic ) ;

254 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

friend const sc_|ogic operator ™ ( sc_log c, T) ;

friend const sc_logic operator ~ ( T, sc_logic ) ;

Tin { sc_logic, bool, int, char }

Test for equality:
friend bool operator
friend bool operator
friend bool operator
friend bool operator
Tin { sc_logic, bool, i

( sc_logic, sc_logic value_t
( sc_logic value t, sc_logic
( sc_logic, T) ;
(
n

T, sc_logic ) ;
t, char }

Test for inequality:

friend bool operator != ( sc_logic, sc_logic value_t
friend bool operator != ( sc_logic_value t, sc_logic
friend bool operator !'=( sc_logic, T) ;

friend bool operator !'=( T, sc_logic ) ;

Tin { sc_logic, bool, int, char }

Disabled Member Functions
explicit
sc_logic( const char* );

sc_l ogic&
operator = ( const char* );

255 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.44
Synopsis

sc_lv

tenplate <int W
class sc_lv
public sc_|v_base

-
public:

/'l constructors
sc_lv();
explicit sc_Ilv( const sc logic& init_value );

explicit sc_lv( bool
explicit sc_lv( char

sc_|v(
sc_|v(
sc_|v(
sc_|v(
sc_|v(
sc_|v(
sc_|v(
sc_|v(
sc_|v(
sc_|v(
sc_|v(
sc_|v(
sc_|v(

const
const
const
const

char* a );
bool* a );
sc_logic* a);

init_value );
init_value );

sc_unsi gned& a );

const sc_signed& a );
const sc_uint_base& a );
const sc_int_base& a );
unsigned long a );

long a );

unsigned int a);

int a);

uint64 a );

int64 a );

tenpl ate <cl ass X>

sc_lv( const sc_bv base& a );

sc_|v(

const sc_|v<We& a );

/| assignnment operators
tenpl ate <class X>

sc_| v<Wt& operator = ( const sc_bv_base& a );
sc_| v<Ws& operator = ( const sc_|v<W& a );
sc_| v<Wt& operator = ( const char* a );
sc_| v<Ws& operator = ( const bool* a );
sc_| v<We& operator = ( const sc_logic* a);
sc_| v<We& operator = ( const sc_unsigned& a );
sc_| v<We& operator = ( const sc_signed& a );
sc_| v<Wt& operator = ( const sc_uint_base& a );
sc_| v<We& operator = ( const sc_int_base& a );
sc_| v<Ws& operator = ( unsigned long a );
sc_| veWs& operator = ( long a );
sc_| v<We& operator = ( unsigned int a);
sc_| v<We& operator = ( int a);
sc_| v<Ws& operator = ( uint64 a );
sc_| v<Wt& operator = ( int64 a );
}
Description

sc_|l v< W > is a four value logic vector of arbitrary length. Its length is built
into the type and can not change later.

256

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Pointer arguments are arrays. In the case of 'const bool*' and 'const sc_logic*'
the size has to be at least as large as the length of the bit vector.

Examples

sc_ 1v<38> a; [/ 38-bit bit vector
sc | v<4> b;

b = "zzz7",

Public Constructors
sc_lv() ;
Create an sc_| v with all bits set to Log_X.

explicit
sc_lv( bool a) ;
Create an sc_| v with all bits set to a.

explicit
sc_lv( char a) ;
Create an sc_| v with all bits setto a. a can be'0', 1", 'Z" or 'X..

sc lv( Ta) ;

Tin { const char*, const bool*, const sc_|logic*, const
sc_unsi gned&, const sc_signed& const sc_uint_base &,
const sc_int_base&, [unsigned] |ong, [unsigned] int,
[u]int64d }

Create an sc_| v with the converted contents of a. If the length of a is
greater than the length of sc_|I v, a gets truncated. If the length of a is less
than the length of sc_| v, the MSBs get padded with Log_O.

Copy Constructor
sc_|lv( const sc_ | v<W& )

Assignment Operators

sc_| v<Ws& operator = ( const sc_|v<We& a )
sc_| veWs& operator = ( T a ) ;

Tin { const char*, const bool*, const sc_|logic*, const
sc_unsi gned&, const sc_signed& const sc_uint_base &,
const sc_int_base&, unsigned |ong, |ong, unsigned int,
int, [u]lint64 }

The value of the right handside is assigned to the sc_|I v. If the length of a
is greater than the length of sc_| v, a gets truncated. If the length ofa is
less than the length of sc_1 v, the MSBs get padded with Log_0.

257 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.45

Synopsis
class sc_|v_base

sc_lv_base

_

public:
/'l constructors & destructors
explicit sc_lv_base( int length_ =
sc_length_paran().len() );
explicit sc_|v_base( const sc_logicé& a,

int length_ = sc_length_param().len() );

sc_|v_base( const char* a );
sc_|lv_base( const char* a, int
tenpl ate <class X>
sc_|lv_base( const sc_bv_base& a );
sc_|v_base( const sc_|v_base& a );
virtual ~sc_|v_base();

length_ );

/| assignnment operators

tenpl ate <class X>

sc_|lv_base& operator = ( const sc_bv _base& a );
sc_|lv_base& operator = ( const sc_|v_base& a );
sc_|lv_base& operator = ( const char* a );
sc_|lv_base& operator = ( const bool* a );
sc_|lv_base& operator = ( const sc_logic* a);
sc_|lv_base& operator = ( const sc_unsigned& a );
sc_|lv_base& operator = ( const sc_signed& a );
sc_|lv_base& operator = ( const sc_uint_base& a );
sc_|lv_base& operator = ( const sc_int_base& a );
sc_|lv_base& operator = ( unsigned long a );
sc_|lv_base& operator = ( long a );

sc_|v_base& operator = ( unsigned int a );
sc_|lv_base& operator = ( int a);

sc_|lv_base& operator = ( uint64 a );
sc_|lv_base& operator = ( int64 a );

/'l Met hods
int length() const;
bool is_01() const;

3

Description
sc_lv_base is a vector of four value logic values of arbitary length. Its length is
set at construction and can not be changed later.
Forsc_| v_base description:

A bit means a four value logic bit.

Tin { const char*, const bool*, const sc_logic*, const
sc_unsi gned&, const sc_signed& const sc_uint_baseg&,

258 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

const sc_int_base&, unsigned |ong, |ong, unsigned int,
int, uint64, int64 }

Pointer arguments are arrays. In the case of 'const bool *'and 'const
sc_I| ogi c*'the size has to be at least as large as the length of the bit

vector.

Public Constructors
explicit
sc_|lv_base( int = sc_length_paranm().len() ) ;
Create an sc_| v_base of specified length. All bits are set to Log_X.

explicit

sc_|v_base( const sc logic& a, int =
sc_length_paranm().len() ) ;

Create an sc_| v_base of specified length. All bits are set to a.

sc_|v_base( const char* a ) ;

Create an sc_| v_base with the contents of a. The character string a must be
convertible into a bit string. The length of the newly created sc_| v_base is
identical to the length of the bit value representation of a.

sc_|v_base( const char *a, int i ) ;

Create an sc_| v_base with the contents of a. The character string a must be
convertible into a bit string. The length of the bit vector is determined by i. If the
length of a is less than i, the MSBs are set to Log_X. If the length of a is greater
than i, the MSBs are truncated.

Copy Constructor
sc_|lv_base( const sc_|lv_base& ) ;

Methods
bool
is_01() const ;
Return true, if all bits are Log_0 or Log_1.

i nt
| engt h() const
Return the length of the bit vector.

voi d
print( ostream& os = cout ) const ;
Print the sc_bv_base instance to an output stream.

void _ _
scan( istream& is =cin ) ;
Read an sc_bv_base value from an input stream.

Assignment Operators

259 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

sc_|lv_base& operator = ( const sc_|v_base& )
sc_|v_base& operator = ( T)

The value of the right-hand side is assigned to the left-hand side. If the lengths
of the two operands are different, the right-hand side gets either truncated or
sign extended.

Bitwise Operators
sc_|lv_base& operator & ( T ) ;
Calculate the bitwise AND operation and assign the result to the left-hand
side. Both operands have to be of equal length.

const sc_|v_base operator & ( T ) const ;
Return the result of the bitwise AND operation. Both operands have to be of
equal length.

sc_|v_base& operator |=( T) ;
Calculate the bitwise OR operation and assign the result to the left-hand
side. Both operands have to be of equal length.

const sc_lv_base operator | ( T ) const ;
Return the result of the bitwise OR operation. Both operands have to be of

equal length.

sc_|v_base& operator "= ( T ) ;
Calculate the bitwise XOR operation and assign the result to the left-hand
side. Both operands have to be of equal length.

const sc_|v_base operator »~ ( T ) const ;
Return the result of the bitwise XOR operation. Both operands have to be of
equal length.

sc_|v_base& operator <<= ( int i ) ;
Shift the contents of the left hand side operand i bits to the left and assign
the result to the left hand side operand. i must not be negative. Log 0
values are inserted at the LSB side.

const sc_|v_base operator << ( int i ) const ;
Shift the contents of the left-hand side operand i bits to the left and return
the result. i must not be negative. Log_0 bits are inserted at the LSB side.

sc_|v_base& operator >>= ( int i ) ;
Shift the contents of the left-hand side operand i bits to the right and assign
the result to the left-hand side operand. i must not be negative. Log_0
values are inserted at the MSB side.

const sc_|lv_base operator >> ( int i ) const ;

260 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Shift the contents of the left-hand side operand i bits to the right and return
the result. i must not be negative. Log_0 bits are inserted at the MSB side.

Bitwise Rotation & Reverse Methods

sc_|lv_base&
[rotate( int i ) ;
Rotate the contents of the bit vector i bits to the left.

sc_|v_base&
rrotate( int i ) ;
Rotate the contents of the bit vector i bits to the right.

sc_|v_base&
reverse() ;
Reverse the contents of the bit vector. LSB becomes MSB and vice versa.

Bit Selection

sc_bitref T<sc_| v_base> operator [] ( int i ) ;
sc_bitref rT<sc_I v_base> operator [] ( int i ) const ;
sc_bitref <sc_Iv _base> bit( int i ) :

sc_bitref r T<sc_| v_base> bit( int i ) const ;

Return a reference to the i-th bit. Return an r-value if the logic vector is
constant.

Part Selection

sc_subref<sc_|v_base> operator () ( int, int ) ;
sc_subref _r<sc_|v_base> operator () ( int, int ) const ;
sc_subref<sc_|v_base> range( int, int ) ;

sc_subref _r<sc_|v_base> range( int, int ) const ;

Return a reference to a range of bits. Return an r-value if the logic vector is
constant.

Reduction Methods

sc_logic_value_ t and reduce() const ;
sc_logic_value_t nand_reduce() const ;
sc_logic_value_t or_reduce() const ;
sc_logic_value_t nor_reduce() const ;
sc_logic_value_t xor_reduce() const ;
sc_logic_value_t xnor_reduce() const ;

261 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Return the result of function F with all bits of the logic vector as input
arguments.

Fin { and nand or nor xor xnor }

Relational Operators

bool operator == ( T ) const ;
Return true if the two logic vectors are equal.

Explicit Conversion

i nt to_int() const ;
| ong to_long() const ;
unsi gned i nt to uint() const ;

unsi gned | ong to_ulong() const ;

Convert the logic vector into an int, unsigned int, long or unsigned long
respectively. The LSB of the logic vector is put into the LSB of the returned
value, etc.

Explicit Conversion to Character String

const sc_string to_string() const ;
Convert the logic vector into a string representing its contents. Every
character represents a logic value. MSBs are on the left.

const sc_string to_string( sc_nunrep nr ) const ;
Convert the logic vector into a string representing its contents. The nr
argument specifies the base of the number string. A prefix ensures that the
string can be read back without changing the value.

const sc_string to_string( sc_nunrep, bool prefix ) const ;
Convert the logic vector into a string representing its contents. The nr
argument specifies the base of the number string. A prefix ensures that the
string can be read back without changing the value. If prefix is false, no
prefix is pre-pended to the value string.

262 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.46 sc_module

Synopsis
cl ass sc_nodul e

public sc_object

pr ot ect ed:

virtual void end _of el aboration();

/'l constructors

sc_nodul e( const char* nm);
sc_nodul e( const sc_string& nm);
sc_nodul e( const sc_nodul e_nane& nm);

public:

[/ destructor
virtual ~sc_nodul e();

pr ot ect ed:

263

void dont _initialize();
void wait();

/1l dynam c sensitivity for SC THREADs
void wait( const sc_event& e );

void wait( sc_event_or_list& el );
void wait( sc_event_and |list& el );
void wait( const sc tinme&t );

sc_nodul e();

const sc_pvector<sc_object*>& get _child _objects() const;

and SC_CTHREADs

void wait( double v, sc tinme_unit tu);
void wait( const sc tinme& t, const sc_event& e );

void wait( double v, sc tinme_unit tu
e);

void wait( const sc_tine& t, sc_event _

void wait( double v, sc tinme_unit tu
el );

void wait( const sc_tine& t, sc_event _

void wait( double v, sc tinme_unit tu
sc_event _and_list& el );

/]l static sensitivity for SC_METHODs
voi d next _trigger();

/1l dynam c sensitivity for SC _METHODs

const sc_event&

or list& el );
sc_event _or _list&

and list& el );

voi d next _trigger( const sc_event& e );
voi d next _trigger( sc_event_or_list& el );

voi d next _trigger( sc_event_and list&
voi d next _trigger( const sc_time&t );

el );

voi d next _trigger( double v, sc_time_unit tu );
voi d next _trigger( const sc_tinme& t, const sc_event&

e );

voi d next _trigger( double v, sc_time_unit tu, const

sc_event& e );

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

voi d next _trigger( const sc_tine&t, voi d

next _trigger( double v, sc_tinme_unit tu,
sc_event _or list& el );

void next_trigger( const sc_tinme& t, const sc_eventé&
e );

void next_trigger( double v, sc_tinme_unit tu,
sc_event _and list& el );

sc_sensitive sensitive;
voi d set _stack_size( size_t );
publi c:
/1 positional binding nethods (cont'd)
voi d operator () ( const sc_bind_proxy& p001,
const sc_bind _proxy& p002 = SC Bl ND_PROXY_NI L,

const sc_bind_proxy& p064 = SC BI ND_ PROXY NIL );
};

Description

An sc_nodul e is the base class for modules. Users inherit from this class to
create their own modules.

The wai t () and next _trigger () methods provide for static and dynamic
sensitivity for processes. Refer to Chapters 9.3, 9.4.1 and 9.5.1.

In the description of sc_nodul e, module refers to the sc_module instance.

Chapter 2.4.1 describes the scheduler steps referred to in the description of
sc_nodul e.

Protected Constructors

sc_nodul e( const char* nane_ ) ;
Create a sc_nodul e instance with the instance name initialized to nane_.

sc_nodul e( const sc_string& nane_ ) ;
Create a sc_nodul e instance with the instance name initialized to nane_.

sc_nodul e( const sc_nodul e_nane& nane_ ) ;
Create an sc_nodul e instance with the instance name initialized to nane_.

sc_nodule( ) ;
Create an sc_nodul e instance. The instance name will be obtained from
the module name stack via the construction of the sc_module_name object
passed to the derived module class’s constructor.

Protected Member functions
voi d
dont _initialize();
Prevents initialization of SC_METHODs and SC_THREADs. This method is
typically invoked in the module constructor immediately after SC_ METHOD

264 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

or SC_THREAD statements, and indicates that the specified thread or
method should not be triggered by default at the beginning of simulation.

virtual void
end_of el aboration();
This virtual method is automatically invoked at the end of elaboration phase

at the point where all modules and channels have been instantiated and
before simulation is started. By default this method does nothing, but users
can override the default implementation to perform user-defined actions at
the end of elaboration.

Protected Data Members

sc_sensitive sensitive;
Provides the object through which process sensitivities are specified, using
its << and () operators. The calls to these operators must occur before the
start of simulation, thus these operators are typically used in module
constructors. When event sensitivity is specified using this form, the process
that was most recently declared is made statically sensitive to the specified
events.

Protected Member Functions for Process Sensitivity

bool

timed out();
Returns true if the triggering of a process was based on the time out value
of a wait() or next_trigger() method else returns false.

voi d
next trigger();
Sets the calling process to be triggered based upon its static sensitivity list.

voi d
next trigger( type.);
type_in { const sc_event& sc_event_or _|ist &,

sc_event _and | i st T&, (double, sc_tinme_unit), const
sc_tine& }
Sets the calling_process to be triggered based upon t ype_ (dynamic
sensitivity).

T

voi d

265 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

next _trigger( double t_out_val , sc_tine_unit t_out_tu,
type_ );
type_in { const sc_event& sc_event_or _|Ii stJr
sc_event _and | i st T& }
Sets the calling_process to be triggered based upon either the time out
(t_out _val, t_out tu ) or type_.

&,

voi d
next trigger( const sc_tine&t_out, type_ );

type_in { const sc_event& sc_event_or_list &,

sc_event _and | i st T& }
Sets the calling_process to be triggered based upon either the time out
(t_out) or type .

voi d

wait() ;
Suspends the calling process. Calling process is triggered based upon its
static sensitivity list.

voi d
wait( type_);
type_in { const sc_event& sc_event_or_list &,
sc_event _and_|i st T&, (doubl e, sc_tine_unit), const
sc_tinme& }
Sets the calling_process to be triggered based upon type_ (dynamic
sensitivity).

1.

voi d
wait( double, sc tine_ unit, type_ );
type_in { const sc_event& sc_event_or _|ist
sc_event _and_|i st T& }
Sets the calling_process to be triggered based upon either the time out
sc_time(double, sc_tine_unit) or type_.

T&

voi d
wait( const sc tinme& type_ );
type_ in { const sc_event& sc_event_or _|ist
sc_event _and_|i st T& }
Sets the calling_process to be triggered based upon either the time out
sc_time(double, sc_tine_unit) or type_.

T&

266 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Public Operators
voi d
operator () ( )
const sc_bind _proxy & p001,
const sc_bind_pr oxyT& p002

SC BI ND_PROXY_NI L,

const sc_bind_pr oxyT& p063 SC BI ND_PROXY_NI L,

const sc_bind pr oxyT& p064 = SC BIND PROXY NIL ) ;
Positionally bind one or more ports or interfaces to the ports of the specified
module instance. No more than 64 ports or interfaces can be specified using
this form. If you need to bind more than 64 ports or interfaces, use named
port binding instead.

267 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.47 sc_module_name

Synopsis
cl ass sc_nodul e_nane

1
public:
sc_nodul e_nanme( const char* );
sc_nodul e_nane( const sc_nodul e_nane& );

~sc_nodul e_nane();

operator const char*() const;
private:
/] disabled
sc_nodul e_nane();
sc_nodul e_nane& operator = ( const sc_nodul e_nane& );

b

Description
The sc_nodul e_nane class serves two purposes. Firstly, instances of
sc_module_name are passed to module constructors to provide instance
names for all modules within the design hierarchy. Secondly,
sc_module_name instances help SystemC determine when classes derived
from sc_module have started and completed construction. SystemC needs to
know when sc_module classes have started and completed construction in
order to properly associate child objects such as ports with their containing
module instance.

Constructors for classes derived from sc_module should have one constructor
argument of this type. Furthermore, when such classes from sc_module are
instantiated, a normal C string should be passed to the derived class
constructor, which will then be converted to sc_module_name via an implicit
conversion. The execution of this implicit conversion informs SystemC that a
new module has started construction, and later the destruction of the same
sc_module_name object informs SystemC that the construction of a module
has completed.

It should be emphasized that while sc_module_name must be used within the
declaration of constructor arguments for classes derived from sc_module, users
should never explicitly instantiate any sc_module_name objects.

Example
class ny _nodule : public sc_nodul e {
public:
i nt sonme_paraneter;
SC HAS PROCESS( ny_nodul e) ;

nmy_nodul e (sc_nodul e_nanme name, int sone_val ue):
sc_nodul e( nane) ,

268 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

sonme_par anet er (sone_val ue)
/1l constructor body not shown

/1l rest of nodul e body not shown

¥

Public Constructors
sc_nodul e_nane( const char *nane );
Constructs an sc_module_name object from a C string.

sc_nodul e_nane( const sc_nodul e nane& orig_ );
Copy constructor.

Disabled Constructors
sc_nodul e_nane( );
The default constructor is disabled.

Public Operators
operator const char *() const;
Provides an implicit type conversion to a constant character string.

269 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.48 sc_mutex

Synopsis
cl ass sc_nut ex
public sc_nmutex if,
public sc_primchannel

1
public:
/1l constructors
sc_nutex();
explicit sc_nmutex( const char* nane_ );

/1l interface nethods
virtual int |ock();
virtual int trylock();
virtual int unlock();
static const char* const kind_string;
virtual const char* kind() const
pr ot ect ed:
/'l support methods
bool in_use() const
private:
/] disabled
sc_nutex( const sc_nutex& );
sc_nutex& operator = ( const sc_nutex& );

b

Description
An sc_nut ex channel (mutex) is used for a mutual-exclusion lock for access
to a shared resource. It implements the sc_nut ex i f interface.

A process may lock the mutex. Only the process that locked the mutex may
unlock it.

If multiple processes attempt to lock an unlocked mutex during the same delta-
cycle, only one will be successful. Since the order of execution of processes in
a delta-cycle is indeterminate it is indeterminate as to which process is
successful. The unsuccessful processes will be suspended as described in the
next paragraph.

If a process attempts to lock the mutex, when it is already locked, then the
process is suspended. When the mutex is unlocked then the suspended
process is triggered and continues the attempt to lock the mutex. The
unsuspended process is not guaranteed to be successful in locking the mutex if
there are other processes also attempting to lock the mutex.

Public Constructors
sc_nutex();

270 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Create an sc_nut ex instance.

explicit
sc_nutex( const char* name_ );
Create an sc_nut ex instance with the string name initialized to name_.

Public Member Functions
virtual const char*
ki nd() const ;
Returns string “sc_mutex”.

Virtual int
[ ock() ;
Returns 0. If the mutex is not locked then locks mutex else suspends the

calling process.

virtual int
tryl ock();
If the mutex is not locked then locks mutex and returns O, else returns -1.

virtual int

unl ock();
If mutex was locked by calling process then unlocks mutex, triggers any
processes suspended while attempting to lock the mutex and returns 0, else

returns -1.

Disabled Member Functions
sc_nutex( const sc_nutex& );

sc_nmut ex&
operator = ( const sc_mutex& );

271 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.49 sc_mutex_if

Synopsis
class sc_mutex_if
virtual public sc_interface

{
public:
virtual int lock() = O;
virtual int trylock() = O;
virtual int unlock() = 0;
pr ot ect ed:
/'l constructor
sc_nmutex_if();
private:
/] disabled
sc_nmutex_if( const sc_nutex if&);
sc_nutex if& operator = ( const sc_nutex if&);

b

Description
The sc_nut ex_i f class provides the signatures of the functions for the
sc_rut ex_if interface. See Chapter 8.1 for a description of interfaces.
Implemented by the sc_nut ex channel (Chapter 11.12)

Example
cl ass sc_nutex
public sc_nmutex if,
public sc_primchannel

{ .. .. T

Protected Constructor
sc_nutex_if();
Create asc_nutex_if instance.

Public Member Functions

virtual int
| ock() = 0;

virtual int
trylock() = 0;

virtual int
unl ock() = 0;

Disabled Member Functions
sc_nmutex_if( const sc_nmutex if&);

sc_nutex_ ifé&
operator = ( const sc_mnutex if&);

272 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.50 sc_object

Synopsis
cl ass sc_obj ect

_
public:
const char* nane() const;
const char* basenanme() const;
void print() const;
virtual void print( ostrean& 0s ) const;
voi d dunp() const;
virtual void dunp( ostream&% os ) const;
virtual void trace( sc_trace_file* ) const;
virtual const char* kind() const;
sc_sinctontext* sincontext() const ;
bool add attribute( sc_attr_base& );
sc_attr_base* get _attribute( const sc_string& );
const sc_attr_base* get _attribute( const sc_string& )
const ;
sc_attr_base* renove_attribute( const sc_string& );
void renove_al |l _attributes();
int numattributes() const;
sc_attr_cltn& attr_cltn();
const sc_attr_cltn& attr_cltn() const;
pr ot ect ed:
sc_object();
sc_obj ect (const char*);
virtual ~sc_object();

b

Description
sc_obj ect is the abstract base class for all channel, module, port and
process objects.

Protected Constructors and Destructor
sc_object();
Default constructor. Creates a sc_obj ect instance.

sc_obj ect (const char* nane_);
Creates a sc_obj ect instance with the string name initialized to nane_.

virtual ~sc_object();
Virtual destructor.

Public Member Functions
bool
add_attribute( sc_attr_baseT& )
Adds an attribute to a collection stored in the object. Returns true if the
attribute name is unique, false otherwise. If the name is not unique, the
attribute is not added to the collection.

273 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

sc_attr_cltn&
attr_cltn();

Returns a reference to the collection of attributes of this object.

const sc attr_cltn&
attr_cltn() const;

Returns a constant reference to the collection of attributes of this object.

const char*
basenane() const ;

Returns the string name of the instance without hierarchical path name.

voi d
print() const ;
Prints the string name.

virtual void
print(ostream& os) const ;
Prints the string name to output stream os.

voi d
dunp() const ;
Prints the string name and the kind.

virtual void
dunp(ostream& os) const ;
Prints the string name and the kind to an output stream os.

4
sc_attr_base *
get _attribute( const sc_string& ) ;
Returns a constant pointer to the named attribute of the object. If the
attribute with this name is not found, returns 0.

const sc_att r_baseT*

get _attribute( const sc_string& ) const ;
Returns a pointer to the named attribute of the object. If the attribute with
this name is not found, returns O.

virtual const char*
ki nd() const ;

Returns “sc_object”.

const char*
name() const ;
Returns the string name of the instance with hierarchical path name.

i nt
num attri butes() const;
Returns the number of attributes attached to this object.

274 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

+
sc_attr_base *
remove_attribute( const sc_string& ) ;
Removes the named attribute from this object. Returns a pointer to the
attribute. If the attribute with this name is not found, returns 0.

voi d
remove_all _attributes();
Removes all attributes from this object.

sc_si ntont ext *
si ncontext () const ;
Returns a pointer to the simulation context of the object.

virtual void

trace( sc_trace file* tf ) const ;
Does nothing.

275 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.51 sc_out

Synopsis
tenpl ate <class T>
cl ass sc_out
public sc_inout <T>

{
public:
[l typedefs
typedef T data_type;
t ypedef sc_out<data_ type>this type;
t ypedef sc_inout<data type> base_type;
t ypedef typenanme base_type::in_if_type in_if_type;
t ypedef typename base_type::in_port_type in_port_type;
t ypedef typename base_type::inout _if_type inout_if_type;
t ypedef typenane base type::inout port _type
i nout _port _type;
public:
/'l constructors & destructor
sc_out ();
explicit sc_out( const char* name_ );
explicit sc_out( inout_if_type& interface_ );

sc_out( const char* nane_, inout if _type& interface_);
explicit sc_out( inout_port_type& parent_ );
sc_out( const char* nanme_, inout_port_type& parent_ );

sc_out( this_type& parent_ );
sc_out( const char* name_, this_type& parent_ );
virtual ~sc_out();

_type& operator
_type& operator

this const data_type& value_);
this

this_type& operator

this

t hi

const in_if_type& interface_ );

_ const in_port_type& port_ );
_type& operator const inout_port_type& port_ );
S_type& operator const this_type& port_ );

static const char* const kind_string;

virtual const char* kind() const ;

I n
NSNS

private:
/'l disabl ed
sc_out ( const this_type& );
3
Description

sc_out is a specialized port for use with sc_signal channels ( Chapter 11.59 ).
Its behavior is that of a sc_port which has only one interface that is of type
sc_signal_inout_if<T>. It has the same functionality as an sc_i nout port.

In the description of sc_i n, current_value refers to the value of the
sc_si gnal instance connected to the port, new_value is the value to be
written and old_value is the previous value. Chapter 2.4.1 describes the
scheduler steps referred to in the description of sc_i nout .

276 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Public Constructors
sc_out () ;
Create a sc_out instance.

explicit
sc_out( const char* name_ ) ;
Create a sc_out instance with the string name initialized to nane_.

Public Member Functions
virtual const char*
ki nd() const ;
Returns “sc_out”.

Assignment Operator
operator const T& () const ;
Returns current_value.

Sc_i nout <T>&
operator = ( const Type_ & val) ;
Type_in {T, sc_signal _in_if<T> sc_port<
sc_signal _in_if<T> > sc_port< sc_signal _inout_if<T> >,
sc_out<T> }
If val is not equal to current_value of the left hand side, then an update is
scheduled with val as the new_value of the left hand side. Returns a
reference to the instance.

Disabled Member Functions
sc_out ( const sc_out<T>& );

277 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.52 sc_out_resolved

Synopsis
class sc_out resol ved

public sc_inout _resolved

public:

[l typedefs

t ypedef sc_out resol ved this_type;

t ypedef sc_inout _resol ved base type;

t ypedef base type::data_ type dat a_t ype;
typedef base_type::in_if_type in_if_type;

t ypedef base_type::in_port_type i n_port_type;

t ypedef base_type::inout_if_type i nout _if_type;
t ypedef base type::inout_port type inout_port_type;

public:

/'l constructors & destructor

sc_out _resol ved();

explicit sc_out_resolved( const char* nane_ );
explicit sc_out _resolved( inout if type& interface_);
sc_out _resol ved( const char* nane_, inout if _type&
interface_ );

explicit sc_out_resolved( inout_port_type& parent_ );
sc_out _resol ved( const char* nane_, inout_port type&
parent _ );

sc_out _resolved( this_type& parent_ )
sc_out resol ved( const char* nane_, t
parent _ );

virtual ~sc_out _resolved();

his_type&

Met hods
S_type& operator

/1

t hi const data_type& value_);
this_type& operator

t hi

th

const in_if_type& interface_ );
const in_port_type& port_ );

i s _type& operator const inout_port type& port_ );
this_type& operator const this_type& port_ );
static const char* const kind_string;
virtual const char* kind() const;

Is_type& operator

I n
NSNS

private:

b

/] disabled
sc_out _resol ved( const this type& );

Description
sc_out _resol ved is a specialized port for use with sc_si gnal _resol ved
channels ( Chapter 11.63 ). Its behavior is that of a sc_port which has only one
interface that is of type sc_si gnal _i nout _i f<sc_| ogi ¢c>. It has the same
functionality as an sc_i nout _r esol ved port.

Public Constructors
sc_out _resolved() ;

278

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Create asc_i nout _resol ved instance.

explicit

sc_out _resol ved( const char* );
Create asc_i nout _resol ved instance with the string name initialized to
nane_.

Public Member Functions
virtual const char*
ki nd() const ;

Returns “sc_out_resolved”.

Assignment Operator

sc_out _resol ved&

operator = ( const Type & val ) ;

Type_ in {sc_logic, sc_signal _inout_if<sc_logic> sc_port<

sc_signal _inout _if <sc_logic> > sc_out_resolved& }

If val is not equal to current_value of the left hand side, then an update is
scheduled with val as the new_value of the left hand side. Returns a
reference to the instance.

Disabled Member Functions
sc_out resolved (const sc_out _resolved& );

279 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.53 sc_out_rv

Synopsis
tenplate <int W
class sc_out _rv
public sc_inout_rv<wW

{

public:

[l typedefs
t ypedef sc_out rv<w this_type;
t ypedef sc_inout rv<W base type;
t ypedef typenane base type::data type dat a_type;
t ypedef typename base_type::in_if_type in_if_type;

t ypedef typename base_type::in_port_type in_port_type;

t ypedef typenane base type::inout_if_type inout_if_type;
t ypedef typename base_type::inout_port_type inout_port_type;

public:

/| constructors, destructor

sc_out _rv();

explicit sc_out_rv( const char* nane_ );

explicit sc_out _rv( inout_if_type& interface_ );

sc_out _rv( const char* nane_, inout_if_type&

interface_ );

explicit sc_out_rv( inout_port_type& parent_ );

sc_out _rv( const char* nane_, inout_port_type&

parent _ );

sc_out _rv( this_type& parent_ )

sc_out _rv( const char* nane_, t

virtual ~sc_out _rv();

his_type& parent _ );

met hods
S_type& operator

/1

t hi const data_type& value_);
this_type& operator

t hi

th

const in_if_type& interface_ );
const in_port_type& port_ );

i s _type& operator const inout_port type& port_ );
this_type& operator const this_type& port_ );
static const char* const kind_string;
virtual const char* kind() const;

private:
/'l disabl ed
sc_out _rv( const this type& );

Is_type& operator

I n
NSNS

b

Description
sc_out _rv is a specialized port for use with sc_si gnal _rv channels
( Chapter 11.63 ). Its behavior is that of a sc_port which has only one interface
that is of type sc_si gnal _i nout _i f <sc_| v<Wt >. It has the same
functionality as an sc_i nout _rv port.

In the description of sc_out _rv, portrefers to the sc_out rv instance.

280 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Example
SC_MODULE (nodul e_nane) {
[l ports

sc_in_rv<8> a ;

sc_out _rv<13> b ;
Sc_i nout _rv<44> c;

[/ rest of npdule

b

Public Constructors
sc_out _rv() ;
Create asc_out _rv instance.

explicit
sc_out _rv( const char* );
Create asc_out _rv instance with the string name initialized to nane_.

Public Member Functions
virtual const char*
ki nd() const ;
Returns “sc_out_rv”.

Public Operators

sc_out _rv<We&

operator = ( const Type & val ) ;

Type_ in {sc_|v<Ws, sc_signal _inout if<T> sc_port<

sc_signal _inout if<T> 1> sc_out rv<wW }

If val is not equal to current_value of the left hand side, then an update is
scheduled with val as the new_value of the left hand side. Returns a
reference to the instance.

Disabled Member Function
sc_out _rv( const sc_out_rv<W& );

281 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.54 sc_port

Synopsis
tenplate <class IF, int N= 1>
cl ass sc_port
public sc_port_b<lF>

/'l typdefs
t ypedef sc_port b<l F> base_type;
t ypedef sc_port<lF, N> this type;
public:
/| constructors, destructor
sc_port();
explicit sc_port( const char* nane_ );
explicit sc_port( IF& interface_ );
sc_port( const char* nane_, IF& interface_ );
explicit sc_port( base_type& parent_ );
sc_port( const char* nane_, base_type& parent_ );
sc_port( this_type& parent_ );
sc_port( const char* nane_, this_type& parent_ );
virtual ~sc_port();

static const char* const kind_string;
virtual const char* kind() const;
private:
/'l disabl ed
sc_port( const this type& );
this_type& operator = ( const this_type& );
3

Description
An sc_port instance is associated with an interface of type IF

In the description of sc_port, portrefers to the sc_port object, interface
refers to the sc_interface type | F.

N signifies the maximum number of interfaces that may be attached to the port.
If N = 0 then an arbitrary number of interfaces may be connected.

A port may not be bound after elaboration.

Example
SC_MODULE( ny_nodul e) {
sc_port<sc fifo in_if<int> > pl; //“read” fifo port
sc_port<sc_fifo_ out_if<int> > p2; // “wite” fifo port
sc_port<sc_fifo_in_if<int> 2> in_p;

/1 body of nodul e
};

282 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Public Constructors and Destructor
sc_port() ;
Default constructor.

explicit
sc_port( const char* nane_ );
Create asc_port instance with string name initialized to nane_.

virtual ~sc_port();
Does nothing.

Public Member Functions
voi d
bind( IF& interface_ ) ;
Binds i nt er f ace_ to the port. For port to channel binding.

voi d
bi nd( sc_port<I F>& parent_port) ;
Binds par ent _ to the port. For port to port binding.

virtual sc_interface*

get interface() ;
Returns a pointer to the first interface of the port. No error checking is
provided.

virtual const sc_interface*
get interface() const ;

Returns a constant pointer to the first interface of the port. No error
checking is provided.

virtual const char*
ki nd() const ;
Returns “sc_port”.

i nt
size() const ;
Returns the number of connected interfaces.

Protected Member Functions
virtual void
end_of _el aboration();
Does nothing.

Public Operators
voi d
operator () ( IF& interface_ ) ;
Bindsi nterface_tothe sc_port instance. For port to channel binding.

voi d

283 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

operator () (sc_port<lIF>& parent_ );
Binds par ent _ to the sc_port instance. For port to port binding.

| F*
operator -> ();
Returns a pointer to the first interface of the port. Reports an error if the
port is not bound. Allows for calling of methods provided by the interface.

const |F*

operator -> () const ;
Returns a pointer to the first interface of the port. Reports an error if the
port is not bound. Allows for calling of methods provided by the interface.

| F*
operator [] ( int index_ );
Returns a pointer to the interface of the port ati ndex_. Reports an error if
the port is not bound. Allows for calling of methods provided by the

interface at index.

const | F*

operator [] ( int index_ ) const;
Returns a pointer to the interface of the port ati ndex_. Reports an error if
the port is not bound. Allows for calling of methods provided by the

interface at index.

Disabled Member Functions
sc_port( const sc_port<lF, N>& );

sc_port<lF, N>&
operator = ( const sc_port<lF, N>& );

284 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.55 sc_prim_channel

Synopsis
cl ass sc_primchannel

public sc_object

public:

static const char* const kind_string;
virtual const char* kind() const ;

pr ot ect ed:

/'l constructors, destructor
sc_primchannel ();

explicit sc_primchannel ( const char* );
virtual ~sc_primchannel ();

voi d request update();
virtual void update();
virtual void end _of el aboration();

pr ot ect ed:

285

/]l static sensitivity for SC_THREADs
void wait();

//dynam c sensitivity for SC THREADs and SC _CTHREADs
void wait( const sc_event& e );

void wait( sc_event_or_list& el );

void wait( sc_event_and list& el );

void wait( const sc_ tine&t );

void wait( double v, sc_tlne_unit tu );

void wait( const sc_tine&.t, const sc_event& e );
void wait( double v, sc_ tinme_unit tu, const sc_eventé&

e );

void wait( const sc tinme&t, sc_event or list& el );
void wait( double v, sc tinme_unit tu, sc_event _or list&
el );

void wait( const sc tinme&t, sc _event _and list& el );
voi d malt( double v, sc_tine_unit tu

/]l static sensitivity for SC_METHODs
void next trigger();

/1l dynam c sensitivity for SC _METHODs

voi d next _trigger( const sc_event& e );

voi d next _trigger( sc_event_or_list& el );

void next _trigger( sc_event_and |list& el );

voi d next_trigger( const sc_ time&t );

voi d next _trigger( double v, sc_tlne_unit tu );

voi d next _trigger( const sc_tine&.t, const sc_event &
e );

voi d next _trigger( double v, sc_time_unit tu, const
sc_event& e );

voi d next _trigger( const sc_time& t, sc_event_or_listé&
el );

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

voi d next _trigger( double v, sc_time_unit tu,

sc_event _or list& el );

voi d next _trigger( const sc_ tinme& t, sc_event_and |ist&
el );

voi d next _trigger( double v, sc_time_unit tu,

sc_event _and list& el );

bool tinmed out();
private:
/'l disabl ed
sc_primchannel ( const sc_primchannel & );
sc_primchannel & operator = ( const sc_primchannel & );

3
Description

Ansc_prim channel isthe base class for primitive channels. Users inherit
from this class to create their own primitive channels.

In the description of sc_pri m channel , channel refers to the

sc_pri m channel instance, calling process refers to the process that calls
the method in the channel. Chapter 2.4.1 describes the scheduler steps
referred to in the description of sc_pri m channel .

The wai t () and next _trigger () methods provide for static and dynamic
sensitivity for processes. Refer to Chapters 9.3, 9.4.1 and 9.5.1.

It provides for support of the request-update method of access.

Example
tenpl ate <class T>
class sc_fifo
public sc fifo in_if<T>,
public sc _fifo out if<T>,
public sc_primchannel

publi c:
/'l constructors
explicit sc fifo( int size_ = 16 )
. sc_primchannel ( sc_gen_uni que_nane( "fifo" ) )
{ init( size_); }
}
Protected Constructors

sc_primchannel () ;
Create an sc_pri m channel instance.

286 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

explicit

sc_primchannel ( const char* name_);
Create asc_pri m channel instance with the string name initialized to
nanme

Public Member Functions
virtual const char*
ki nd() const ;
Returns “sc_prim_channel”.

Protected Member Functions
virtual void
end_of _el aboration() ;
Does nothing.

voi d

request update();
Requests that the update method be executed during the update of the
current delta-cycle.

virtual void
updat e() ;
Does nothing by default.

Protected Member Functions for Process Sensitivity
bool
timed out();
Returns true if the triggering of a process was based on the time out value
of a wait() or next_trigger() method else returns false.

voi d
next _trigger();
Sets the calling process to be triggered based upon its static sensitivity list.

voi d
next _trigger( type.);

type_in { const sc_event& sc_event _or |i stJr

&1

sc_event _and_|i st T&, (doubl e, sc_tine_unit), const
sc_tine& }
Sets the calling_process to be triggered based upon t ype_ (dynamic
sensitivity).
voi d
next _trigger( double t_out_val , sc_tine_unit t_out_tu,
type_);
type_in { const sc_event& sc_event_or _|i stT&,

sc_event _and | i st T& }

287 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Sets the calling_process to be triggered based upon either the time out
(t_out val, t _out tu ) or type_.

voi d
next trigger( const sc tine&t _out, type_ );
type_in { const sc_event& sc_event_or_|ist &,

sc_event _and | i st T& }
Sets the calling_process to be triggered based upon either the time out
(t_out) or type_.

voi d

wait() ;
Suspends the calling process. Calling process is triggered based upon its
static sensitivity list.

voi d
wait( type_);
type_in { const sc_event& sc_event_or |i stT&,

sc_event _and | i st T&, (doubl e, sc_tine_unit), const

sc_tinme& }
Sets the calling_process to be triggered based upon type_ (dynamic
sensitivity).
voi d

wai t ( double, sc_ tinme_unit, type_ );

type_in { const sc_event& sc_event_or |i stT&,
sc_event _and | i st T& }

voi d

wait( const sc tinme& type_ );

type_in { const sc_event& sc_event_or _|li stT&,

T

sc_event _and list &}

Disabled Member Functions
sc_primchannel ( const sc_primchannel & );

sc_pri m channel &
operator = ( const sc_primchannel & );

288 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.56 sc_pvector

Synopsis
tenplate< class T >
cl ass sc_pvector

public:
[l typedefs
typedef T* iterator;
t ypedef const T* const _iterator;

/'l constructors & destructor
sc_pvector( int alloc = 10 );
sc_pvector( const sc_pvector<T>&);
~sc_pvector();

/'l operators

Sc_pvect or<T>& operator = ( const sc_pvector<T>&);
T& operator [] ( int i );

const T& operator [] ( int i ) const;

/| other nethods

int size() const;

iterator begin();

const _iterator begin() const;
iterator end();

const _iterator end() const;
T& fetch( int i );

const T& fetch( int i ) const;
T* raw data();

const T* raw data() const;
voi d push_back( T item);
voi d erase_all ();

void sort( CFT conpar );

void put( Titem int i );
voi d decr_count ();

voi d decr_count( int k );

3
Description

sc_pvect or is a utility container class that acts like a smart array that
maintains size information and can grow dynamically. It provides random
access to its data through the C++ subscript operators.

Example
SC_pvector<sc_object *> top_objs =
sc_get _curr_sincontext()->get_child_objects();

for (int i =0; i < top_objs.size(); i++)
cout << top_objs[i]->nane() << endl;

289 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Type Definitions
typedef T* iterator;
t ypedef const T* const _iterator;

Public Constructors and Destructor
sc_pvector( int alloc = 10 );
Create a new vector. The constructor parameter controls how much
memory is pre-allocated. The default value is 10.

sc_pvector( const sc_pvector<T>&);
Copy constructor.

~sc_pvector();
Destructor.

Public Member Functions
iterator
begi n() ;
Returns an iterator pointing to the first element in the vector.

const iterator *
begi n() const;
Returns a const-iterator pointing to the first element in the vector.

voi d
decr _count () ;
Removes the last element from the vector, i.e. ,decreases the size by 1.

voi d
decr _count( int k) ;
Removes the last k elements from the vector, i.e. ,decreases the size by k.

iterator
end() ;
Returns an iterator pointing one beyond the last element in the vector.

const _iterator
end() const;
Returns a const-iterator pointing one beyond the last element in the vector.

voi d
erase_all () ;
Removes all elements from the vector, i.e., sets the size to 0.

T &

fetch( int i ) ;
Returns a reference to the object at location i. No range checking is
performed.

290 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

const T &

fetch( int i ) const ;
Returns a constant reference to the object at location i . No range
checking is performed.

voi d
push_back( T item) ;
Adds the item to the end of the vector, increasing its size by 1.

T &

put( T new.item int i ) ;
Replaces the item atindex i tonew_ it em No range checking is
performed.

T *
raw data() ;
Returns a pointer to the first item in the vector.

const T *
raw data() const ;
Returns a constant pointer to the first item in the vector.

i nt
size() const ;
Returns the number of items in the vector.

voi d
sort( CFT conpar ) ;
Sorts the elements in the vector according to the compare function conpar .

The compare function is declared as:
extern “C {
int conmpare_func( const void *, const void * );

This function returns -1 if the first argument is less than the second, 0 if they
are equal, and 1 if the first argument is greater than the second.

Public Operators
T &
operator []( int i) ;
Returns a reference to the item at location i in the vector. If i > size of
vector, then the vector is resized to accomodate i.

const T &
operator []( int i) const ;

Returns a constant reference to the item at location i in the vector. If i > size
of vector, then the vector is resized to accomodate i.

291 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

sc_pvect or <T>&
operator = ( const sc_pvector<T>& rhs ) ;

Assignment operator.

292 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.57 sc_semaphore

Synopsis
cl ass sc_semaphore
public sc_semaphore_if,
public sc_primchannel

Lo
public:
/'l constructors
explicit sc_semaphore( int init_value_)
[

sc_semaphore( const char* nane_, int init_value_ );

/'l met hods

virtual int wait();

virtual int trywait();

virtual int post();

virtual int get_value() const;

static const char* const kind_string;

virtual const char* kind() const;
private:

/] disabled

sc_semaphore( const sc_senmaphore& );

sc_semaphore& operator = ( const sc_senmaphore& );

b

Description
An sc_semaphor e channel (semaphore) is similar to an sc_nut ex channel
(see Chapter 11.47 ) except for it allows for limited concurrent access. It
implements the sc_semaphore_i f interface.

An sc_semaphor e instance is created with a mandatory integer value which
determines the initial number of concurrent accesses to the semaphore.

In the description of sc_semaphor e the number of available concurrent
accesses is referred to as the semaphore _value. The semaphore is
considered available if the semaphore_value is greater than 0. Chapter 2.4.1
describes the scheduler steps referred to in the description of sc_semaphor e.

When a process successfully locks (takes) the semaphore the
semaphore_value is decreased by 1. When a process unlocks (gives) the
semaphore the semaphore_value is increased by 1.

No checking is done to ensure that a process unlocking the semaphore is one
that locked it.

No checking is done to ensure that the current semaphore_value does not
exceed the initial semaphore_value.

293 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

If multiple processes attempt to lock a semaphore when the semaphore_value
is 1 during the same delta-cycle, only one process will be successful. Since the
order of execution of processes in a delta-cycle is indeterminate, it is
indeterminate as to which process is successful. The unsuccessful processes
will be suspended as described in the next paragraph.

If a process attempts to lock the semaphore, when the semaphore _value is
zero or less, then the process is suspended. When the semaphore is unlocked
then the suspended process is triggered and continues the attempt to lock the
semaphore. The unsuspended process is not guaranteed to be successful in
locking the semaphore if there are other processes also attempting to lock the
semaphore.

Example
SC MODULE( my_nodul e) {

sc_senaphore a, b;

SC CTOR(my_nodul e) :
a(5), [// init a semaphore _value to 5
b(3) /1l init b semaphore value to 3

/ rest of nodule not shown

{
}
/
b

Public Constructors
explicit
sc_senmaphore( int val ) ;
Create an sc_semaphor e instance with the semaphore_value initialized to
val .

explicit
sc_mutex( const char*);

sc_senmaphore( const char* nanme_, int val ) ;
Create an sc_semaphor e instance with the semaphore_value initialized to
val and the string name initialized to nane_.

Public Member Functions
virtual int
get val ue() const ;

Returns the semaphore_value of the semaphore.
virtual const char*
ki nd() const ;

Returns “sc_semaphore”.

virtual int

294 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

post () ;
Returns 0. Unlocks semaphore and increases by 1 the semaphore_value.

virtual int

trywai t () ;
If the semaphore is available then locks semaphore, decreases by 1 the
semaphore_value and returns 0, else returns -1.

virtual int

wait() ;
Returns 0. If the semaphore is available then locks semaphore decreasing
by 1 the number of concurrent accesses available else suspends the calling

process.

Disabled Member Functions
sc_semaphore( const sc_semaphore& ) ;

sc_senaphor e&
operator = ( const sc_semaphore& ) ;

295 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.58 sc_semaphore _if

Synopsis
cl ass sc_semaphore_if
virtual public sc_interface

{
public:
virtual int wait() = O;
virtual int trywait() = O;
virtual int post() = O;
virtual int get_value() const = O;
pr ot ect ed:
/'l constructor
sc_semaphore_if();
private:
/] disabled
sc_semaphore_if( const sc_semaphore if& );
sc_semaphore_if& operator = ( const sc_semaphore if& );

b

Description
The sc_semaphor e_i f class provides the signatures of the functions for the
sc_semaphore_i f interface. See Chapter 8.1 for a description of interfaces.
Implemented by the sc_senpahor e channel (Chapter 11.56 )

Example
cl ass sc_semaphore
public sc_semaphore_if,
public sc_primchannel{ . . . . };

Protected Constructor
sc_senaphore_if();
Create asc_semaphore_i f instance.

Public Member Functions
virtual int
get value() = 0;

virtual int
post() = O;

virtual int
trywait() = 0;

virtual int
wait ()

Disabled Member Functions
sc_senmaphore_if( const sc_semaphore ifé& );

296 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

sc_semaphore_if&
operator = ( const sc_semaphore if&);

297 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.59 sc_sensitive
Synopsis

class sc_sensitive

{

private:

/|l constructor, destructor

explicit sc_sensitive( sc_nodul e* );

~sc_sensitive();

public:

/'l specify static sensi

sc_sensitive& operator (

sc_sensitive& operator (

sc_sensitive& operator (
S

ivity for processes
( const sc_event& );
( const sc_interface& );
( const sc_port_base& );
sc_sensitive& operator ( sc_event_finder& );
sc_sensitive& operator (
sc_sensitive& operator << (
sc_sensitive& operator << (
sc_sensitive& operator << (
private:
/] disabled
sc_sensitive();
sc_sensitive( const sc_sensitive& );
sc_sensitive& operator = ( const sc_sensitive& );

/\ e o

const sc_event& );
const sc_interface& );
const sc_port _base& );
sc_event _finder& );

b

Description
sc_sensi ti ve provides overloaded operators << and (), used in specifying
static sensitivity for processes. These operators can only be called before
simulation starts, and produce an error message if called after simulation starts.

Public Operators
sc_sensitive&
operator << ( const sc_event& );
Adds an event to the list of events that will trigger the last declared process
when static sensitivity is used.

sc_sensitive&
operator << ( const sc_interface& );

Adds an event (that is returned by the default_event() method of the
channel) to the list of events that will trigger the last declared process when
static sensitivity is used.

sc_sensitive&

operator << ( const sc_port _baseT& )
Adds an event (that is returned by the default_event() method of the
channel bound to the port) to the list of events that will trigger the last
declared process when static sensitivity is used.

298 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

sc_sensitive&

operator << ( sc_event fi nder '& )
Adds an event (that is returned by the find_event() method of the event
finder) to the list of events that will trigger the last process that was
declared when static sensitivity is used.

sc_sensitive&

operator () ( const sc_event& );
Adds an event to the list of evenst that will trigger the last declared process
when static sensitivity is used.

sc_sensitive&
operator () ( const sc_interface& );

Adds an event (that is returned by the default_event() method of the
channel) to the list of events that will trigger the last declared process when
static sensitivity is used.

sc_sensitive&

operator () ( const sc_port _baseT& )
Adds an event (that is returned by the default_event() method of the
channel bound to the port) to the list of events that will trigger the last
declared process when static sensitivity is used.

sc_sensitive&

operator () ( sc_event fi nder '& )
Adds an event (that is returned by the find_event() method of the event
finder) to the list of events that will trigger the last process that was
declared when static sensitivity is used.

Disabled Member Functions
sc_sensitive( const sc_sensitive& );
sc_sensitive& operator = ( const sc_sensitive& );

299 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.60 sc_signal

Synopsis
tenpl ate <class T>
cl ass sc_signal
public sc_signal _i nout _if<T>,
public sc_primchannel

public:
/1 constructors, destructor
sc_signal ();
explicit sc_signal ( const char* nane_ );
virtual ~sc_signal ();

/'l met hods
virtual void register _port( sc_port base& const
char* );
virtual const sc_event& default _event() const;
virtual const sc_event & val ue_changed _event () const;
virtual const T& read() const;
virtual const T& get data ref() const;
virtual bool event() const;
virtual void wite( const T& );
operator const T& () const;
sc_signal <T>& operator = ( const T& a );
sc_signal <T>& operator = ( const sc_signal <T>& a );
const T& get new val ue() const;
void trace( sc_trace file* tf ) const;
virtual void print( ostrean& ) const;
virtual void dunp( ostream% ) const;
static const char* const kind_string;
virtual const char* kind() const;
pr ot ect ed:
virtual void update();
voi d check_witer();
private:
/] disabled
sc_signal ( const sc_signal <T>& );

b

Description
sc_si gnal is a primitive channel that implements the sc_si gnal _i nout _i f
interface.

In the description of sc_si gnal , current_value refers to the value of the
sc_si gnal instance, new_value is the value to be written and old_value is
the previous value. Chapter 2.4.1 describes the scheduler steps referred to in
the description of sc_si gnal .

Initialization

300 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

The initial current_value of an sc_si gnal instance is dependent upon type T
and is undefined. The current_value may be explicitly initialized in the sc_main
function or in the constructor of the module where it is created.

A sc_si gnal may be written by only one process, but may be read by
multiple processes.

sc_si gnal writes and reads follows evaluate-update semantics suitable for
describing hardware.

Write

The write method is executed during the evaluate phase of a delta-cycle. If the
new_value is different than the current_value, an update is requested. During
the update phase the current_value is assigned the new_value and an event
occurs.

The evaluate-update is accomplished using the r equest _updat e() and
updat e() methods. request _updat e() is called during the execution of
the write method (in the evaluate phase) indicating to the kernel that an update
is required. During the update phase the kernel calls the update method
provided by the sc_si gnal channel.

Multiple writes in same delta-cycle

If multiple writes by a process to the same sc_si gnal occur during a
particular evaluate phase of a delta-cycle, the last write executed determines
the new_value the sc_si gnal will receive in the update phase of the same
delta-cycle.

Read
A read is executed during the evaluate phase of a delta-cycle and returns the
current_value. It does not consume the data.

Simultaneous reads and writes

If during the evaluate phase of a delta-cycle a read and write occur to the same
sc_si gnal , the read will return the current_value. The new_value from the
write will not be available to read until the next delta-cycle as described above.

Example
/1 G VEN
sc_signal<int>m // channel of type int
/'l channel of type sc_uint<12>
sc_signal <sc_ui nt<12> > n;
sc_signal <bool > cl k; // channel of type bool

int i;
/ | THEN
mwite(i); //wite mwth value of i
n.wite(8); /[/wite n with value of 8

i f(clk.posedge() ) // was there a posedge?

301 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

I = mread(); /1 assign value of mto i
/1 wait for posedge of clk
wai t (cl k. posedge_event () ) ;

Public Constructors
sc_signal ();
Create asc_si gnal instance.

explicit
sc_signal ( const char* nane );
Create a sc_si gnal instance with the string name initialized to nane_.

Public Member Functions
virtual const sc_eventé&
default _event () const ;

Returns a reference to an event that occurs when new_value on a write is
different from current_value.

virtual void

dunp( ostrean®& ) const;
Prints the string name, current_value and new_value of the sc_si gnal
instance to an output stream.

virtual bool
event () const ;
Returns true if an event occurred in the previous delta-cycle.

virtual const T&
get _data ref() const ;
Returns a reference to current_value.

virtual const char*
ki nd() const ;

Returns “sc_signal’.

const T&
get _new val ue() const ;

Returns a reference to new_value.

virtual bool

negedge() const ;
Type bool and sc_| ogi ¢ only. Returns true if an event occurred in the
previous delta-cycle and current_value is false.

virtual const sc_eventé&
negedge event () const ;

Type bool and sc_| ogi ¢ only. Returns a reference to an event that
occurs when new_value on a write is false and the current_value is not false.

virtual bool

302 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

posedge () const ;
Type bool and sc_| ogi ¢ only. Returns true if an event occurred in the
previous delta-cycle and current_value is true.

virtual const sc_eventé&

posedge_event () const ;
Type bool and sc_| ogi ¢ only. Returns a reference to an event that
occurs when new_value on a write is true and the current_value is not true.

virtual const T&
read() const ;

Returns a reference to current_value.

virtual void

regi ster_port( sc_port_baseT&, const char* );
Checks to ensure at most only one out or inout port is connected to the
sc_si gnal instance.

virtual void
print( ostream% ) const;
Prints current_value to an output stream.

voi d ;
trace( sc_trace file* tf ) const ;
Adds a trace of current_value to the trace file t f .

virtual void
wite( const T& val);
If val is not equal to current_value then schedules an update with val as

new_value.

virtual const sc_eventé&
val ue_changed_event () const ;
Returns a reference to an event that occurs when new_value on a write is

different from current_value.

Public Operators
operator const T& () const ;
Returns current_value.

sc_si gnal <T>&

operator = ( const T& val );
If val is not equal to current_value of the left hand side, then an update is
scheduled with val as the new_value of the left hand side. Returns a
reference to the instance.

sc_si gnal <T>&

303 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

operator = ( const sc_signal <T>& val );
If the current_value of val is not equal to current_value of the left hand side,
then an update is scheduled with the current_value of val as the
new_value of the left hand side. Returns a reference to the instance.

Protected Member Functions
voi d
check _writer();
Checks to make sure only one process writes to the sc_si gnal instance.
Prints an error message if more than one process attempts to write the
sc_si gnal instance.

virtual void

updat e() ;
Assigns new_value to current_value and causes an event to occur. Called
by the kernel during the update phase in response to the execution of a
request_update method.

Disabled Member Function
sc_signal ( const sc_signal <T>& );

Specialized ports

The classes sc_in, sc_out and sc_i nout are specialized ports for use
with sc_si gnal channels.

304 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.61 sc_signal_in_if

Synopsis
tenpl ate <class T>
class sc_signal _in_if
virtual public sc_interface

{
public:
virtual const sc_event & val ue _changed event () const = O;
virtual const T& read() const = O;
virtual const T& get _data ref() const = 0O;
virtual bool event() const = O;
pr ot ect ed:
/'l constructor
sc_signal _in_if();
private:
/] disabled
sc_signal __in_if( const sc_signal _in_if<T>& );
sc_signal __in_if<T>& operator = ( const
sc_signal _in_ if<T>&);

b

Description
The sc_signal _i n_i f class provides the signatures of the functions for the
sc_signal _in_if interface. See Chapter 8.1 for a description of interfaces.

Example
SC_MODULE( ny_nodul e) {
sc_port< sc_signal _in_if<int> > pl; //*“read” signal port

tenpl ate <class T>
class sc_in
public sc_port<sc_signal _in_if<T> 1>

{. ...}

Protected Constructor
sc_signal _in_if();
Createasc_signal _in_if instance.

Public Member Functions
virtual bool
event () const = O;

virtual const T&
get _data ref() const = O;

virtual bool

negedge() const = O;
Type bool and sc_| ogi ¢ only.

305 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

virtual const sc_eventé&
negedge event () const = O;
Type bool and sc_| ogi ¢ only.

virtual const sc_eventé&
posedge_event () const = O;
Type bool and sc_I ogi c only.

virtual bool
posedge() const = O;
Type bool and sc_I ogi c only.

virtual const T&
read() const = O;

virtual const sc_eventé&
val ue_changed_event () const = O;

Disabled Member Functions
sc_signal _in_if( const sc_signal _in_if<T>& );

sc_signal _in_if<T>&
operator = ( const sc_signal _in_ if<T>& );

306 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.62 sc_signal_inout_if

Synopsis
tenpl ate <class T>
cl ass sc_signal _inout _if
public sc_signal _in_if<T>

{
public:
virtual void wite( const T& ) = O;
pr ot ect ed:
/'l constructor
sc_signal _inout _if();
private:
/] disabled
sc_signal _inout __if( const sc_signal _inout if<T>& );
sc_signal _inout if<T>& operator = ( const
sc_signal _inout if<T>& );

b

Description
The sc_si gnal _i nout _i f class provides the signatures of the functions for
the sc_si gnal _i nout _i f interface. See Chapter 8.1 for a description of
interfaces. Implemented by the sc_si gnal channel (Chapter 11.60)

Example
SC_MODULE( my_nodul e) {
sc_port<sc_signal inout if<int> > pl; //“rw signal port

tenpl ate <class T>
cl ass sc_i nout
public sc_port<sc_signal _inout if<T> 1>

S &

Protected Constructor
sc_signal _inout _if();
Create asc_signal _inout _if instance.

Public Member Functions
virtual void
wite( const T& ) = 0;

Disabled Member Functions
sc_signal _inout __if( const sc_signal _inout if<T>& );

sc_signal _inout if<T>&
operator = ( const sc_signal _inout if<T>& )

307 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.63 sc_signal_resolved
Inheritance
Synopsis
cl ass sc_signal resol ved
public sc_signal <sc_| ogi c>

publ i c:
/'l typedefs
t ypedef sc_signal _resolved this_type;
t ypedef sc_signal <sc_| ogi c> base_type;
t ypedef sc_logic dat a_type;
publ i c:
/'l constructors, destructor
sc_signal resolved();
explicit sc_signal _resol ved( const char* nanme_ );
virtual ~sc_signal _resolved();

/'l met hods
virtual void register_port( sc_port_base& const
char* );
virtual void wite( const data_type& );
this type& operator = ( const data type& a );
this type& operator = ( const this type& a );
static const char* const kind_string;
virtual const char* kind() const;
pr ot ect ed:
virtual void update();
private:
/'l disabl ed
sc_signal _resolved( const this type& );

¥

Description
sc_signal _resol ved is a primitive channel that implements the
sc_signal _inout _if interface. It behaves like asc_si gnal < sc_Il ogic
> channel except it may be written by multiple processes. Refer to Chapter
11.60 for the behavior of an sc_si gnal and Chapter 11.43 for the description
of the sc_1 ogi ¢ data type and its legal values.

In the description of sc_si gnal _resol ved, current_value refers to the
value of the sc_si gnal _resol ved instance, new_value is the value to be
written after resolution, and old_value is the previous value. For each process
that writes there is a separate pw_value, which is the value to be written by that
particular process. The multiple pw_values are resolved to generate
new_value. Chapter 2.4.1 describes the scheduler steps referred to.

Initialization

308 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

The initial current_value of an sc_si gnal _resol ved instance is Log_X.
The current_value may be explicitly initialized in the sc_main function or in the
constructor of the module where it is created.

The resultant value for writes by multiple processes during the same delta-cycle
is resolved per Table 29 - Resolution of multiple values.

Table 29 - Resolution of multiple values

Value 0 1 Z X
0 Log O Log X Log O Log X
1 Log X Log_1 Log_1 Log X
Z Log O Log 1 Log Z Log X
X Log X Log X Log X Log X
Example
/'l G VEN

sc_signal _resolved m // channel
sc_signal _resolved n; // channel
sc_logic i;

/1 THEN
mwite(n); //wite mwith value of n
m=n; // wite mwth value of n
i ='Z;
nwite(i); //wite n wth value of i
if(m posedge() ) /'l was there a posedge?
i = mread(); /1l assign value of mto i
/[l wait for posedge of n
wai t (n. posedge_event() ) ;

Public Constructors
sc_signal resolved() ; ;
Create asc_si gnal _resol ved instance.

explicit

sc_signal _resol ved( const char* nane_ ) ;
Create a sc_signal_resolved instance with the string name initialized to
nanme._.

Public Member Functions
virtual const char*
ki nd() const ;

Returns “sc_signal_resolved”

virtual void

regi ster_port( sc_port_baseT&, const char* )
Does nothing.

309 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

virtual void

wite( const sc_logic& val ) ;
If val is not equal to current_value then schedules an update with val as
pw_value for the writing process.

Public Operators
sc_signal resol ved&
operator = ( const sc_logic& val ) ;
If val is not equal to current_value of the left hand side, then an update is
scheduled with val as the pw_new_value. Returns a reference to the
instance.

sc_signal _resol ved& _
operator = ( const sc_signal _resolved& val ) ;

If the current_value of val is not equal to current_value of the left hand side,
then an update is scheduled with the current_value of val as the
pw_new_value of the left hand side. Returns a reference to the instance.

Protected Member Functions
virtual void
updat e() ;
Resolves pw_values per Table 29 - Resolution of multiple values to
new_value. Assigns new_value to current_value and causes an event to
occur. Called by the kernel during the update phase in response to the
execution of a request_update method.

Disabled Member Functions
sc_signal _resol ved( const sc_signal _resolved& );

310 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.64 sc_signal_rv

Synopsis
tenplate <int W
cl ass sc_signal _rv
public sc_signal <sc_| vsWt >

{
public:
[l typedefs
t ypedef sc_signal _rv<w this_type;
t ypedef sc_signal <sc_| v<W> > base_t ype;
t ypedef sc_| v<W dat a_type;
public:
/| constructors, destructor
sc_signal _rv();
explicit sc_signal _rv( const char* nane_ );
virtual ~sc_signal _rv();

/'l met hods

virtual void register _port( sc_port_ base& const
char* );

virtual void wite( const data type& );

this type& operator = ( const data_type& a );
this type& operator = ( const this type& a );
static const char* const kind_string;

virtual const char* kind() const;

pr ot ect ed:
virtual void update();
private:
/'l disabl ed
sc_signal _rv( const this_type& );
3
Description

sc_si gnal _rv is a primitive channel that implements the

sc_signal _inout _if interface. It behaves like an sc_si gnal <

sc_| v<Ws > channel except it may be written by multiple processes. Refer to
Chapter 11.60 for the behavior of an sc_si gnal and Chapter 11.43 for the
description of the sc_I ogi ¢ data type and its legal values.

In the description of sc_si gnal _rv, current_value refers to the value of the
sc_signal _rv instance, new_value is the value to be written after
resolution, and old_value is the previous value. For each process that writes
there is a separate pw_value, which is the value to be written by that particular
process. The multiple pw_values are resolved to generate new_value.
Chapter 2.4.1 describes the scheduler steps referred to.

Initialization

311 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

The initial current_value of an sc_si gnal _rv instanceisLog_X. The
current_value may be explicitly initialized in the sc_main function or in the
constructor of the module where it is created.

The resultant value of each bit of an sc_si gnal _rv for writes by multiple
processes during the same delta-cycle is resolved per Table 30 - Resolution of
multiple values.

Table 30 - Resolution of multiple values

Value 0 1 Z X
0 Log 0 Log X Log 0 Log X
1 Log X Log 1 Log_1 Log X
Y4 Log_O Log_1 Log Z Log X
X Log X Log X Log X Log X
Examples
/'l G VEN

sc_signal _rv<4> m p; // channels
sc_signal _rv<i> n; // channel

sc lv<i>i ="'0";

/'l THEN

i ="'Z;

nwite(i); //wite n with value of i
m:"OlXZ"'

p:m /[l wite p with value of m
p.wite(mread() ); // wite p with value of m

/1 wait for a change of value of m
wait(m default _event() );

Public Constructors
sc_signal _rv();
Create asc_signal rv instance.

explicit
sc_signal _rv( const char* nanme_ ) ;
Create asc_si gnal _rv instance with the string name initialized to nane_.

Public Member Functions
virtual const char*
ki nd() const ;

Returns “sc_signal_rv”.

virtual void

regi ster_port( sc_port_baseT&, const char* )
Does nothing.

virtual void

312 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

wite( const sc_lv<s W>& val ) ;
If val is not equal to current_value then schedules an update with val as

pw_value for the writing process.

Public Operators
sc_signal _rv<s W>&
operator = ( const sc_lv<s W>&) ;
If val is not equal to current_value of the left hand side, then an update is
scheduled with val as the pw_new_value. Returns a reference to the

instance.

sc_signal _rv<s W>&

operator = ( const sc_signal _rv<s W>& ) ;
If the current_value of val is not equal to current_value of the left hand side,
then an update is scheduled with the current_value of val as the
pw_new_value of the left hand side. Returns a reference to the instance.

Protected Member Functions
virtual void
updat e() ;
Resolves pw_values per Table 30 - Resolution of multiple values to
new_value. Assigns new_value to current_value and causes an event to
occur. Called by the kernel during the update phase in response to the

execution of a request_update method.

Disabled Member Function
sc_signal _rv( const sc_signal _rv<s W>& );

313 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.65

sc_signed

cl ass sc_si gned

1
publi c:

314

// constructors & dest

explicit sc_signed( int nb = sc_|length_param).

sc_signed( const sc_si

ructors

ghed&

sc_signed( const sc_unsigned& v );

~sc_signed()

/| assignment operator

sc_signed& operator = (const sc_signed&

sc_si gned& oper at or
tenpl ate <class T1, cl
sc_signed& operator =
sc_signed_concref _
sc_signed& operator =
sc_signed& operator =
tenpl ate <class T1, cl
sc_signed& operator =
sc_unsi gned_concr ef
sc_si gned& oper at or
sc_si gned& oper at or
sc_si gned& oper at or
sc_si gned& oper at or
sc_si gned& oper at or
sc_si gned& oper at or
sc_si gned& oper at or
sc_si gned& oper at or
sc_si gned& oper at or
sc_si gned& oper at or
sc_si gned& oper at or
sc_si gned& oper at or
sc_si gned& oper at or
sc_si gned& oper at or
sc_si gned& oper at or
sc_si gned& oper at or

11

AUNTNNNAN AN

S

ass T2>
( const

ass T2>
( const

r<tTl, T2>& a )

_r<T1,T2>& a )

(const char*

(int64
(ui nt 64
(1 ong

(unsi gned | ong

(int

(unsi gned int

(doubl e

const
const
const
const
const
const

| ncrenment operators.

sc_si gned& operator ++ ();

const sc_signed operator ++ (

/| Decrenent operators.

sc_signed& operator --
const sc_signed operat

// bit selection

sc_signed _bitref operator

sc_signed bitref
sc_signed bitref bit(
sc_signed bitref r bit

_Ir oper at or

nt);
0;
or -- (int);
[] int i)
[1 ( int |
int i)
( int I ) const

sc_fxnumfast& );

) const

Copyright 2003 Open SystemC Initiative. All rights reserved

len() );
Vo),
v);
= (const sc_signed subref r& a );
(const sc_unsi gned& V) ;
(const sc_unsigned_subref r& a );
v);
v);
v);
v);
v);
V)
V)
v);

(const sc_int_base& V) ;

(const sc_uint_base& V) ;
sc_bv_base& );
sc_|v_base& );
sc_fxval & );
sc_fxval _fast&);
sc_fxnum& );



SystemC 2.0.1 Language Reference Manual

/1l part selection

sc_signed_subref range( int i, int j )
sc_signed_subref r range( int i, int j ) const
sc_signed_subref operator () ( int i, int j )
sc_signed_subref r operator () ( int i, int j ) const

/1l explicit conversions

i nt to_int() const;
unsigned int to_uint() const;
| ong to | ong() const;

unsi gned | ong to_ul ong() const;

i nt 64 to_int64() const;
ui nt 64 to_uint64() const;
doubl e to_doubl e() const;

const sc_string to_string( sc_nunrep nunmrep = SC DEC )

const;

const sc_string to_string( sc_nunrep nunrep, bool
w_prefix ) const;
/'l met hods
void print( ostream& os = cout ) const
void scan( istrean& is = cin );
voi d dunp( ostrean& os = cout ) const;

int length() const { return nbits; }// Bit wdth.
bool iszero() const; /'l 1s the
nunber zero?
bool sign() const; /1 Sign.

voi d reverse();

/1 ADDition operators

friend sc_signed operator + (const sc_unsigned& u,

const sc_signed& v);

friend sc_signed operator + (const sc_signed&u, const

sc_unsi gned&v);

friend sc_signed operator + (const sc_unsigned& u,

i nt 64 V) ;

friend sc_signed operator + (const sc_unsigned& u,

[ ong v);

friend sc_signed operator + (const sc_unsigned& u,

i nt V)

friend sc_signed operator + (int64 u

const sc_unsigned& Vv);

friend sc_signed operator + (long u,

const sc_unsigned& Vv);

friend sc_signed operator + (int u,

const sc_unsigned& V)

friend sc_signed operator + (const sc_signed&u, const

sc_si gned&v) ;

friend sc_signed operator + (const sc_signed&u, int64
v);

friend sc_signed operator + (const sc_signed&u, uint64
v);

315

Copyright 2003 Open SystemC Initiative. All rights reserved



friend sc_signed operator + (const sc_signed&u, |ong
v);

friend sc_signed operator + (const sc_signedé&u,

unsi gned | ong V) ;

friend sc_signed operator + (const sc_signed&u, int

V)

friend sc_signed operator + (const sc_signed&u,

unsi gned int v)

friend sc_signed operator + (int64 wu, const sc_signed&
v);

friend sc_signed operator + (uint64 u, const sc_signed&
v);

friend sc_signed operator + (long u, const sc_signed&
v);

friend sc_signed operator + (unsigned |ong u, const

sc_si gned&v) ;

friend sc_signed operator + (int u, const sc_signed&
v)

friend sc_signed operator + (unsigned int u, const

sc_si gned&v)

sc_si gned& operator += (const sc_signed&v);

sc_si gned& operator += (const sc_unsigned& Vv);

sc_si gned& operator += (int64 V) ;

sc_si gned& operator += (uint64 V) ;

sc_signed& operator += (long V);

sc_si gned& operator += (unsigned |ong V) ;

sc_si gned& operator += (int V)

sc_si gned& operator += (unsigned int V)

friend sc_signed operator + (const sc_unsigned& u,

const sc_int_base& V);

friend sc_signed operator + (const sc_int_base& u,

const sc_unsigned& Vv);

friend sc_signed operator + (const sc_signed&u, const

sc_int_base&v);

friend sc_signed operator + (const sc_signed&u, const

sc_ui nt _base& v);

friend sc_signed operator + (const sc_int_base& u,

const sc_signed& v);

friend sc_signed operator + (const sc_uint_base& u,

const sc_signed& Vv);

sc_si gned& operator += (const sc_int_base&

SystemC 2.0.1 Language Reference Manual

v);

sc_si gned& operator += (const sc_uint_base& v);

/1l SUBtraction operators:
friend sc_signed operator
const sc_signed& Vv);
friend sc_signed operator
sc_unsi gned&v);

friend sc_signed operator
const sc_unsigned& Vv);
friend sc_signed operator
i nt 64 V) ;
friend sc_signed operator
ui nt 64 V) ;

(const
(const
(const
(const

(const

sc_unsi gned& u,
sc_si gned&u,
sc_unsi gned& u,
sc_unsi gned& u,

sc_unsi gned& u,

Copyright 2003 Open SystemC Initiative. All rights reserved

const



SystemC 2.0.1 Language Reference Manual

317

friend sc_signed operator - (const sc_unsigned& u,

[ ong v);

friend sc_signed operator - (const sc_unsigned& u,

unsi gned | ong V) ;

friend sc_signed operator - (const sc_unsigned& u,

int v)

friend sc_signed operator - (const sc_unsigned& u,

unsi gned i nt V)

friend sc_signed operator - (int64 u, const

sc_unsi gned&v);

friend sc_signed operator - (uint64 u, const

sc_unsi gned&v);

friend sc_signed operator - (long u, const

sc_unsi gned&v);

friend sc_signed operator - (unsigned |ong u, const

sc_unsi gned&v);

friend sc_signed operator - (int u, const

sc_unsi gned&v)

friend sc_signed operator - (unsigned int u, const

sc_unsi gned& v)

friend sc_signed operator - (const sc_signed&u, const

sc_si gned&v) ;

friend sc_signed operator - (const sc_signed&u, int64
v);

friend sc_signed operator - (const sc_signed&u, uint64

v);

friend sc_signed operator - (const sc_signed&u, |ong
v);

friend sc_signed operator - (const sc_signed&u,

unsi gned | ong V) ;

friend sc_signed operator - (const sc_signed&u, int

V)

friend sc_signed operator - (const sc_signedé&u,

unsi gned int v)

friend sc_signed operator - (int64 u, const sc_signed&
v);

friend sc_signed operator - (uint64 u, const sc_signed&
v);

friend sc_signed operator - (long u, const sc_signed&
v);

friend sc_signed operator - (unsigned |ong u, const

sc_si gned&v) ;

friend sc_signed operator - (int u, const sc_signed&
v)

friend sc_signed operator - (unsigned int u, const

sc_si gned&v)

sc_si gned& operator -= (const sc_signed&v);

sc_signed& operator -= (const sc_unsigned& V);

sc_signed& operator -= (int64 V) ;

sc_si gned& operator -= (uint64 V) ;

sc_signed& operator -= (long V);

sc_signed& operator -= (unsigned |ong V) ;

sc_signed& operator -= (int V)

sc_si gned& operator -= (unsigned int V)

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

friend sc_signed operator
const sc_int_base& V);
friend sc_signed operator - (const sc_unsigned& u,
const sc_uint_base& v);

friend sc_signed operator - (const sc_int_base& u,
const sc_unsigned& Vv);

friend sc_signed operator - (const sc_uint_base& u,
const sc_unsigned& Vv);

friend sc_signed operator - (const sc_signed&u, const
sc_int_base&v);

friend sc_signed operator - (const sc_signed&u, const
sc_ui nt _base& v);

friend sc_signed operator - (const sc_int_base& u,
const sc_signed& Vv);

friend sc_signed operator - (const sc_uint_base& u,
const sc_signed& v);

sc_signed& operator -= (const sc_int_base& V);
sc_si gned& operator -= (const sc_uint_base& v);

(const sc_unsigned& u,

/1 MJLtiplication operators:

friend sc_signed operator * (const sc_unsigned& u,
const sc_signed& v);

friend sc_signed operator * (const sc_signed&u, const
sc_unsi gned&v);

friend sc_signed operator * (const sc_unsigned& u,

i nt 64 V) ;

friend sc_signed operator * (const sc_unsigned& u,
[ ong v);

friend sc_signed operator * (const sc_unsigned& u,
i nt V)

friend sc_signed operator * (int64 u, const

sc_unsi gned&v);

friend sc_signed operator * (long u, const

sc_unsi gned&v);

friend sc_signed operator * (int u, const

sc_unsi gned&v)

friend sc_signed operator * (const sc_signed&u, const
sc_si gned&v) ;

friend sc_signed operator * (const sc_signed&u, int64

v);
friend sc_signed operator * (const sc_signed&u, uint64
v);
friend sc_signed operator * (const sc_signed&u, |ong
V) ;

friend sc;signed operator * (const sc_signed&u,
unsigned long v);
friend sc_signed operator * (const sc_signed&u, int
V)
friend sc_signed operator * (const sc_signedé&u,
unsi gned i nt V)
friend sc_signed operator * (int64 wu, const sc_signed&
v);
friend sc_signed operator * (uint64 u, const
sc_si gned&v) ;

318 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

friend sc_signed operator * (long u, const sc_signed&
v);

friend sc_signed operator * (unsigned |ong u, const

sc_si gned&v) ;

friend sc_signed operator * (int u, const sc_signed&
v)

friend sc_signed operator * (unsigned int u, const

sc_si gned&v)

sc_si gned& operator *= (const sc_signed&v);

sc_si gned& operator *= (const sc_unsigned& Vv);

sc_signed& operator *= (int64 V) ;

sc_si gned& operator *= (uint64 V) ;

sc_si gned& operator *= (long V);

sc_signed& operator *= (unsigned |ong V) ;

sc_signed& operator *= (int V)

sc_si gned& operator *= (unsigned int V)

friend sc_signed operator * (const sc_unsigned& u,
const sc_int_base& V);
friend sc_signed operator *
const sc_unsigned& Vv);

(const sc_int_base& u,

friend sc_signed operator * (const sc_signed&u, const
sc_int_base&v);
friend sc_signed operator * (const sc_signed&u, const

sc_ui nt _base& v);

friend sc_signed operator *
const sc_signed& Vv);

friend sc_signed operator *
const sc_signed& Vv);
sc_signed& operator *= (const sc_int_base& V);
sc_si gned& operator *= (const sc_uint_base& v);

(const sc_int_base& u,

(const sc_uint_base& u,

/1 DI Vision operators:
friend sc_signed operator /
const sc_signed& Vv);
friend sc_signed operator /
sc_unsi gned&v);

(const sc_unsigned& u,

(const sc_signed&u, const

319

friend sc_signed operator / (const sc_unsigned& u,

i nt 64 V) ;

friend sc_signed operator / (const sc_unsigned& u,

[ ong v);

friend sc_signed operator / (const sc_unsigned& u,

i nt V)

friend sc_signed operator / (int64 u, const

sc_unsi gned&v);

friend sc_signed operator / (long wu, const

sc_unsi gned&v);

friend sc_signed operator / (int u, const

sc_unsi gned&v)

friend sc_signed operator / (const sc_signed&u, const

sc_si gned&v) ;

friend sc_signed operator / (const sc_signed&u, int64

v);

friend sc_signed operator / (const sc_signed&u, uint64

v);

Copyright 2003 Open SystemC Initiative. All rights reserved



friend sc_signed operator / (const sc_signed&u, |ong
v);

friend sc_signed operator / (const sc_signedé&u,

unsi gned | ong V) ;

friend sc_signed operator / (const sc_signed&u, int

V)

friend sc_signed operator / (const sc_signed&u,

unsi gned int v)

friend sc_signed operator / (int64 wu, const sc_signed&
v);

friend sc_signed operator / (uint64 u, const sc_signed&
v);

friend sc_signed operator / (long u, const sc_signed&
v);

friend sc_signed operator / (unsigned |ong u,

const sc_signed& Vv);

friend sc_signed operator / (int u, const

sc_si gned&v)

friend sc_signed operator / (unsigned int u, const

sc_si gned&v)

sc_si gned& operator /= (const sc_signed&v);

sc_signed& operator /= (const sc unS|gned& V) ;

sc_signed& operator /= (int64 V) ;

sc_si gned& operator /= (uint64 V) ;

sc_signed& operator /= (long Vv);

sc_si gned& operator /= (unS|gned | ong V) ;

sc_signed& operator /= (in V)

sc_si gned& operator /= (unS|gned i nt V)

friend sc_signed operator / (const sc_unsigned& u,

const sc_int_base& V);

friend sc_signed operator / (const sc_int_base& u,

const sc_unsigned& Vv);

friend sc_signed operator / (const sc_signed&u, const

sc_int_base&v);

friend sc_signed operator / (const sc_signed&u, const

sc_ui nt _base& v);

friend sc_signed operator / (const sc_int_base& u,

const sc_signed& v);

friend sc_signed operator / (const sc_uint_base& u,

const sc_signed& v);

sc_signed& operator /= (const sc_int_base& V);

sc_si gned& operator /= (const sc_uint_base& v);

/1 MODul o operators:

friend sc_signed operator % (const sc_unsigned& u,

const sc_signed& Vv);

friend sc_signed operator % (const sc_si gned&u, const

sc_unsi gned&v);

friend sc_signed operator % (const sc_unsigned& u,

i nt 64 V) ;

friend sc_signed operator % (const sc_unsigned& u,

[ ong v);

friend sc_signed operator % (const sc_unsigned& u,

i nt V)

SystemC 2.0.1 Language Reference Manual

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

321

friend sc_signed
sc_unsi gned&v);
friend sc_signed
sc_unsi gned&v);
friend sc_signed
sc_unsi gned&v)
friend sc_signed
sc_si gned&v) ;
friend sc_signed
v);
friend sc_signed
v);
friend sc_signed
v);
friend sc_signed
unsi gned | ong
friend sc_signed
V)
friend sc_signed
unsi gned int v)
friend sc_signed
sc_si gned&v) ;
friend sc_signed
const sc_signed&
friend sc_signed
const sc_signed&
friend sc_signed
const sc_signed&
friend sc_signed
const sc_signed&
friend sc_signed
const sc_signed&

oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or

oper at or
V),
oper at or

oper at or
oper at or

oper at or
v);

oper at or
v);

oper at or
v);

oper at or
V)

oper at or
V)

% (i nt64 u,
% (1 ong u,

% (1 nt u,

% (const
% (const
% (const
% (const
% (const
% (const
% (const
% (i nt64 u,
% (ui nt 64

% (1 ong

% (unsi gned | ong
% (1 nt

% (unsi gned int

const

const

const

sc_si gned&u,
sc_si gned&u,
sc_si gned&u,
sc_si gned&u,
sc_si gned&u,
sc_si gned&u,

sc_si gned&u,

const

const
i nt 64
ui nt 64

| ong

i nt

sc_si gned&
sc_si gned&
sc_si gned&
sc_si gned&
sc_si gned&
sc_si gned&
sc_si gned&
sc_si gned&

friend sc_signed operator
const sc_int_base& V);
friend sc_signed operator
const sc_unsigned& Vv);
friend sc_signed operator

oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or

sc_int_base&v);

friend sc_signed operator

sc_ui nt _base& v);

friend sc_signed operator
const sc_signed& Vv);
friend sc_signed operator
const sc_signed& Vv);
sc_signed& operator % (const sc_int_base&

V=
V=
V=
V=
V=
V=
V=
V=

(const sc_signed&v);
(const sc_unsi gned&
(int64

(ui nt 64

(long Vv);

(unsi gned | ong

(int

(unsi gned int V)
% (const sc_unsigned& u,

% (const sc_int_base& u,
% (const sc_signed&u, const
% (const sc_signed&u, const

% (const sc_int_base& u,

% (const sc_ui nt_base& u,

v);

sc_si gned& operator % (const sc_uint_base& v);

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

/1l Bitw se AND operators:
friend sc_signed operator
const sc_signed& Vv);
friend sc_signed operator
sc_unsi gned&v);

friend sc_signed operator
i nt 64 V) ;
friend sc_signed operator
[ ong v);

friend sc_signed operator
i nt V)

friend sc_signed operator
const sc_unsigned& Vv);
friend sc_signed operator
const sc_unsigned& Vv);
friend sc_signed operator

const sc_unsigned& V)

friend sc_signed
sc_si gned&v) ;
friend sc_signed
v);
friend sc_signed
v);
friend sc_signed
v);
friend sc_signed
unsi gned | ong
friend sc_signed
V)
friend sc_signed
unsi gned int v)
friend sc_signed
sc_si gned&v) ;
friend sc_signed
sc_si gned&v) ;
friend sc_signed
const sc_signed&
friend sc_signed
sc_si gned&v) ;
friend sc_signed
const sc_signed&
friend sc_signed
const sc_signed&

operator
operator
operator
operator
operator
V),

operator
operator
operator
operator
operator
V),
operator
operator
V)

oper at or
v)

& (const
& (const
& (const
& (const
& (const
& (i nt64
& (long
& (int

& (const
& (const
& (const
& (const
& (const
& (const
& (const
& (i nt64d
& (uint64
& (long
& (unsigned | ong
& (int

& (unsigned int

sc_si gned&u,

sc_si gned&u,

sc_si gned&u,

sc_unsi gned&

sc_unsi gned&
sc_unsi gned&

sc_unsi gned&

sc_si gned&u,

sc_si gned&u,
sc_si gned&u,
sc_si gned&u,

sc_si gned&u,

u,

u,

const

const

nt 64

ui nt 64

ong

nt

const

u, const

u,

&=
&=
&=
&=
&=
&=

sc_si gned& oper at or
sc_si gned& oper at or
sc_si gned& oper at or
sc_si gned& oper at or
sc_si gned& oper at or
sc_si gned& oper at or
sc_si gned& operator &= (int V)
sc_si gned& operator &= (unsigned int V)

friend sc_signed operator & (const sc_unsigned& u,
const sc_int_base& V);

(const sc_signed&v);
(const sc_unsi gned&
(i nt64

(ui nt 64

(long v);

(unsi gned | ong

322 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

friend sc_signed operator & (const sc_int_base& u,

const sc_unsigned& Vv);

friend sc_signed operator & (const sc_signed&u, const

sc_int_base&v);

friend sc_signed operator & (const sc_signed&u, const

sc_ui nt _base& v);

friend sc_signed operator & (const sc_int_base& u,

const sc_signed& v);

friend sc_signed operator & (const sc_uint_base& u,

const sc_signed& v);

sc_signed& operator &= (const sc_int_base& Vv);

sc_si gned& operator &= (const sc_uint_base& v);

/1l Bitw se OR operators:

friend sc_signed operator | (const sc_unsigned& u,

const sc_signed& Vv);

friend sc_signed operator | (const sc_signed&u, const

sc_unsi gned&v);

friend sc_signed operator | (const sc_unsigned& u,

i nt 64 V) ;

friend sc_signed operator | (const sc_unsigned& u,

[ ong v);

friend sc_signed operator | (const sc_unsigned& u,

i nt V)

friend sc_signed operator | (int64 u

const sc_unsigned& Vv);

friend sc_signed operator | (long u,

const sc_unsigned& Vv);

friend sc_signed operator | (int u,

const sc_unsigned& V)

friend sc_signed operator | (const sc_signed&u, const

sc_si gned&v) ;

friend sc_signed operator | (const sc_signed&u, int64
v);

friend sc_signed operator | (const sc_signed&u, uint64
v);

friend sc_signed operator | (const sc_signed&u, |ong

v);

friend sc_signed operator | (const sc_signedé&u,

unsi gned | ong V) ;

friend sc_signed operator | (const sc_signed&u, int
V)

friend sc_signed operator | (const sc_signed&u,

unsi gned int v)

friend sc_signed operator | (int64 u, const

sc_si gned&v) ;

friend sc_signed operator | (uint64 u, const

sc_si gned&v) ;

friend sc_signed operator | (long u,

const sc_signed& v);

friend sc_signed operator | (unsigned |ong u, const

sc_si gned&v) ;

friend sc_signed operator | (int u,

const sc_signed& v)

Copyright 2003 Open SystemC Initiative. All rights reserved



friend sc_signed operator
const sc_signed& v)

SystemC 2.0.1 Language Reference Manual

(unsi gned int u,

sc_si gned& operator | = (const sc_signed&v);

sc_si gned& operator |= (const sc_unsigned& Vv);
sc_signed& operator |= (int64 V) ;
sc_si gned& operator |= (uint64 V) ;
sc_signed& operator |= (long Vv);

sc_signed& operator | = (unsigned |ong V) ;
sc_signed& operator |= (int V)
sc_signed& operator | = (unsigned int V)

friend sc_signed operator
const sc_int_base& V);
friend sc_signed operator
const sc_unsigned& Vv);
friend sc_signed operator
sc_int_base&v);
friend sc_signed operator
sc_ui nt _base& v);
friend sc_signed operator
const sc_signed& Vv);
friend sc_signed operator
const sc_signed& Vv);
sc_signed& operator |= (
sc_signed& operator |= (
/1l Bitw se XOR operators:
friend sc_signed operator
const sc_signed& Vv);
friend sc_signed operator
sc_unsi gned&v);
friend sc_signed operator
i nt 64 V) ;
friend sc_signed operator
[ ong v);
friend sc_signed operator
i nt V)
friend sc_signed operator
const sc_unsigned& Vv);
friend sc_signed operator
const sc_unsigned& Vv);
friend sc_signed operator
const sc_unsigned& V)
friend sc_signed operator
sc_si gned&v) ;
friend sc_signed
v);
friend sc_signed
v);
friend sc_signed
v);
friend sc_signed
unsi gned | ong
friend sc_signed
V)

oper at or
oper at or
oper at or
oper at or

V),
operator

N
N
N

N

(const
(const
(const
(const
(const

(const

const sc_int_base&
const sc_uint_base& v);

(const
(const
(const
(const
(const
(int64
(1 ong
(int

(const
(const
(const
(const
(const

(const

sc_si gned&u,

sc_si gned&u,

sc_si gned&u,

sc_unsi gned& u,

sc_int_base& u,

const

const

sc_int_base& u,

sc_ui nt _base& u,

v);

sc_unsi gned& u,

const

sc_unsi gned& u,
sc_unsi gned& u,

sc_unsi gned& u,

u,
u,

u,
sc_si gned&u, const
sc_si gned&u, int64
sc_si gned&u, uint 64
sc_si gned&u, |ong
sc_si gned&u,
sc_si gned&u, int

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

friend sc_signed operator N (const sc_signedé&u,

unsi gned int v)

friend sc_signed operator ™ (int64 u, const
sc_si gned&v) ;

friend sc_signed operator ™ (uint64 u, const
sc_si gned&v) ;

friend sc_signed operator ™ (long u,
const sc_signed& v);

friend sc_signed operator  (unsigned |ong u, const
sc_si gned&v) ;

friend sc_signed operator ™ (int u,
const sc_signed& v)

friend sc_signed operator  (unsigned int u,
const sc_signed& v)

sc_si gned& operator ~= (const sc_signed&v);

sc_si gned& operator ~= (const sc unS|gned& V) ;
sc_si gned& operator "= (int64 V) ;
sc_si gned& operator ~= (uint64 V) ;
sc_signed& operator *= (long V);

sc_signed& operator ~= (unsigned |ong V) ;
sc_si gned& operator ~= (int V)
sc_signed& operator ~= (unsigned int V)

friend sc_signed operator N (const sc_unsigned& u,
const sc_int_base& V);

friend sc_signed operator ~ (const sc_int_base& u,
const sc_unsigned& Vv);

friend sc_signed operator N (const sc_signed&u, const
sc_int_base&v);

friend sc_signed operator N (const sc_signed&u, const
sc_ui nt _base& v);

friend sc_signed operator ~ (const sc_int_base& u,
const sc_signed& v);

friend sc_signed operator ~ (const sc_uint_base& u,

const sc_signed& Vv);
sc_si gned& operator ~= (const sc_int_base&

v);

sc_si gned& operator ~= (const sc_uint_base& v);

/1 LEFT SHI FT operators:
friend sc_unsigned operator << (const sc_unsigned&u,

const sc_signed& Vv);
sc_si gned operator

fri

end

const sc_unsigned& Vv);

fri

end

sc_si gned operator
const sc_signed& Vv);

friend sc_signed operator
i nt 64 V) ;

friend sc_signed operator
ui nt 64 V) ;

friend sc_signed operator
[ ong v);

friend sc_signed operator
unsi gned | ong V) ;
friend sc_signed operator
i nt V)

325

<< (const sc_signed& u,
<< (const sc_signed& u,
<< (const sc_signed& u,
<< (const sc_signed& u,
<< (const sc_signed& u,
<< (const sc_signed& u,
<< (const sc_signed& u,

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

326

friend

unsi gned int v)

sc_si gned&
sc_si gned&
sc_si gned&
sc_si gned&
sc_si gned&
sc_si gned&
sc_si gned&
sc_si gned&
sc_signed operator << (const sc_signed&

friend

oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or

sc_signed operator << (const sc_signed&

<<= (const sc_signed& V),
<<= (const sc_unsigned& V);

<<= (int64 V)
<<= (uint64

<<= (long v);

<<= (unsigned | ong V)
<<= (int V)
<<= (unsigned int V)

const sc_int_base& V);

friend

sc_signed operator << (const sc_signed&

const sc_uint_base& v);
sc_signed& operator <<= (const sc_int_base& V);
sc_signed& operator <<= (const sc_uint_base& v);

/1 R GHT SHI FT operators:
friend sc_unsigned operator >> (const sc_unsi gned&u,

const sc_signed& Vv);
sc_si gned operator

friend

>> (const sc_signed&

const sc_unsigned& Vv);

friend sc_signed operator >> (const sc_signed&
const sc_signed& Vv);

friend sc_signed operator >> (const sc_signed&
i nt 64 V) ;

friend sc_signed operator >> (const sc_signed&
ui nt 64 V) ;

friend sc_signed operator >> (const sc_signed&
[ ong v);

friend sc_signed operator >> (const sc_signed&
unsi gned | ong V) ;

friend sc_signed operator >> (const sc_signed&
i nt V)

friend sc_signed operator >> (const sc_signed&
unsi gned int v)

sc_signed& operator >>= (const sc_signed& V) ;
sc_signed& operator >>= (const sc_unsigned& Vv);
sc_si gned& operator >>= (int64 V)
sc_si gned& operator >>= (uint64

sc_signed& operator >>= (long v);

sc_si gned& operator >>= (unsigned |ong V) ;
sc_si gned& operator >>= (int V)
sc_si gned& operator >>= (unsigned int V)

friend sc_signed operator >> (const sc_signed&
const sc_int_base& V);

friend sc_signed operator >> (const sc_signed&
const sc_uint_base& v);

sc_signed& operator >>= (const sc_int_base& V);
sc_signed& operator >>= (const sc_uint_base& v);

/1l Unary arithnmetic operators
friend sc_signed operator + (const sc_signed& u);

friend sc_signed operator -

(const sc_signed& u)

Copyright 2003 Open SystemC Initiative. All rights reserved

u,

u,

c



SystemC 2.0.1 Language Reference Manual

327

friend sc_signed operator -

/'l Logi cal
friend bool operator
sc_si gned&v) ;

friend bool operator
sc_unsi gned&v);

friend bool operator

sc_si gned&v) ;

friend bool operator
V) ;

friend bool operator
V) ;

friend bool operator

V) ;

friend bool operator

unsi gned | ong V) ;

friend bool operator
V)

friend bool operator

unsi gned int v)

friend bool operator

sc_si gned&v) ;

friend bool operator

const sc_signed& Vv);

friend bool operator
sc_si gned&v) ;
friend bool operator
sc_si gned&v) ;
friend bool operator
sc_si gned&v)
friend bool operator
sc_si gned&v)
friend bool operator

sc_int_base&v);
friend bool operator
sc_ui nt _base& v);

friend bool operator
sc_si gned&v) ;
friend bool operator

sc_si gned&v) ;

/'l Logi cal

friend bool operator
sc_si gned&v) ;

friend bool operator

sc_unsi gned&v);

friend bool operator

sc_si gned&v) ;

friend bool operator
V) ;

friend bool operator
V) ;

EQUAL operators:

(const sc_unsi gned&

(const sc_signed&
(const sc_signed&
(const sc_signed&
(const sc_signed&
(const sc_signed&
(const sc_signed&
(const sc_signed&
(const sc_signed&
(i nt64

(uint64

(1 ong

(unsi gned | ong
(int

(unsi gned int
(const sc_signed&
(const sc_signed&
(const sc_int_base&

(const sc_uint_base&

NOT_EQUAL operators:

(const sc_unsi gned&

(const sc_signed&
(const sc_signed&
(const sc_signed&

(const sc_signed&

c

c

c

c

Copyright 2003 Open SystemC Initiative. All rights reserved

(const sc_unsigned& u);

const
const
const
i nt 64
ui nt 64

| ong

i nt

const

const
const
const
const
const
const
const

const

const
const
const
i nt 64
ui nt 64



SystemC 2.0.1 Language Reference Manual

friend bool operator != (const sc_signed& u, long

v);
friend bool operator != (const sc_signed& u,
unsi gned | ong V) ;
friend bool operator != (const sc_signed& u, int

v)

friend bool operator != (const sc_signed& u,
unsi gned int v)
friend bool operator != (int64 u, const
sc_si gned&v) ;
friend bool operator != (uint64 u,
const sc_signed& v);
friend bool operator !'= (long u, const
sc_si gned&v) ;
friend bool operator != (unsigned |ong u, const
sc_si gned&v) ;
friend bool operator != (int u, const
sc_si gned&v)
friend bool operator != (unsigned int u, const
sc_si gned&v)
friend bool operator != (const sc_signed& u, const
sc_int_base&v);
friend bool operator != (const sc_signed& u, const
sc_ui nt _base& v);
friend bool operator != (const sc_int_base& u, const
sc_si gned&v) ;
friend bool operator != (const sc_uint_base& u, const

sc_si gned&v) ;

/'l Logical LESS THAN operators:
friend bool operator < (const sc_unsigned& u, const
sc_si gned&v) ;
friend bool operator < (const sc_signed&u, const
sc_unsi gned&v);
friend bool operator < (const sc_signed&u, const
sc_si gned&v) ;
friend bool operator < (const sc_signed&u, int64

v);
friend bool operator < (const sc_signed&u, uint64

v);
friend bool operator < (const sc_signed&u, |ong V) ;
friend bool operator < (const sc_signed&u, unsigned

| ong V) ;
friend bool operator < (const sc_signed&u, int
V)
friend bool operator < (const sc_signed&u, unsigned int
v)
friend bool operator < (int64 u, const
sc_si gned&v) ;
friend bool operator < (uint64 u, const
sc_si gned&v) ;
friend bool operator < (long u, const

sc_si gned&v) ;

328 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

329

friend bool operator < (unsigned |ong u, const
sc_si gned&v) ;
friend bool operator < (int u, const
sc_si gned&v)
friend bool operator < (unsigned int u, const
sc_si gned&v)
friend bool operator < (const sc_signed&u, const
sc_int_base&v);
friend bool operator < (const sc_signed&u, const
sc_ui nt _base& v);
friend bool operator < (const sc_int_base& u, const
sc_si gned&v) ;
friend bool operator < (const sc_uint_base& u, const
sc_si gned&v) ;
/'l Logical LESS THAN AND EQUAL operators:
friend bool operator <= (const sc_unsigned& u, const
sc_si gned&v) ;
friend bool operator <= (const sc_signed& u, const
sc_unsi gned&v) ;
friend bool operator <= (const sc_signhed& u, const
sc_si gned&v) ;
friend bool operator <= (const sc_signed& u, inteé4
v);
friend bool operator <= (const sc_signed& u, uinto64
v);
friend bool operator <= (const sc_signhed& u, long
v);
friend bool operator <= (const sc_signed& u,
unsi gned | ong V) ;
friend bool operator <= (const sc_signed& u, int
v)
friend bool operator <= (const sc_signed& u,
unsi gned int v)
friend bool operator <= (int64 u, const
sc_si gned&v) ;
friend bool operator <= (uint64 u,
const sc_signed& v);
friend bool operator <= (long u, const
sc_si gned&v) ;
friend bool operator <= (unsigned |ong u, const
sc_si gned&v) ;
friend bool operator <= (int u, const
sc_si gned&v)
friend bool operator <= (unsigned int u, const
sc_si gned&v)
friend bool operator <= (const sc_signed& u, const
sc_int_base&v);
friend bool operator <= (const sc_signed& u, const
sc_ui nt _base& v);
friend bool operator <= (const sc_int_base& u, const
sc_si gned&v) ;
friend bool operator <= (const sc_uint_base& u, const

sc_si gned&v) ;

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

330

/'l Logi cal

friend bool operator
sc_si gned&v) ;

friend bool operator
sc_unsi gned&v);
friend bool operator
sc_si gned&v) ;

friend bool operator

V) ;
friend bool operator
V) ;
friend bool operator
friend bool operator
| ong V) ;
friend bool operator
V)
friend bool operator
v)
friend bool operator
sc_si gned&v) ;
friend bool operator
sc_si gned&v) ;
friend bool operator
sc_si gned&v) ;
friend bool operator
sc_si gned&v) ;
friend bool operator
sc_si gned&v)
friend bool operator
sc_si gned&v)
friend bool operator

sc_int_base&v);
friend bool operator
sc_ui nt _base& v);

friend bool operator
sc_si gned&v) ;
friend bool operator

sc_si gned&v) ;
/'l Logi cal

sc_si gned&v) ;
friend bool
sc_unsi gned&v);

friend bool operator

sc_si gned&v) ;

friend bool operator
V) ;

friend bool operator
V) ;

> (const sc_unsi gned&

>

>

(const
(const
(const
(const

(const
(const

(const

(const

(int64
(uint64

(1 ong

GREATER_THAN oper at or s:

sc_si gned&u,
sc_si gned&u,
sc_si gned&u,
sc_si gned&u,

sc_si gned&u,
sc_si gned&u,

sc_si gned&u,

sc_si gned&u,

(unsi gned | ong

(int

(unsi gned int

(const

(const

(const sc_int_base&

(const sc_uint_base& u,

sc_si gned&u,

sc_si gned&u,

operator >= (const sc_signed&

>= (const sc_signed&

>= (const sc_signed&

>= (const sc_signed&

u, const
const
const
i nt 64
ui nt 64

| ong V) ;
unsi gned

i nt
unsi gned i nt
u, const
u, const
u, const
u, const
u, const
u, const
const
const
u, const

const

GREATER_THAN_AND EQUAL oper at or s:
friend bool operator >= (const sc_unsi gned& u,

const
u, const
u, const
u, int64
u, uint64

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

friend bool operator >= (const sc_signhed& u, long

v);
friend bool operator >= (const sc_signhed& u,
unsi gned | ong V) ;
friend bool operator >= (const sc_signed& u, int

v)

friend bool operator >= (const sc_signed& u,
unsi gned int v)
friend bool operator >= (int64 u, const
sc_si gned&v) ;
friend bool operator >= (uint64 u,
const sc_signed& v);
friend bool operator >= (long u, const
sc_si gned&v) ;
friend bool operator >= (unsigned |ong u, const
sc_si gned&v) ;
friend bool operator >= (int u, const
sc_si gned&v)
friend bool operator >= (unsigned int u, const
sc_si gned&v)
friend bool operator >= (const sc_signed& u, const
sc_int_base&v);
friend bool operator >= (const sc_signed& u, const

sc_ui nt _base& v);

friend bool operator >= (const sc_int_base& u, const
sc_si gned&v) ;

friend bool operator >= (const sc_uint_base& u, const
sc_si gned&v) ;

/'l Bitw se NOT operator (unary).
friend sc_signed operator ~ (const sc_signed& u);

¥

Description
sc_si gned is an integer with an arbitrary word length W. The word length is
specified at construction time and can never change..

Public Constructors
explicit
sc_signed( int nb );
Create an sc_si gned instance with an initial value of 0 and word length nb.

sc_signed( const sc_signed& a );
Create an sc_si gned instance with an initial value of a and word length of a.

Copy Constructor
sc_signed( const sc_signhed& );

Methods
bool

331 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

i szero() const;
Return true if the value of the sc_signed instance is zero.

i nt
| engt h() const ;
Return the word length.

voi d
print( ostream& os = cout ) const ;
Print the sc_ui nt _base instance to an output stream.

voi d
reverse();
Reverse the contents of the sc_signed instance. |.e. LSB becomes MSB and

vice versa.

bool
sign() const;
Return false.

void _ _
scan( istream& is =cin ) ;
Read a sc_ui nt _base value from an input stream.

Assignment Operators
sc_signed& operator = ( T ) ; )
Tin { sc_[un]signed, sc_[un]signhed subref ,
sc_[un] signed _concref , char*, [u]int64, [unsigned]
| ong, [unsigned] int, double, sc [u]int_base,
sc_bv_base, sc_|v_base, sc _fxval, sc_fxval fast,
sc_fxnum sc_fxnumfast }}

Assign the value of the right-hand side to the left-hand side. The value is
truncated, if its word length is greater than W. If not, the value is sign

extended.

Increment and Decrement Operators
sc_signed& operator ++ () ;
const sc_signed operator ++ ( int ) ;
The operation is performed as done for type signed int . The result is sign

extended if needed.

sc_signed& operator -- () ;
const sc_signed operator -- ( int ) ;
The operation is performed as done for type signed int . The result is sign

extended if needed.

Bit Selection
sc_signed_bitref operator [] ( int );
sc_signed bitref _r operator [] ( int ) const;

332 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

sc_signed bitref bit( int
sc_signed bitref r bit( int ) const;

N—r

Return a reference to a single bit.

Part Selection
sc_signed_subref range( int high, int low);
sc_signed_subref _r range( int high, int low) const;
sc_signed_subref operator () ( int high, int low);
sc_signed_subref _r operator () ( int high, int low ) const;
Return a reference to a range of bits. The MSB is set to the bit at position
high, the LSB is set to the bit at position low.

Arithmetic Assignment Operators

friend sc_signed operator
friend sc_signed operator

OP ( sc_unsigned , sc_signed );
oP
friend sc_signed operator OP
oP
oP
nt

(

( sc_signed , sc_unsigned );
( sc_signed , sc_signed );

( sc_signed , T);

( T, sc_signed);

t 64, [unsigned] | ong,

friend sc_signed operator
friend sc_signed operator
Tin { sc_[u]int_base, [u]i
[unsi gned] int }
oPin{ +-*] %&| N ==l=<<=>>=}

friend sc_signed operator OP ( sc_unsigned , T );
friend sc_signed operator OP ( T, sc_unsigned );
Tin{ sc_int_base, int64, long, int }

OPin{ +-*1 &| " ==1=<<=>>=}

The operation OP is performed and the result is returned.

sc_signed& operator OP (T);

Tin { sc_[un]signhed, sc [u]int_base, [u]int64, [unsigned]
Iong, Tunsigned] int

OPin{ += -=*= /=% & |= "=}

The operation OP is performed and the result is assigned to the left-hand side.

Shift Operators
friend sc_unsigned
operator OP ( sc_unsigned a , sc_signed b );
friend sc_signed
operator OP ( sc_signed a , sc_unsigned b );
friend sc_signed operator OP ( sc_signed a, T b );
Tin { sc_[u]int_base, [u]int64, [unsigned] |ong,
[ unsigned] int }
OPin{ << >}
Shift a to the left/right by b bits and return the result.

sc_signed& operator OP ( T);

333 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Tin { sc_[un]signed, sc_[u]int_base, [u]int64, [unsigned]

| ong, [unsigned] int }

OPin { <<= >>=}
Shift the sc_signed instance to the left/right by i bits and assign the result to
the sc_signed instance.

Bitwise not
friend sc_signed operator ~ ( sc_signed a );
Return the bitwise not of a;

Explicit Conversion
sc_string to_string( sc_nunrep = SC DEC ) const
sc_string to_string( sc_nunrep, bool ) const

Convert the sc_signed instance into its string representation.

double to_double() const ;

i nt to_int() const ;

i nt 64 to_int64() const ;

| ong to long() const ;

uint64 to_uint64() const ;

unsi gned i nt to_uint() const ;

unsi gned | ong to_ulong() const ;

334

Converts the value of sc_signed instance into the corresponding data type.
If the requested type has less word length than the sc_signed instance, the
value gets truncated accordingly. If the requested type has greater word
length than the sc_signed instance, the value gets sign extended, if
necessary.

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.66 sc_simcontext

Synopsis
cl ass sc_si ntont ext

{

public:
/] constructors & destructor
sc_sincontext();
~sc_sincontext () ;

/1 other nethods

bool is running() const;

int simstatus() const;

bool update phase() const;

uint 64 delta_count() const;

sc_object* first_object();

sc_obj ect* next_object();

sc_object* find object( const char* nane );

const sc_pvector<sc_object*>& get_chil d_objects()
const ;

sc_curr_proc_handl e get _curr_proc_info();

private:
/'l disabl ed
sc_sinctontext( const sc_sintontext& );
sc_sinctontext& operator = ( const sc_sinctontext& );

b

Description
sc_simcontext is a class that is used by the simulation kernel to keep track of
the current state of simulation. It can provide information to modelers such as
the current delta-cycle count, and provides access to any structural element in
the design.

Public Constructors and Destructor
sc_sincontext();
Default constructor.

~sc_sintontext();
Destructor.

Public Member Functions
ui nt 64
delta_count ();
Returns the absolute delta-cycle count.

Sc_object*
find_object( const char *pathnanme );

335 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Returns a pointer to an object in the design hierarchy, such as a module,
port, or channel. The pathname argument is the design hierarchy path to
the object.

sSc_object*

first_object();
Returns a pointer to the first object in a collection of all known design
objects, such as modules, ports, and signals. Returns 0 if there are no
objects in the collection.

sc_curr_proc_handl e
get _curr_proc_info();
Returns a handle to a current process info object.

const sc_pvector<sc_object *> &

get _child_objects();
Returns a collection of top-level design objects that are instantiated in
sSC_main.

bool
i s_running();
Returns true while the simulation is running, false otherwise.

sc_object *

next _object();
Returns a pointer to the next object in the collection of all known design
objects. Used after calling first_object() to iterate through the collection.
Returns 0 if there is no next object in the collection.

i nt

simstatus();
Returns the current status of the simulation. Return value is one of
SC_SIM_OK The simulation state is normal
SC_SIM_ERROR The simulation encountered an error
SC_SIM_USER_STOP The simulation was stopped by sc_stop()

bool
updat e_phase();

Returns true if the simulation is in the update phase, false otherwise.

Disabled Member Functions
sc_sintontext( const sc_sinctontext& );
Copy constructor.

sc_sintontext& operator = ( const sc_sintontext& );
Default assignment operator.

336 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.67 sc_string

Synopsis
class sc_string

1

public:
/1l constructor & destructor
explicit sc_string( int size = 16 );
sc_string( const char* s );
sc_string( const char* s, int n);
sc_string( const sc_string& s );
~sc_string();

/| concatenation and assi gnnment

sc_string& operator ( const char* s );
sc_string& operator ( const sc_string& s );
sc_string& operator += ( const char* s );
sc_string& operator += ( char c );

sc_string& operator += ( const sc_string& s );
sc_string operator + ( const char* s ) const;
sc_string operator + ( char ¢ ) const;

sc_string operator + ( const sc_string& s ) const;
friend sc_string operator + ( const char* s, const
sc_string&t );

sc_string substr( int first, int last ) const;

[l string conparison operators

bool operator == ( const char* s ) const;
bool operator != const char* s ) const;
bool operator < const char* s ) const;
bool operator <= const char* s ) const;
bool operator > const char* s ) const;
bool operator >= const char* s ) const;

bool operator == const sc_string& s ) const;

ANTNNNANANAN NN NN

bool operator != const sc_string& s const;
bool operator < const sc_string& s ) const;
bool operator <= const sc_string& s ) const;
bool operator > const sc_string& s ) const;
bool operator >= const sc_string& s ) const;

int length() const;

const char* c_str() const;

operator const char*() const;

char operator[](int index) const;

char & operator[] (int index);

static sc_string to_string(const char* format, ...);
tenpl ate<class T> sc_string& fnt(const T& t);
sc_string& fnt(const sc_string& s);

i nt pos(const sc_string& sub_string)const;
sc_string& renove(unsi gned i ndex, unsigned |ength);
sc_string& insert(const sc_string& sub_string, unsigned
i ndex) ;

337 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

bool is_delimter(const sc_string& str, unsigned index)
const;

bool contains(char c) const;

sc_string uppercase() const;

sc_string | owercase() const;

static sc_string make_str(long n);

void set( int index, char c );

int cmp( const char* s ) const;

int cnp( const sc_string& s ) const;

void print( ostream& os = cout ) const;

3
Description

Public Constructors
explicit
sc_string( int size = 16 );
Creates an empty string of the given size. Declared explicit to avoid implicit
type conversions (int->sc_string).

sc_string( const char* s );
Constructs a string with the same contents (copy) as the argument s.

sc_string( const char* s, int n);
Get first n chars from the string s.

sc_string( const sc_string& s );
Copy constructor.

Public Member Functions
const char*
c_str() const;
Conversion to C-style string.

bool
cont ai ns(char )const;
Returns t r ue if string contains the character.

sc_string&
insert(const sc_string& sub_string, unsigned index);
insert subst ri ng before i ndex. The value of i ndex should be <=

| engt h().

bool
is delimter(const sc_string& str, unsigned index)const;

Returns true if the character at byte i ndex in this string matches any
character in the delimiters string. The value of i ndex should be <
| engt h() .

i nt

| engt h() const;

338 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Returns length of the string (excluding trailing \0).

sc_string
| ower case() const ;
Conversion to lowercase.

i nt
pos(const sc_string& sub_string)const;

Find position of subst ri ng in this string. Returns -1 if not found. If
subst ri ng is empty then this function always returns 0.

voi d
print( ostream& os = cout ) const;
Print the sc_st ri ng object to output stream os.

sc_string&

remove(unsi gned i ndex, unsigned |ength);
Remove | engt h characters from string starting ati ndex.  The value of
i ndex should be <1 ength().

sc_string
substr( int first, int last ) const;
Returns substring [first, |l ast]. Returns empty string if:

(@)first < 0 orfirst >= length()
(b)last < Oorlast >= length()
(c)first > | ast.

static sc_string
to_string(const char* format, ...)
String formatting (see pri nt f description).

sc_string
upper case() const ;
Conversion to uppercase.

Public Operators
char
operator[] (int index) const;
Returns character at position i ndex.

char &
operator[] (int index);

Returns character at position i ndex.

/| concatenation and assi gnnment operators
sc_string& operator ( const char* s );
sc_string& operator ( const sc_string& s );

sc_string& operator += ( const char* s );
sc_string& operator += ( char c );
sc_string& operator += ( const sc_string& s );

339 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

sc_string operator + ( const char* s ) const;
sc_string operator + ( char ¢ ) const;
sc_string operator + ( const sc_string& s ) const;

friend sc_string operator + ( const char* s, const
sc_string&t );

[l string conparison operators

bool operator == const char* s ) const;
bool operator != const char* s ) const;
bool operator < const char* s ) const;
bool operator <= const char* s ) const;
bool operator > const char* s ) const;
bool operator >= const char* s ) const;

AONTNNAN NN AN AN NN NN

bool operator == const sc_string& s ) const;
bool operator != const sc_string& s ) const;
bool operator < const sc_string& s ) const;
bool operator <= const sc_string& s ) const;
bool operator > const sc_string& s ) const;
bool operator >= const sc_string& s ) const;

340 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.68

Synopsis

sc_time

class sc_tinme

_
public:
/1 constructors and default assignnment operator
sc_tinme();
sc_tinme( double, sc tinme_unit );
sc_time( const sc_tinme& );

b

sc_tinme& operator = ( const sc_tinme& );

/'l conversion functions

ui nt 64 val ue() const;

doubl e to_doubl e() const;

double to_default_time_units() const;
doubl e to_seconds() const;

const sc_string to_string() const;

/] relationa

bool
bool
bool
bool
bool
bool

/] arithnetic

oper at or
oper at or
oper at or
oper at or
oper at or
oper at or

operators

== ( const sc_tine& ) const;
= ( const sc_tine& ) const;
< ( const sc_tine& ) const;
<= ( const sc_tine& ) const;
> ( const sc_tine& ) const;
>= ( const sc_tine& ) const;
operators

sc_tinme& operator += ( const sc_tine& );
sc_tinme& operator -= ( const sc_tine& );

friend const sc_time operator + ( const sc_tine&,
sc_tinme&);
friend const sc_tine operator - ( const sc_tine&,
sc_tinme&);
sc_tinme& operator *= ( double );

sc_tinme& operator /= ( double );

friend const sc_time operator * ( const sc_tine&,
doubl e );
friend const sc_tinme operator * ( double, const
sc_time&);
friend const sc_tine operator / ( const sc_tine&,
doubl e );

friend doubl e

sc_time&);

/'l other
void print( ostrean& ) const;

ostream& operator << ( ostrean®, const sc_tine&);

Description

341

const

const

operator / ( const sc_tine& const

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

The sc_t i ne type is used to represent time values or time intervals, internally
stored in an unsigned integer of at least 64 bits. Instances are typically created
with a numeric value and a time unit sc_ti me_uni t (Chapter 13.1.1). If no
value is given at the creation of the instance the default value is

SC ZERO TI ME.

Example
sc_time t( 123, SC M ); // t =123 mlliseconds

Public Constructors and Default Assignment Operator
sc_time();
Default constructor. Creates an instance with an initial value of
SC _ZERO TI ME.

sc_tinme( double val, sc_tinme_unit tu);
Creates an instance with an initial value of val timest u time units.

sc_time( const sc_tinme& );
Copy constructor.

sc_tinme&
operator = ( const sc_tinme& );
Default assignment operator.

Conversion Functions
ui nt 64
val ue() const;
Converts to type ui nt 64 relative to the time resolution

doubl e
to_doubl e() const;
Converts to type doubl e relative to the time resolution

doubl e
to default time_units() const;
Converts to type doubl e in the default time unit.

doubl e
to_seconds() const;

Converts to type doubl e in the seconds (SC_SEC) unit.
const sc_string

to_string() const;
The value is converted to a character string.

Arithmetic Assignment Operators

sc_tinme&
operator OP ( const sc_tinme& ) ;
oPin{ += -=}

342 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

sc_tinme&
operator OP ( double );
oPin{ *=/=1}

Relational Operators

bool
operator op ( const sc_tine& ) const;
03|n{ ::!:<<:>>:}

Arithmetic Operators
friend const sc_tine
operator OP ( const sc_tine& const sc_ tinme&);
oPin{ +-}

friend const sc_ tinme
operator * ( const sc_tinme& double );
oPin{ */}

friend const sc tinme
operator * ( double, const sc_tinme&);

friend doubl e
operator / ( const sc_tinme& const sc tine&);

Public Member Functions
voi d
print( ostream& ) const;
Prints the sc_t i ne value to an output stream.

Global Functions
ost rean&
operator << ( ostream& o0s, const sc_ tinme& a )

Prints the value of a to output stream os.

343 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.69 sc_ufix
Inheritance
Synopsis
class sc_ufix : public sc_fxnum

1.
publ i c:

/'l constructors

explicit sc_ufix( sc_fxnumobserver* = 0 );

sc_ufix( int, int, sc_fxnumobserver* =0 );

sc_ufix( sc_g_node, sc_o_node,
sc fxnun1observer* =0);

sc_ufix( sc_g_node, sc_o nDde int,
sc_fxnum observer* = 0 );

sc_ufix( int, int, sc_q_nnde, sc_o_node,
sc_fxnum observer* = 0 );

sc_ufix( int, int, sc_g_node, sc_o_node, int,
sc_fxnum observer* = 0 );

explicit sc_ufix( const sc_fxcast_sw tch&,
sc_fxnum observer* = 0 );

sc_ufix( int, int, const sc_fxcast_swtchg&,
sc_fxnum observer* = 0 );

sc_ufix( sc_q_node, sc_o_node,
const sc_fxcast _sw tch&,
sc_fxnum observer* = 0 );

sc_ufix( sc_q_node, sc_o_node, int,
const sc_fxcast _sw tch&,
sc_fxnum observer* = 0 );

sc_ufix( int, int, sc_g_node, sc_o_node,
const sc_fxcast _sw tchg&,
sc_fxnum observer* = 0 );

sc_ufix( int, int, sc_g_node, sc_o_node, int,
const sc_fxcast_smﬂtch&,
sc_fxnum observer* = 0 );

explicit sc_ufix( const sc_f xtype_parans&,
sc_fxnum observer* = 0 );

sc_ufix( const sc fxtype parans&
const sc_fxcast _sw tch&,

sc_fxnum observer* = 0 );

#define DECL_CTORS T(tp) \
sc_ufix( tp, int, int, sc_fxnumobserver* =0 ); \

344

sc_ufix( tp, sc_g_node, sc_o_node,\

sc_fxnum observer* = 0 ); \

sc_ufix( tp, sc_q_node, sc_o _node, int, \
sc_fxnum observer* = 0 ); \

sc_ufix( tp, int, int, sc_q_node, sc_o_node, \
sc_fxnum observer* = 0 ); \

sc_ufix( tp, int, int, sc_q_node, sc_o_node,
sc_fxnum observer* = 0 ); \

sc_ufix( tp, const sc_fxcast_swtchg&, \
sc_fxnum observer* = 0 ); \

int,\

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

sc_ufix( tp, int, int, const sc_fxcast_swtch&,

sc_fxnum observer* = 0 ); \
sc_ufix( tp, sc_g_node, sc_o_node,\
const sc_fxcast_sw tch&, \
sc_fxnum observer* = 0 ); \
sc_ufix( tp, sc_qg_node, sc_o _node, int, \
const sc_fxcast_sw tch&, \
sc_fxnum observer* = 0 ); \
sc_ufix( tp, int, int, sc_qgq_node, sc_o_node, \
const sc_fxcast_sw tch&, \
sc_fxnum observer* = 0 ); \

sc_ufix( tp, \
int, int, sc_g _node, sc_o_node, int, \

const sc_fxcast_sw tch&, \
sc_fxnum observer* = 0 ); \

sc_ufix( tp, const sc_fxtype_paransg&, \
sc_fxnum observer* = 0 ); \

sc_ufix( tp, const sc_fxtype_paransg&, \
const sc_fxcast_sw tch&, \

sc_fxnum observer* = 0 );

#define DECL_CTORS T A(tp) \

sc_ufix( tp,sc_fxnumobserver* =0 ); \
DECL_CTORS_T(tp)

#define DECL_CTORS T B(tp) \

explicit sc_ufix( tp, \
sc_fxnum observer* = 0 );
DECL_CTORS T(tp)

DECL_CTORS_T_A(i nt)
DECL_CTORS_T_A(unsigned int)
DECL_CTORS_T_A(l ong)
DECL_CTORS_T_A(unsi gned | ong)
DECL_CTORS_T_A( doubl e)
DECL_CTORS_T_A(const char*)
DECL_CTORS T _A(const sc_fxval &)
DECL_CTORS T A(const sc_fxval fast&)
DECL_CTORS_T_A(const sc_fxnumg)
DECL_CTORS T A(const sc_fxnum fast &)
DECL_CTORS_T B(i nt 64)
DECL_CTORS_T_B(ui nt 64)

DECL_CTORS T B(const sc_int_base&)
DECL_CTORS_T B(const sc_uint_base&)
DECL_CTORS T B(const sc_si gned&)
DECL_CTORS_T B(const sc_unsi gned&)

#undef DECL_CTORS T
#undef DECL _CTORS T A
#undef DECL _CTORS T B

345

/'l copy constructor
sc_ufix( const sc_ufix&);

Copyright 2003 Open SystemC Initiative. All rights reserved

\



SystemC 2.0.1 Language Reference Manual

/1l unary bitw se operators
const sc_ufix operator ~ () const;

/1 unary bitw se functions
friend void b_not( sc_ufix& const sc_ufix& );

/1l binary bitw se operators

friend const sc_ufix operator & ( const sc_ufix& const
sc_ufix&);

friend const sc_ufix operator & ( const sc_ufix& const
sc_ufix fast& );

friend const sc_ufix operator & ( const sc_ufix_fast§&,
const sc_ufix& );

friend const sc_ufix operator | ( const sc_ufix& const
sc_ufix&);

friend const sc_ufix operator | ( const sc_ufix& const
sc_ufix fast& );

friend const sc_ufix operator | ( const sc_ufix_fast§&,
const sc_ufix& );

friend const sc_ufix operator ™ ( const sc_ufix& const
sc_ufix&);

friend const sc_ufix operator ® ( const sc_ufix& const
sc_ufix fast& );

friend const sc_ufix operator ™ ( const sc_ufix_fast§&,
const sc_ufix& );

/1l binary bitw se functions

friend void b_and( sc_ufix& const sc_ufix& const
sc_ufix&);

friend void b_and( sc_ufix& const sc_ufix& const
sc_ufix fast& );

friend void b_and( sc_ufix& const sc_ufix fast& const
sc_ufix&);

friend void b_or ( sc_ufix& const sc_ufix& const
sc_ufix&);

friend void b_or ( sc_ufix& const sc_ufix& const
sc_ufix fast& );

friend void b_or ( sc_ufix& const sc_ufix fast& const
sc_ufix&);

friend void b_xor( sc_ufix& const sc_ufix& const
sc_ufix&);

friend void b_xor( sc_ufix& const sc_ufix& const
sc_ufix fast& );

friend void b_xor( sc_ufix& const sc_ufix fast& const
sc_ufix&);

/'l assignment operators
sc_ufi x& operator = ( const sc_ufix& );

#define DECL_ASN OP _T(op,tp) \
sc_ufi x& operator op ( tp );

#i f ndef SC_FX_EXCLUDE_OTHER

346 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

#defi ne DECL_ASN OP_OTHER(op) \
DECL_ASN OP_T(op, i nt 64) \
DECL_ASN _OP_T(op, ui nt 64) \
DECL_ASN_OP_T(op, const sc_int_base&) \
DECL_ASN_OP_T(op, const sc_ui nt _base&) \
DECL_ASN_OP_T(op, const sc_si gned&)\
DECL_ASN_OP_T(op, const sc_unsi gned&)

#el se

#defi ne DECL_ASN _OP_OTHER( op)

#endi f

#defi ne DECL_ASN _OP(op) \
DECL ASNCPT(oplnt) \
DECL_ASN OP_T(op, unsigned int)\
DECL_ASN_OP_T( op, | ong) \
DECL_ASN_OP_T( op, unsi gned | ong) \
DECL_ASN_OP_T(op, double) \
DECL_ASN OP_T(op, const char*) \
DECL_ASN_OP_T(op, const sc_fxval & \
DECL_ASN OP_T(op, const sc_fxval _fast& \
DECL_ASN_OP_T(op, const sc_fxnum&) \
DECL_ASN _OP_T(op, const sc_fxnumfast& \
DECL_ASN_OP_OTHER( op)

DECL_ASN OP(=)

DECL_ASN _OP( *=)

DECL_ASN_OP(/ =)

DECL_ASN_OP( +=)

DECL_ASN_OP( - =)

DECL_ASN OP_T(<<=,int)

DECL_ASN OP_T(>>=,int)

DECL_ASN OP_T( &=, const sc_ufi x&)
DECL_ASN OP_T( &=, const sc_ufix_fast&)

DECL_ASN OP_T(| =, const sc_ufi x&)
DECL_ASN OP T(| =, const sc_ufix_fast&)
DECL_ASN_OP T(": const sc_ufi x&)
DECL_ASN OP_T(”=, const sc_ufix_fast&)

#undef DECL _ASN OP T
#undef DECL_ASN OP_OTHER
#undef DECL_ASN OP

[/ auto-increnent and auto-decrenent
const sc_fxval operator ++ ( int );

const sc_fxval operator -- ( int );
sc_ufix& operator ++ ();
sc_ufix& operator -- ();
};
Description

Unconstrained type sc_uf i x is an unsigned type. sc_uf i x allows specifying
the fixed-point type parameters wl, iwl, g_mode, o_mode, and n_bits as variables.
See Chapter 6.8.5.

347 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Declaration Syntax
sc_ufix var_name([init_val]
[,W,1W]
[, g_node, o_node[,n_bits]]
[, cast _swi tch]
[, observer]);

sc_ufix var_name([init_val]
, type_par ans
[, cast _sw tch]
[, observer]);

Examples
sc_ufix b(0, 32, 32);
sc_ufix d(a+b);
sc_ufix ¢ = 0. 1;

Public Constructors

sc_ufix (
[type_ init_val]
[,int W,int iw]
[,sc_q_node g_node, sc_o _node o_node[,int n_bits]]
[, const sc_fxcast_sw tch& cast_sw tch]
, Sc_fxnum observer* observer) ;

type_in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, float, douple, const char*, intGﬁ,
ui nt 64, const sc_int _base & const sc_uint_base &,
const sc_signed&, const sc_unsigned, const sc_fxval &,
const sc_fxval fast& const sc_[u]fix& const
sc_ [u]fix fast& }

sc_ufix (
[type_init_val]
, const sc_fxtype_param& type_parans
[,sc_fxcast_switch cast_sw tch]
, sc_fxnum observer* observer) ;

type_in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, float, double, const char*, int§4,
ui nt 64, const sc_int base& const sc_uint _base & const
sc_signed&, const sc_unsigned, const sc_fxval & const
sc_fxval _fasté& const sc_[u]fix& const
sc_ [u]fix fast& }

Notes ontype_
For all typesintype_ ,exceptsc_[u]fixandsc_[u]fix_fast, only the
value of the argument is taken, that is, any type information is discarded. This
ensures that initialization during declaration and initialization after declaration
behave identical.

348 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

A fixed-point variable can be initialized with a C/C++ character string (type
const char*) either when the number will be expressed in binary form or when
the number is too large to be written as a C/C++ built-in type literal

init_val

The initial value of the variable. If the initial value is not specified, the instance
is uninitialized.

wi

The total number of bits in the fixed-point format. Wi must be greater than zero,
otherwise, a runtime error is produced. The default value for W is obtained
from the fixed-point context type sc_f xt ype_cont ext . See Chapter 11.26.
The total word length parameter cannot change after declaration.

iwl

The number of integer bits in the fixed-point format. i W can be positive or
negative. The default value fori wl is obtained from the fixed-point context type
sc_fxtype_cont ext. See See Chapter 11.26. The number of integer bits
parameter cannot change after declaration.

g_mode

The quantization mode to use. Valid values for q_node are given in Chapter
6.8.12.7. The default value for q_node is obtained from the fixed-point context
type sc_f xt ype_cont ext. See See Chapter 11.26. The quantization mode
parameter cannot change after declaration.

0_mode

The overflow mode to use. Valid values for o_node are given in Chapter
6.8.12.1. The default value for o_node is obtained from the fixed-point context
type sc_f xt ype_cont ext. See Chapter 11.26. The overflow mode
parameter cannot change after declaration.

n_bits

The number of saturated bits parameter for the selected overflow mode.
n_bits must be greater than or equal to zero, otherwise a runtime error is
produced. If the overflow mode is specified, the default value is zero. If the
overflow mode is not specified, the default value is obtained from the fixed-point
context type sc_f xt ype_cont ext . See Chapter 11.26. The number of
saturated bits parameter cannot change after declaration.

type_params

A fixed-point type parameters object.

cast_switch

The cast switch, which allows to switch fixed-point type casting on or off. Valid
values for cast _swi t ch are:

SC_OFF for casting off

SC_ON for casting on

The default value for cast _swi t ch is obtained from the fixed-point context
type sc_f xcast _context. The cast _sw t ch parameter cannot change
after declaration.

observer

349 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

A pointer to an observer object. The obser ver argument is of type
sc_fxnum observer*. See Chapter 11.25. The default value for obser ver
is O (null pointer). The obser ver parameter cannot change after declaration.

Copy Constructor
sc_ufix( const sc_ufix& );

Operators
The operators defined for the sc_ufi x are given in Table 31.

Table 31. Operators for sc_ufix

Oper at or Qperators in class
cl ass
Bitw se ~ & M|
Arithnmetic o/ + - << S>> 4+ --
Equal ity == | =
Rel at i onal <<= >>=
ASsi gnnent = *= [= 4= -= <<= >>= &= "= | =

Note:
Operator << and operator >> define arithmetic shifts, not bitwise shifts. The
difference is that no bits are lost and proper sign extension is done.

In expressions with the non-bitwise operators from Table 31, fixed-point types
can be mixed with all types given:
type_in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, fl oat, douple, const char*, intaﬁ,
ui nt 64, const sc_int _base & const sc_uint_base &,
const sc_signed& const sc_unsigned, const sc_fxval &,
const sc_fxval fast& const sc_[u]fix& const
sc [u]fix fast& }

The return type of any arithmetic operation is the fixed-point value type, which
guarantees that the operation is performed without overflow or quantization.

A floating-point variable or a fixed-point value variable can contain one of the
special values +Inf (plus infinity), -Inf (minus infinity), or Nan (not a number).
Assignment of one of these special values to a fixed-point variable will produce
a runtime error.

For the fixed-point types, a minimal set of bitwise operators is defined. These
bitwise operators are only defined on either the signed fixed-point types or the
unsigned fixed- point types. Mixing between signed and unsigned fixed-point
types is not allowed. Mixing with any other type is also not allowed.

350 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

The semantics of the bitwise operators is as follows. For the unary ~ operator,
the type of the result is the type of the operand. The bits in the two’s
complement mantissa of the operand are inverted to get the mantissa of the
result. For the binary operators, the type of the result is the maximum aligned
type of the two operands, that is, the two operands are aligned by the binary
point and the maximum integer word length and the maximum fractional word
length is taken. The operands are temporarily extended to this type before
performing a bitwise and, bitwise exclusive-or, or bitwise or.

Member Functions
The functions defined for sc_uf i x are given in Table 32.

Table 32. Functions for sc_ufix

Functi on Functions in cl ass
cl ass
Bitw se b not, b_and, b_xor, b _or

Arithnmetic |neg, mult, div, add, sub, Ishift, rshift

The functions in Table 32 have return type void. The first argument of these
functions is a reference to the result object. The remaining arguments of these
functions are the operands.

For the bitwise functions, the result object and the operands are of the same
type, which is either sc_fi x orsc_ufi x.

The neg arithmetic function takes one operand, the other arithmetic functions

take two operands. At least one of the operands of the arithmetic functions

should have a fixed- point type, the other operand can have any of the types

given:

type_ in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, float, double, const char*, int64,

ui nt 64, const sc_int_base & const sc_uint_base &,
const sc_signed&, const sc_unsigned, const sc_fxval &,
const sc_fxval fast& const sc_[u]fix& const
sc_[u]fix fast& }

The arithmetic functions are defined twice: once with the result object of type
sc_fxval, and once with the result object of type sc_ufix.

Bit Selection
const sc_fxnum_bitrefJr operator [] ( int i) const;
sc_fxnum bitref ! operator [] ( int i);

const sc_fxnum_?i tref' bi t( int i) const;
sc_fxnum bitref bit( int i);

351 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

These functions take one argument of type int, which is the index into the fixed-
point mantissa. The index argument must be betweenw -1 (MSB) and 0
(LSB). Otherwise, a runtime error is produced. The return type of the bit
selection functions is (const or non- const) sc_f xnum bi t r ef T, which is a
proxy class. The proxy class allows bit selection to be used both as r val ue
(for reading) and | val ue (for writing). For bit selection, the fixed-point binary
point is ignored.

Part Selection .

const sc_fxnum subref operator () ( int, int ) const;
T : .

sc_f xnum subr ef operator () ( int, int );

const sc_fxnum_fubrefJr range( int, int ) const;
sc_fxnum subr ef range( int, int );

These functions take two arguments of type i nt , which are the begin and end
indices into the fixed-point mantissa. The index arguments must be between

w - 1 (MSB) and 0 (LSB). Otherwise, a runtime error is produced. The return
type of the part selection functions is (const or non-const) sc_f xnum subr ef T,
which is a proxy class that behaves like type sc_bv_base. The proxy class
allows part selection to be used both as r val ue (for reading) and | val ue (for
writing). All operators and methods that are available for type sc_bv_base are
also available for part selection. For part selection, the fixed-point binary point

is ignored.

const sc_fxnum_subrefT operator () () const;
T
sc_fxnum subr ef operator () ();

+
const sc_fxnum_gubref range() const;
sc_fxnum subr ef range();

As a shortcut for part selection of the complete mantissa, operator () and the
range() method can be called without any arguments.

Query Parameters
const sc_fxcast_sw tch&
cast _switch() const;
Returns the cast switch parameter.

i nt
iw () const;
Returns the integer word length parameter.

i nt

352 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

n_bits() const;
Returns the number of saturated bits parameter.

sc_o_node
o_node() const;
Returns the overflow mode parameter.

sc_g_node
g_node() const;

Return the quantization mode parameter.

const sc_fxtype_parans&
type paranms() const;

Returns the type parameters.

i nt
W () const;
Returns the total word length parameter.

Query Value
bool
is_neg() const;
Always returns false.

bool
is_zero() const;
Returns true if the variable holds a zero value. Returns false otherwise.

bool
overflow flag() const;

Returns true if the last write action on this variable caused overflow. Returns

false otherwise.

bool
guanti zation_flag() const;
Returns true if the last write action on this variable caused quantization.

Returns false otherwise.

const sc_fxval
val ue() const;

Returns the value.

Implicit Conversion
oper ator doubl e() const;

Implicit conversion to the implementation type doubl e. The value does not

change.

Explicit Conversion

353 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

short to_short() const;

unsi gned short to_ushort() const;
i nt to_int() const;

unsi gned i nt to uint() const;

| ong to | ong() const;
unsi gned | ong to_ul ong() const;
f | oat to float() const;
doubl e t o_doubl e() const

const sc_string to_string() const;

const sc_string to_string( sc_nunrep ) const;

const sc_string to_string( sc_nunrep, bool ) const;

const sc_string to_string( sc_fnt ) const;

const sc_string to_string( sc_nunrep, sc_fm ) const;

const sc_string to_string( sc_nunrep, bool, sc_fnt ) const;
The value of a fixed-point variable can be converted to a character string
with the to_string() method. This method takes different arguments for
formatting purposes. See Chapter 6.8.8 for more information on converting
fixed-point variables to/from character strings. Furthermore, writing to C++
output streams with operator << is supported, e.g. cout << a;, where a is a
fixed-point variable. The decimal number representation is used in this case.

const sc_string to_dec() const;
const sc_string to_bin() const;
const sc_string to_oct() const;
const sc_string to_hex() const;
Shortcut methods for conversion to a character string. See Chapter 6.8.9.2.

Print or dump content
voi d
print( ostream& = cout ) const;
Print the sc_uf i x instance value to an output stream.

void _
scan( istrean& = cin );
Read an sc_uf i x value from an input stream.

voi d
dunp( ostreanm& = cout )
const ;
Prints the sc_uf i x instance value, parameters and flags to an output

stream.
ostrean®&

operator << ( ostream& os, const sc _ufix& a )
Print the instance value of a to an output stream os.

354 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.70 sc_ufix_fast

Synopsis
class sc_ufix_fast : public sc_fxnumfast

_
public:

/'l constructors

explicit sc_ufix_fast( sc_fxnumfast_observer* = 0 );

sc_ufix_fast( int, int,
sc_fxnum fast observer* = 0 );

sc_ufix fast( sc_q _node, sc_o nnde
‘sc_fxnum f ast observer* = 0 );

sc_ufix _fast( sc_g _node, sc_o nnde int,
sc_fxnum fast_observer* = 0 );

sc_ufix fast( int, int, sc_q_nnde, sc_o_node,
sc_fxnum fast_observer* =0 );

sc_ufix_fast( int, int, sc_qg_node, sc_o_node, int,
sc_fxnum fast_observer* =0 );

explicit sc_ufix_fast( const sc_fxcast_swtchg&,
sc_fxnum fast_observer* =0 );

sc_ufix _fast( int, int, const sc_fxcast_swtch&,
sc_fxnum fast_observer* =0 );

sc_ufix _fast( sc_q _node, sc_o_node,
const sc_fxcast_sw tch&,
sc_fxnum fast_observer* =0 );

sc_ufix fast( sc_q _node, sc_o _node, int,
const sc_fxcast_sw tch&,
sc_fxnum fast_observer* =0 );

sc_ ufix fast( int, int, sc_g_node, sc_o_node,
const sc_fxcast_sw tch&,
sc_fxnum fast_observer* =0 );

sc_ufix_fast( int, int, sc_qg_node, sc_o_node, int,
const sc_fxcast_sw tch&,
sc_fxnum fast observer* = 0 );

explicit sc_ufix_fast( const sc_fxtype_par ans&,
sc_fxnum fast _observer* = 0 );

sc_ufix _fast( const sc fxtype parans&
const sc_fxcast_switchg&,
sc_fxnum fast_observer* =0 );

#define DECL_CTORS T(tp) \
sc_ufix_fast( tp, int, int, \
sc_fxnum fast_observer* =0 ); \
sc_ufix fast( tp, sc_g_node, sc_o_node,\
sc_fxnum fast_observer* =0 );
sc_ufix fast( tp, sc_g_node, sc_o _node, int, \
sc_fxnum fast_observer* = 0 );
sc_ufix fast( tp, int, int, sc_q_nnde, sc_o_node, \
sc_fxnuanast_observer* =0); \
sc_ufix_fast( tp, \
int, int, sc_q node, sc_o _node, int, \
sc_fxnum fast_observer* =0 ); \
sc_ufix fast( tp, const sc_fxcast_switch& \

//

355 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

sc_fxnum fast_observer* =0 ); \
sc_ufix_fast( tp, int, int, \

const sc_fxcast_sw tch&, \

sc_fxnum fast_observer* =0 ); \
sc_ufix _fast( tp, sc_q _node, sc_o_node,\

const sc_fxcast_sw tch&, \

sc_fxnum fast_observer* =0 ); \
sc_ufix_fast( tp, sc_q_node, sc_o_node, int, \

const sc_fxcast_sw tch&, \

sc_fxnum fast_observer* =0 ); \
sc_ufix_fast( tp, \

int, int, sc_g_node, sc_o_node,)\

const sc_fxcast_sw tch&, \

sc_fxnum fast_observer* =0 ); \
sc_ufix_fast( tp, \

int, int, sc_qg _node, sc_o _node, int, \

const sc_fxcast_sw tch&, \

sc_fxnum fast_observer* =0 ); \
sc_ufix_fast( tp, const sc_fxtype_parans&, \

“sc_fxnum fast_observer* = 0 );
sc_ufix_fast( tp, const sc_fxtype_parans&, \

const sc_fxcast_sw tch&, \

sc_fxnum fast_observer* =0 );

#define DECL_CTORS T A(tp) \
sc_ufix_fast( tp, \
sc_fxnum fast_observer* =0 ); \
DECL_CTORS_T(t p)

#define DECL_CTORS T B(tp) \
explicit sc_ufix _fast( tp, \
sc_fxnum fast_observer* =0 ); \
DECL_CTORS_T(tp)

DECL_CTORS_T_A(i nt)
DECL_CTORS_T_A(unsi gned int)
DECL_CTORS_T_A( | ong)
DECL_CTORS_T_A(unsi gned | ong)
DECL_CTORS_T_A( doubl e)
DECL_CTORS_T_A(const char*)
DECL_CTORS T _A(const sc_fxval &)
DECL_CTORS T A(const sc_fxval fast&)
DECL_CTORS _T_A(const sc_fxnumg)
DECL_CTORS T _A(const sc_fxnum fast &)
DECL_CTORS_T B(i nt 64)
DECL_CTORS_T_B(ui nt 64)

DECL_CTORS T B(const sc_int_base&)
DECL_CTORS_T B(const sc_uint_base&)
DECL_CTORS T B(const sc_si gned&)
DECL_CTORS_T B(const sc_unsi gned&)

#undef DECL_CTORS T

#undef DECL CTORS T A
#undef DECL _CTORS T B

356 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

/'l copy constructor
sc_ufix _fast( const sc_ufix fast& );

/1l unary bitw se operators
const sc_ufix_fast operator ~ () const;

/1l unary bitw se functions
friend void b _not( sc_ufix fast& const sc_ufix fasté& );

/1l binary bitw se operators

friend const sc_ufix fast operator & ( const
sc_ufix fast& const sc_ufix fast& );

friend const sc_ufix fast operator ™~ ( const
sc_ufix fast& const sc_ufix fast& );
friend const sc_ufix fast operator | ( const

sc_ufix fast& const sc_ufix fast& );

/1l binary bitw se functions

friend void b_and( sc_ufix fast& const sc_ufix_fast§&,
const sc_ufix fast& );

friend void b_or ( sc_ufix fast& const sc_ufix_fast§&,
const sc_ufix fast& );

friend void b _xor( sc_ufix fast& const sc_ufix_fast§&,
const sc_ufix fast& );

/'l assignment operators

sc_ufix _fast& operator = ( const sc_ufix fast& );
#define DECL_ASN OP _T(op,tp) \

sc_ufix _fast& operator op ( tp );

#i f ndef SC_FX EXCLUDE OTHER

#define DECL_ASN OP OTHER(op) \
DECL_ASN OP_T(op, i nt 64) \
DECL_ASN_OP_T(op, ui nt 64)\
DECL_ASN_OP_T(op, const sc_int_base&) \
DECL_ASN _OP_T(op, const sc_ui nt _base&) \
DECL_ASN_OP_T(op, const sc_si gned&)\
DECL_ASN OP_T(op, const sc_unsi gned&)

#el se

#defi ne DECL_ASN OP_OTHER( op)

#endi f

#define DECL_ASN OP(op) \
DECL ASNCPT(oplnt) \
DECL_ASN _OP_T(op, unsigned int)\
DECL_ASN_OP_T( op, long) \
DECL_ASN_OP_T( op, unsi gned | ong) \
DECL_ASN_OP_T( op, doubl e)\
DECL_ASN _OP_T(op, const char*) \
DECL_ASN_OP_T(op, const sc_fxval & \
DECL_ASN_OP_T(op, const sc_fxval _fast&) \
DECL_ASN_OP_T(op, const sc_fxnum&) \
DECL_ASN OP_T(op, const sc_fxnum fast &) \

357 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

DECL_ASN_OP_OTHER( op)

DECL_ASN OP(=)

DECL_ASN OP( *=)

DECL_ASN OP(/ =)

DECL_ASN_OP( +=)

DECL_ASN_OP( - =)

DECL_ASN OP_T(<<=,int)

DECL_ASN OP_T(>>=,int)

DECL_ASN OP_T( &=, const sc_ufi x&)
DECL_ASN OP_T( &=, const sc_ufix_fast&)

DECL_ASN OP_T(| =, const sc_ufi x&)
DECL_ASN OP T(| =, const sc_ufix_fast&)
DECL_ASN_OP T(": const sc_ufi x&)
DECL_ASN OP_T(”=, const sc_ufix_fast&)

#undef DECL _ASN OP T
#undef DECL_ASN OP OTHER
#undef DECL ASN oP

[/ auto-increnent and auto-decrenent
const sc_fxval _fast operator ++ ( int );

const sc_fxval fast operator -- ( int );
sc_ufix_fast& operator ++ ();
sc_ufix _fast& operator -- ();
1
Description

sc_ufi x_fast is an unsigned limited precision type. sc_ufi x_f ast allows
specifying the fixed-point type parameters wl, iwl, g_mode, o_mode, and n_bits
as variables. See Chapter 6.8.5.

sc_ufi x_fast provides the same APl as sc_ufi x.

sc_ufi x_fast uses double precision (floating-point) values. The mantissa of a
double precision value is limited to 53 bits. This means that bit-true behavior
cannot be guaranteed with the limited precision types. For bit-true behavior with
the limited precision types, the following guidelines should be followed:

Make sure that the word length of the result of any operation or expression does
not exceed 53 bits.

The result of an addition or subtraction requires a word length that is one bit
more than the maximum aligned word length of the two operands.

The result of a multiplication requires a word length that is the sum of the word
lengths of the two operands.

Declaration Syntax
sc_ufix_fast var_name([init_val]
[,W,iw]
[, g_node, o_node[,n_bits]]
[, cast_sw tch]

358 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

[, observer]);

sc_ufix_fast var_name([init_val]
, type_par ans
[, cast _swi tch]
[, observer]);

Examples
sc_ufix_fast b(0, 32, 32);
sc_ufix_fast d(a+b);

Public Constructors

sc_ufix_fast (
[type_ init_val]
[,int W,int iw]
[,sc_q_node g_node, sc_o _node o_node[,int n_bits]]
[, const sc_fxcast_sw tch& cast_sw tch]
, sc_fxnum fast_observer* observer) ;

type_ in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, float, douple, const char*, intaﬂ,
ui nt 64, const sc_int _base & const sc_uint_base &,
const sc_signed&, const sc_unsigned, const sc_fxval &,
const sc_fxval fast& const sc_[u]fix& const
sc_[u]fix fast& }

sc_ufix_fast (
[type_init_val]
, const sc_fxtype_param& type_parans
[,sc_fxcast_switch cast_sw tch]
, sc_fxnum fast_observer* observer) ;

type_in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, float, douple, const char*, intGﬂ,
ui nt 64, const sc_int _base & const sc_uint_base &,
const sc_signed&, const sc_unsigned, const sc_fxval &,
const sc_fxval fast& const sc_[u]fix& const
sc_ [u]fix fast& }

Notes ontype_

For all typesintype_ ,exceptsc_[u]fixandsc_[u]fix_fast, only the
value of the argument is taken, that is, any type information is discarded. This
ensures that initialization during declaration and initialization after declaration
behave identical.

A fixed-point variable can be initialized with a C/C++ character string (type
const char*) either when the number will be expressed in binary form or when
the number is too large to be written as a C/C++ built-in type literal

init_val

The initial value of the variable. If the initial value is not specified, the instance
is uninitialized.

wi

359 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

The total number of bits in the fixed-point format. W\ must be greater than zero,
otherwise, a runtime error is produced. The default value for W is obtained
from the fixed-point context type sc_f xt ype_cont ext . See Chapter 11.26.
The total word length parameter cannot change after declaration.

iwl

The number of integer bits in the fixed-point format. i W can be positive or
negative. The default value fori wl is obtained from the fixed-point context type
sc_fxtype_cont ext. See See Chapter 11.26. The number of integer bits
parameter cannot change after declaration.

g_mode

The quantization mode to use. Valid values for q_node are given in Chapter
6.8.12.7. The default value for q_node is obtained from the fixed-point context
type sc_f xt ype_cont ext. See See Chapter 11.26. The quantization mode
parameter cannot change after declaration.

0_mode

The overflow mode to use. Valid values for o_node are given in Chapter
6.8.12.1. The default value for o_node is obtained from the fixed-point context
type sc_f xt ype_cont ext. See Chapter 11.26. The overflow mode
parameter cannot change after declaration.

n_bits

The number of saturated bits parameter for the selected overflow mode.
n_bits must be greater than or equal to zero, otherwise a runtime error is
produced. If the overflow mode is specified, the default value is zero. If the
overflow mode is not specified, the default value is obtained from the fixed-point
context type sc_f xt ype_cont ext. See Chapter 11.26. The number of
saturated bits parameter cannot change after declaration.

type_params

A fixed-point type parameters object.

cast_switch

The cast switch, which allows to switch fixed-point type casting on or off. Valid
values for cast _swi t ch are:

SC_OFF for casting off

SC_ON for casting on

The default value for cast _swi t ch is obtained from the fixed-point context
type sc_f xcast _cont ext.. The cast _sw t ch parameter cannot change
after declaration.

observer

A pointer to an observer object. The obser ver argument is of type
sc_fxnum fast _observer*. See Chapter 11.24. The default value for
obser ver is 0 (null pointer). The obser ver parameter cannot change after
declaration.

Copy Constructor
sc_ufix_fast( const sc_ufix_fast& );

Operators

360 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

The operators defined for the sc_ufi x_fast are given in Table 33.
Table 33. Operators for sc_ufix_fast

Oper at or OQperators in class
cl ass
Bitw se ~ & M|
Arithnmetic * )+ - << S>> 4+ --
Equal ity == | =
Rel at i onal <<= >>=
ASsi gnnent = *= [= 4= -= <<= >>= &= "= | =

Note:
Operator << and operator >> define arithmetic shifts, not bitwise shifts. The
difference is that no bits are lost and proper sign extension is done.

In expressions with the non-bitwise operators from Table 33, fixed-point types
can be mixed with all types given:
type_in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, float, doupl e, const char*, int 6T4,
ui nt 64, const sc_int _base & const sc_uint_base &,
const sc_signed&, const sc_unsigned, const sc_fxval &,
const sc_fxval fast& const sc_[u]fix& const
sc_ [u]fix fast& }

The return type of any arithmetic operation is the fixed-point value type, which
guarantees that the operation is performed without overflow or quantization.

A floating-point variable or a fixed-point value variable can contain one of the
special values +Inf (plus infinity), -Inf (minus infinity), or Nan (not a number).
Assignment of one of these special values to a fixed-point variable will produce
a runtime error.

For the fixed-point types, a minimal set of bitwise operators is defined. These
bitwise operators are only defined on either the signed fixed-point types or the
unsigned fixed- point types. Mixing between signed and unsigned fixed-point
types is not allowed. Mixing with any other type is also not allowed.

The semantics of the bitwise operators is as follows. For the unary ~ operator,
the type of the result is the type of the operand. The bits in the two’s
complement mantissa of the operand are inverted to get the mantissa of the
result. For the binary operators, the type of the result is the maximum aligned
type of the two operands, that is, the two operands are aligned by the binary
point and the maximum integer word length and the maximum fractional word
length is taken. The operands are temporarily extended to this type before
performing a bitwise and, bitwise exclusive-or, or bitwise or.

361 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Member Functions
The functions defined for sc_ufi x_f ast are given in Table 34.

Table 34. Functions for sc_ufix_fast

Functi on Functions in cl ass
cl ass
Bitw se b not, b_and, b _xor, b _or

Arithmetic |neg, mult, div, add, sub, Ishift, rshift

The functions in Table 34 have return type void. The first argument of these
functions is a reference to the result object. The remaining arguments of these
functions are the operands.

For the bitwise functions, the result object and the operands are of the same
type, which is either sc_fi x or sc_ufi x.

The neg arithmetic function takes one operand, the other arithmetic functions

take two operands. At least one of the operands of the arithmetic functions

should have a fixed- point type, the other operand can have any of the types

given:

type_in {short, unsigned short, int, unsigned int, |ong,
unsi gned |l ong, float, double, const char*, int64,

ui nt 64, const sc_i nt_baseT&, const sc_ui nt_baseT&,
const sc_signed& const sc_unsigned, const sc_fxval &,
const sc_fxval fast& const sc_[u]fix& const

sc [u]fix fast& }

The arithmetic functions are defined twice: once with the result object of type
sc_fxval, and once with the result object of type sc_ufix_fast.

Bit Selection .
const sc_fxnum_?i tref operator [] ( int i) const;
sc_fxnum bitref operator [] ( int i);

const sc_fxnum_?i tref' bi t( int i) const;
sc_fxnum bitref bit( int i);

These functions take one argument of type int, which is the index into the fixed-
point mantissa. The index argument must be betweenw -1 (MSB) and 0
(LSB). Otherwise, a runtime error is produced. The return type of the bit

selection functions is (const or non- const) sc_f xnum bi t r ef T, which is a
proxy class. The proxy class allows bit selection to be used both as r val ue
(for reading) and | val ue (for writing). For bit selection, the fixed-point binary
point is ignored.

362 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Part Selection .
const sc_fxnum_fubref operator () ( int, int ) const;
sc_fxnum subr ef operator () ( int, int );

T . .
const sc_fxnum_§ubr ef range( int, int ) const;
sc_fxnum subr ef range( int, int );

These functions take two arguments of type i nt , which are the begin and end
indices into the fixed-point mantissa. The index arguments must be between
w - 1 (MSB) and 0 (LSB). Otherwise, a runtime error is produced. The return

type of the part selection functions is (const or non-const) sc_f xnum subr ef T,
which is a proxy class that behaves like type sc_bv_base. The proxy class
allows part selection to be used both as r val ue (for reading) and | val ue (for
writing). All operators and methods that are available for type sc_bv_base are
also available for part selection. For part selection, the fixed-point binary point

is ignored.

const sc_fxnum_subrefT operator () () const;
T
sc_fxnum subr ef operator () ();

const sc_fxnum_fubrefJr range() const;
sc_fxnum subr ef range() ;

As a shortcut for part selection of the complete mantissa, operator () and the
range() method can be called without any arguments.

Query Parameters
const sc_fxcast_switch&
cast _switch() const;

Returns the cast switch parameter.

i nt
iw () const;
Returns the integer word length parameter.

i nt
n_bits() const;
Returns the number of saturated bits parameter.
sc_o_node
o_node() const;
Returns the overflow mode parameter.

sc_qg_node

363 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

g_node() const;
Return the quantization mode parameter.

const sc_fxtype_parans&
type_parans() const;
Returns the type parameters.

i nt
W () const;
Returns the total word length parameter.

Query Value
bool
is_neg() const;
Always returns false.

bool
is_zero() const;
Returns true if the variable holds a zero value. Returns false otherwise.

bool

overflow flag() const;
Returns true if the last write action on this variable caused overflow. Returns
false otherwise.

bool
guanti zation_flag() const;

Returns true if the last write action on this variable caused quantization.
Returns false otherwise.

const sc_fxval
val ue() const;
Returns the value.

Implicit Conversion
oper at or doubl e() const;
Implicit conversion to the implementation type doubl e. The value does not
change.

Explicit Conversion

short to_short() const;

unsi gned short to_ushort() const;
i nt to_int() const;

unsi gned i nt to uint() const;

| ong to I ong() const;
unsi gned | ong to_ul ong() const;
f | oat to float() const;
doubl e t o_doubl e() const

364 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

const sc_string to_string() const;

const sc_string to_string( sc_nunrep ) const;

const sc_string to_string( sc_nunrep, bool ) const;

const sc_string to_string( sc_fmt ) const;

const sc_string to_string( sc_nunrep, sc_fm ) const;

const sc_string to_string( sc_nunrep, bool, sc fnt ) const;

The value of a fixed-point variable can be converted to a character string
with the to_string() method. This method takes different arguments for
formatting purposes. See Chapter 6.8.8 for more information on converting
fixed-point variables to/from character strings. Furthermore, writing to C++
output streams with operator << is supported, e.g. cout << a;, where a is a
fixed-point variable. The decimal number representation is used in this case.

const sc_string to_dec() const;
const sc_string to_bin() const;
const sc_string to_oct() const;
const sc_string to_hex() const;

Shortcut methods for conversion to a character string. See Chapter 6.8.9.2.

Print or dump content
voi d
print( ostream& = cout ) const;
Print the sc_uf i x_f ast instance value to an output stream.

voi d
scan( istrean& = cin );
Read an sc_ufi x_fast value from an input stream.

voi d
dunp( ostrean&
const;
Prints the sc_ufi x_f ast instance value, parameters and flags to an
output stream.

cout )

ostream&
operator << ( ostream& os, const sc_ufix fast& a )
Print the instance value of a to an output stream os.

365 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.71 sc_ufixed
Synopsis

tenplate <int W int I,
sc_g_node Q = SC DEFAULT_ Q MODE |,
sc_o_nmpde O = SC DEFAULT O MODE , int N =
SC DEFAULT_N BI TS

>
class sc_ufixed : public sc_ufix
{
public:
/'l constructors
explicit sc_ufixed( sc_fxnumobserver* =0 );
explicit sc_ufixed( const sc_fxcast_sw tch&,
sc_fxnum observer* = 0 );

#define DECL_CTORS T A(tp) \
sc_ufixed( tp, sc_fxnumobserver* =0 ); \
sc_ufixed( tp, const sc_fxcast_sw tch&,
sc_fxnum observer* = 0 );

#define DECL_CTORS T B(tp) \
explicit sc_ufixed( tp, sc_fxnumobserver* =0 ); \
sc_ufixed( tp, const sc_fxcast_switch& \
sc_fxnum observer* = 0 );

DECL_CTORS_T_A(i nt)

DECL_CTORS T _A(unsi gned int)
DECL_CTORS T _A(!| ong)

DECL_CTORS T _A(unsi gned | ong)
DECL_CTORS_T_A(doubl e)

DECL_CTORS T _A(const char*)
DECL_CTORS T A(const sc_fxval &)
DECL_CTORS T _A(const sc_fxval _fast&)
DECL_CTORS T _A(const sc_fxnunmg)
DECL_CTORS_T_A(const sc_fxnum fast &)
DECL_CTORS_T_B(i nt 64)
DECL_CTORS_T_B(ui nt 64)

DECL_CTORS T B(const sc_int_base&)
DECL_CTORS T B(const sc_uint_base&)
DECL_CTORS T B(const sc_signed&)
DECL_CTORS T _B(const sc_unsi gned&)

#undef DECL _CTORS T A
#undef DECL _CTORS T B

/1 copy constructor
sc_ufixed( const sc_ufixed<WI,Q O N>& );

/| assignment operators

sc_ufixed& operator = ( const sc_ufixed<Wl,Q O N>& );
#define DECL_ASN OP_T(op,tp)\

sc_ufixed& operator op ( tp );

366 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

#i f ndef SC_FX EXCLUDE OTHER

#define DECL_ASN OP OTHER(op) \
DECL_ASN OP_T(op, i nt 64) \
DECL_ASN_OP_T( op, ui nt 64)\
DECL_ASN_OP_T(op, const sc_int_base&) \
DECL_ASN_OP_T(op, const sc_ui nt _base&) \
DECL_ASN_OP_T(op, const sc_si gned&)\
DECL_ASN_OP_T(op, const sc_unsi gned&)

#el se

#defi ne DECL_ASN _OP_OTHER( op)

#endi f

#define DECL_ASN OP(op) \
DECL_ASN_COP_T(op, i nt) \
DECL_ASN OP_T(op, unsigned int)\
DECL_ASN_OP_T( op, long) \
DECL_ASN_OP_T( op, unsi gned | ong) \
DECL_ASN_OP_T( op, doubl e)\
DECL_ASN OP_T(op, const char*) \
DECL_ASN_OP_T(op, const sc_fxval & \
DECL_ASN OP_T(op, const sc_fxval fast&) \
DECL_ASN_OP_T(op, const sc_fxnum&) \
DECL_ASN_OP_T(op, const sc_fxnum f ast &) \
DECL_ASN_OP_OTHER( op)

DECL_ASN_OP( =)
DECL_ASN_OP(*=)
DECL_ASN _OP(/ =
DECL_ASN_OP( +=)

DECL_ASN_OP( - =)

DECL_ASN OP_T(<<=,int)

DECL_ASN OP_T(>>=,int)

DECL_ASN OP_T( &=, const sc_ufi x&)
DECL_ASN OP_T( &=, const sc_ufix_fast&)
DECL_ASN OP_T(| =, const sc_ufi x&)
DECL_ASN OP T(| =, const sc_ufix_fast&)
DECL_ASN_ CP T("— const sc_ufi x&)
DECL_ASN OP_T(”=, const sc_ufix_fast&)

#undef DECL _ASN OP T
#undef DECL_ASN OP OTHER
#undef DECL SN oP

[/ auto-increnent and auto-decrenent
const sc_fxval operator ++ ( int );

const sc_fxval operator -- ( int );
sc_ufi xed& operator ++ ();
sc_ufi xed& operator -- ();
b
Description

367 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Templatized type sc_uf i xed is an unsigned (two's complement) type. The
fixed-point type parameters wl, iwl, g_mode, o_mode, and n_bits are part of the
type in sc_uf i xed. Itis required that these parameters be constant
expressions. See Chapter 6.8.1.

Declaration syntax

sc_ufixed <wl,iw|[,qg _node[,o node[,n _bits]]]>

var_nane([init_val][,cast_sw tch])

[, observer]);

wil
The total number of bits in the fixed-point format. The wl argument is of type int
and must be greater than zero. Otherwise, a runtime error is produced. The wl
argument must be a constant expression. The total word length parameter
cannot change after declaration.
iwl
The number of integer bits in the fixed-point format. The iwl argument is of type
int and can be positive or negative. See Chapter 6.8.1. The iwl argument must
be a constant expression. The number of integer bits parameter cannot change
after declaration.
gq_mode
The quantization mode to use. The q_mode argument is of type sc_q_mode.
Valid values for g_mode are given in Chapter 6.8.2.2 . The q_mode argument
must be a constant expression. The default value for g_mode is obtained from
the set of built-in default values. See Chapter 6.8.8. The quantization mode
parameter cannot change after declaration.
0_mode
The overflow mode to use. The o_mode argument is of type sc_o_mode. Valid
values for o_mode are given in Chapter 6.8.2.1 . The o_mode argument must
be a constant expression. The default value for o_mode is obtained from the
set of built-in default values. See Chapter 6.8.8. The overflow mode parameter
cannot change after declaration.
n_bits
The number of saturated bits parameter for the selected overflow mode. The
n_bits argument is of type int and must be greater than or equal to zero.
Otherwise, a runtime error is produced. The n_bits argument must be a
constant expression. If the overflow mode is specified, the default value is zero.
If the overflow mode is not specified, the default value is obtained from the set
of built-in default values. See Chapter 6.8.8. The number of saturated bits
parameter cannot change after declaration.

Examples

sc_ufi xed<16, 1, SC_RND_CONV, SC_SAT_SYM> b(0. 75);
sc_ufi xed<16, 16> d( SC_CFF);

Public Constructor

368 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

explicit sc_ufixed ([type_ init_val]
[, const sc_fxcast _switch& cast _sw tch]
[, sc_fxnum observer* observer]);

type_in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, float, douple, const char*, intaﬁ,
ui nt 64, const sc_int _base & const sc_uint_base &,
const sc_signed& const sc_unsigned, const sc_fxval &,
const sc_fxval fast& const sc_[u]fix& const
sc [u]fix fast& }

Notesontype_

For all typesintype_ ,exceptsc_[u]fixandsc [u]fix_fast, onlythe
value of the argument is taken, that is, any type information is discarded. This
ensures that initialization during declaration and initialization after declaration
behave identical.

A fixed-point variable can be initialized with a C/C++ character string (type
const char*) either when the number will be expressed in binary form or when
the number is too large to be written as a C/C++ built-in type literal

init_val

The initial value of the variable. If the initial value is not specified, the instance
is uninitialized.

cast_switch

The cast switch, which allows to switch fixed-point type casting on or off. Valid
values for cast _swi t ch are:

SC_OFF for casting off

SC_ON for casting on

The default value for cast _swi t ch is obtained from the fixed-point context
type sc_f xcast _cont ext. See Chapter 6.8.7. The cast _swi tch
parameter cannot change after declaration.

observer

A pointer to an observer object. The obser ver argument is of type
sc_fxnum observer*. See Chapter 11.25. The default value for obser ver
is O (null pointer). The obser ver parameter cannot change after declaration.

Copy Constructor
sc_ufixed( const sc_ufixed<WI,Q O N>& );

Operators
The operators defined for the sc_uf i xed are given in Table 35.

Table 35. Operators for sc_ufixed

Qper at or Operators in class
cl ass

Bi tw se ~ & N |

369 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Arithnetic ) 4+ - << >> ++ --

Equality == | =

Rel ati onal <<= >>=

Assi gnment = *= [= 4= -= <<= >>= &= = | =
Note:

Operator << and operator >> define arithmetic shifts, not bitwise shifts. The
difference is that no bits are lost and proper sign extension is done.

In expressions with the non-bitwise operators from Table 35, fixed-point types
can be mixed with all types given:
type_in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, fl oat, douple, const char*, intaﬁ,
ui nt 64, const sc_int _base & const sc_uint_base &,
const sc_signed& const sc_unsigned, const sc_fxval &,
const sc_fxval fast& const sc_[u]fix& const
sc [u]fix fast& }

The return type of any arithmetic operation is the fixed-point value type, which
guarantees that the operation is performed without overflow or quantization.

A floating-point variable or a fixed-point value variable can contain one of the
special values +Inf (plus infinity), -Inf (minus infinity), or Nan (not a number).
Assignment of one of these special values to a fixed-point variable will produce
a runtime error.

For the fixed-point types, a minimal set of bitwise operators is defined. These
bitwise operators are only defined on either the signed fixed-point types or the
unsigned fixed- point types. Mixing between signed and unsigned fixed-point
types is not allowed. Mixing with any other type is also not allowed.

The semantics of the bitwise operators is as follows. For the unary ~ operator,
the type of the result is the type of the operand. The bits in the two’s
complement mantissa of the operand are inverted to get the mantissa of the
result. For the binary operators, the type of the result is the maximum aligned
type of the two operands, that is, the two operands are aligned by the binary
point and the maximum integer word length and the maximum fractional word
length is taken. The operands are temporarily extended to this type before
performing a bitwise and, bitwise exclusive-or, or bitwise or.

Member Functions
The functions defined for sc_uf i xed are given in Table 36.

Table 36. Functions for sc_ufixed

Functi on Functions in cl ass
cl ass

370 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Bi tw se b not, b_and, b_xor, b_or
Arithnmetic |neg, mult, div, add, sub, Ishift, rshift

The functions in Table 36 have return type void. The first argument of these
functions is a reference to the result object. The remaining arguments of these
functions are the operands.

For the bitwise functions, the type of the result is sc_ufixed, and the type of the
operands are either both sc_ufi xed or a mix of sc_ufi xed and
sc_ufi xed fast

The neg arithmetic function takes one operand, the other arithmetic functions

take two operands. At least one of the operands of the arithmetic functions

should have a fixed- point type, the other operand can have any of the types

given:

type_in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, float, double, const char*, int64,

ui nt 64, const sc_i nt_baseT&, const sc_ui nt_baseT&,
const sc_signed& const sc_unsigned, const sc_fxval &,
const sc_fxval _fast& const sc_[u]fix& const
sc_[u]fix fasté& }

The arithmetic functions are defined twice: once with the result object of type
sc_fxval, and once with the result object of type sc_fixed or sc_ufixed.

Bit Selection .
const sc_fxnumbitref operator [] ( int i) const;
sc_fxnum_bitrefT operator [] ( int i);

const sc_fxnum_pi tref' bi t( int i) const;
sc_fxnum bitref bit( int i);

These functions take one argument of type int, which is the index into the fixed-
point mantissa. The index argument must be betweenw -1 (MSB) and 0
(LSB). Otherwise, a runtime error is produced. The return type of the bit

selection functions is (const or non- const) sc_f xnum bi t r ef T, which is a
proxy class. The proxy class allows bit selection to be used both as r val ue
(for reading) and | val ue (for writing). For bit selection, the fixed-point binary
point is ignored.

Part Selection .

const sc_fxnum subref operator () ( int, int ) const;
T : :

sc_fxnum subr ef operator () ( int, int );

const sc_fxnum_subrefJr range( int, int ) const;

371 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual
sc_fxnum subr ef ! range( int, int );

These functions take two arguments of type i nt , which are the begin and end
indices into the fixed-point mantissa. The index arguments must be between
w - 1 (MSB) and 0 (LSB). Otherwise, a runtime error is produced. The return

type of the part selection functions is (const or non-const) sc_f xnum subr ef T,
which is a proxy class that behaves like type sc_bv_base. The proxy class
allows part selection to be used both as r val ue (for reading) and | val ue (for
writing). All operators and methods that are available for type sc_bv_base are
also available for part selection. For part selection, the fixed-point binary point

is ignored.

const sc_fxnum_subrefT operator () () const;
T
sc_fxnum subr ef operator () ();

const sc_fxnum_fubrefJr range() const;
sc_fxnum subr ef range() ;

As a shortcut for part selection of the complete mantissa, operator () and the
range() method can be called without any arguments.

Query Parameters
const sc_fxcast _switch&
cast _switch() const;

Returns the cast switch parameter.

i nt
iw () const;
Returns the integer word length parameter.

i nt
n_bits() const;
Returns the number of saturated bits parameter.

sc_o_node
o_node() const;
Returns the overflow mode parameter.

sc_qg_node
g_node() const;
Return the quantization mode parameter.

const sc_fxtype_parans&

type_parans() const;
Returns the type parameters.

372 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

i nt
W () const;
Returns the total word length parameter.

Query Value
bool
i s_neg() const;
Returns true if the variable holds a negative value. Returns false otherwise.

bool
is_zero() const;
Returns true if the variable holds a zero value. Returns false otherwise.

bool

overflow flag() const;
Returns true if the last write action on this variable caused overflow. Returns
false otherwise.

bool
guanti zation_flag() const;

Returns true if the last write action on this variable caused quantization.
Returns false otherwise.

const sc_fxval
val ue() const;
Returns the value.

Implicit Conversion
oper at or doubl e() const;
Implicit conversion to the implementation type doubl e. The value does not
change, if the wordlength of the sc_uf i xed is less than or equal to 53 bits.

Explicit Conversion

short to_short() const;

unsi gned short to_ushort() const;
i nt to_int() const;

unsi gned i nt to uint() const;

| ong to I ong() const;
unsi gned | ong to_ul ong() const;
f | oat to float() const;
doubl e t o_doubl e() const

const sc_string to_string() const;

const sc_string to_string( sc_nunrep ) const;

const sc_string to_string( sc_nunrep, bool ) const;

const sc_string to_string( sc_fnt ) const;

const sc_string to_string( sc_nunrep, sc_fm ) const;

const sc_string to_string( sc_nunrep, bool, sc_fnt ) const;

373 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

The value of a fixed-point variable can be converted to a character string
with the to_string() method. This method takes different arguments for
formatting purposes. See Chapter 6.8.8 for more information on converting
fixed-point variables to/from character strings. Furthermore, writing to C++
output streams with operator << is supported, e.g. cout << a;, where a is a
fixed-point variable. The decimal number representation is used in this case.

const sc_string to_dec() const;
const sc_string to_bin() const;
const sc_string to_oct() const;
const sc_string to_hex() const;

Shortcut methods for conversion to a character string. See Chapter 6.8.9.2.

Print or dump content
voi d
print( ostream& = cout ) const;

Print the sc_uf i xed instance value to an output stream.

voi d
scan( istream& = cin );

Read an sc_uf i xed value from an input stream.

voi d
dunp( ostrean& = cout )
const ;

Prints the sc_uf i xed instance value, parameters and flags to an output

stream.

ostream&
operator << ( ostream& os, const sc_ufixed& a )

374

Print the instance value of a to an output stream os.

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.72 sc_ufixed_fast

Synopsis
tenplate <int W int
sc_g_node Q = SC 'DEFAULT ~ Q MODE
sc_o_node O = SC DEFAULT O MODE , int N =
SC DEFAULT_N BI TS >
class sc_ufixed fast : public sc_ufix_fast

_
public:
/'l constructors
explicit sc_ufixed_fast( sc_fxnumfast_observer* = 0 );
explicit sc_ufixed_fast( const sc_fxcast_swtchg&,
sc_fxnum fast observer* = 0 );

#define DECL_CTORS T A(tp) \
sc_ufixed fast( tp, sc_fxnumfast _observer* =0 ); \
sc_ufixed fast( tp, const sc_fxcast_switch& \
sc_fxnum fast_observer* = 0 );

#define DECL_CTORS T B(tp) \
explicit sc_ufixed_fast \
( tp, sc_fxnumfast observer* =0 ); \
sc_ufixed fast( tp, const sc_fxcast_switch& \
sc_fxnum fast_observer* = 0 );

DECL_CTORS_T_A(i nt)

DECL_CTORS T_A(unsigned int)
DECL_CTORS T _A(!| ong)

DECL_CTORS T _A(unsi gned | ong)
DECL_CTORS_T_A(doubl e)

DECL_CTORS T _A(const char*)
DECL_CTORS T A(const sc_fxval &)
DECL_CTORS T _A(const sc_fxval _fast&)
DECL_CTORS T _A(const sc_fxnunmg)
DECL_CTORS T _A(const sc_fxnum fast &)
DECL_CTORS_T_B(i nt 64)
DECL_CTORS_T_B(ui nt 64)

DECL_CTORS T B(const sc_int_base&)
DECL_CTORS_T B(const sc_uint_base&)
DECL_CTORS T B(const sc_si gned&)
DECL_CTORS T B(const sc_unsi gned&)

#undef DECL _CTORS T A
#undef DECL _CTORS T B

/1 copy constructor
sc_ufixed fast( const sc_ufixed fast<Wl,Q O N>& );

/| assignment operators

sc_ufixed fast& operator = ( const
sc_ufixed fast<WIl,Q O N>& );

375 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

#define DECL_ASN OP_T(op,tp)\
sc_ufixed fast& operator op ( tp );

#i f ndef SC_FX EXCLUDE OTHER

#define DECL_ASN OP OTHER(op) \
DECL_ASN OP_T(op, i nt 64) \
DECL_ASN_OP_T( op, ui nt 64)\
DECL_ASN_OP_T(op, const sc_int_base&) \
DECL_ASN_OP_T(op, const sc_ui nt _base&) \
DECL_ASN_OP_T(op, const sc_si gned&)\
DECL_ASN_OP_T(op, const sc_unsi gned&)

#el se

#defi ne DECL_ASN OP_OTHER( op)

#endi f

#define DECL_ASN OP(op) \
DECL_ASN_COP_T(op, i nt) \
DECL_ASN OP_T(op, unsigned int)\
DECL_ASN_OP_T( op, long) \
DECL_ASN_OP_T(op, unsi gned long) \
DECL_ASN_OP_T( op, doubl e)\
DECL_ASN_OP_T(op, const char*) \
DECL_ASN_OP_T(op, const sc_fxval & \
DECL_ASN _OP_T(op, const sc_fxval _fast&) \
DECL_ASN_OP_T(op, const sc_fxnum&) \
DECL_ASN_OP_T(op, const sc_fxnum fast& \
DECL_ASN_OP_OTHER( op)

DECL_ASN OP(=)

DECL_ASN OP(*=)

DECL_ASN OP(/ =)

DECL_ASN_OP( +=)

DECL_ASN OP( - =)

DECL_ASN OP_T(<<=,int)

DECL_ASN OP_T(>>=,int)

DECL_ASN OP_T( &=, const sc_ufi x&)
DECL_ASN OP T(& const sc_ufix fast&)
, const sc_ufix&)
,const sc_ufix_fast&)
, const sc_ufix&)
,const sc_ufix_fast&)

I
I
N
N

#undef DECL _ASN OP T
#undef DECL_ASN OP_OTHER
#undef DECL_ASN OP

/1 auto-increnment and aut o-decrenent
const sc_fxval _fast operator ++ ( int );
const sc_fxval fast operator -- ( int );
sc_ufixed _fast& operator ++ ();
sc_ufixed fast& operator -- ();

376 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Description

Templatized type sc_uf i xed_f ast is an unsigned type. The fixed-point type
parameters wl, iwl, g_mode, o_mode, and n_bits are part of the type in
sc_ufixed _fast. Itisrequired that these parameters be constant expressions.
See Chapter 6.8.1.

sc_ufi xed _fast provides the same APl as sc_ufi xed.

sc_ufi xed_f ast uses double precision (floating-point) values. The mantissa of
a double precision value is limited to 53 bits. This means that bit-true behavior
cannot be guaranteed with the limited precision types. For bit-true behavior with
the limited precision types, the following guidelines should be followed:

Make sure that the word length of the result of any operation or expression does
not exceed 53 bits.

The result of an addition or subtraction requires a word length that is one bit
more than the maximum aligned word length of the two operands.

The result of a multiplication requires a word length that is the sum of the word
lengths of the two operands.

Declaration syntax

sc_ufixed fast <wl,iwl[,qg_node[,o _node[,n_bits]]]>

var_nane([init_val][,cast_sw tch])

[, observer]);

wi
The total number of bits in the fixed-point format. The wl argument is of type int
and must be greater than zero. Otherwise, a runtime error is produced. The wl
argument must be a constant expression. The total word length parameter
cannot change after declaration.
iwl
The number of integer bits in the fixed-point format. The iwl argument is of type
int and can be positive or negative. See Chapter 6.8.1. The iwl argument must
be a constant expression. The number of integer bits parameter cannot change
after declaration.
q_mode
The quantization mode to use. The q_mode argument is of type sc_q_mode.
Valid values for g_mode are given in Chapter 6.8.2.2 . The q_mode argument
must be a constant expression. The default value for g_mode is obtained from
the set of built-in default values. See Chapter 6.8.8. The quantization mode
parameter cannot change after declaration.
0_mode
The overflow mode to use. The o_mode argument is of type sc_o_mode. Valid
values for o_mode are given in Chapter 6.8.2.1 . The o_mode argument must
be a constant expression. The default value for o_mode is obtained from the
set of built-in default values. See Chapter 6.8.8. The overflow mode parameter
cannot change after declaration.

377 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

n_bits

The number of saturated bits parameter for the selected overflow mode. The
n_bits argument is of type int and must be greater than or equal to zero.
Otherwise, a runtime error is produced. The n_bits argument must be a
constant expression. If the overflow mode is specified, the default value is zero.
If the overflow mode is not specified, the default value is obtained from the set
of built-in default values. See Chapter 6.8.8. The number of saturated bits
parameter cannot change after declaration.

Examples

sc_ufixed _fast<32, 32> a;
sc_ufixed fast<8,1,SC RND> c(b);
sc_ufixed fast<8,8> ¢ = “0.1";
sc_ufixed fast<8,8> d = 1;
sc_ufixed<l16,8> e = 2;

sc_ufixed fast<16,16> f = d + e;
d *= 2;

Public Constructor

explicit sc_ufixed fast ([type_ init_val]
[, const sc_fxcast _swi tch& cast_swtch]
[, sc_fxnumfast observer* observer]);

type_in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, float, double, const char*, intaﬁ,
ui nt 64, const sc_int _base & const sc_uint_base &,
const sc_signed& const sc_unsigned, const sc_fxval &,
const sc_fxval _fast& const sc_[u]fix& const
sc_[u]fix fasté& }

Notes ont ype_

For all typesintype_ ,exceptsc_[u]fixandsc_[u]fix_fast, onlythe
value of the argument is taken, that is, any type information is discarded. This
ensures that initialization during declaration and initialization after declaration
behave identical.

A fixed-point variable can be initialized with a C/C++ character string (type
const char*) either when the number will be expressed in binary form or when
the number is too large to be written as a C/C++ built-in type literal

init_val

The initial value of the variable. If the initial value is not specified, the instance
is uninitialized.

cast_switch

The cast switch, which allows to switch fixed-point type casting on or off. Valid
values for cast _swi t ch are:

SC_OFF for casting off

378 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

SC_ON for casting on

The default value for cast _swi t ch is obtained from the fixed-point context
type sc_f xcast _cont ext. See Chapter 6.8.7. The cast _swi tch
parameter cannot change after declaration.

observer

A pointer to an observer object. The obser ver argument is of type
sc_fxnum fast _observer*. See Chapter 11.24. The default value for
obser ver is 0 (null pointer). The obser ver parameter cannot change after
declaration.

Copy Constructor
sc_ufixed fast( const sc_ufixed fast<Wl,Q O N>& );

Operators
The operators defined for the sc_uf i xed_f ast are given in Table 37.

Table 37. Operators for sc_ufixed_fast

Oper at or OQperators in class
cl ass
Bitw se ~ & N
Arithmetic o/ o+ - << >> 4+ --
Equality == | =
Rel at i onal <<= >>=
Assi gnnent = *= [= 4= -= <<= >>= &= = | =

Note:
Operator << and operator >> define arithmetic shifts, not bitwise shifts. The
difference is that no bits are lost and proper sign extension is done.

In expressions with the non-bitwise operators from Table 37, fixed-point types
can be mixed with all types given:
type_ in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, float, doupl e, const char*, int 6T4,
ui nt 64, const sc_int _base & const sc_uint_base &,
const sc_signed&, const sc_unsigned, const sc_fxval &,
const sc_fxval _fast& const sc_[u]fix& const
sc_[u]fix fast& }

The return type of any arithmetic operation is the fixed-point value type, which
guarantees that the operation is performed without overflow or quantization.

A floating-point variable or a fixed-point value variable can contain one of the
special values +Inf (plus infinity), -Inf (minus infinity), or Nan (not a number).
Assignment of one of these special values to a fixed-point variable will produce
a runtime error.

379 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

For the fixed-point types, a minimal set of bitwise operators is defined. These
bitwise operators are only defined on either the signed fixed-point types or the
unsigned fixed- point types. Mixing between signed and unsigned fixed-point

types is not allowed. Mixing with any other type is also not allowed.

The semantics of the bitwise operators is as follows. For the unary ~ operator,
the type of the result is the type of the operand. The bits in the two’s
complement mantissa of the operand are inverted to get the mantissa of the
result. For the binary operators, the type of the result is the maximum aligned
type of the two operands, that is, the two operands are aligned by the binary
point and the maximum integer word length and the maximum fractional word
length is taken. The operands are temporarily extended to this type before
performing a bitwise and, bitwise exclusive-or, or bitwise or.

Member Functions
The functions defined for sc_ufi xed_f ast are given in Table 38.

Table 38. Functions for sc_ufixed_fast

Functi on Functions in cl ass
cl ass
Bitw se b not, b_and, b _xor, b _or

Arithnmetic |neg, mult, div, add, sub, Ishift, rshift

The functions in Table 38 have return type void. The first argument of these
functions is a reference to the result object. The remaining arguments of these
functions are the operands.

For the bitwise functions, the type of the result is sc_ufixed_fast, and the type of
the operands are either both sc_ufi xed fast or a m x of
sc_fixed fast andsc_ufixed fast.

The neg arithmetic function takes one operand, the other arithmetic functions
take two operands. At least one of the operands of the arithmetic functions
should have a fixed- point type, the other operand can have any of the types
given:
type_ in {short, unsigned short, int, unsigned int, |ong,
unsi gned | ong, float, double, const char*, int64,
ui nt 64, const sc_int_base & const sc_uint_base &,
const sc_signed&, const sc_unsigned, const sc_fxval &,
const sc_fxval _fast& const sc_[u]fix& const
sc_[u]fix fast& }

The arithmetic functions are defined twice: once with the result object of type
sc_fxval, and once with the result object of type sc_fixed_fast or sc_ufixed_fast.

Bit Selection

380 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

const sc_fxnum_Jtr)itrefJr operator [] ( int i) const;
sc_fxnum bitref operator [] ( int i);

const sc_fxnum_?i tref' bi t( int i) const;
sc_fxnum bitref bit( int i);

These functions take one argument of type int, which is the index into the fixed-
point mantissa. The index argument must be betweenw -1 (MSB) and O
(LSB). Otherwise, a runtime error is produced. The return type of the bit

selection functions is (const or non- const) sc_f xnum bi t r ef T, which is a
proxy class. The proxy class allows bit selection to be used both as r val ue
(for reading) and | val ue (for writing). For bit selection, the fixed-point binary
point is ignored.

Part Selection .

const sc_fxnum subref operator () ( int, int ) const;
T : .

sc_f xnum subr ef operator () ( int, int );

const sc_fxnum_fubrefJr range( int, int ) const;
sc_fxnum subr ef range( int, int );

These functions take two arguments of type i nt , which are the begin and end
indices into the fixed-point mantissa. The index arguments must be between
w - 1 (MSB) and 0 (LSB). Otherwise, a runtime error is produced. The return

type of the part selection functions is (const or non-const) sc_f xnum subr ef T,

which is a proxy class that behaves like type sc_bv_bas eT. The proxy class
allows part selection to be used both as r val ue (for reading) and | val ue (for

writing). All operators and methods that are available for type sc_bv_bas eT
are also available for part selection. For part selection, the fixed-point binary
point is ignored.

const sc_fxnum_subrefJr operator () () const;
T
sc_fxnum subr ef operator () ();

const sc_fxnum_§ubrefJr range() const;
sc_fxnum subr ef range() ;

As a shortcut for part selection of the complete mantissa, operator () and the
range() method can be called without any arguments.

Query Parameters
const sc_fxcast_sw tch&

381 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

cast _switch() const;
Returns the cast switch parameter.

i nt
iw () const;
Returns the integer word length parameter.

i nt
n_bits() const;
Returns the number of saturated bits parameter.

sc_o_node
o_node() const;
Returns the overflow mode parameter.

sc_g_node
g_node() const;

Return the quantization mode parameter.

const sc_fxtype_parans&
type_parans() const;
Returns the type parameters.

i nt
w () const;
Returns the total word length parameter.

Query Value
bool
i s_neg() const;
Returns true if the variable holds a negative value. Returns false otherwise.

bool
is zero() const;
Returns true if the variable holds a zero value. Returns false otherwise.

bool
overflow flag() const;

Returns true if the last write action on this variable caused overflow. Returns
false otherwise.

bool
guanti zation_flag() const;
Returns true if the last write action on this variable caused quantization.

Returns false otherwise.
const sc_fxval

val ue() const;
Returns the value.

382 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Implicit Conversion
oper at or doubl e() const;
Implicit conversion to the implementation type doubl e. The value does not
change, if the wordlength of the sc_uf i xed_f ast is less than or equal to
53 bits.

Explicit Conversion

short to_short() const;

unsi gned short to_ushort() const;
i nt to_int() const;

unsi gned i nt to_uint() const;

| ong to_long() const;
unsi gned | ong to_ul ong() const;
f | oat to float() const;
doubl e t o_doubl e() const

const sc_string to_string() const;

const sc_string to_string( sc_nunrep ) const;

const sc_string to_string( sc_nunrep, bool ) const;

const sc_string to_string( sc_fm ) const;

const sc_string to_string( sc_nunrep, sc_fm ) const;

const sc_string to_string( sc_nunrep, bool, sc fnt ) const;
The value of a fixed-point variable can be converted to a character string
with the to_string() method. This method takes different arguments for
formatting purposes. See Chapter 6.8.8 for more information on converting
fixed-point variables to/from character strings. Furthermore, writing to C++
output streams with operator << is supported, e.g. cout << a;, where a is a
fixed-point variable. The decimal number representation is used in this case.

const sc_string to_dec() const;
const sc_string to_bin() const;
const sc_string to_oct() const;
const sc_string to_hex() const;

Shortcut methods for conversion to a character string. See Chapter 6.8.9.2.

Print or dump content
voi d
print( ostream& = cout ) const;
Print the sc_uf i xed_f ast instance value to an output stream.

voi d
scan( istream& = cin );
Read an sc_ufi xed_f ast value from an input stream.

voi d

dunp( ostrean& = cout )

const;
Prints the sc_ufi xed_f ast instance value, parameters and flags to an
output stream.

383 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

ostream&
operator << ( ostream& os, const sc_ufixed fast& a )
Print the instance value of a to an output stream os.

384 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.73 sc_uint

Synopsis
tenplate <int W
cl ass sc_uint
public sc_uint _base

1
public:
/'l constructors
sc_uint();
sc_uint( uinté4 v );
sc_uint( const sc_uint<W& a );
sc_uint( const sc_uint_base& a );
sc_uint( const sc_uint_subref r& a);
tenpl ate <class T1, class T2>
sc_uint( const sc_uint_concref r<Tl, T2>& a );
sc_uint( const sc_signed& a );
sc_uint( const sc_unsigned& a );
explicit sc_uint( const sc_fxval& a );
explicit sc_uint( const sc_fxval _fast& a );
explicit sc_uint( const sc_fxnum& a );
explicit sc_uint( const sc_fxnumfast& a );
sc_uint( const sc_bv_base& a );
sc_uint( const sc_|v_base& a );
sc_uint( const char* a );
sc_uint( unsigned long a );
sc_uint( long a);
sc_uint( unsigned int a);
sc_uint( int a);
sc_uint( int64 a );
sc_uint( double a);

/| assignnment operators

sc_ui nt<Wt& operator = ( uint64 v );

SC_ui nt <W-& oper at or ( const sc_uint_base& a );
SC_ui nt <W-& oper at or ( const sc_uint_subref r& a);
SC_ui nt <W-& oper at or ( const sc_uint<W& a );
tenpl ate <class T1, class T2>

SC_ui nt <W-& operator = ( const

sc_uint_concref _r<T1,T2>& a );

SC_ui nt <W-& operator = ( const sc_signed& a );
SC_ui nt <W-& oper at or const sc_unsigned& a );
SC_ui nt <W-& oper at or const sc_fxval & a );
Sc_ui nt <Ws& oper at or const sc_fxval _fast& a );
SC_ui nt <W-& oper at or const sc_fxnun& a );
Sc_ui nt <Ws& oper at or const sc_fxnumfast& a );
SC_ui nt <W-& oper at or const sc_bv_base& a );
SC_ui nt <W-& oper at or const sc_|lv_base& a );
SC_ui nt <W-& oper at or const char* a );
SC_ui nt <W-& oper at or unsigned long a );

ANTNNNANANANAN NN NN

SC_ui nt <W-& oper at or long a );
Sc_ui nt <Ws& oper at or unsigned int a);
Sc_ui nt <Wt& oper at or int a);

385 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

SC_ui nt <Wt& oper at or
SC_ui nt <Wt& oper at or

(int64 a);
( double a );

/'l arithnmetic aSS|gnnent operators

Sc_ui nt <Ws& oper at or
sc_ui nt <W& oper at or
SC_ui nt <Wt& oper at or
SC_ui nt <Wt& oper at or
SC_ui nt <Wt& oper at or

ui nt 64
ui nt 64
ui nt 64
ui nt 64
ui nt 64

*
|
AUNTNNANAN

/'l bitw se assignnent operators

SC_ui nt <Wt& oper at or
SC_ui nt <W-& oper at or
SC_ui nt <W-& oper at or
SC_ui nt <W-& oper at or
SC_ui nt <Wt& oper at or

/1l prefix and postfix increnment and

SC_ui nt <Wt& oper at or

const sc_uint<Ws operator ++ ( int );

SC_ui nt <Wt& oper at or

const sc_uint<Ws operator -- ( int );

¥

Description

&= ( uint64
| = ( uint64d

<<= ( uint6
>>= ( uint6

<K<K <
N NN

\)
\)

) .
A= (uint64 v g'
4 v
4 v

++ (); [/ prefi

)
)
decrenment operators
X

[l postfix

-- (); /] prefix

[l postfix

sc_ui nt <W- is an unsigned integer with a fixed word length W between 1 and
64 bits. The word length is built into the type and can never change. If the
chosen word length exceeds 64 bits, an error is reported and simulation ends.
All operations are performed with 64 bits of precision with the result converted
to appropriate size through truncation.
Methods allow for addressing an individual bit or a sub range of bits.

Example
SC MODULE( my_nodul e) {
/] data types
SCc_ui nt<3> a;
SC_ui nt <44> b;
/'l process
void my_proc();

SC_CTOR( ny _nodul e)
a(0) // init

b =33; // set value

SC _THREAD( ny_proc) ;

}
};

void my_nodul e::my_proc() {

386 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

a = 1;

b[30] = a[0];

cout << b.range(7,0) << endl;
wai t (300, SC_NS);

sc_stop();

}

Public Constructors
sc_uint();
Create an sc_ui nt instance with an initial value of 0.

sc_uint( uinté64 a) ;
Create an sc_ui nt with value a. If the word length of a is greater then W,
a gets truncated to W bits.

scuint( Ta) ;
Tin { sc_uint, sc_uint _baseT, sc_ui nt_subr efT,
Sc_ui nt_concr ef_f, sc_[un]si gnedT, sc_fxval,
sc_fxval fast, sc [u]fix[ed][ _fast], sc_bv_baseT,
sc_| v_baseT, const char*, [unsigned] |ong, [unsigned]
int, int64, double }
Create an sc_ui nt with value a. If the word length of a is greater then W,
a gets truncated to W bits.

Copy Constructor
sc_uint( const sc_uint&)

Methods
i nt
| engt h() const ;
Return the word length.

voi d
print( ostream& os = cout ) const ;
Print the sc_ui nt instance to an output stream.

void _ _
scan( istream& is = cin ) ;
Read a sc_ui nt value from an input stream.

Reduction Methods

bool and_reduce() const;

bool nand_reduce() const ;

bool nor _reduce() const ;

bool or_reduce() const ;

bool xnor_reduce() const ;

bool xor_reduce() const;

Fin { and nand or nor xor xnor }

387 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Return the result of function F with all bits of the sc_uint instance as input
arguments.

Assignment Operators
sSc_ui nt <W-&
operator = ( uint64 ) ;

SC_ui nt <W-&
operator = ( T ) ;

Tin { sc_uint, sc_ui nt_baseT, SC_ui nt_subrefT,

: + . T
sc_uint_concref , sc_[un]signed, sc_fxval,
sc_fxval _fast, sc_[u]fix[ed][ _fast],

sc_|v_base, sc_|v_base, char*, [unsigned] |ong,
[unsigned] int, int64, double }

Assign the value of the right-hand side to the left-hand side. The value is
truncated, if its word length is greater than W.

Arithmetic Assignment Operators

SC_ui nt <W-&
operator OP ( uint64 ) ;
OPin{ += -=*= /=% }

The operation of OP is performed and the result is assigned to the lefthand
side. If necessary, the result gets truncated.

Bitwise Assignment Operators

sSc_ui nt <W-&
operator OP ( uint64 ) ;
OPin{ & |= "= <<= >>=}

The operation of OP is performed and the result is assigned to the left hand
side. The result gets truncated.

Prefix and Postfix Increment and Decrement Operators
SC_ui nt <W-& operator ++ () ;
const sc_uint<Ws- operator ++ ( int ) ;

The operation of OP is performed as done for type unsigned int.

sc_ui nt <W-& operator -- () ;
const sc_uint<Ws operator -- ( int ) ;

The operation is performed as done for type unsigned int.

Relational Operators
friend bool operator OP (sc_uint, sc_uint )
OPin{ ==!=<<=>>=}
These functions return the boolean result of the corresponding equality/
inequality check.

388 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Bit Selection
sc_uint_bitref operator [
sc_uint_bitref_r operator [
sc_uint_bitref bit( int i
sc uint _bitref r bit( int i

Return a reference to a single bit at index i.

Implicit Conversion
operator uint64() const ;
Implicit conversion to the implementation type uint64. The value does not
change.

Explicit Conversion
double to_double() const ;

i nt to_int() const ;

i nt 64 to_int64() const ;

| ong to_long() const ;

uint64 to_uint64() const ;

unsi gned i nt to_uint() const ;

unsi gned | ong to_ulong() const ;

Converts the value of sc_uint instance into the corresponding data type. If
the requested type has less word length than the sc_uint instance, the
value gets truncated accordingly. If the requested type has greater word
length than the sc_uint instance, the value gets sign extended, if necessary.

389 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.74

Synopsis
cl ass sc_uint_base

sc_uint_base

1

public:

/'l constructors & destructors
explicit sc_uint_base( int w=
sc_length_paran().len() ) ;
sc_uint_base( uint64 v, int w) ;
sc_uint_base( const sc_uint_base& a );

explicit sc_uint_base( const sc_uint_subref r& a);
tenpl ate <class T1, class T2>

explicit sc_uint_base( const sc_uint_concref r<T1, T2>&
a);

explicit sc_uint_base( const sc_signed& a );

explicit sc_uint_base( const sc_unsigned& a );

~sc_ui nt _base();

/| assignnment operators
SC_uint_base& operator = ( uint64 v );
SC_uint_base& operator = ( const sc_uint_base& a );
SCc_uint_base& operator = ( const sc_uint_subref r& a);
tenpl ate <class T1, class T2>
SC_ui nt_base& operator = ( const
sc_uint_concref _r<T1,T2>& a );

SCc_uint_base& operator = ( const sc_signed& a );
SCc_ui nt_base& operator = ( const sc_unsigned& a );
Sc_uint_base& operator = ( const sc_fxval & a );
SC_uint_base& operator = ( const sc_fxval fast& a );
SCc_ui nt_base& operator = ( const sc_fxnun& a );
SC_uint_base& operator = ( const sc_fxnumfast& a );
SC_uint_base& operator = ( const sc_bv_base& a );
SC_uint_base& operator = ( const sc_|v_base& a );
Sc_uint_base& operator = ( const char* a );
SCc_uint_base& operator = ( unsigned long a );
Sc_uint_base& operator = ( long a );

SC_uint_base& operator = ( unsigned int a);
Sc_uint_base& operator = ( int a);

SC_uint_base& operator = ( int64 a );

Sc_uint_base& operator = ( double a );

[l arithmetic assignnment operators

SC_uint_base& operator += ( uint64 v );
SC_uint_base& operator -= ( uinté4 v );
SC_uint_base& operator *= ( uint64 v );
SCc_uint_base& operator /= ( uinté4 v );
Sc_uint_base& operator % ( uint64 v );
/1l bitw se assignnent operators
SCc_uint_base& operator & ( uint64 v );
sc_ui nt_base& operator |= ( uint64 v );
SCc_uint_base& operator "= ( uint64 v );

390 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

SCc_uint_base& operator <<= ( uint64 v );
Sc_uint_base& operator >>= ( uint64 v );

[l prefix and postfix increnment and decrenment operators
sc_ui nt _base& operator ++ ();
const sc_uint_base operator ++ ( int );

Il

sc_ui nt _base& operator -- ();
const sc_uint_base operator -- ( int );
extend_sign(); return tnp; };
rel ati onal operators
friend bool operator == ( const sc_uint_base&
sc_uint_base& b );
friend bool operator != ( const sc_uint_base&
sc_uint_base& b );
friend bool operator < ( const sc_uint_base&
sc_uint_base& b );
friend bool operator <= ( const sc_uint_base&
sc_uint_base& b );
friend bool operator > ( const sc_uint_base&
sc_uint_base& b );
friend bool operator >= ( const sc_uint_base&
sc_uint_base& b );

/1l bit selection
sc_uint_bitref operator [] ( int i );
sc_uint_bitref_r operator [] ( int i ) const;
sc_uint_bitref bit( int i );
sc_uint_bitref _r bit( int i ) const;

/1l part selection

Sc_ui nt _subr ef operator () (
sc_uint_subref_r operator () (

const ;

Sc_ui nt _subr ef range( int left

sc_uint_subref _r range( int left
/'l Met hods

int length() const;

bool and_reduce() const;

bool nand_reduce() const;

bool or_reduce() const;

bool nor_reduce() const

bool xor_reduce() const;

bool xnor_reduce() const;

391

operator uint64() const;
ui nt 64 val ue() const;
int to_int() const;

unsi

gned int to_uint() const;

long to_long() const;

unsi

gned long to_ul ong() const;

int64 to_int64() const;
uint64 to_uint64() const;
doubl e to_doubl e() const;

, int
, int

a, const
a, const
a, const
a, const
a, const
a, const

int right );

right );
right )

int left,
int left, int right )

const;

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

const sc_string to_string( sc_nunrep numrep = SC DEC )
const;

const sc_string to_string( sc_nunrep nunrep, bool
w_prefix ) const;

void print( ostream& os = cout ) const;

void scan( istrean& is = cin );

¥

Description
sc_ui nt _base is an unsigned integer with a fixed word length between 1 and
64 bits. The word length is set when construction takes place and cannot be

changed later.

Public Constructors
explicit
sc_uint_base( int = sc_length _param().len() );
Create an sc_ui nt _base instance with specified word length. Its initial value
is 0.

sc_uint_base( uint64 a, int b );
Create an sc_ui nt _base instance with value a and word length b.

sc_uint _base( T a) ;

T in { sc_uint_subref T, Sc_ui nt_concr ef T, sc_[un] signed }
Create an sc_ui nt _base with value a. The word length of a must not exceed
64 bits. If it does, an error is reported and simulation ends.

Copy Constructor
sc_uint_base( const sc_uint_base& ) ;

Methods
i nt
| engt h() const ;
Return the word length.

voi d
print( ostream& os = cout ) const ;
Print the sc_ui nt _base instance to an output stream.

void _ _
scan( istream& is = cin ) ;
Read a sc_ui nt _base value from an input stream.

Reduction Methods
bool and_reduce() const;
bool nand_reduce() const ;
bool nor_reduce() const ;
bool or_reduce() const ;
bool xnor_reduce() const ;
bool xor_reduce() const;

392 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Fin { and nand or nor xor xnor }
Return the result of function F with all bits of the sc_ui nt _base instance
as input arguments.

Assignment Operators

sc_uint_base& operator = ( uint64 ) ;

sc_uint_base& operator = ( T)

Tin { sc_uint_base, sc_uint_subrefT, sc_uint_concreft
sc_[un]signed, sc_fxval, sc_fxval fast, sc_fxnum
sc_fxnum fast, sc_bv_base, sc_|v_base, char*, [unsigned]
I ong, [unsigned] int, int64, double }

Assign the value of the right-hand side to the left-hand side. The value is
truncated, if its word length does not fit into the sc_uint_base instance on the
left hand side.

Arithmetic Assignment Operators

SC_ui nt _base&

operator OP ( uint64 ) ;

OPin{ += -=*= /=% }
The operation of OP is performed and the result is assigned to the lefthand
side. If necessary, the result gets truncated.

Bitwise Assignment Operators
SC_ui nt _base&
operator OP ( uint64 ) ;

OPin{ & |= "= <<= >>=}
The operation of OP is performed and the result is assigned to the left hand
side.

Prefix and Postfix Increment and Decrement Operators
SC_ui nt _base<Ws& operator ++ () ;
const sc_uint_base<W- operator ++ ( int ) ;
The operation is performed as done for type unsigned int.

SC_ui nt _base<W& operator -- () ;
const sc_uint<Ws operator -- ( int ) ;
The operation is performed as done for type unsigned int.

Relational Operators
friend bool operator OP (sc_uint_base, sc_uint_base ) ;
OPin{ ==1!=<<=>>=}
These functions return the boolean result of the corresponding equality/
inequality check.

Bit Selection
sc_uint_bitref operator [] ( int i ) ;
sc_uint_bitref _r operator [] ( int i ) const ;

393 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

sc_uint_bitref bit( int i) ;
sc_uint_bitref_r bit( int i) const ;

Return a reference to a single bit at index i.

Implicit Conversion
operator uint64() const ;
Implicit conversion to the implementation type uint64. The value does not
change.

Explicit Conversion
double to_double() const

i nt to int() const ;

i nt 64 to_int64() const ;

| ong to_long() const ;

uint64 to_uint64() const ;

unsi gned i nt to_uint() const ;

unsi gned | ong to_ul ong() const

Converts the value of sc_uint_base instance into the corresponding data
type. If the requested type has less word length than the sc_uint_base
instance, the value gets truncated accordingly.

394 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

11.75 sc_unsigned

Synopsis
cl ass sc_unsi gned

{

public:
/'l constructors & destructors
explicit sc_unsigned( int nb =
sc_length_paran().len() );
sc_unsi gned( const sc_unsigned& v );
sc_unsi gned( const sc_signed& v );
~sc_unsi gned()

/| assignnent operators

sc_unsi gned& operator =(const sc_unsi gned& v);

sc_unsi gned& operator =(const sc_unsigned_subref r& a );
tenpl ate <class T1, class T2>

sc_unsi gned& operator = ( const

sc_unsi gned_concref r<T1,T2>& a )

sc_unsi gned& operator =(const sc_signed& v);

sc_unsi gned& operator = (const sc_signed_subref_r& a );
tenpl ate <class T1, class T2>

sc_unsi gned& operator = ( const

sc_signed _concref r<T1l,T2>& a )

sc_unsi gned& oper at or const char* v);

sc_unsi gned& oper at or int64 v);
sc_unsi gned& oper at or uint64 v);
sc_unsi gned& oper at or long Vv);

sc_unsi gned& oper at or unsi gned | ong v);
sc_unsi gned& oper at or int v)

sc_unsi gned& oper at or unsi gned int v)
sc_unsi gned& oper at or double v);

sc_unsi gned& oper at or
sc_unsi gned& oper at or
sc_unsi gned& oper at or
sc_unsi gned& oper at or
sc_unsi gned& oper at or
sc_unsi gned& oper at or
sc_unsi gned& oper at or
sc_unsi gned& oper at or

const sc_int_base& Vv);
const sc_uint_base& v);
const sc_bv_base& );
const sc_|v_base& );
const sc_fxval & );
const sc_fxval fast&);
const sc_fxnun& );
const sc_fxnumfasté& );

NN NN NN NN NN NN NN NN

/1l 1 ncrement operators.
sc_unsi gned& operator ++ ();
const sc_unsigned operator ++ (int);

/| Decrenment operators.

sc_unsi gned& operator -- ();

const sc_unsigned operator -- (int);

/1l bit selection

sc_unsigned_bitref operator [] ( int i )
sc_unsigned _bitref r operator [] ( int i ) const

N—r/ 1

sc_unsigned bitref bit( int i

395 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

396

sc_unsigned _bitref r bit( int i

/1l part selection
sc_unsi gned_subref range( int
sc_unsi gned_subref _r range( i

[
nt
sc_unsi gned_subref operator ()

sc_unsi gned_subref _r operator () ( int

/1l explicit conversions

i nt to_int() const;
unsigned int to_uint() const;
| ong to | ong() const;

unsi gned | ong to_ul ong() const;
i nt 64 to_int64() const;

ui nt 64 to_uint64() const;

doubl e to_doubl e() const;

) const

, int

j

)

i, Iint j

( int

) const
nt j )
int ]

) const

const sc_string to_string( sc_nunrep numrep = SC DEC )

const;

const sc_string to_string( sc_nunrep nunrep,

w_prefix ) const;

/! net hods

void print( ostream& os = cout ) const

void scan( istrean& is = cin );
voi d dunp( ostrean& os = cout )

const;

int length() const { return nbits -

bool iszero() const;
bool sign() const { return O; }
voi d reverse();

/1 ADDition operators

friend sc_signed operator + (const

const sc_signed& Vv);

friend sc_signed operator + (const

const sc_unsigned& Vv);

friend sc_unsigned operator + (const

const sc_unsigned& Vv);

friend sc_signed operator + (const

i nt 64 V) ;

friend sc_unsigned operator + (const

ui nt 64 V) ;

friend sc_signed operator + (const

| ong V),

friend sc_unsigned operator + (const

unsi gned | ong V) ;

friend sc_signed operator + (const

i nt V) ;

1;

}

sc_si gned&

bool

sc_unsi gned& u,

sc_unsi gned& u,

sc_unsi gned& u,

sc_unsi gned& u,

sc_unsi gned& u,

sc_unsi gned& u,

sc_unsi gned& u,

friend sc_unsigned operator + (const sc_unsigned& u,

unsi gned i nt V)

friend sc_signed operator + (int64

u, const sc_unsigned& V) ;

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

397

friend sc_unsigned operator + (uint64

u, const sc_unsigned& Vv);
sc_signed operator + (long

friend

const sc_unsigned& Vv);
friend sc_unsigned operator + (unsigned |ong
const sc_unsigned& Vv);

friend

const sc_unsigned& Vv);
friend sc_unsigned operator + (unsigned int
const sc_unsigned& V)
sc_unsi gned& operator += (const sc_signed& V);

sc_unsi gned&
sc_unsi gned&
sc_unsi gned&
sc_unsi gned&
sc_unsi gned&
sc_unsi gned&
sc_unsi gned&

oper at or

sc_signed operator + (int

+= (const sc_unsigned& v);

operator += (int64

operator += (uint64

operator += (long V) ;
operator += (unsigned | ong V) ;
operator += (int V)
operator += (unsigned int V)

friend sc_unsigned operator + (const sc_unsigned& u,
const sc_uint_base& v);

friend sc_signed operator + (const sc_unsigned& u,
const sc_int_base& V);

friend sc_unsigned operator + (const sc_uint_base& u,
const sc_unsigned& v);

friend sc_signed operator + (const sc_int_base& u,
const sc_unsigned& Vv);

sc_unsi gned& operator += (const sc_int_base& v);
sc_unsi gned& operator += (const sc_uint_base& v);

/1l SUBtraction operators:

friend sc_signed operator
const sc_signed& Vv);
friend sc_signed operator -
const sc_unsigned& Vv);
friend sc_signed operator -
const sc_unsigned& Vv);

(const sc_unsigned& u,

(const sc_signed& u,

(const sc_unsigned& u,

friend sc_signed operator - (const sc_unsigned& u,
i nt 64 V) ;

friend sc_signed operator - (const sc_unsigned& u,
ui nt 64 V) ;

friend sc_signed operator - (const sc_unsigned& u,
| ong V) ;

friend sc_signed operator - (const sc_unsigned& u,
unsi gned | ong V) ;

friend sc_signed operator - (const sc_unsigned& u,
i nt V) ;

friend sc_signed operator - (const sc_unsigned& u,
unsi gned i nt V) ;

friend sc_signed operator - (int64

u, const sc_unsigned& V) ;

friend sc_signed operator - (uint64

u, const sc_unsigned& v);

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

398

friend sc_signed operator
const sc_unsigned& Vv);
friend sc_signed operator
const sc_unsigned& Vv);
friend sc_signed operator
const sc_unsigned& Vv);
friend sc_signed operator
const sc_unsi gned& v)

(1 ong
(unsi gned | ong
(int

(unsi gned int

sc_unsi gned& operator -= (const sc_signed& Vv);
sc_unsi gned& operator -= (const sc_unsigned& v);
sc_unsi gned& operator -= (int64

sc_unsi gned& operator -= (uint64

sc_unsi gned& operator -= (long V) ;
sc_unsi gned& operator -= (unsigned | ong V) ;
sc_unsi gned& operator -= (int V)
sc_unsi gned& operator -= (unsigned int V)
friend sc_signed oper ator - (const sc_unsigned&

const sc_uint_base& v);
friend sc_signed operator
const sc_int_base& V);

friend sc_signed operator
const sc_unsigned& Vv);

friend sc_signed operator
const sc_unsigned& Vv);
sc_unsi gned& operat or -
sc_unsi gned& operator -

= (
= (

/1 MJLtiplication operators:

(const sc_unsi gned&

u,

(const sc_uint_base& u,

(const sc_int_base&

const sc_int_base& v);
const sc_uint_base& v);

friend sc_signed operator * (const sc_unsigned&

const sc_signed& Vv);

friend sc_signed operator * (const sc_signed&

const sc_unsigned& Vv);

friend sc_unsigned operator * (const sc_unsigned&

const sc_unsigned& Vv);

friend sc_signed operator * (const sc_unsigned&

i nt 64 V) ;

friend sc_unsigned operator * (const sc_unsigned&

ui nt 64 V) ;

friend sc_signed operator * (const sc_unsigned&

| ong V),

friend sc_unsigned operator * (const sc_unsigned&

unsi gned | ong V) ;

friend sc_signed operator * (const sc_unsigned&

i nt V) ;

friend sc_unsigned operator * (const sc_unsigned&

unsi gned i nt V)

friend sc_signed operator * (int64

u, const sc_unsigned& V) ;

friend sc_unsigned operator * (uint64

u, const sc_unsigned& Vv);

friend sc_signed operator * (long

const sc_unsigned& Vv);

Copyright 2003 Open SystemC Initiative. All rights reserved

u,

u,



SystemC 2.0.1 Language Reference Manual

399

friend sc_unsigned operator * (unsigned |ong u,
const sc_unsigned& Vv);
friend sc_signed operator * (int u,
const sc_unsigned& Vv);
friend sc_unsigned operator * (unsigned int u,

const sc_unsigned& V)
sc_unsi gned& operator *= (const sc_signed& Vv);
sc_unsi gned& operator *= (const sc_unsigned& v);

sc_unsi gned& operator *= (int64 V) ;
sc_unsi gned& operator *= (uint64 V) ;
sc_unsi gned& operator *= (Il ong V) ;
sc_unsi gned& operator *= (unsigned | ong V) ;
sc_unsi gned& operator *= (int V)
sc_unsi gned& operator *= (unsigned int V)

friend sc_unsigned operator * (const sc_unsigned& u,
const sc_uint_base& Vv);

friend sc_signed operator * (const sc_unsigned& u,
const sc_int_base& V);

friend sc_unsigned operator * (const sc_uint_base& u,
const sc_unsigned& v);

friend sc_signed operator * (const sc_int_base& u,
const sc_unsigned& Vv);

sc_unsi gned& operator *= (const sc_int_base& v);
sc_unsi gned& operator *= (const sc_uint_base& v);

/1 DI Vision operators:

friend sc_signed operator / (const sc_unsigned& u,
const sc_signed& Vv);

friend sc_signed operator / (const sc_signed& u,
const sc_unsigned& Vv);

friend sc_unsigned operator / (const sc_unsigned& u,
const sc_unsigned& Vv);

friend sc_signed operator / (const sc_unsigned& u,

i nt 64 V) ;

friend sc_unsigned operator / (const sc_unsigned& u,
ui nt 64 V) ;

friend sc_signed operator / (const sc_unsigned& u,
| ong V) ;

friend sc unS|gned operator / (const sc_unsigned& u,
unsi gned 1 ong V) ;

friend sc_signed operator / (const sc_unsigned& u,
i nt V) ;

friend sc_unsigned operator / (const sc_unsigned& u,
unsi gned i nt V)
friend sc_signed operator / (int64
u, const sc_unsigned& V) ;
friend sc_unsigned operator / (uint64
u, const sc_unsigned& Vv);

friend sc_signed operator / (long u,
const sc_unsigned& Vv);
friend sc_unsigned operator / (unsigned |ong u,
const sc_unsigned& Vv);
friend sc_signed operator / (int u,

const sc_unsigned& Vv);

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

400

friend sc_unsigned operator / (unsigned int u,
const sc_unsigned& V)

sc_unsi gned& operator /= (const sc_signed& Vv);
sc_unsi gned& operator /= (const sc_unsigned& v);
sc_unsi gned& operator /= (int64 V) ;
sc_unsi gned& operator /= (uint64 V) ;
sc_unsi gned& operator /= (long V) ;
sc_unsi gned& operator /= (unsigned | ong V) ;
sc_unsi gned& operator /= (int V)
sc_unsi gned& operator /= (unsigned int V)

friend sc_unsigned operator / (const sc_unsigned& u,
const sc_uint_base& v);

friend sc_signed operator / (const sc_unsigned& u,
const sc_int_base& V);

friend sc_unsigned operator / (const sc_uint_base& u,
const sc_unsigned& Vv);

friend sc_signed operator / (const sc_int_base& u,
const sc_unsigned& Vv);

sc_unsi gned& operator /= (const sc_int_base& v);
sc_unsi gned& operator /= (const sc_uint_base& v);

/1 MODul o operators:

friend sc_signed operator % (const sc_unsi gned& u,
const sc_signed& Vv);

friend sc_signed operator % (const sc_signed& u,
const sc_unsigned& Vv);

friend sc_unsigned operator % (const sc_unsi gned& u,
const sc_unsigned& v);

friend sc_signed operator % (const sc_unsi gned& u,

i nt 64 V) ;

friend sc_unsigned operator % (const sc_unsi gned& u,
ui nt 64 V) ;

friend sc_signed operator % (const sc_unsi gned& u,
| ong V) ;

friend sc_unsigned operator % (const sc_unsi gned& u,
unsi gned | ong V) ;

friend sc_signed operator % (const sc_unsi gned& u,
i nt V) ;

friend sc_unsigned operator % (const sc_unsi gned& u,
unsi gned i nt V)
friend sc_signed operator % (int64
u, const sc_unsigned& V) ;
friend sc_unsigned operator % (uint64
u, const sc_unsigned& Vv);

friend sc_signed operator % (I ong u,
const sc_unsigned& Vv);
friend sc_unsigned operator % (unsigned | ong u,
const sc_unsigned& Vv);
friend sc_signed operator % (int u,
const sc_unsigned& Vv);
friend sc_unsigned operator % (unsigned int u,

const sc_unsigned& V)
sc_unsi gned& operator % (const sc_signed& Vv);
sc_unsi gned& operator % (const sc_unsigned& v);

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

401

sc_unsi gned& operator % (int64 V) ;
sc_unsi gned& operator % (uint64 V) ;
sc_unsi gned& operator % (I ong V) ;
sc_unsi gned& operator % (unsigned | ong V) ;
sc_unsi gned& operator % (int V)
sc_unsi gned& operator % (unsigned int V)

friend sc_unsigned operator % (const sc_unsi gned& u,
const sc_uint_base& v);

friend sc_signed operator % (const sc_unsigned& u,
const sc_int_base& V);

friend sc_unsigned operator % (const sc_uint_base& u,
const sc_unsigned& Vv);

friend sc_signed operator % (const sc_int_base& u,
const sc_unsigned& Vv);

sc_unsi gned& operator % (const sc_int_base& v);
sc_unsi gned& operator % (const sc_uint_base& v);

/1 Bitw se AND operators:

friend sc_signed operator & (const sc_unsigned& u,
const sc_signed& v);

friend sc_signed operator & (const sc_signed& u,
const sc_unsigned& Vv);

friend sc_unsigned operator & (const sc_unsigned& u,
const sc_unsigned& v);

friend sc_signed operator & (const sc_unsigned& u,

i nt 64 V) ;

friend sc_unsigned operator & (const sc_unsigned& u,
ui nt 64 V) ;

friend sc_signed operator & (const sc_unsigned& u,
| ong V) ;

friend sc_unsigned operator & (const sc_unsigned& u,
unsi gned | ong V) ;

friend sc_signed operator & (const sc_unsigned& u,
i nt V) ;

friend sc_unsigned operator & (const sc_unsigned& u,
unsi gned i nt V)
friend sc_signed operator & (int64
u, const sc_unsigned& V) ;
friend sc_unsigned operator & (uint64
u, const sc_unsigned& Vv);

friend sc_signed operator & (long u,
const sc_unsigned& Vv);
friend sc_unsigned operator & (unsigned |ong u,
const sc_unsigned& Vv);
friend sc_signed operator & (int u,
const sc_unsigned& Vv);
friend sc_unsigned operator & (unsigned int u,

const sc_unsigned& V)
sc_unsi gned& operator &= (const sc_signed& Vv);
sc_unsi gned& operator &= (const sc_unsigned& v);

sc_unsi gned& operator &= (int64 V) ;
sc_unsi gned& operator &= (uint64 V) ;
sc_unsi gned& operator &= (Il ong V) ;
sc_unsi gned& operator &= (unsigned | ong V) ;

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

402

sc_unsi gned& operator &= (int V)
sc_unsi gned& operator &= (unsigned int V)
friend sc_unsigned operator & (const sc_unsigned& u,
const sc_uint_base& v);

friend sc_signed operator & (const sc_unsigned& u,
const sc_int_base& V);

friend sc_unsigned operator & (const sc_uint_base& u,
const sc_unsigned& Vv);

friend sc_signed operator & (const sc_int_base& u,
const sc_unsigned& Vv);

sc_unsi gned& operator &= (const sc_int_base& v);
sc_unsi gned& operator &= (const sc_uint_base& v);

/1l Bitw se OR operators:

friend sc_signed operator | (const sc_unsigned& u,
const sc_signed& v);

friend sc_signed operator | (const sc_signed& u,
const sc_unsigned& Vv);

friend sc_unsigned operator | (const sc_unsigned& u,
const sc_unsigned& v);

friend sc_signed operator | (const sc_unsigned& u,

i nt 64 V) ;

friend sc_unsigned operator | (const sc_unsigned& u,
ui nt 64 V) ;

friend sc_signed operator | (const sc_unsigned& u,
| ong V) ;

friend sc_unsigned operator | (const sc_unsigned& u,
unsi gned | ong V) ;

friend sc_signed operator | (const sc_unsigned& u,
i nt V) ;

friend sc_unsigned operator | (const sc_unsigned& u,
unsi gned i nt V)
friend sc_signed operator | (int64
u, const sc_unsigned& V) ;
friend sc_unsigned operator | (uint64
u, const sc_unsigned& Vv);

friend sc_signed operator | (long u,
const sc_unsigned& Vv);
friend sc_unsigned operator | (unsigned |ong u,
const sc_unsigned& Vv);
friend sc_signed operator | (int u,
const sc_unsigned& Vv);
friend sc_unsigned operator | (unsigned int u,

const sc_unsigned& V)

sc_unsi gned& operator | = (const sc_signed& Vv);
sc_unsi gned& operator | = (const sc_unsigned& v);
sc_unsi gned& operator | = (int64 V) ;
sc_unsi gned& operator | = (uint64 V) ;
sc_unsi gned& operator | = (long V) ;
sc_unsi gned& operator |= (unsigned | ong V) ;
sc_unsi gned& operator | = (int V)
sc_unsi gned& operator | = (unsigned int V)

friend sc_unsigned operator | (const sc_unsigned& u,
const sc_uint_base& v);

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

403

friend sc_signed operator | (const sc_unsigned& u,
const sc_int_base& V);

friend sc_unsigned operator | (const sc_uint_base& u,
const sc_unsigned& Vv);

friend sc_signed operator | (const sc_int_base& u,
const sc_unsigned& Vv);

sc_unsi gned& operator | = (const sc_int_base& v);
sc_unsi gned& operator | = (const sc_uint_base& v);

/1 Bitw se XOR operators:

friend sc_signed operator ~ (const sc_unsigned& u,
const sc_signed& v);

friend sc_signed operator  (const sc_signed& u,
const sc_unsigned& Vv);

friend sc_unsigned operator N (const sc_unsigned& u,
const sc_unsigned& Vv);

friend sc_signed operator ~ (const sc_unsigned& u,

i nt 64 V) ;

friend sc_unsigned operator ® (const sc_unsigned& u,
ui nt 64 V) ;

friend sc_signed operator ~ (const sc_unsigned& u,
| ong V) ;

friend sc_unsigned operator ® (const sc_unsigned& u,
unsi gned | ong V) ;

friend sc_signed operator ~ (const sc_unsigned& u,
i nt V) ;

friend sc_unsigned operator N (const sc_unsigned& u,
unsi gned i nt V)
friend sc_signed operator ™ (int64
u, const sc_unsigned& V) ;
friend sc_unsigned operator " (uint64
u, const sc_unsigned& Vv);

friend sc_signed operator ™ (long u,
const sc_unsigned& Vv);
friend sc_unsigned operator  (unsigned |ong u,
const sc_unsigned& Vv);
friend sc_signed operator ~ (int u,
const sc_unsigned& Vv);
friend sc_unsigned operator  (unsigned int u,

const sc_unsigned& V)
sc_unsi gned& operator ~= (const sc_signed& Vv);
sc_unsi gned& operator ~= (const sc_unsigned& v);

sc_unsi gned& operator "= (int64 V) ;
sc_unsi gned& operator ~= (uint64 V) ;
sc_unsi gned& operator "= (long V) ;
sc_unsi gned& operator "= (unsigned | ong V) ;
sc_unsi gned& operator "= (int V)
sc_unsi gned& operator ~= (unsigned int V)

friend sc_unsigned operator N (const sc_unsigned& u,
const sc_uint_base& v);
friend sc_signed operator ~ (const sc_unsigned& u,
const sc_int_base& V);
friend sc_unsigned operator N (const sc_uint_base& u,
const sc_unsi gned& Vv);

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

friend sc_signed operator ” (const sc_int_base& u,
const sc_unsigned& Vv);

sc_unsi gned& operator ~= (const sc_int_base& v);
sc_unsi gned& operator ~= (const sc_uint_base& v);

/1 LEFT SHI FT operators:

friend sc_unsigned operator << (const sc_unsigned&u,
const sc_signed& v);

friend sc_signed operator << (const sc_signed& u,
const sc_unsigned& Vv);

friend sc_unsigned operator << (const sc_unsigned&u,
const sc_unsigned& Vv);

friend sc_unsigned operator << (const sc_unsigned&u,
i nt 64 V) ;

friend sc_unsigned operator << (const sc_unsigned&u,
ui nt 64 V) ;

friend sc_unsigned operator << (const sc_unsigned&u,
| ong V) ;

friend sc_unsigned operator << (const sc_unsi gned&u,
unsi gned | ong V) ;

friend sc_unsigned operator << (const sc_unsigned&u,
i nt V)

friend sc_unsigned operator << (const sc_unsigned&u,
unsi gned i nt V)

sc_unsi gned& operator <<= (const sc_signed& V);
sc_unsi gned& operator <<= (const sc_unsi gned&v);

sc_unsi gned& operator <<= (int64 V) ;
sc_unsi gned& operator <<= (uint 64 V) ;
sc_unsi gned& operator <<= (long V) ;
sc_unsi gned& operator <<= (unsigned | ong V) ;
sc_unsi gned& operator <<= (int V)
sc_unsi gned& operator <<= (unsigned int V)

friend sc_unsigned operator << (const sc_unsi gned&u,
const sc_uint_base& v);

friend sc_unsigned operator << (const sc_unsigned&u,
const sc_int_base& V);

sc_unsi gned& operator <<= (const sc_int_base&v);
sc_unsi gned& operator <<= (const sc_uint_base& v);

/1 RIGHT SHI FT operators:

friend sc_unsigned operator >> (const sc_unsi gned&u,
const sc_signed& v);

friend sc_signed operator >> (const sc_signed& u,
const sc_unsigned& Vv);

friend sc_unsigned operator >> (const sc_unsi gned&u,
const sc_unsigned& Vv);

friend sc_unsigned operator >> (const sc_unsi gned&u,
i nt 64 V) ;

friend sc_unsigned operator >> (const sc_unsi gned&u,
ui nt 64 V) ;

friend sc_unsigned operator >> (const sc_unsi gned&u,
| ong V) ;

friend sc_unsigned operator >> (const sc_unsi gned&u,
unsi gned | ong V) ;

404 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

405

friend sc_unsigned operator >> (const sc_unsi gned&u,

i nt V)

friend sc_unsigned operator >> (const sc_unsi gned&u,

unsi gned i nt
sc_unsi gned&
sc_unsi gned&
sc_unsi gned&
sc_unsi gned&
sc_unsi gned&
sc_unsi gned&
sc_unsi gned&
sc_unsi gned&

v)
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or

friend sc_unsigned operator >> (

const sc_uint_base& )

friend sc_unsigned operator >> (

const sc_int_base& );

sc_unsi gned& operat or >>= (const
sc_unsi gned& operat or >>= (const

>>= (const sc_signed& V);
>>= (const sc_unsi gned&v);

>>= (int64
>>= (ui nt 64
>>= (long

>>= (unsi gned | ong

>>= (int

>>= (unsigned int

/1l Unary arithnetic operators
friend sc_unsigned operator + (const sc_unsigned& u);

friend sc_signed operator -

/'l Logi cal EQUAL operators:

friend bool operator == (const

sc_si gned&v) ;

friend bool operator == (const

sc_unsi gned&v);

friend bool operator == (const

sc_unsi gned&v);

friend bool operator == (const
v);

friend bool operator == (const
v);

friend bool operator == (const
v);

friend bool operator == (const

unsi gned | ong V) ;

friend bool operator == (const
v)

friend bool operator == (const

unsi gned i nt V)

friend bool operator == (int64

sc_unsi gned&v);

friend bool operator == (uint64

const sc_unsigned& Vv);

friend bool operator
sc_unsi gned&v);
friend bool operator
sc_unsi gned&v);
friend bool operator
sc_unsi gned&v)
friend bool operator
sc_unsi gned&v)

(1 ong

(int

sc_unsi gned&
sc_si gned&

sc_unsi gned&
sc_unsi gned&
sc_unsi gned&
sc_unsi gned&
sc_unsi gned&
sc_unsi gned&

sc_unsi gned&

(unsi gned | ong

(unsi gned int

V)
const sc_unsi gned& ,

sc_int_base&v);
sc_ui nt _base& v);

u,

u,

u,

u,

u,

u,

u,

u,

Copyright 2003 Open SystemC Initiative. All rights reserved

const sc_unsi gnedg&,

(const sc_unsigned& u);

const
const
const
i nt 64
ui nt 64

| ong

i nt

const

const

const

const

const



SystemC 2.0.1 Language Reference Manual

406

friend bool operator
sc_ui nt _base& v);
friend bool operator
sc_int_base&v);
friend bool operator
sc_unsi gned&v);
friend bool operator
sc_unsi gned&v);

/'l Logi cal NOT_EQUAL
friend bool operator
sc_si gned&v) ;

friend bool operator
sc_unsi gned&v);
friend bool operator
sc_unsi gned&v);
friend bool operator

V) ;
friend bool operator

V) ;
friend bool operator

V) ;
friend bool operator
unsi gned | ong V) ;
friend bool operator
V)

friend bool operator
unsi gned i nt V)
friend bool operator
sc_unsi gned&v);
friend bool operator
const sc_unsigned& v
friend bool operator
sc_unsi gned&v);
friend bool operator
sc_unsi gned&v);
friend bool operator
sc_unsi gned&v)
friend bool operator
sc_unsi gned&v)
friend bool operator
sc_ui nt _base& v);
friend bool operator
sc_int_base&v);
friend bool operator
sc_unsi gned&v);
friend bool operator
sc_unsi gned&v);

/'l Logi cal LESS THAN
friend bool operator
sc_si gned&v) ;

friend bool operator
sc_unsi gned&v);

== (const sc_unsigned& u, const
== (const sc_unsigned& u, const
== (const sc_uint_base& u, const
== (const sc_int_base& u, const
operators:

I'= (const sc_unsigned& u, const
I'= (const sc_signed& u, const
I'= (const sc_unsigned& u, const
I'= (const sc_unsigned& u, int64
I'= (const sc_unsigned& u, uint64
I'= (const sc_unsigned& u, |ong
= (const sc_unsigned& u,

= (const sc_unsigned& u, int

= (const sc_unsigned& u,

I'= (int64 u, const
I'= (uint64 u,

?; (1 ong u, const
I'= (unsigned | ong u, const
I'= (int u, const
I'= (unsigned int u, const

I'= (const sc_unsigned& u, const
I'= (const sc_unsigned& u, const
= (const sc_uint_base& u, const
= (const sc_int_base& u, const
operators:

< (const sc_unsigned& u, const

< (const sc_signed&u, const

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

friend bool operator < (const sc_unsigned& u, const

sc_unsi gned&v);

friend bool operator < (const sc_unsigned& u, int64
v);

friend bool operator < (const sc_unsigned& u, uint64
v);

friend bool operator < (const sc_unsigned& u, |ong
v);

friend bool operator < (const sc_unsigned& u,

unsi gned | ong V) ;

friend bool operator < (const sc_unsigned& u, int
v)

friend bool operator < (const sc_unsigned& u,

unsi gned i nt V)

friend bool operator < (int64 u, const

sc_unsi gned&v);

friend bool operator < (uint64 u, const

sc_unsi gned&v);

friend bool operator < (long u, const

sc_unsi gned&v) ;

friend bool operator < (unsigned |ong u, const

sc_unsi gned&v);

friend bool operator < (int u, const

sc_unsi gned&v)

{ return operator<((long) u, v); }

friend bool operator < (unsigned int u, const

sc_unsi gned&v)

{ return operator<((unsigned |ong) u, v); }

friend bool operator < (const sc_unsigned& u, const

sc_ui nt _base& v);

friend bool operator < (const sc_unsigned& u, const

sc_int_base&v);

friend bool operator < (const sc_uint_base& u, const

sc_unsi gned&v);

friend bool operator < (const sc_int_base& u, const

sc_unsi gned&v);

/'l Logical LESS THAN AND EQUAL operators:

friend bool operator <= (const sc_unsigned& u, const

sc_si gned&v) ;

friend bool operator <= (const sc_signed& u, const

sc_unsi gned&v);

friend bool operator <= (const sc_unsigned& u, const

sc_unsi gned&v);

friend bool operator <= (const sc_unsigned& u, int64
v);

friend bool operator <= (const sc_unsigned& u, uint64
v);

friend bool operator <= (const sc_unsigned& u, |ong
v);

friend bool operator <= (const sc_unsigned& u,

unsi gned | ong V)

friend bool operator <= (const sc_unsigned& u, int

v)

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

friend bool operator <= (const sc_unsi gned& u,
unsi gned i nt V)

friend bool operator <= (int64 u, const
sc_unsi gned&v);

friend bool operator <= (uint64 u,
const sc_unsigned& Vv);

friend bool operator <= (long u, const
sc_unsi gned&v);

friend bool operator <= (unsigned |ong u, const
sc_unsi gned&v);

friend bool operator <= (int u, const
sc_unsi gned&v)

friend bool operator <= (unsigned int u, const

sc_unsi gned&v)

friend bool operator <= (const sc_unsigned& u, const
sc_ui nt _base& v);

friend bool operator <= (const sc_unsigned& u, const
sc_int_base&v);

friend bool operator <= (const sc_uint_base& u, const
sc_unsi gned&v) ;

friend bool operator <= (const sc_int_base& u, const
sc_unsi gned&v);

/'l Logi cal GREATER THAN operat ors:

friend bool operator > (const sc_unsigned& u, const
sc_si gned&v) ;

friend bool operator > (const sc_signed&u, const
sc_unsi gned&v);

friend bool operator > (const sc_unsigned& u, const
sc_unsi gned&v);

friend bool operator > (const sc_unsigned& u, int64

V) ;

friend bool operator > (const sc_unsigned& u, uint64
v);

friend bool operator > (const sc_unsigned& u, |ong
v);

friend bool operator > (const sc_unsigned& u,

unsi gned | ong V) ;

friend bool operator > (const sc_unsigned& u, int
V)

friend bool operator > (const sc_unsigned& u,
unsi gned i nt V)

friend bool operator > (int64 u, const
sc_unsi gned&v);
friend bool operator > (uint64 u, const
sc_unsi gned&v);
friend bool operator > (long u, const
sc_unsi gned&v);
friend bool operator > (unsigned |ong u, const
sc_unsi gned&v);
friend bool operator > (int u, const
sc_unsi gned&v)
friend bool operator > (unsigned int u, const

sc_unsi gned&v)

408 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

409

friend bool operator > (const sc_unsigned&

sc_ui nt _base& v);

friend bool operator > (const sc_unsigned&

sc_int_base&v);

friend bool operator > (const

sc_unsi gned&v);

friend bool operator > (const sc_int_base&

sc_unsi gned&v);

/'l Logi cal GREATER THAN AND EQUAL operators:

friend bool operator >=

sc_si gned&v) ;

friend bool operator >=

sc_unsi gned&v);

friend bool operator >=

sc_unsi gned&v);

friend bool operator >=
V),

friend bool operator >=
v);

friend bool operator >=

V) ’
friend bool operator >=
unsi gned | ong V) ;
friend bool operator >=
V)
friend bool operator >=
unsi gned i nt V)
friend bool operator >=
sc_unsi gned&v);
friend bool operator >=
const sc_unsigned& Vv);
friend bool operator >=
sc_unsi gned&v);
friend bool operator >=
sc_unsi gned&v);
friend bool operator >=
sc_unsi gned&v)
friend bool operator >=
sc_unsi gned&v)
friend bool operator >=
sc_ui nt _base& v);
friend bool operator >=
sc_int_base&v);
friend bool operator >=
sc_unsi gned&v);
friend bool operator >=
sc_unsi gned&v);

/1 Bitw se NOT operator

(const sc_unsi gned&
(const sc_signed&
(const sc_unsi gned&
(const sc_unsi gned&
(const sc_unsi gned&
(const sc_unsi gned&
(const sc_unsi gned&
(const sc_unsi gned&
(const sc_unsi gned&
(i nt64

(uint64

(1 ong

(unsi gned | ong

(int

(unsi gned int

(const sc_unsi gned&
(const sc_unsi gned&
(const sc_uint_base&

(const sc_int_base&

(unary).

sc_ui nt _base& u,

u, const
u, const
const
u, const
u, const
u, const
u, const
u, inteé4
u, uinto64

u, long
u,
u, int
u,
u, const
u,
u, const
u, const
u, const
u, const
u, const
u, const
u, const
u, const

friend sc_unsigned operator ~ (const sc_unsigned& u);

Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Description
sc_unsi gned is an integer with an arbitrary word length W. The word length
is specified at construction and can never change.

Public Constructors
explicit
sc_unsigned( int nb );
Create an sc_unsi gned instance with an initial value of 0 and word length nb.

sc_unsi gned( const sc_unsigned& a );
Create an sc_unsi gned instance with an initial value of a and word length of a.

Copy Constructor
sc_unsi gned( const sc_unsigned& );

Methods

bool
i szero() const;
Return true if the value of the sc_unsigned instance is zero.

i nt
| engt h() const ;
Return the word length.

voi d
print( ostream& os = cout ) const ;
Print the sc_ui nt _base instance to an output stream.

voi d
reverse();
Reverse the contents of the sc_unsigned instance. l.e. LSB becomes MSB and

vice versa.

bool
sign() const;
Return false.

void _ _
scan( istream& is = cin ) ;
Read a sc_ui nt _base value from an input stream.

Assignment Operators
sSc_ unsigned& operator = ( T ) ; )
Tin { sc_[un]signed, sc_[un]signed subref
sc_[un] signed _concref , char*, [u]int64, [unsigned]
| ong, [unsigned] int, double, sc [u]int_base,
sc_bv_base, sc_|v_base, sc _fxval, sc_fxval fast,
sc_fxnum sc_fxnumfast }}

410 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Assign the value of the right-hand side to the left-hand side. The value is
truncated, if its word length is greater than W. If not, the value is sign extended.

Increment and Decrement Operators
sc_unsi gned& operator ++ () ;
const sc_unsigned operator ++ ( int ) ;
The operation is performed as done for type unsigned int.

sc_unsi gned& operator -- () ;
const sc_unsigned operator -- ( int ) ;
The operation is performed as done for type unsigned int.

Bit Selection
sc_unsi gned_bi tref operator [
sc_unsigned_bitref_r operator [
sc_unsi gned_bi tref bit( int )
sc_unsigned bitref _r bit( int )

Return a reference to a single bit.

Part Selection
sc_unsi gned_subr ef range( int high, int low);
sc_unsi gned_subref _r range( int high, int low ) const;
sc_unsi gned_subr ef operator () ( int high, int low);
sc_unsi gned_subref r operator () ( int high, int low)
const;
Return a reference to a range of bits. The MSB is set to the bit at position

high, the LSB is set to the bit at position low.

Arithmetic Assignment Operators

friend sc_unsigned operator OP ( sc_unsigned , sc_signed );
friend sc_unsigned operator OP ( sc_signed , sc_unsigned );
friend sc_unsigned operator OP ( sc_signed , sc_signed );
friend sc_unsigned operator OP ( sc_signed , T);
friend sc_unsigned operator OP ( T , sc_signed );
Tin { sc_ [u]int_base, [u]int64, [unsigned] |ong,

[ unsigned] int }
Pin{ +-*/] %&| " ==1=<<=>>=}

friend sc_unsigned operator OP ( sc_unsigned , T );
friend sc_unsigned operator OP ( T, sc_unsigned );
Tin { sc_int_base, int64, long, int }

Pin{ +-*/ %&| N ==1=< <=> >}

The operation OP is performed and the result is returned.

411 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

sc_unsi gned& operator OP (T);

Tin { sc_[un]signed, sc_[u]int_base, [u]int64, [unsigned]
| ong, [unsigned] int }

ODin{+:-:*:/:0/@&:|:/\:}

The operation OP is performed and the result is assigned to the left-hand side.

Shift Operators
friend sc_unsigned operator OP ( sc_unsigned a , sc_signed
b );
friend sc_unsigned operator OP ( sc_signed a , sc_unsigned
b );

friend sc_unsigned operator OP ( sc_signed a, T b );
Tin { sc_[u]int_base, [u]int64, [unsigned] |ong,
[ unsigned] int }
OPin{ << >}
Shift a to the left/right by b bits and return the result.

sc_unsi gned& operator OP ( T );

Tin { sc_[un]signed, sc_[u]int_base, [u]int64, [unsigned]
| ong, [unsigned] int }

OPin{ <<= >>=}

Shift the sc_unsigned instance to the left/right by i bits and assign the result to

the sc_unsigned instance.

Bitwise not

friend sc_unsigned operator ~ ( sc_unsigned a );
Return the bitwise not of a;

Explicit Conversion
sc_string to_string( sc_nunrep = SC DEC ) const
sc_string to_string( sc_nunrep, bool ) const

Convert the sc_unsigned instance into its string representation.

double to_double() const ;

i nt to_int() const ;

i nt 64 to_int64() const ;

| ong to_long() const ;

uint64 to_uint64() const ;

unsi gned i nt to_uint() const ;

unsi gned | ong to_ulong() const ;

Converts the value of sc_unsigned instance into the corresponding data
type. If the requested type has less word length than the sc_unsigned
instance, the value gets truncated accordingly. If the requested type has
greater word length than the sc_unsigned instance, the value gets sign
extended, if necessary.

412 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

12 Global Function Reference

This section contains a summary of the SystemC global functions. The functions
are presented in alphabetical order. The function prototype consists of the return
type, the function name, and the argument type or types. A brief description and
summary of each function follows its prototype. Several of the function
descriptions include examples.

12.1 notify

Prototype

voi d

notify( sc_event& e );

Description
Causes immediate notification of event e.

Prototype
voi d
notify( const sc_tinme& t, sc_event& e );

Description
Ift = SC_ZERO TI ME then causes notification of event e in the next delta-
cycle else schedules notification at current time +t .

Prototype
voi d
notify( double v, sc tinme _unit tu, sc_event& e );

Description
If sc_time(v, tu) = SC ZERO TI ME then causes notification of event
e in the next delta-cycle else schedules notification at current time +
sc_time(v, tu).

12.2 sc_abs

Prototype
tenpl ate <class T>
T
sc_abs( const T& val _ );

Description
Returns the absolute value of val _.

413 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

12.3 sc_close_vcd_trace_file

Prototype
voi d +
sc_close _vcd_ trace file( sc_trace file™* tf );

Description
Closes the trace file t f , which was opened with
sc_create vcd trace file().

12.4 sc_close_wif_trace_file

Prototype
voi d +
sc_close wif _trace file( sc_trace file™* tf );

Description
Closes the trace file t f , which was opened with
sc_create_ wif_trace file().

12.5 sc_copyright

Prototype
const char*
sc_copyright ()

Description
Returns a character string that contains the copyright notice e. g.:
Copyright (c) 1996-2002 by all Contributors
ALL RIGHTS RESERVED

12.6 sc_create_vcd_trace_file

Prototype

sc _trace file*
sc_create_vcd_ trace file( const char* file_nane );

Description
Createsanewsc_vcd_trace_fil e object and opens a VCD trace file
named fi | e_name. Returns a pointer to the sc_vcd_trace_fil e object.
Used for tracing.

12.7 sc_create_wif _trace_file

Prototype
ot
sc _trace file*
sc_create wif _trace file( const char* file_nane );

414 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Description
Createsanewsc_w f_trace fil e object and opens a VCD trace file
named fi | e_name. Returns a pointertothesc_w f_trace_fil e object.
Used for tracing.

12.8 sc_gen_unique_name

Prototype
const char*
sc_gen_uni que_nane( const char* basenane_ );

Description
Using basenane_ as a base, returns a character string that is unique within
the current module (instance) or simulation context.

12.9 sc_get_curr_simcontext

Prototype
sc_si ntont ext *
sc_get _curr_sinctontext();

Description
Returns a pointer to the sc_si ntont ext object that the simulation kernel
maintains.

12.10 sc_get_default_time_unit

Prototype
sc_tinme
sc_get _default_tinme_unit();

Description
Returns the default time unit.

12.11 sc_get_time_resolution

Prototype
sc_tinme
sc_get _time_resolution();

Description
Returns the time resolution.

1212 SC_max

Prototype
tenpl ate <class T>

415 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

T
sc_max( const T& a_val, const T& b_val );

Description
Returns the value of which is greater, a_val orb_val . Ifa_val equals
b _val thena_ val is returned.

12.13 sc_min

Prototype

tenpl ate <class T>
T
sc_mn( const T& a_val, const T& b_val );

Description

Returns the value of which is lesser, a_val orb_val . Ifa_val equals b_val
then a_val is returned.

12.14 sc_set_default_time_unit

Prototype
voi d
sc_set _default _time _unit( double val, sc tine_ unit tu);

Description
Sets the default time unit with a value of sc_time(val, tu). Value val
must be positive and a power of ten. The default time unit value specified must
be greater than or equal to the current time resolution. This function may only
be called once and only during elaboration (Chapter 2.2 ), and only before any
sc_ti me objects unequal SC_ZERO Tl ME are created.

12.15 sc_set_time_resolution

Prototype
voi d
sc_set _time_resolution( double val, sc_tine_unit tu);

Description
Sets the time resolution with a value of sc_ti ne(val, tu). Value mustbe
positive and a power of ten. The time resolution value specified must be
greater than or equal to 1 femtosecond. This function may only be called once
and only during elaboration (Chapter 2.2 ) , and only before any sc_ti ne
objects unequal SC_ZERO TI ME are created.

12.16 sc_simulation_time

Prototype
doubl e

416 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

sc_simulation_time();

Description
Returns a value of type doubl e. The value is the current simulation time in
default time units.

1217 sc_start

Prototype
voi d
sc_start( const sc_tine& duration )

Description
Causes simulation to start and run for the specified amount of time, dur ati on.
If this is the first call to sc_st art () the simulation is first initialized, which
includes running one delta-cycle sequence before time 0. Ifduration is
equal to SC_ZERO TI ME, and this is not the first call to sc_st art () then the
simulation runs one delta-cycle sequence at the current time.

Prototype
voi d
sc_start( double d_val, sc tinme_unit d_tu);

Description
Causes simulation to start and run for the specified amount of time,
sc_tinme(d val, d_tu).Ifthisisthefirstcalltosc_start () the simulation
is first initialized, which includes running one delta-cycle sequence before time
0. If the specified amount of time is equal to SC_ZERO TI ME and this is not
the first call to sc_st art () then the simulation runs one delta-cycle sequence
at the current time.

Prototype
voi d
sc_start( double d val =-1);
Description
Causes simulation to start and run for the specified amount of time,
sc_tinme(d _val, sc_get _default _tine_unit()),i.e. d val
is specified in terms of the current default time unit. If this is the first
calltosc_start () the simulation is first initialized, which includes
running one delta-cycle sequence before time 0. If the value of d_val
is not specified or the value of d_val is —1 then the simulation runs
“forever”. If the specified amount of time is SC_ZERO TI ME and this is
not the first call to sc_st art (), then the simulation runs one delta-
cycle sequence at the current time.

Examples
/1 G ven

417 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

sc_time r_tinme( 1000, SC NS);

/1 Then

sc_start(r_tinme); // run 1000 nSec

sc_start (1000, SC NS); // run 1000 nSec
sc_start( 1000 ); // run 1000 default tine units
sc_start(); // run forever

sc_start(-1); // run forever

12.18 sc_stop

Prototype
voi d
sc_stop();

Description
Halts simulation at the end of the current delta-cycle. Causes sc_start () to
return control to sc_nai n() .

12.19 sc_stop_here

Prototype
voi d
sc_stop_here( const char* id, sc_severity severity );

Description
Called by the simulator after an error or warning situation occurs. The id and
severity of the error or warning are passed to sc_st op_her e() . This function
is provided as a debugging aid.

12.20 sc_time_stamp

Prototype
const sc_tine&
sc_tinme_stanp();

Description
Returns the current simulation time.

12.21 sc_trace

Prototype

/1l for SystenC types

void sc_trace( sc_trace file* tf, const tp& object_, const
sc_string& name_ )

void sc_trace( sc_trace file* tf, const tp* object_, const
sc_string& nane_ );

tp in {sc_logic, sc_[u]int_base, sc_[un]signed, sc_bv_base,
sc_| v_base}

[l for C++ types

418 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

void sc_trace( sc_trace_file* tf, const tp& object_, const

sc_string& nanme_, int width = 8 * sizeof( tp ) )
void sc_trace( sc_trace file* tf, const tp* object_, const
sc_string& name_, int wwdth = 8 * sizeof( tp ) )

tp in {bool, float, double, unsigned char, unsigned short,
unsigned int, unsigned |long, char, short, int, |ong}

/1l for sc_signal channels
tenpl ate <class T>
void sc_trace( sc_trace file* tf, const
sc_signal _in_if<T>& object , const sc_string& nanme_ )
tenpl ate <class T>
void sc trace( sc_trace file* tf, const
sc_signal _in_if<T>& object_, const char* nane_ )
void sc_trace( sc_trace_file* tf, const
sc_signal _in_if<char>& object_, const sc_string& nane_,
int wdth );
void sc_trace( sc_trace file* tf, const
sc_signal _in_if<short>& object , const sc_string& nane_,
int wdth );
void sc_trace( sc_trace file* tf, const
sc_signal _in_if<int>& object , const sc_string& nane_,
int wdth );
void sc_trace( sc_trace file* tf, const
sc_signal _in_if<long>& object_, const sc_string& nane_,
int width );

/1 for enumerated object

void sc_trace( sc_trace file* tf, const unsigned int&
object _, const sc_string& nanme_, const char**
enumliterals );

/1l for sc_signal specialized ports

tenpl ate <class T>

void sc trace( sc_trace file* tf, const sc_in<T>& object _,
const sc_string& nane_ )

tenpl ate <class T>

void sc_trace( sc_trace file* tf, const sc_inout<T>&
obj ect , const sc_string& name_ )

tenpl ate <>

void sc_trace<sc_logic>( sc_trace file* tf, const
sc_in<sc_|l ogi c>& object , const sc_string& nane_ )

tenpl ate <>

void sc_trace<sc_logic>( sc_trace file* tf, const
sc_inout<sc_l ogi c>& object , const sc_string& name_ )

tenpl ate <>

void sc_trace<bool >( sc_trace file* tf, const sc_in<bool >&
obj ect _, const sc_string& nane_ )

tenpl ate <>

voi d sc_trace<bool >( sc_trace_file* tf, const
sc_i nout <bool >& obj ect , const sc_string& nane_ )

Description

419 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

Adds trace of obj ect _ along with the string nane__ to the trace file t f .

12.22 sc_version

Prototype
const char*
sc_version();

Description

Returns a character string with the version of the SystemC class library, e g:
SystemC 2.0.1 --- Jan 8 2003 16:42:30

13 Global Enumerations, Typedefs and Constants

13.1 Enumerations

13.1.1 sc_time_unit
enum sc_tinme_unit

{
SCFS =0, // femosecond
SC PS, /'l picosecond
SC NS, /'l nanosecond
SC _US, /1l mcrosecond
SC M5, /1 mllisecond
SC SEC /'l second

1

13.1.2 sc_logic_value_t
enum sc_|l ogi c_val ue_t

{
Log 0 = O,
Log_1,
Log Z,
Log X

3

13.2 Typedefs

13.2.1 sc_behavior
t ypedef sc_nodul e sc_behavi or

13.2.2 sc_channel
t ypedef sc_nodul e sc_channel ;

13.2.3 clk ports
t ypedef sc_in<bool> sc_in_clk ;

420 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

t ypedef sc_inout<bool > sc_inout _clk ;
t ypedef sc_out <bool > sc_out_clk ;

13.2.4 Data Types

i nt 64
A signed 64 bit integer type
ui nt 64
An unsigned 64 bit integer type

13.3 Constants

13.3.1 SC_DEFAULT_STACK_SIZE

const int SC DEFAULT STACK SIZE;, // value = 0x10000
Sets maximum stack size for thread processes.

13.3.2 SC_LOGIC_

const sc_logic SC LOG C
const sc_logic SC LOG C
const sc_logic SC LOG C_
const sc_logic SC LOG C X

13.3.3 SC_MAX_NUM_DELTA_CYCLES

const int SC MAX NUM DELTA CYCLES; // value = 10000
Sets maximum number of delta-cycles per time step before issuing an error.

13.3.4 SC_ZERO_TIME
const sc tinme SCZEROTIME ; [// value =0

13.3.5 SYSTEMC_DEBUG

Preprocessor macro, not defined by default. If defined when building the
SystemC library, it will activate more internal checks and diagnostic
messages.

> O( )
> 1( )
. Z( Log_Z );
( )

13.3.6 SYSTEMC_VERSION

Preprocessor macro specifying the version of the SystemC library. For
version 2.0.1, the value is 20020405

421 Copyright 2003 Open SystemC Initiative. All rights reserved



SystemC 2.0.1 Language Reference Manual

14 Deprecated items

The following list of items in the reference implementation are deprecated and
are not included in this document:
sensitive_pos()
sensitive_neg()
sensitive_pos
sensitive_neg
sc_create _isdb_file()
sc_close_isdb_file()
sc_cycle()
sc_initialize()

notify _delayed()
end_module()

The following list of items in the reference implementation are under

consideration to be deprecated and are not included in this document:
e SC_CTHREAD

Watching

Local watching

wait_until()

delayed() and associated forms

422 Copyright 2003 Open SystemC Initiative. All rights reserved



	Introduction
	Intent and scope
	Overview of SystemC
	Using the SystemC library

	Execution Semantics
	main() & sc_main()
	Elaboration
	Initialization
	Simulation semantics
	Scheduler Steps

	Simulation functions
	Starting the simulation
	Stopping the simulation
	Obtaining Current Simulation time


	Time
	sc_time
	Time Resolution
	Default Time Unit

	Events
	Event Occurrence
	Event Notification
	Multiple event notifications
	Canceling event notifications

	sc_main() Function
	Module instantiation
	Port binding
	Named Port Binding
	Positional Port Binding

	Simulation function usage
	Function Return

	Data types
	Operators
	Unified String Representation
	Fixed-Precision Integer Types
	Arbitrary Precision Integer Types
	Arbitrary Width Bit Vectors
	Logic Type
	Arbitrary Width Logic Vectors
	Fixed-point Types
	Fixed-Point Format
	Fixed-Point Type Casting
	Overflow Modes
	Quantization Modes

	Fixed-Point Data Types
	Limited Precision Fixed-Point Types

	Fixed-Point Value Type
	Parameter Types
	Parameter Type sc_fxtype_param
	Parameter Type sc_fxcast_switch

	Contexts (informative)
	Fixed-Point Context Types
	Built-in Default Values
	Conversion to/from Character String
	Conversions to Character String
	Shortcut Methods
	Conversion from Character String
	Conversion to/from bit vector Character String

	Fixed-Point Array Declaration
	Observation
	Finite Word length Effects
	Overflow Modes
	Overflow for Signed Fixed-Point Numbers
	Overflow for Unsigned Fixed-Point Numbers

	SC_SAT
	SC_SAT_ZERO
	SC_SAT_SYM
	SC_WRAP
	SC_WRAP_SM
	Quantization Modes
	Quantization for Signed Fixed-Point Numbers
	Quantization for Unsigned Fixed-Point Numbers
	SC_RND
	SC_RND_ZERO
	SC_RND_MIN_INF
	SC_RND_INF
	SC_RND_CONV
	SC_TRN
	SC_TRN_ZERO



	User-defined types

	Modules
	Module structure
	SC_MODULE
	Module Constructors
	SC_CTOR

	SC_HAS_PROCESS
	Module instantiation
	Module Instantiation Not Using Pointers
	Declaration
	Initialization

	Module Instantiation Using Pointers
	Declaration
	Allocation and Initialization

	Port Binding
	Named Port Binding
	Positional Port Binding




	Interfaces, Ports & Channels
	Interfaces
	Channels
	Primitive Channels
	Hierarchical Channels

	Ports
	Specialized ports


	Processes
	Member Function Declaration
	Process Declaration and Registration
	Process Static Sensitivity
	Functional Notation Syntax
	Streaming Style Notation Syntax
	Multiple Processes in a Module

	Method Process
	Method Process Dynamic Sensitivity
	Trigger on Static Sensitivity List
	Trigger On A Single Event
	Trigger After A Specific Amount Of Time
	Trigger On One Event In A List Of Events
	Trigger On All Events In A List Of Events
	Trigger On An Event In A List Of Events With Timeout
	Trigger On All Events In A List Of Events With Timeout


	Thread Process
	Thread Process Dynamic Sensitivity
	Resume On Static Sensitivity List
	Resume On A Single Event
	Resume After A Specific Amount Of Time
	Resume On An Event In A List Of Events
	Resume On All Events In A List Of Events
	Resume On An Event In A List Of Events With Timeout
	Resume On All Events In A List Of Events With Timeout



	Utilities
	Mathematical functions
	Utility functions
	Debugging support
	Tracing


	Class reference
	sc_attr_base
	sc_attribute
	sc_attr_cltn
	sc_bigint
	sc_biguint
	sc_bit
	sc_buffer
	sc_bv
	sc_bv_base
	sc_clock
	sc_event
	sc_event_finder_t
	sc_fifo
	sc_fifo_in
	sc_fifo_in_if
	sc_fifo_out
	sc_fifo_out_if
	sc_fix
	sc_fix_fast
	sc_fixed
	sc_fixed_fast
	sc_fxcast_context
	sc_fxcast_switch
	sc_fxnum_fast_observer
	sc_fxnum_observer
	sc_fxtype_context
	sc_fxtype_params
	sc_fxval
	sc_fxval_fast
	sc_fxval_fast_observer
	sc_fxval_observer
	sc_in
	sc_in_resolved
	sc_in_rv
	sc_inout
	sc_inout_resolved
	sc_inout_rv
	sc_int
	sc_int_base
	sc_interface
	sc_length_context
	sc_length_param
	sc_logic
	sc_lv
	sc_lv_base
	sc_module
	sc_module_name
	sc_mutex
	sc_mutex_if
	sc_object
	sc_out
	sc_out_resolved
	sc_out_rv
	sc_port
	sc_prim_channel
	sc_pvector
	sc_semaphore
	sc_semaphore_if
	sc_sensitive
	sc_signal
	sc_signal_in_if
	sc_signal_inout_if
	sc_signal_resolved
	sc_signal_rv
	sc_signed
	sc_simcontext
	sc_string
	sc_time
	sc_ufix
	sc_ufix_fast
	sc_ufixed
	sc_ufixed_fast
	sc_uint
	sc_uint_base
	sc_unsigned

	Global Function Reference
	notify
	sc_abs
	sc_close_vcd_trace_file
	sc_close_wif_trace_file
	sc_copyright
	sc_create_vcd_trace_file
	sc_create_wif_trace_file
	sc_gen_unique_name
	sc_get_curr_simcontext
	sc_get_default_time_unit
	sc_get_time_resolution
	sc_max
	sc_min
	sc_set_default_time_unit
	sc_set_time_resolution
	sc_simulation_time
	sc_start
	sc_stop
	sc_stop_here
	sc_time_stamp
	sc_trace
	sc_version

	Global Enumerations, Typedefs and Constants
	Enumerations
	sc_time_unit
	sc_logic_value_t

	Typedefs
	sc_behavior
	sc_channel
	clk ports
	Data Types

	Constants
	SC_DEFAULT_STACK_SIZE
	SC_LOGIC_
	SC_MAX_NUM_DELTA_CYCLES
	SC_ZERO_TIME
	SYSTEMC_DEBUG
	SYSTEMC_VERSION


	Deprecated items

