

SystemC 2.0.1 Language Reference Manual

Revision 1.0

Copyright © 2003 Open SystemC Initiative
1177 Braham Lane #302
San Jose, CA 95118-3799

SystemC 2.0.1 Language Reference Manual

Acknowledgements

The SystemC 2.0.1 Language Reference Manual (LRM) was developed by
representatives from different fields including system architects, design and
verification engineers, Electronic Design Automation (EDA) companies and
universities. The primary contributors include:

El Mustapha Aboulhamid
Mike Baird
Bishnupriya Bhattacharya
David Black
Dundar Dumlogal
Abhijit Ghosh
Andy Goodrich
Robert Graulich
Thorsten Groetker
Martin Jannsen
Evan Lavelle
Kevin Kranen
Wolfgang Mueller
Kurt Schwartz
Adam Rose
Ray Ryan
Minoru Shoji
Stuart Swan

Mike Baird served as the Language Reference Manual editor.

 ii

SystemC 2.0.1 Language Reference Manual

1 Introduction..1

1.1 Intent and scope ...1
1.2 Overview of SystemC ...1
1.3 Using the SystemC library ..3

2 Execution Semantics ...4
2.1 main() & sc_main() ...4
2.2 Elaboration ...4
2.3 Initialization...5
2.4 Simulation semantics..5
2.5 Simulation functions ...6

3 Time...7
3.1 sc_time ...7
3.2 Time Resolution..7
3.3 Default Time Unit ..8

4 Events..8
4.1 Event Occurrence...9
4.2 Event Notification..9
4.3 Multiple event notifications..10
4.4 Canceling event notifications ..11

5 sc_main() Function ..12
5.1 Module instantiation..13
5.2 Port binding ..13
5.3 Simulation function usage...14
5.4 Function Return ..14

6 Data types..15
6.1 Operators..15
6.2 Unified String Representation...17
6.3 Fixed-Precision Integer Types ..17
6.4 Arbitrary Precision Integer Types ...18
6.5 Arbitrary Width Bit Vectors..18
6.6 Logic Type ..18
6.7 Arbitrary Width Logic Vectors ...19
6.8 Fixed-point Types ...19
6.9 User-defined types ...62

7 Modules ...63
7.1 Module structure...63

8 Interfaces, Ports & Channels ...70
8.1 Interfaces..70
8.2 Channels ..70
8.3 Ports ...72

9 Processes..74
9.1 Member Function Declaration...74
9.2 Process Declaration and Registration ..75
9.3 Process Static Sensitivity..75
9.4 Method Process..78

 iii

SystemC 2.0.1 Language Reference Manual

9.5 Thread Process ..81
10 Utilities ...85

10.1 Mathematical functions...85
10.2 Utility functions ...85
10.3 Debugging support ...85

11 Class reference ..86
11.1 sc_attr_base ...88
11.2 sc_attribute ...89
11.3 sc_attr_cltn ...91
11.4 sc_bigint ...94
11.5 sc_biguint ...99
11.6 sc_bit ..105
11.7 sc_buffer...112
11.8 sc_bv ..115
11.9 sc_bv_base ..117
11.10 sc_clock ..121
11.11 sc_event..127
11.12 sc_event_finder_t..130
11.13 sc_fifo..132
11.14 sc_fifo_in...137
11.15 sc_fifo_in_if ...140
11.16 sc_fifo_out...142
11.17 sc_fifo_out_if ...145
11.18 sc_fix...147
11.19 sc_fix_fast ...158
11.20 sc_fixed...169
11.21 sc_fixed_fast ...178
11.22 sc_fxcast_context ...187
11.23 sc_fxcast_switch ...189
11.24 sc_fxnum_fast_observer ...191
11.25 sc_fxnum_observer...192
11.26 sc_fxtype_context ...193
11.27 sc_fxtype_params...195
11.28 sc_fxval ...198
11.29 sc_fxval_fast ...208
11.30 sc_fxval_fast_observer ...217
11.31 sc_fxval_observer ...218
11.32 sc_in..219
11.33 sc_in_resolved ..223
11.34 sc_in_rv...225
11.35 sc_inout...227
11.36 sc_inout_resolved ...231
11.37 sc_inout_rv..233
11.38 sc_int...235
11.39 sc_int_base...240
11.40 sc_interface...245

 iv

SystemC 2.0.1 Language Reference Manual

11.41 sc_length_context ...247
11.42 sc_length_param ..248
11.43 sc_logic ...250
11.44 sc_lv..256
11.45 sc_lv_base ..258
11.46 sc_module...263
11.47 sc_module_name..268
11.48 sc_mutex...270
11.49 sc_mutex_if...272
11.50 sc_object...273
11.51 sc_out ...276
11.52 sc_out_resolved..278
11.53 sc_out_rv ..280
11.54 sc_port ..282
11.55 sc_prim_channel ...285
11.56 sc_pvector...289
11.57 sc_semaphore ..293
11.58 sc_semaphore_if...296
11.59 sc_sensitive ..298
11.60 sc_signal ...300
11.61 sc_signal_in_if ..305
11.62 sc_signal_inout_if ...307
11.63 sc_signal_resolved ...308
11.64 sc_signal_rv ..311
11.65 sc_signed..314
11.66 sc_simcontext ...335
11.67 sc_string..337
11.68 sc_time..341
11.69 sc_ufix...344
11.70 sc_ufix_fast ...355
11.71 sc_ufixed...366
11.72 sc_ufixed_fast ...375
11.73 sc_uint...385
11.74 sc_uint_base...390
11.75 sc_unsigned..395

12 Global Function Reference...413
12.1 notify ...413
12.2 sc_abs ..413
12.3 sc_close_vcd_trace_file..414
12.4 sc_close_wif_trace_file...414
12.5 sc_copyright ...414
12.6 sc_create_vcd_trace_file ..414
12.7 sc_create_wif_trace_file ...414
12.8 sc_gen_unique_name ..415
12.9 sc_get_curr_simcontext..415
12.10 sc_get_default_time_unit ..415

 v

SystemC 2.0.1 Language Reference Manual

12.11 sc_get_time_resolution ...415
12.12 sc_max..415
12.13 sc_min...416
12.14 sc_set_default_time_unit ..416
12.15 sc_set_time_resolution ...416
12.16 sc_simulation_time..416
12.17 sc_start ...417
12.18 sc_stop..418
12.19 sc_stop_here ..418
12.20 sc_time_stamp..418
12.21 sc_trace ..418
12.22 sc_version...420

13 Global Enumerations, Typedefs and Constants420
13.1 Enumerations ...420
13.2 Typedefs...420
13.3 Constants ...421

14 Deprecated items ...422

 vi

SystemC 2.0.1 Language Reference Manual

1 Introduction

1.1 Intent and scope
SystemC is a set of C++ class definitions and a methodology for using these
classes. The primary intent of this document is to define the constructs and
semantics of SystemC that all compliant implementation must provide. The
secondary intent is to provide detailed reference information for the standard
SystemC classes and global functions.

This document is not intended as a user's guide or to provide an introduction to
SystemC. Readers desiring user-oriented information should consult the Open
SystemC Initiative website for such information. For example such users should
consult www.systemc.org Products & Solutions Books.

The scope of this document encompasses the entire language definition, but
does not cover implementation issues. Neither does this document cover
methodology issues related to the use of SystemC.

This document is written under the assumption that the reader is familiar with
C++.

1.2 Overview of SystemC
This section is informative and describes in general terms a SystemC “system
and how it simulates.

The SystemC library of classes and simulation kernel extend C++ to enable the
modeling of systems. The extensions include providing for concurrent behavior,
a notion of time sequenced operations, data types for describing hardware,
structure hierarchy and simulation support.

 Copyright 2003 Open SystemC Initiative. All rights reserved 1

SystemC 2.0.1 Language Reference Manual

Figure 1 – SystemC Language Architecture

C++ Language Standard

Core Language
Modules

Ports
Processes
Interfaces
Channels

Events
Event-driven simulation

Data Types
4-valued Logic type

4-valued Logic Vectors
Bits and Bit Vectors

Arbitrary Precision Integers
Fixed-point types

C++ user-defined types

Primitive Channels
Signal, Mutex, Semaphore, FIFO, etc.

Methodology-Specific
Libraries

Master/Slave Library, etc.
Verification Library

Static Dataflow, etc.

Layered Libraries

Figure 1 shows the SystemC language architecture. The blocks shaded with
gray are part of the SystemC core language standard. SystemC is built on
standard C++. The layers above or on top of the SystemC standard consist of
design libraries and standards considered to be separate from the SystemC core
language. The user may choose to use them or not. Over time other standard or
methodology specific libraries may be added and conceivably be incorporated
into the core language.

The core language consists of an event-driven simulator as the base. It works
with events and processes. The other core language elements consist of
modules and ports for representing structure, while interfaces and channels are
used to describe communication.

The data types are useful for hardware modeling and certain types of software
programming.

The primitive channels are built-in channels that have wide use such as signals
and FIFOs.

A SystemC system consists of a set of one or more modules. Modules provide
the ability to describe structure. Modules typically contain processes, ports,
internal data, channels and possibly instances of other modules. All processes
are conceptually concurrent and can be used to model the functionality of the
module. Ports are objects through which the module communicates with other

 Copyright 2003 Open SystemC Initiative. All rights reserved 2

SystemC 2.0.1 Language Reference Manual

modules. The internal data and channels provide for communication between
processes and maintaining module state. Module instances provide for
hierarchical structures.

Communication between processes inside different modules is accomplished
using ports, interfaces and channels. The port of a module is the object through
which the process accesses a channels interface. The interface defines the set
of access functions for a channel while the channel itself provides the
implementation of these functions. At elaboration time the ports of a module are
connected (bound) to designated channels. The interface, port, channel
structure provides for great flexibility in modeling communication and in model
refinement.

Events are the basic synchronization objects. They are used to synchronize
between processes and implement blocking behavior in channels. Processes
are triggered or caused to run based on sensitivity to events. Both dynamic and
static sensitivity are supported. Static sensitivity provides for processes
sensitivity that is defined before simulation starts. Dynamic sensitivity provides
for process sensitivity that is defined after simulation starts and can be altered
during simulation. Processes may wait for a particular event or set of events.
Dynamic sensitivity coupled with the ability of processes to wait on one or more
events provide for simple modeling at higher levels of abstraction and for efficient
simulation.

1.3 Using the SystemC library
Access to all SystemC classes and functions is provided in a single header file
named “systemc.h”. This file may include other files, but the end user is only
required to include systemc.h.

 Copyright 2003 Open SystemC Initiative. All rights reserved 3

SystemC 2.0.1 Language Reference Manual

2 Execution Semantics
This section describes elaboration, initialization and the simulation semantics.
SystemC is an event based simulator. Events occur at a given simulation time.
Time starts at time = 0 and moves forward only. Time increments are based on
the default time unit and the time resolution.

2.1 main() & sc_main()
The function main() is part of the SystemC library. It calls the function
sc_main(),(see Chapter 5)which is the entry point from the library to the
user’s code.

If the main() function provided by the SystemC library does not meet the user’s
needs, the user will have to mimic SystemC’s main(). In this case the user will
have to make sure the object file containing the new main() function is linked in
before the SystemC library.

2.2 Elaboration
Elaboration is defined as the execution of the sc_main() function from the start
of sc_main() to the first invocation of sc_start().

Elaboration may include the construction of instances (instantiation) of modules,
and channels to connect them, sc_clock objects and sc_time variables.

The functions for changing the default time unit
(sc_set_default_time_unit(), Chapter 12.14) and the time resolution
(sc_set_time_resolution() , Chapter 12.15) if called, must be called
during elaboration. They must also be called before any sc_time objects are
constructed.

During elaboration, the structural elements of the system are created and
connected throughout the system hierarchy. This is facilitated by the C++ class
object construction behavior. When a module (or hierarchical channel) comes
into existence, it constructs any sub-modules it contains, which in turn initialize
their sub-modules, and so forth. As elaboration proceeds port to channel binding
occurs. Importantly, there are no constraints on the order in which port to channel
binding occurs during elaboration. All that is required is that if a port must be
bound to some channel, then the port must be bound by the time elaboration
completes.

Finally, the top level modules are connected via channels in the sc_main()
function.

SystemC does not support the dynamic creation of modules. The structure of the
system is created during elaboration time and does not change during simulation.

 Copyright 2003 Open SystemC Initiative. All rights reserved 4

SystemC 2.0.1 Language Reference Manual

2.3 Initialization
Initialization is the first step in the SystemC scheduler. Each method process is
executed once during initialization and each thread process is executed until a
wait statement is encountered.

To turn off initialization for a particular process the dont_initialize()
function can be called after the SC_METHOD or SC_THREAD process
declaration inside a module constructor. A process that is not initialized is not
ready to run. That means that the process starts executing with its first
statement as soon as it is triggered by the first event.

The order of execution of processes is unspecified. The order of execution
between processes is deterministic. This means that two simulation runs using
the same version of the same simulator must yield identical results. However,
different versions or a different simulator may yield a different result if care is not
taken when writing models

2.4 Simulation semantics
The SystemC scheduler controls the timing and order of process execution,
handles event notifications and manages updates to channels. It supports the
notion of delta-cycles. A delta-cycle consists of the execution of an evaluate and
update phase. There may be a variable number of delta-cycles for every
simulation time.

SystemC processes are non-preemptive. This means that for thread processes,
code delimited by two wait statements will execute without any other process
interruption and a method process completes its execution without interruption by
another process.

The scheduler is invoked by the execution of the sc_start() function. It may
be invoked with an explicit amount of time to simulate. Once the scheduler
returns, simulation may continue from the time the scheduler last stopped by
invoking the sc_start() function.

The scheduler may be invoked such that it will run indefinitely. Once started the
scheduler continues until either there are no more events, or a process explicitly
stops it (by calling the sc_stop() function), or an exception condition occurs.

 Copyright 2003 Open SystemC Initiative. All rights reserved 5

SystemC 2.0.1 Language Reference Manual

2.4.1 Scheduler Steps
The semantics of the SystemC simulation scheduler is defined by the following
eight steps. A delta-cycle consists of steps 2 through 4.

1) Initialization Phase. This step is described in Chapter 2.3.

2) Evaluate Phase. From the set of processes that are ready to run, select a
process and resume its execution. The order in which processes are selected
for execution from the set of processes that are ready to run is unspecified.

The execution of a process may cause immediate event notifications to occur,
possibly resulting in additional processes becoming ready to run in the same
evaluate phase.

The execution of a process may include calls to the request_update()
function which schedules pending calls to update()function in the update
phase. The request_update() function may only be called inside member
functions of a primitive channel.

3) Repeat Step 2 for any other processes that are ready to run.

4) Update Phase. Execute any pending calls to update() from calls to the
request_update() function executed in the evaluate phase.

5) If there are pending delta-delay notifications, determine which processes are
ready to run and go to step 2.

6) If there are no more timed event notifications, the simulation is finished.

7) Else, advance the current simulation time to the time of the earliest (next)
pending timed event notification.

8) Determine which processes become ready to run due to the events that
have pending notifications at the current time. Go to step 2.

2.5 Simulation functions
A number of functions are provided for setting up and reporting the timing and
controlling the simulation execution.

 Copyright 2003 Open SystemC Initiative. All rights reserved 6

SystemC 2.0.1 Language Reference Manual

2.5.1 Starting the simulation
The sc_start() function (Chapter 12.17) is called in sc_main() to start the
scheduler.

Once the sc_start() function returns, signifying that the scheduler is done, the
user may call sc_start() again. The simulation will continue at the time where
the scheduler last stopped.

2.5.2 Stopping the simulation
The sc_stop() function (Chapter 12.18) is called to stop the scheduler and
return control back to the sc_main() function. In this case the simulation can
not be continued anymore.

2.5.3 Obtaining Current Simulation time
Two functions are provided for the user to obtain the current simulation time,
sc_time_stamp() (Chapter 12.20) and sc_simulation_time() (Chapter
12.16).

3 Time
SystemC uses an integer-valued absolute time model. Time is internally
represented by an unsigned integer of at least 64-bits. Time starts at 0, and
moves forward only.

3.1 sc_time
The sc_time type (Chapter 11.68) is used to represent time or time intervals in
SystemC. A sc_time object is constructed from a numeric value (of type
double) and a time unit (of type sc_time_unit, Chapter 13.1).

3.2 Time Resolution
The time resolution is the smallest amount of time that can be represented by all
sc_time objects in a SystemC simulation. The default value for the time
resolution is 1 picosecond (10-12 seconds).

A user may set the time resolution to some other value by calling the
sc_set_time_resolution() function (Chapter 12.15). This function, if
called, must be called before any sc_time objects are constructed.

A user may ascertain the current time resolution by calling the
sc_get_time_resolution() function (Chapter 12.11).

Any time smaller than the time resolution will be rounded off, using round-to-
nearest.

 Copyright 2003 Open SystemC Initiative. All rights reserved 7

SystemC 2.0.1 Language Reference Manual

3.3 Default Time Unit
Time values may sometimes be specified with a numeric value without time unit.
The default time unit is used to specify the unit of time for the values in these
cases.

The default value for the default time unit is 1 nanosecond(10-9 seconds).

An example use of these types to represent a time value would be in specifying
the amount of time in the sc_start() function.
Example:
// run simulation for 1000 time units
// default time unit = 1ns
sc_start(1000);

A user may set the default time unit to some other value by calling the
sc_set_default_time_unit() function (Chapter 12.14).

A user may ascertain the current default time unit by calling the
sc_get_default_time_unit() function (Chapter 12.10).

4 Events
An event is an object, represented by class sc_event (Chapter 11.11)that
determines whether and when a process execution should be triggered or
resumed.

In more concrete terms, an event is used to represent a condition that may occur
during the course of simulation and to control the triggering of processes.

The sc_event class provides basic synchronization for processes. Event
notification causes the kernel to call a method process, or to resume a thread
process that is sensitive to the event.

Example:
sc_event my_event ; // event declaration

 Copyright 2003 Open SystemC Initiative. All rights reserved 8

SystemC 2.0.1 Language Reference Manual

4.1 Event Occurrence
We need to distinguish an event from the actual occurrence of an event.
There may be multiple occurrences of an event, and each occurrence is unique
though reported through the same event object. An event is usually, though not
necessarily, associated with some change of state in a process or of a channel.
The owner of the event is responsible for reporting the change to the event. The
event object, in turn, is responsible for keeping a list of processes that are
sensitive to it. Thus, when notified, the event object will inform the scheduler of
which processes to trigger.

Figure 2 Event Occurrence

Process or channel
(owner of event)

Event

Process 1 Process 2 Process 3

Notify immediately, after delta-delay, or
after time t.

TriggerTrigger Trigger

4.2 Event Notification
Events can be notified in three ways – immediate, delta-cycle delayed and timed.
The timing of the notification is specified at invocation of the notify() method

Immediate notification means that the event is triggered in the current evaluation
phase of the current delta-cycle. The notify method with no arguments
(notify()) indicates immediate notification.

Delta-cycle delayed notification means that the event will be triggered during the
evaluate phase of the next delta-cycle. The notify method with a time
argument specified as 0 (notify(0, SC_NS)) or SC_ZERO_TIME
(notify(SC_ZERO_TIME)) indicates a delta-cycle delayed notification - the
event is scheduled for the next delta-cycle.

Timed notification means that the event will be triggered at the specified time in
the future. The notify method with a non-zero time argument (notify(10,
SC_NS)) indicates a timed notification. The time of notification is relative to the
time of execution of the notify method as opposed to an absolute time.

 Copyright 2003 Open SystemC Initiative. All rights reserved 9

SystemC 2.0.1 Language Reference Manual

Examples:

sc_event my_event ; // event declaration
sc_time t (10, SC_NS) // declaration of a 10 ns time
 // interval
. . .
my_event.notify(); // immediate notification
...
my_event.notify (SC_ZERO_TIME); // delta-delay
 // notification
...
my_event.notify (t); // notification in 10 ns

4.3 Multiple event notifications
Events can have only one pending notification, and retain no “memory” of past
notifications. Multiple notifications to the same event, without an intermediate
trigger are resolved according to the following rule:

An earlier notification will always override one scheduled to occur later, and an
immediate notification is always earlier than any delta-cycle delayed or timed
notification.

Note that according to this rules, a potential non-determinism exists. Assume
that processes A and B are ready to run in the same delta-cycle. Process A
issues an immediate notification on an event, and process B issues a delta-cycle
delayed notification on the same event. Also, let process C be sensitive to the
event. According to the scheduler semantics, processes A and B execute in an
unspecified order.

Example

Process_A { Process_B { Process_C {
… …
my_event.notify();
…

my_event.notify(SC_ZERO_TIME);

wait(my_event)

} }

If process A executes first, then the event is triggered immediately, causing
process C to be executed in the same delta-cycle. Then, process B is executed,
and since the event was triggered immediately, there is no conflict and the
second notification is accepted, causing process C to be executed again in the
next delta-cycle.

If, however, process B executes first, then the delta-cycle delayed notification is
scheduled first. Then, process A executes and the immediate notification
overrides the delta-cycle delayed notification, causing process C to be executed
only once, in the current delta-cycle.

 Copyright 2003 Open SystemC Initiative. All rights reserved 10

SystemC 2.0.1 Language Reference Manual

4.4 Canceling event notifications
A pending delayed event notification may be canceled using the cancel()
method . Immediate event notifications cannot be canceled, since their effect
occurs immediately.

Example
sc_event a, b, c;
sc_time t(10, SC_MS);

a.notify(); // current delta-cycle
notify(SC_ZERO_TIME, b); // next delta-cycle
notify(t, c); // 10 ms delay

//Cancel an event notification
a.cancel(); // Error! Can't cancel immediate notification
b.cancel(); // cancel notification on event b
c.cancel(); // cancel notification on event c

 Copyright 2003 Open SystemC Initiative. All rights reserved 11

SystemC 2.0.1 Language Reference Manual

5 sc_main() Function
The sc_main(), function is the entry point from the SystemC library to the
user’s code. It is called by the function main() which is part of the SystemC
library. Its prototype is:

int sc_main(int argc, char* argv[]);

The arguments argc and argv[] are the standard command-line arguments.
They are passed to sc_main() from main() in the library.

The body of sc_main() typically consists of configuring simulation variables
(default time unit, time resolution, etc.), Instantiation of the module hierarchy and
channels, simulation, clean-up and returning a status code.

Elaboration is defined as the execution of the sc_main() function from the start
of sc_main() to the first invocation of sc_start().

The user defines the sc_main() function.

Example:

int sc_main(int argc, char* argv[])
 // Create FIFO channels with a depth of 10
 sc_fifo<int> s1(10);
 sc_fifo<int> s2(10);
 sc_fifo<int> s3(10);

 // Module instantiations
 // Stimulus Generator
 stimgen stim("stim");
 stim(s1, s2);

 // Adder
 adder add("add");
 add(s1, s2, s3);

 // Response Monitor
 monitor mon("mon");
 mon.re(s3);

 // Start simulation
 sc_start(); // run indefinitely

 return 0;
} // end sc_main()

 Copyright 2003 Open SystemC Initiative. All rights reserved 12

SystemC 2.0.1 Language Reference Manual

5.1 Module instantiation
The construction of instance(s) (instantiation) of the top level module(s) is done
in sc_main() before the sc_start() function is called for the first time.

Instantiation syntax:
module_type module_instance_name(“string_name”);

Where:
module_type is the module type (a class derived from sc_module).
module_instance_name is the module instance name (object name).
string_name is the string the module instance is initialized with.

5.2 Port binding
After a module is instantiated in sc_main(), binding of its ports to channels may
occur. There are two different ways to bind ports.

5.2.1 Named Port Binding
Named port binding explicitly binds a port to a channel.

Named port binding syntax:
module_type module_instance_name(“string_name”);
module_instance_name.port_name(channel_name) ;

Where:
module_instance_name is the instance name of the module.
port_name is the instance name of the port being bound.
channel_name is the instance name of the channel to which the port is bound.

Example:
sc_fifo<int> s3(10); // channel instantiation
monitor mon("mon"); // module instantiation
mon.re(s3); // named port binding

5.2.2 Positional Port Binding
Positional port binding implicitly binds a port to a channel by mapping the order
listing of channel instances to the order of the declaration of the ports within a
module.

Positional port binding is limited to modules with 64 or fewer ports.

 Copyright 2003 Open SystemC Initiative. All rights reserved 13

SystemC 2.0.1 Language Reference Manual

Positional port binding syntax:
module_type module_instance_name(“string_name”);
module_instance_name(channel_name1, channel_name2, ...) ;

Where:
module_instance_name is the instance name of the module.
channel_nameX is the instance name of the channel to which the port is bound
to.
The first channel listed is bound to the first port declared in
module_instance_name, the second channel listed is bound to the second
port declared in module_instance_name and so forth.

Example:
sc_fifo<int> s1(10); // channel instantiation
sc_fifo<int> s2(10); // channel instantiation
sc_fifo<int> s3(10); // channel instantiation
adder add("add"); // module instantiation
add(s1, s2, s3); // positional port binding
// s1 bound to first port
// s2 bound to second port
// s3 bound to third port

5.3 Simulation function usage
The function sc_start() (see Chapter 12.17 for the details of sc_start())
is called after configuration of simulation variables (default time unit, time
resolution etc.), and elaborations which creates the design structure
(instantiation of the module hierarchy and channels, and port binding etc.). This
function starts or resumes the SystemC scheduler. On return control is returned
to the sc_main() function.

5.4 Function Return
A return of 0 from sc_main() indicates a normal return.

Example:

int sc_main(int argc, char *argv[])
 // Rest of function not shown

 // Start simulation
 sc_start(); // run indefinitely

 return 0;
} // end sc_main()

 Copyright 2003 Open SystemC Initiative. All rights reserved 14

SystemC 2.0.1 Language Reference Manual

6 Data types
All C++ data types are supported. In addition SystemC provides types for
describing hardware where C++ data types are insufficient.

The copy constructor always creates a copy of the specified object, which has
the same value and the same word length.

All SystemC data types T support the streaming operator to print it onto a stream.

ostream& operator << (ostream&, T);

6.1 Operators
For SystemC data types the operator symbols always have the same meaning as
they have for the native C++ types.

• Arithmetic
+ Add the two operands.
- Subtract the second operand from the first operand.
* Multiply the two operands.
/ Divide the first operand by the second operand.
% Calculate rest of the division of the first operand by the second operand.
(modulo operation)

• Bitwise

& Calculate the bitwise AND of the two operands.
| Calculate the bitwise OR of the two operands.
^ Calculate the bitwise XOR of the two operands.

• Arithmetic and bitwise assignment

+= -= *= /= %= &= |= ^=

These operators perform the same calculation as the operators above, but they
also assign the result to their first operand.

• Increment and decrement

++ Increment the operand by one and store the result in the operand.
-- Decrement the operand by one and store the result in the operand.

Both operators are available in a prefix and a postfix variant. While they perform
the same operation, they differ in what is returned. The prefix version performs
the operation first and returns the new value. The postfix version returns the old
value while the new value of the operation is stored in the operand.

 Copyright 2003 Open SystemC Initiative. All rights reserved 15

SystemC 2.0.1 Language Reference Manual

• Equality and relation

== Return true if the operands are equal.
!= Return true if the operands are not equal.
< Return true if the first operand is less than the second operand.
<= Return true if the first operand is less than or equal to the second operand.
> Return true if the first operand is greater than the second operand.
>= Return true if the first operand is greater than or equal to the second operand.

 Copyright 2003 Open SystemC Initiative. All rights reserved 16

SystemC 2.0.1 Language Reference Manual

6.2 Unified String Representation
All data types support a unified string representation. Instances can be converted
to that string representation and read from it. This string starts with a prefix that
describes the format of what follows:

Table 1 – Unified String Representation
sc_numrep Prefix Meaning
SC_DEC 0d decimal
SC_BIN 0 binary
SC_BIN_US 0bus binary unsigned
SC_BIN_SM 0bsm binary sign & magnitude
SC_OCT 0o octal
SC_OCT_US 0ous octal unsigned
SC_OCT_SM 0osm octal sign & magnitude
SC_HEX 0x hexadecimal
SC_HEX_US 0xus hexadecimal unsigned
SC_HEX_SM 0xsm hexadecimal sign & magnitude
SC_CSD 0csd canonical signed digit

This is followed by some signs and digits, compatible with the format specified by
the prefix.

There might be a suffix, denoting the exponent of the number. The exponent
starts with an 'E' or 'e', immediately followed by '+' or '-'. Then some decimal
digits follow, denoting the exponent. The suffix is only valid for the fixed point
data types.

All data types can be converted to an sc_string with the member function:

sc_string to_string(sc_numrep numrep, bool with_prefix)

Where numrep is described in Table 1 above. If with_prefix is false, the resulting
string does not contain a prefix, if it is true, the prefix is created.

6.3 Fixed-Precision Integer Types
The following fixed-precision integer types are provided:
sc_int<W> (Chapter 11.38)
sc_uint<W> (Chapter 11.73)

These types are considered a fixed-precision type because the maximum
precision is limited to 64 bits. The width of the integer type can be explicitly
specified. sc_int is a signed integer type in which the value is represented by a
2’s complement form and all arithmetic is done in 2’s complement. sc_uint is

 Copyright 2003 Open SystemC Initiative. All rights reserved 17

SystemC 2.0.1 Language Reference Manual

unsigned. The underlying operations use 64 bits, but the result size is
determined by the type declaration.

Bit select, part select, concatenation and reduction operators are supported. The
rightmost bit is the LSB(0), and the leftmost bit is the MSB(width-1).

6.4 Arbitrary Precision Integer Types
The following arbitrary precision integer types are provided:
sc_bigint<W> (Chapter 11.3)
sc_biguint<W> (Chapter 11.5)

sc_bigint is a signed integer type of any size in which the value is represented
by a 2’s complement form and all arithmetic is done in 2’s complement.
sc_biguint is an unsigned integer of any size.

Bit select, part select, concatenation and reduction operators are supported. The
rightmost bit is the LSB(0), and the leftmost bit is the MSB(width-1).

6.5 Arbitrary Width Bit Vectors
The arbitrary width bit-vector type is sc_bv<W> (Chapter 11.8). This type has
two values:

‘0’, sc_logic_0, Log_0: Interpreted as false
‘1’, sc_logic_1, Log_1: Interpreted as true

Single bit values are represented using type bool. The type sc_bv_base
defines a bit vector of any size. More than one bit is represented with the
characters within double quotes (“0011”).

Bit select, part select, concatenation and reduction operators are supported. The
rightmost bit is the LSB(0), and the leftmost bit is the MSB(width-1).

6.6 Logic Type
The logic type is sc_logic (Chapter 11.43). This type has four values:

‘0’, sc_logic_0, Log_0: Interpreted as false
‘1’, sc_logic_1, Log_1: Interpreted as true
‘X’, ‘x’, sc_logic_X, Log_X: Interpreted as unknown
‘Z’, ‘z’, sc_logic_Z, Log_Z: Interpreted as high_impedence

 Copyright 2003 Open SystemC Initiative. All rights reserved 18

SystemC 2.0.1 Language Reference Manual

6.7 Arbitrary Width Logic Vectors
The arbitrary width logic vector type is sc_lv<W> (Chapter 11.44). This type
has four values:

‘0’, sc_logic_0, Log_0: Interpreted as false
‘1’, sc_logic_1, Log_1: Interpreted as true
‘X’, ‘x’, sc_logic_X, Log_X: Interpreted as unknown
‘Z’, ‘z’, sc_logic_Z, Log_Z: Interpreted as high_impedence

Bit select, part select, concatenation and reduction operators are supported. The
rightmost bit is the LSB(0), and the leftmost bit is the MSB(width-1).

6.8 Fixed-point Types
A fixed-point variable that is declared without an initial value is uninitialized.
Uninitialized variables can be used anywhere initialized variables can be used.
An operation on an uninitialized variable does not produce an error or warning.
The result of such an operation is undefined.

6.8.1 Fixed-Point Format
The fixed-point format used by the fixed-point data types consists of three
parameters: wl, iwl, and enc.
wl:
Total word length, i.e., the total number of bits
iwl:
Integer word length, i.e., the number of bits left from the binary point
enc:
Sign encoding, i.e., signed (two's complement) and unsigned

The total word length and integer word length parameters are parameters for the
fixed-point types. For the two sign encodings, i.e., signed and unsigned, separate
fixed-point types will be provided.
The binary point (indicated by iwl) can be located outside the wl bits. This is
explained below.
The fixed-point format can be interpreted according to the following three cases:
iwl > wl
The number of zeros between the binary point and the LSB of the fixed-point
number is iwl-wl. See index 1 in Table 2 for an example of this case.
0 <= iwl <= wl
For examples of this case, see index 2, 3, 4, and 5 in Table 2 .
iwl < 0
There are -iwl sign extended bits between the binary point and the MSB of the
fixed- point number. Since these are sign extended bits, they are not part of the
actual fixed-point number. For the unsigned types, the sign extended bits are
always zero.
For examples of this case, see index 6 and 7 in Table 2 .

 Copyright 2003 Open SystemC Initiative. All rights reserved 19

SystemC 2.0.1 Language Reference Manual

In all three cases, the MSB in the fixed-point representation of the signed types is
the sign bit. The sign bit can be behind the binary point.

The range of values for a given signed fixed-point format is as follows:
EQ 1 [-2(iwl-1), 2(iwl-1)-2-fwl]

The range of values for a given unsigned fixed-point format is as follows:
EQ 2 [0, 2iwl-2-fwl]

In both equations, fwl denotes the fractional word length, i.e., the number of bits
right from the binary point.

Table 2. Examples of Fixed-Point Formats
Index wl iw

l
Internal

representation (*)
Range
signed

Range
unsigned

 wl iwl
1 5 7 xxxxx00. [-64,60] [0,124]

2 5 5 xxxxx. [-16,15] [0,31]

3 5 3 xxx.xx [-4,3.75] [0,7.75]

4 5 1 x.xxxx [-1,0.9375] [0,1.9375]

5 5 0 .xxxxx [-0.5,0.46875] [0,0.96875]

6 5 -2 .ssxxxxx [-0.125,0.109375] [0,0.234375]

7 1 -1 .sx [-0.25,0] [0,0.25]

(*) x is an arbitrary binary digit, 0 or 1. s is a sign extended digit, 0 or 1.

6.8.2 Fixed-Point Type Casting
Type casting is essential for fixed-point types. Fixed-point type casting, from now
on referred to as type casting in this chapter, is performed by the fixed-point
types during initialization (declaration) and assignment. Type casting is
performed in two steps:
First, quantization is performed to reduce the number of bits at the LSB (least
significant bit) side, if needed.
Next, overflow handling reduces the number of bits at the MSB (most significant
bit) side, if needed
If the number of bits at the LSB side does not have to be reduced but has to be
extended, then zero extension is used. If the number of bits at the MSB side
does not have to be reduced but has to be extended, then sign extension is used.
For unsigned fixed-point types, sign extension always means zero extension.
One can choose from seven distinct quantization characteristics (from now on
referred to as quantization modes) and five distinct overflow characteristics (from
now on referred to as overflow modes).

 Copyright 2003 Open SystemC Initiative. All rights reserved 20

SystemC 2.0.1 Language Reference Manual

6.8.2.1 Overflow Modes
During overflow handling, bits at the MSB side of a fixed-point number are
deleted if the fixed-point number uses more integer bits than specified by a given
fixed-point format. The result of overflow handling is a function of both the
remaining bits and the deleted bits of the original fixed-point number. The
supported and distinct overflow modes are listed in Table 3.

Table 3. Overflow Modes

Overflow Mode Name
Saturation SC_SAT
Saturation to zero SC_SAT_ZERO
Symmetrical saturation SC_SAT_SYM
Wrap-around (*) SC_WRAP
Sign magnitude wrap-around (*) SC_WRAP_SM

(*) with 0 or n_bits saturated bits (n_bits > 0). The default value for n_bits is
0.

For a detailed description of each of the overflow modes, refer to Chapter
6.8.12.1.

 Copyright 2003 Open SystemC Initiative. All rights reserved 21

SystemC 2.0.1 Language Reference Manual

6.8.2.2 Quantization Modes
During quantization, bits at the LSB side of a fixed-point number are deleted if
the fixed-point number uses more fractional bits than specified by a given fixed-
point format. The result of quantization is a function of both the remaining bits
and the deleted bits of the original fixed-point number.

The supported and distinct quantization modes are listed in Table 4.

Table 4. Quantization Modes

Quantization Mode Name
Rounding to plus infinity SC_RND
Rounding to zero SC_RND_ZERO
Rounding to minus infinity SC_RND_MIN_INF
Rounding to infinity SC_RND_INF
Convergent rounding SC_RND_CONV
Truncation SC_TRN
Truncation to zero SC_TRN_ZERO

6.8.3 Fixed-Point Data Types
The following fixed-point data types are provided:

sc_fixed<wl,iwl,q_mode,o_mode,n_bits>
sc_ufixed<wl,iwl,q_mode,o_mode,n_bits>
sc_fix
sc_ufix

Templatized type sc_fixed and unconstrained type sc_fix are signed (two's
complement) types. These types behave the same. The difference between the
two types is that the fixed-point type parameters wl, iwl, q_mode, o_mode, and
n_bits are part of the type in sc_fixed. Unconstrained type sc_fix allows
specifying these parameters as variables, while templatized type sc_fixed
requires that these parameters are constant expressions.

Templatized type sc_ufixed and unconstrained type sc_ufix are unsigned types.
These types behave the same. The difference between the two types is that the
fixed- point type parameters wl, iwl, q_mode, o_mode, and n_bits are part of the
type in sc_ufixed. Unconstrained type sc_ufix allows specifying these parameters
as variables, while templatized type sc_ufixed requires that these parameters are
constant expressions.

 Copyright 2003 Open SystemC Initiative. All rights reserved 22

SystemC 2.0.1 Language Reference Manual

For a description of the initialization, operators, functions, bit and part selection,
querying the parameters, determining the state, and conversion to primitive,
character and SystemC integer types for fixed-point data types see the reference
for each in the class reference section.

sc_fixed (Chapter 11.20)
sc_fix (Chapter 11.18)
sc_fixed_fast (Chapter 11.21)
sc_fix_fast (Chapter 11.19)
sc_ufixed (Chapter 11.71)
sc_ufix (Chapter 11.69)
sc_ufixed_fast (Chapter 11.72)
sc_ufix_fast (Chapter 11.20)

6.8.3.1 Limited Precision Fixed-Point Types
All four fixed-point types are arbitrary precision types. To speed up simulations,
limited precision versions of the four fixed-point types can be used. These limited
precision fixed-point types are:

sc_fixed_fast<wl,iwl,q_mode,o_mode,n_bits>
sc_ufixed_fast<wl,iwl,q_mode,o_mode,n_bits>
sc_fix_fast
sc_ufix_fast

The limited precision types provide the same API as the corresponding arbitrary
precision types. This allows an easy exchange between arbitrary precision types
and limited precision types by changing just the types of fixed-point variables.
Furthermore, arbitrary precision types and limited precision types can be mixed
freely. Because the API is the same, the limited precision types are not described
separately.

Limited precision fixed-point types use double precision (floating-point) values
instead of arbitrary precision (floating-point) values. The mantissa of a double
precision value is limited to 53 bits, whereas the mantissa of an arbitrary
precision value is virtually unlimited. This means that bit-true behavior cannot be
guaranteed with the limited precision types.
For bit-true behavior with the limited precision types, the following guidelines
should be followed:

Make sure that the word length of the result of any operation or expression does
not exceed 53 bits.
The result of an addition or subtraction requires a word length that is one bit
more than the maximum aligned word length of the two operands.
The result of a multiplication requires a word length that is the sum of the word
lengths of the two operands.

 Copyright 2003 Open SystemC Initiative. All rights reserved 23

SystemC 2.0.1 Language Reference Manual

6.8.4 Fixed-Point Value Type
Arithmetic and bitwise fixed-point operations are performed according to the
following paradigm:
First, the operations are performed in arbitrary precision.
Next, the necessary type casting is performed.
Type sc_fxval is the arbitrary precision value type. It can hold the value of any
of the fixed-point types, and it performs the arbitrary precision fixed-point
arithmetic operations. Type casting is performed by the fixed-point types
themselves. In cases where arbitrary precision is not needed or too slow, one
can use a limited precision type. Type sc_fxval_fast is the corresponding
limited precision value type, which is limited to a mantissa of 53 bits. See
Chapter 6.8.3.1. This type has the same API as type sc_fxval. Limited
precision type sc_fxval_fast and arbitrary precision type sc_fxval can be
mixed freely.

In some cases, such as division, using arbitrary precision would lead to infinite
word lengths. This does not apply to the limited precision type sc_fxval_fast,
because its precision is already limited, it only applies to sc_fxval.
To limit the resulting word lengths in these cases, three parameters are provided.
See Chapter 11.28 for a complete description of these parameters. Their built-in
default values are given in Chapter 6.8.8.
div_wl - the maximum word length for the result of a division operation.
cte_wl - the maximum word length for the result of converting a decimal
character string constant into a sc_fxval variable.
max_wl - the maximum word length for the mantissa used in a sc_fxval variable.
Caution! Be careful with changing the default values of the div_wl, cte_wl, and
max_wl parameters, as they affect both bit-true behavior and simulation
performance.

Type sc_fxval is used to hold fixed-point values for the arbitrary precision
fixed-point types. The div_wl, cte_wl, and max_wl parameters should be set
higher than the word lengths used by the fixed-point types in the user code,
otherwise bit-true behavior cannot be guaranteed. On the other hand, these
parameters should not be set too high, because that would degrade simulation
performance. Typically, the max_wl parameter should be set (much) higher than
the div_wl and cte_wl parameters.

The div_wl, cte_wl, and max_wl parameters will be used by the fixed-point value
type sc_fxval, whether used directly or as part of a fixed-point type. By default,
the built-in default values given in Chapter 6.8.8 are used. These default values
can be overruled per translation unit by specifying the compiler flags
SC_FXDIV_WL, SC_FXCTE_WL, and SC_FXMAX_WL with the appropriate
values. For example:
 CC -DSC_FXDIV_WL=128 -c my_file.cpp
This compiles my_file.cpp with the div_wl parameter set to 128 bits i.s.o. 64 bits.

 Copyright 2003 Open SystemC Initiative. All rights reserved 24

SystemC 2.0.1 Language Reference Manual

For a description of the initialization, operators, functions, determining the state,
and conversion to primitive, character and SystemC integer types for fixed-point
value types see the reference for each in the class reference section.
sc_fxval (Chapter 11.28)
sc_fxval_fast (Chapter 11.29)

6.8.5 Parameter Types

6.8.5.1

6.8.5.2

Parameter Type sc_fxtype_param
To configure the type parameters of a variable of fixed-point type sc_fix, or
sc_ufix, (and the corresponding limited precision types), a variable of type
sc_fxtype_params (Chapter 11.27) can be used. This variable can be passed
as an argument when initializing a fixed-point variable. See Chapters 11.18 and
11.69.

Parameter Type sc_fxcast_switch
To configure the cast switch parameter of a fixed-point variable, a variable of
type sc_fxcast_switch (Chapter 11.23) can be used. This variable can be
passed as an argument when initializing a fixed-point variable See Chapters
11.18 and 11.69.

6.8.6 Contexts (informative)
This section is for informative purposes only.
This discussion focuses on the fixed-point types, but the same applies to any
type that requires additional parameters.

During declaration, the fixed-point types need a number of parameters. Most
notably the wl, iwl, o_mode, n_bits, q_mode, and cast_switch parameters. These
parameters have to be set during declaration, and they cannot change anymore
after declaration.

In some cases, it is not possible to specify these parameters. This is the case
when a fixed-point array is declared. In other cases, it becomes cumbersome to
have to specify all parameters with each fixed-point variable declaration.

Let’s assume that we allow declarations of fixed-point variables where not always
all parameters are specified. These variables are therefore incompletely specified.
The first problem we face is how to make these variables completely specified. In
essence, there are two solutions:

The parameters that are not specified are set to built-in default values. An
example is a built-in default value of 32 for the wl parameter.

 Copyright 2003 Open SystemC Initiative. All rights reserved 25

SystemC 2.0.1 Language Reference Manual

The parameters that are not specified are fetched from global default values. The
most important property of these global default values is that these values can be
changed during the execution of the program.

The advantage of the first solution is that all fixed-point variable declarations are
actually completely specified, because the unspecified parameters are always
the same.

The disadvantage of the first solution is that fixed-point variable declarations are
not very flexible. If the built-in default values are unsuitable for a particular use,
then the only solution is to specify all parameters with each fixed-point variable
declaration. For arrays, this is not possible.

The disadvantage of the second solution is that fixed-point variable declarations
can indeed be incompletely specified. Exchanging functions with incompletely
specified fixed-point variable declarations has to follow clear rules, such as
indicating what the global default values are that are assumed for the function.

The advantage of the second solution is its flexibility. With global default values
that can be changed, no particular target (e.g. ASIC or DSP) is assumed. Arrays
can be declared with the proper parameters. Furthermore, it is possible to
configure (through the global default values) a particular function without
affecting other functions in the program. Certain behavior for an entire function
can be changed with a single line of code. An example is fixed-point casting.
Within a function, fixed-point casting for all fixed-point variables can be switched
on or off with a single line of code.

With respect to how the global default values can be changed, the second
solution can be refined in two ways:

The user is completely responsible for changing the global default values. It is
possible to set new global default values, with the risk that the behavior of other
functions changes. This means that in almost all cases the old global default
values have to be stored by the user when setting new global default values. The
old global default values have to be restored to make sure that other functions
are not affected.

The user is responsible only for changing the global default values within a
certain part of the program, such as in a certain function and the functions that
are directly and indirectly called from this function. Storing the old global default
values when setting new global default values and restoring the old global default
values is done automatically. This effectively prevents the user from changing the
behavior of functions that are not called directly or indirectly from the actual
function.

 Copyright 2003 Open SystemC Initiative. All rights reserved 26

SystemC 2.0.1 Language Reference Manual

The advantage of the first way is that it is easier to understand and more
appealing to C programmers. The disadvantage of the first way is that the
behavior of other functions can be changed. Clear rules are needed on how to
change the global default values. Enforcement of these rules may be difficult.

The disadvantage of the second way is that it is less easy to understand,
because things that are happening, such as restoring the old global default
values, are not directly visible from the code. The advantage of the second way
is that changing the behavior of other functions, which are not directly or
indirectly called from the actual function, is not possible. An exception is when
new global default values are set outside of the main function.

Contexts currently implement the second way of the second solution. It is
however possible to provide only some of the current functionality. If the first way
of the second solution is more desirable, contexts could provide storage for the
old global default values. The user would still be responsible for restoring the old
global default values

6.8.7 Fixed-Point Context Types
To configure the default behavior of the fixed-point types, a fixed-point context
type can be used. A variable of a fixed-point context type is not passed as an
argument to the fixed-point types.
During declaration of a variable of a fixed-point context type, the values specified
become the new default values. The old default values are stored. When the
variable goes out of scope, the old default values are restored. It is possible to
set the new default values after declaring the context variable. It is also possible
to restore the old default values before the context variable goes out of scope.
Two fixed-point context types are provided: sc_fxtype_context (Chapter
11.26) and sc_fxcast_context (Chapter 11.22).

 Copyright 2003 Open SystemC Initiative. All rights reserved 27

SystemC 2.0.1 Language Reference Manual

6.8.8 Built-in Default Values
The set of built-in default values for the parameters of the fixed-point types and
the fixed-point value type are listed in Table 5.

Table 5 – Built-in Default Values
Parameter Value

wl 32

iwl 32

q_mode SC_TRN

o_mode SC_WRAP

n_bits 0

cast_switch SC_ON

div_wl 64

cte_wl 64

max_wl 1024

6.8.9 Conversion to/from Character String
For the fixed-point types and the value types, conversion to and from character
string is supported. Conversion to character string is supported with the
to_string() method. Conversion from character string is supported with
constructors, assignment operators, and binary operators.

6.8.9.1 Conversions to Character String
Conversion to character string of the fixed-point types and the value types is
supported by the to_string() method. The syntax of this method is:

var_name.to_string([numrep][,fmt])

var_name

The name of the variable, whose value is to be converted to character string.
numrep

The number representation to be used in the character string. The numrep
argument is of type sc_numrep. Valid values for numrep are given in Table
6. The default value for numrep is SC_DEC.

 Copyright 2003 Open SystemC Initiative. All rights reserved 28

SystemC 2.0.1 Language Reference Manual

Table 6 – Number Representations

Value Description Prefix
SC_DEC decimal, sign mangnitude

SC_BIN binary, two’s complement 0b
SC_BIN_US binary, unsigned 0bus
SC_BIN_SM binary, sign magnitude 0bsm
SC_OCT octal, two’s complement 0o
SC_OCT_US octal, unsigned 0ous
SC_OCT_SM octal, sign magnitude 0osm
SC_HEX hexadecimal, two’s complement 0x
SC_HEX_US US hexadecimal, unsigned 0xus
SC_HEX_SM hexadecimal, sign magnitude 0xsm
SC_CSD canonical signed digit 0csd

fmt

Format to use for the resulting character string. The fmt argument is of type
sc_fmt. Valid values for sc_fmt are:

 SC_F fixed
 SC_E scientific

The default value for fmt is SC_F for the fixed-point types. For type
sc_fxval, the default value for fmt is SC_E.

The selected format gives different character strings only when the binary point is
not located within the wl bits. In that case, either sign extension (MSB side) or
zero extension (LSB side) has to be done (SC_F format), or exponents are used
(SC_E format).

As an example, consider a fixed-point type variable with wl=4 and iwl=6.
Converting the value 20 to a two’s complement binary character string without
prefix results in:

010100 (SC_F format)
0101e+2 (SC_E format)

In the scientific format, the + (or -) after the ’e’ is mandatory.

The to_string() method returns a value of type const char*. If this return
value is to be stored for later usage, it must be copied. For short lifetime usage,
such as printing, copying is not needed.

The difference between converting fixed-point variables and value variables to
character string is the number of bits printed. For fixed-point variables, at least
the wl bits are printed. For value variables, only those bits are printed that are
necessary to uniquely represent the value.

 Copyright 2003 Open SystemC Initiative. All rights reserved 29

SystemC 2.0.1 Language Reference Manual

EXAMPLE:
sc_fixed<4,2> a = -1;
printf(a.to_string()); // writes “-1”
printf(a.to_string(SC_BIN)); // writes “0b11.00”

6.8.9.2 Shortcut Methods
For debugging and/or convenience reasons, several shortcut methods to the
to_string method are provided for frequently used combinations of
arguments. The shortcut methods are listed in Table 7.

Table 7 – Shortcut Methods
Shortcut method Number representation

to_dec() SC_DEC
to_bin() SC_BIN
to_oct() SC_OCT
to_hex() SC_HEX

The shortcut methods use the default format as defined above.

EXAMPLE:
sc_fixed<4,2> a = -1;
printf(a.to_dec()); // writes “-1”
printf(a.to_bin()); // writes “0b11.00”

6.8.9.3

6.8.9.4

Conversion from Character String
A character string can be used during initialization (declaration), assignment, and
in expressions with fixed-point variables and value variables. The character string
is converted into a value object.
Note:

A character string is seen as value, i.e., the size of the character string is not
used in any way to determine the size of a fixed-point variable.

Conversion to/from bit vector Character String
Conversion to and from bit vector character strings is done through part selection.
Conversion to a bit vector character string can be done as follows:
sc_fixed<8,8> a = -1;
printf(a.range(7,0).to_string());
 // prints “11111111”
cout << a.range(7,0); // ditto

Conversion from a bit vector character string can be done as follows:
sc_fixed<8,8> a;
a.range(7,0) = “11111111”; // a gets -1

Instead of specifying the full range as arguments to the range() method, the
shortcut without any arguments can be used as well.

 Copyright 2003 Open SystemC Initiative. All rights reserved 30

SystemC 2.0.1 Language Reference Manual

6.8.10 Fixed-Point Array Declaration
When one declares a fixed-point variable, one can specify the appropriate
parameters as constructor arguments. When declaring an array of fixed-point
variables, however, one cannot use this method. C++ does not allow one to
declare an array of a certain type and specify constructor arguments. In this case,
the default constructor is called for each element in the array.
For the fixed-point types sc_fix and sc_ufix, this restriction can be
circumvented by specifying the appropriate type parameters up front as default
values with the fixed- point context type sc_fxtype_context. For example:
sc_fxtype_context c1(16,1,SC_RND_CONV,SC_SAT_SYM);
sc_fix a[10];

For the fixed-point types sc_fixed and sc_ufixed, the type parameters are
part of the type. Hence, an array of these types can be declared in a
straightforward manner. For example:
sc_fixed<32,32> a[10];
sc_ufixed<16,1,SC_RND_CONV,SC_SAT_SYM> b[4];

Only the cast switch parameter is an optional argument to the constructors of the
fixed- point types. To declare a fixed-point array with casting switched off or with
casting switched with a variable, this requires that the appropriate cast switch
value is specified up front as default value with the fixed-point context type
sc_fxcast_context. For example:
sc_fxcast_context no_casting(SC_OFF);
sc_fixed<8,8> a[10];

6.8.11 Observation
For observing fixed-point variables and fixed-point value variables, two
mechanisms are provided. First of all, the SystemC trace functions can be used
with fixed-point variables and fixed-point value variables. Second, observer
abstract base classes are provided as hooks to define one’s own observer
functionality.

The following observer abstract base classes are provided:
sc_fxnum_observer
sc_fxnum_fast_observer
sc_fxval_observer
sc_fxval_fast_observer

6.8.12 Finite Word length Effects
SystemC implements fixed-point arithmetic, i.e., computations are performed with
a finite number of bits. Because of this, quantization and/or overflow occurs. In
addition to the fixed-point arithmetic, SystemC also provides a number of modes
to deal with these effects.
When applying these quantization and overflow modes, keep in mind that fixed-
point numbers in SystemC can be signed or unsigned. Some overflow and

 Copyright 2003 Open SystemC Initiative. All rights reserved 31

SystemC 2.0.1 Language Reference Manual

quantization modes favor a 2’s complement representation, while others favor a
1’s complement representation.
The quantization and overflow handling process works along the following steps:
An operation is performed with a temporary result type that does not generate
any overflow or quantization effect, i.e., the operation is performed with full
precision.
During fixed-point type casting, the temporary result is quantized as specified.
Note here that overflow may occur.
The appropriate overflow behavior is then applied to the result of the process up
until now, which gives the final value.

6.8.12.1 Overflow Modes
Overflow occurs when a result of an arithmetic operation needs more bits than
can be represented. Specific overflow modes can then be used.
The supported overflow modes are listed in Table 8. They are mutually exclusive.
The default overflow mode is SC_WRAP. When using a wrap-around overflow
mode, the number of saturated bits (n_bits) is by default set to 0, but can be
modified.

Table 8 – Overflow Modes
Overflow Mode Name

Saturation SC_SAT
Saturation to zero SC_SAT_ZERO
Symmetrical saturation SC_SAT_SYM
Wrap-around (*) SC_WRAP
Sign magnitude wrap-around (*) SC_WRAP_SM

(*) with 0 or n_bits saturated bits (n_bits > 0). The default value for n_bits
is 0.

In what follows, each of the overflow modes will be explained in more detail. A
figure will be given to explain the behavior graphically. The x-axis shows the
input values and the y-axis represents the output values. Together they
determine what is called the overflow mode.

In order to facilitate the explanation of each overflow mode, the concepts MIN
and MAX are used:
In case of signed numbers, MIN is the lowest (negative) number that can be
represented; MAX is the highest (positive) number that can be represented with a
certain number of bits. A value x lies then in the range:

-2n-1 (= MIN) • x • 2n-1 - 1 (= MAX). n indicates the
number of bits.

In case of unsigned numbers, MIN equals 0 and MAX equals 2n - 1.
n indicates the number of bits.

 Copyright 2003 Open SystemC Initiative. All rights reserved 32

SystemC 2.0.1 Language Reference Manual

6.8.12.1.1 Overflow for Signed Fixed-Point Numbers
The following template contains a signed fixed-point number before and after an
overflow mode has been applied and a number of flags which are explained
below. The flags between parentheses indicate additional optional properties of a
bit.

xBefore:
After:

Flags:

x x x x x x x x x x x x x x x x
xx x x x x x x x x x x

RlD sR R(N) R(lN) R R R R R R R lRsD D D D

The following flags and symbols are used in the template above and in Table :
x. A binary digit (0 or 1).
sD. Sign bit before overflow handling.
Deleted bits.
lD. Least significant deleted bit.
sR. Bit on the MSB position of the result number. For the SC_WRAP_SM, 0 and
SC_WRAP_SM, 1 modes a distinction is made between the original value (sRo)
and the new value (sRn) of this bit.
N. Saturated bits. Their number is equal to the n_bits argument minus 1. They
are always taken after the sign bit of the result number. The n_bits argument is
only taken into account for the SC_WRAP and SC_WRAP_SM overflow modes.
lN. Least significant saturated bit. This flag is only relevant for the SC_WRAP
and SC_WRAP_SM overflow modes. For the other overflow modes these bits are
treated as R-bits. For the SC_WRAP_SM, n_bits > 1 mode, lNo represents the
original value of this bit.
R. Remaining bits.
lR. Least significant remaining bit.
There is always overflow when the value of at least one of the deleted bits (sD,
D, lD) is not equal to the original value of the bit on the MSB position of the
result (sRo). For example, a number of type sc_fixed<31,11> is cast to a
sc_fixed<28,8> number. Overflow for Unsigned Fixed-Point Numbers

Bit 27, when we start counting from 0 at the LSB side of the number, equals 1. If
any of the bits 28, 29 or 30 of the initial number equals 0, there is an overflow. In
the other case, all bits except for the deleted bits are copied to the result number.

 Copyright 2003 Open SystemC Initiative. All rights reserved 33

SystemC 2.0.1 Language Reference Manual

Table 9 shows how a signed fixed-point number is cast (in case there is an
overflow) for each of the possible overflow modes. The operators used in the
table are “!” for a bitwise negation and “^” for a bitwise exclusive-or.

 Copyright 2003 Open SystemC Initiative. All rights reserved 34

SystemC 2.0.1 Language Reference Manual

Table 9 – Overflow Handling for Signed Fixed-Point Numbers
Overflow Mode Result
 Sign Bit (sR) Saturated Bits (N, lN) Remaining Bits (R, lR)
SC_SAT sD ! sD

 The result number gets the sign bit of the original number. The
remaining bits get the inverse value of the sign bit.

SC_SAT_ZERO 0 0

 All bits are set to zero.

SC_SAT_SYM sD ! sD,

 The result number gets the sign bit of the original number. The
remaining bits get the inverse value of the sign bit, except the
least significant remaining bit, which is set to one.

SC_WRAP, (n_bits =) 0 sR x

 All bits except for the deleted bits are copied to the result
number.

SC_WRAP, (n_bits =) 1 sD x

 The result number gets the sign bit of the original number. The
remaining bits are simply copied from the original number.

SC_WRAP, n_bits > 1 sD ! sD x

 The result number gets the sign bit of the original number. The
saturated bits get the inverse value of the sign bit of the original
number. The remaining bits are sim ply copied.

SC_WRAP_SM, (n_bits
=) 0

lD x ^ sRo ^ sRn

 The sign bit of the result number gets the value of the least
significant deleted bit. The remaining bits are exor-ed with the
original and the new value of the sign bit of the result number.

SC_WRAP_SM, (n_bits
=) 1

sD x ^ sRo ^ sRn

 The result number gets the sign bit of the original number. The
remaining bits are exor-ed with the original and the new value
of the sign bit of the result number.

SC_WRAP_SM, n_bits >
1

sD ! sD x ^ lNo ^ ! sD

 The result number gets the sign bit of the original number. The
saturated bits get the inverse value of the sign bit of the original
number. The remaining bits are exor-ed with the original value
of the least significant saturated bit and the inverse value of the

 Copyright 2003 Open SystemC Initiative. All rights reserved 35

SystemC 2.0.1 Language Reference Manual

original sign bit.

6.8.12.1.2 Overflow for Unsigned Fixed-Point Numbers
The following template contains an unsigned fixed-point number before and after
an overflow mode has been applied and a number of flags, which are explained
below.

The following flags and symbols are used in the template above and in Table
10:

xBefore:
After:

Flags:

x x x x x x x x x x x x x x x x
xx x x x x x x x x x x

RlD R(N) R(N) R(N) R R R R R R R RD D D D

x. A binary digit (0 or 1).
Deleted bits.
lD. Least significant deleted bit.
N. Saturated bits. Their number is equal to the n_bits argument. The n_bits
argument is only taken into account for the SC_WRAP and SC_WRAP_SM
overflow modes.
R. Remaining bits.
Table 10 shows how an unsigned fixed-point number is cast in case there is an
overflow for each of the possible overflow modes.

 Copyright 2003 Open SystemC Initiative. All rights reserved 36

SystemC 2.0.1 Language Reference Manual

Table 10 – Overflow Handling for Unsigned Fixed-Point Numbers

Overflow Mode Result

 Saturated Bits (N) Remaining Bits (R)
SC_SAT 1 (overflow) 0 (underflow)

 The remaining bits are set to 1 (overflow) or 0 (underflow).

SC_SAT_ZERO 0

 The remaining bits are set to 0.

SC_SAT_SYM 1 (overflow) 0 (underflow)

 The remaining bits are set to 1 (overflow) or 0 (underflow).

SC_WRAP, (n_bits =) 0 x

 All bits except for the deleted bits are copied to the result
number.

SC_WRAP, n_bits > 0 1 x

 The saturated bits of the result number are set to 1. The
remaining bits are copied to the result number.

SC_WRAP_SM Not defined for unsigned numbers.

During the conversion from signed to unsigned, sign extension occurs before
overflow handling, while in the unsigned to signed conversion, zero extension
occurs first.

 Copyright 2003 Open SystemC Initiative. All rights reserved 37

SystemC 2.0.1 Language Reference Manual

6.8.12.2 SC_SAT
Use the SC_SAT overflow mode to indicate that the output is saturated to MAX in
case of overflow or to MIN in the case of negative overflow. The ideal situation is
represented by the diagonal dashed line, as illustrated in Figure 3.

Figure 3 - Saturation

y 5

4

3

2

1
1 2 3 4 5 6

-1

-2

-3
-4

-5

-6 -5 -4 -3 -2 -1

x

EXAMPLE (signed):
You specify a word length of three bits. Figure 3 - Saturation
 illustrates the possible values when the SC_SAT overflow mode for signed
numbers is taken into account.
0110 (6)
after saturation: 011 (3)

There is an overflow because the decimal number 6 is outside the range of
values that can be represented exactly by means of three bits. The result is then
rounded to the highest positive representable number, which is 3.
1011 (-5)
after saturation: 100 (-4)

There is an overflow because the decimal number -5 is outside the range of
values that can be represented exactly by means of three bits. The result is then
rounded to the lowest negative representable number, which is -4.

EXAMPLE (unsigned):
The result number is three bits wide.
01110 (14)
after saturation: 111 (7)

The SC_SAT mode corresponds to the SC_WRAP and SC_WRAP_SM modes with
the number of bits to be saturated equal to the number of kept bits.

 Copyright 2003 Open SystemC Initiative. All rights reserved 38

SystemC 2.0.1 Language Reference Manual

6.8.12.3 SC_SAT_ZERO
Use the SC_SAT_ZERO overflow mode to indicate that the output is forced to
zero in case of an overflow, that is, if MAX or MIN is exceeded.

Figure 4 – Saturation to Zero

y

x

5

4

3

2

1

-1

-2

-3

-4

-5

1 2 3 4 5 6-6 -5 -4 -3 -2 -1

EXAMPLE (signed):
You specify a word length of three bits. Figure 4 – Saturation to Zero
illustrates the possible values for this word length when SC_SAT_ZERO is taken into
account as overflow mode.
0110 (6)
after saturation to zero: 000 (0)

There is an overflow because the decimal number 6 is outside the range of
values that can be represented exactly by means of three bits. The result is
saturated to zero.

1011 (-5)
after saturation to zero: 000 (0)

There is an overflow because the decimal number -5 is outside the range of
values that can be represented exactly by means of three bits. The result is
saturated to zero.

EXAMPLE (unsigned):
The result number is three bits wide.
01110 (14)
after saturation to zero: 000 (0)

 Copyright 2003 Open SystemC Initiative. All rights reserved 39

SystemC 2.0.1 Language Reference Manual

6.8.12.4 SC_SAT_SYM
Use the SC_SAT_SYM overflow mode to indicate that the output is saturated to
MAX in case of overflow or to -MAX (signed) or MIN (unsigned) in the case of
negative overflow. The ideal situation is represented by the diagonal dashed line,
as illustrated in Figure 5 – Symmetrical Saturation

.

Figure 5 – Symmetrical Saturation

y 5

4

3

2

1
1 2 3 4 5 6

-1

-2

-3
-4

-5

-6 -5 -4 -3 -2 -1

x

EXAMPLE (signed):
You specify a word length of three bits. Figure 5 illustrates the possible values
when the SC_SAT_SYM overflow mode for signed numbers is taken into account.
0110 (6)
after symmetrical saturation: 011 (3)

There is an overflow because the decimal number 6 is outside the range of
values that can be represented exactly by means of three bits. The result is then
rounded to the highest positive representable number, which is 3.
1011 (-5)
after symmetrical saturation: 101 (-3)

There is an overflow because the decimal number -5 is outside the range of
values that can be represented exactly by means of three bits. The result is then
rounded to minus the highest positive representable number, which is -3.

EXAMPLE (unsigned):
The result number is three bits wide.
01110 (14)
after symmetrical saturation: 111 (7)

 Copyright 2003 Open SystemC Initiative. All rights reserved 40

SystemC 2.0.1 Language Reference Manual

6.8.12.5 SC_WRAP
Use the SC_WRAP overflow mode to indicate that the output is wrapped around in
the case of overflow. Two different cases are discussed: one with the n_bits
parameter set to 0, and one with the n_bits parameter greater than 0.

SC_WRAP, 0

This is the default overflow mode. All bits except for the deleted bits are copied to
the result number.

Figure 6 – Wrap-Around with n_bits = 0

EXAMPLE (signed):

y

x

5

4
3

2
1

-1
-2
-3

-4
-5

-9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 6 7 8 95

You specify a word length of three bits. Figure 6 illustrates the possible values
for this word length when wrapping around with zero bits is taken into account as
overflow mode and when you use signed numbers.
0100 (4)
 after wrapping around with 0 bits: 100 (-4)

There is an overflow because the decimal number 4 is outside the range of
values that can be represented exactly by means of three bits. The MSB is
truncated and the result becomes negative: -4.

1011 (-5)
after wrapping around with 0 bits: 011 (3)

There is an overflow because the decimal number -5 is outside the range of
values that can be represented exactly by means of three bits. The MSB is
truncated and the result becomes positive: 3

 Copyright 2003 Open SystemC Initiative. All rights reserved 41

SystemC 2.0.1 Language Reference Manual

EXAMPLE (unsigned):
The result number is three bits wide.
11011 (27)
after wrapping around with 0 bits: 011 (3)

SC_WRAP, n_bits > 0: SC_WRAP, 1

Whenever n_bits is greater than 0, the specified number of bits on the MSB
side of the result number are saturated with preservation of the original sign; the
other bits are simply copied. Positive numbers remain positive; negative numbers
remain negative.

Figure 7 – Wrap-Around with n_bits = 1

-9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 6 7 8 95

5

4

3

2

1

-1
-2

-3

-4

-5

y

x

EXAMPLE (signed):
You specify a word length of three bits for the result. Figure 7 – Wrap-Around
with n_bits = 1
 illustrates the possible values for this word length when wrapping around with
one bit is taken into account for the overflow mode.

0101 (5)
after wrapping around with 1 bit: 001 (1)

There is an overflow because the decimal number 5 is outside the range of
values that can be represented exactly by means of three bits. The sign bit is
kept, so that positive numbers remain positive.

1011 (-5)
after wrapping around with 1 bit: 111 (-1)

 Copyright 2003 Open SystemC Initiative. All rights reserved 42

SystemC 2.0.1 Language Reference Manual

There is an overflow because the decimal number -5 is outside the range of
values that can be represented exactly by means of three bits. The MSB is
truncated, but the sign bit is kept, so that negative numbers remain negative.

EXAMPLE (unsigned):
For this example the SC_WRAP, 3 mode is applied. The result number is five bits
wide. The 3 bits at the MSB side are set to 1; the remaining bits are copied.

0110010 (50)
after wrapping around with 3 bits: 11110 (30)

6.8.12.6 SC_WRAP_SM
Use the SC_WRAP_SM overflow mode to indicate that the output is sign
magnitude wrapped around in the case of overflow. The n_bits parameter again
indicates the number of bits (for example, 1) on the MSB side of the cast number
that are saturated with preservation of the original sign.
Below, you get two different cases of SC_WRAP_SM:

C_WRAP_SM with parameter n_bits = 0
SC_WRAP_SM with parameter n_bits > 0

SC_WRAP_SM, 0

The MSBs outside the required word length are deleted. The sign bit of the result
number gets the value of the least significant of the deleted bits. The other bits
are inverted in case the original and the new values of the most significant of the
kept bits differ. Otherwise, the other bits are simply copied from the original to the
result number.

Figure 8 – Sign Magnitude Wrap-Around with n_bits = 0

y

x

-9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 6 7 8 95

5

4
3
2

1

-1
-2

-3
-4

-5

EXAMPLE:

 Copyright 2003 Open SystemC Initiative. All rights reserved 43

SystemC 2.0.1 Language Reference Manual

If you want to cast a decimal number 4 into three bits and you use the overflow
mode SC_WRAP_SM, 0, this is what happens:

 0100 (4)

The original representation is truncated in order to be put in a three bit number:

 100 (-4)

The new sign bit is 0. This is the value of least significant deleted bit.

Because the original and the new value of the new sign bit differ, the values of
the remaining bits are inverted:

 011 (3)

This principle can be applied to all numbers that cannot be represented exactly
by means of three bits.

 Copyright 2003 Open SystemC Initiative. All rights reserved 44

SystemC 2.0.1 Language Reference Manual

Table 11 - Sign Magnitude Wrap-Around with n_bits = 0 for a Three Bit
Number

Decimal Binary

8 111

7 000

6 001

5 010

4 011

3 011

2 010

1 001

0 000

-1 111

-2 110

-3 101

-4 100

-5 100

-6 101

-7 110

SC_WRAP_SM, n_bits > 0

The first n_bits bits on the MSB side of the result number are:
Saturated to MAX in case of a positive number
Saturated to MIN in case of a negative number

Positive numbers remain positive and negative numbers remain negative.
In case n_bits equals 1 the other bits are copied and exor-ed with the original and
the new value of the sign bit of the result number. In case n_bits is greater than 1,
the remaining bits are exor-ed with the original value of the least significant
saturated bit and the inverse value of the original sign bit.

SC_WRAP_SM, n_bits > 0: SC_WRAP_SM, 3

The first three bits on the MSB side of the cast number are saturated to MAX or
MIN.
If you want to cast the decimal number 234 into five bits and you use the
overflow mode SC_WRAP_SM, 3, this is what happens:

 Copyright 2003 Open SystemC Initiative. All rights reserved 45

SystemC 2.0.1 Language Reference Manual

 011101010 (234)

The original representation is truncated to five bits:

 01010

The original sign bit is copied to the new MSB (bit position 4, starting from bit
position 0):

 01010

The bits at position 2, 3 and 4 are saturated; they are converted to the maximum
value you can express with three bits without changing the sign bit:

 01110

The original value of the bit on position 2 was 0. The remaining bits at the LSB
side (10) are exor-ed with this value and with the inverse value of the original
sign bit, that is, with 0 and 1 respectively.

 01101 (13)

SC_WRAP_SM, n_bits > 0: SC_WRAP_SM, 1

The first bit on the MSB side of the cast number gets the value of the original
sign bit. The other bits are copied and exor-ed with the original and the new
value of the sign bit of the result number.

Figure 9 – Sign Magnitude Wrap-Around with n_bits = 1

5
4
3
2

1

-1
-2
-3
-4
-5

-9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 6 7 8 95

y

x

 Copyright 2003 Open SystemC Initiative. All rights reserved 46

SystemC 2.0.1 Language Reference Manual

If you want to cast the decimal number 12 into three bits and you use the
overflow mode SC_WRAP_SM, 1, this is what happens.

 01100 (12)

The original representation is truncated to three bits.

 100

The original sign bit is copied to the new MSB (bit position 2, starting from bit
position 0).

 000

The two remaining bits at the LSB side are exor-ed with the original (1) and the
new value (0) of the new sign bit.

 011

This principle can be applied to all numbers that cannot be represented exactly
by means of three bits.

 Copyright 2003 Open SystemC Initiative. All rights reserved 47

SystemC 2.0.1 Language Reference Manual

Table 12 – Sign Magnitude Wrap-around with n_bits = 1 for a Three Bit
Number

Decimal Binary

9 001

8 000

7 000

6 001

5 010

4 011

3 011

2 010

1 001

0 000

-1 111

-2 110

-3 101

-4 100

-5 100

-6 101

-7 110

-8 111

-9 111

 Copyright 2003 Open SystemC Initiative. All rights reserved 48

SystemC 2.0.1 Language Reference Manual

6.8.12.7 Quantization Modes
Aside from overflow modes, also quantization modes can be used to
approximate a higher precision.
The supported quantization modes are listed in Table . They are mutually
exclusive. The default quantization mode is SC_TRN.

Table 13 – Quantization Modes
Quantization Mode Name

Rounding to plus infinity SC_RND

Rounding to zero SC_RND_ZERO

Rounding to minus infinity SC_RND_MIN_INF

Rounding to infinity SC_RND_INF

Convergent rounding SC_RND_CONV

Truncation SC_TRN

Truncation to zero SC_TRN_ZERO

Each of the following quantization modes is followed by a figure. On the x-axis
you find the input values, on the y-axis the output values. Together they
determine what is called the quantization mode. In each figure, the quantization
mode specified by the respective keyword is combined with the ideal
characteristic. This ideal characteristic is represented by the diagonal dashed line.
Before each quantization mode is discussed in detail, an overview is given of
how the different quantization modes deal with quantization for signed and
unsigned fixed-point numbers.

 Copyright 2003 Open SystemC Initiative. All rights reserved 49

SystemC 2.0.1 Language Reference Manual

6.8.12.7.1 Quantization for Signed Fixed-Point Numbers
The following template contains a signed fixed-point number in 2’s complement
representation before and after a quantization mode has been applied and a
number of flags. These are explained below.

xBefore:
After:

Flags:

x x x x x x x x x x x x x x

DR R R R lR mD D D D DsR R R R

x x x x x x x x x

The following flags and symbols are used in the template above and in Table :
x. A binary digit (0 or 1).
sR. Sign bit.
R. Remaining bits.
lR. Least significant remaining bit.
mD. Most significant deleted bit.
Deleted bits.
r. Logical or of the deleted bits except for the mD bit in the template above.
When there are no remaining bits, r is false. This means that r is false when the
two nearest numbers are at equal distance.

Table 14 shows how a signed fixed-point number is cast for each of the possible
quantization modes in case there is quantization. If the two nearest representable
numbers are not at equal distance, the result is, of course, the nearest
representable number. This can be found by applying the SC_RND mode, that is, by
adding the most significant of the deleted bits to the remaining bits.
The right hand column in Table contains the expression that has to be added to
the remaining bits. It always evaluates to a one or a zero. The operators used in
the table are “!” for a bitwise negation, ”|” for a bitwise or, and “&” for a bitwise
and.

 Copyright 2003 Open SystemC Initiative. All rights reserved 50

SystemC 2.0.1 Language Reference Manual

Table 14 – Quantization Handling for Signed Fixed-Point Numbers

Quantization
Mode

Expression to Be Added

SC_RND mD

 Add the most significant deleted bit to

the remaining bits.

SC_RND_ZERO mD & (sR | r)

 If the most significant deleted bit is 1,

and either the sign bit or at least one

other deleted bit is 1, add 1 to the

remaining bits.

SC_RND_MIN_INF mD & r

 If the most significant deleted bit is 1

and at least one other deleted bit is 1,

add 1 to the remaining bits.

SC_RND_INF mD & (! sR | r)

 If the most significant deleted bit is 1,

and either the inverted value of the sign

bit or at least one other deleted bit is

1, add 1 to the remaining bits.

SC_RND_CONV mD & (lR | r)

 If the most significant deleted bit is 1,

and either the least significant of the

remaining bits or at least one other

deleted bit is 1, add 1 to the remaining

bits.

SC_TRN 0

 Just copy the remaining bits.

SC_TRN_ZERO sR & (mD | r)

 If the sign bit is 1, and either the most

significant deleted bit or at least one

other deleted bit is 1, add 1 to the

remaining bits.

 Copyright 2003 Open SystemC Initiative. All rights reserved 51

SystemC 2.0.1 Language Reference Manual

6.8.12.7.2 Quantization for Unsigned Fixed-Point Numbers
The following template contains an unsigned fixed-point number before and after
a quantization mode has been applied, and a number of flags. These are
explained below.

xBefore:
After:

Flags:

x x x x x x x x x x x x x x

DR R R R lR mD D D D DR R R R

x x x x x x x x x

The following flags and symbols are used in the template above and in Table :
x. A binary digit (0 or 1).
R. Remaining bits.
lR. Least significant remaining bit.
mD. Most significant deleted bit.
Deleted bits.
r. Logical or of the deleted bits except for the mD bit in the template above.
When there are no remaining bits, r is false. This means that r is false when the
two nearest numbers are at equal distance.

Table shows how an unsigned fixed-point number is cast for each of the
possible quantization modes in case there is quantization. If the two nearest
representable numbers are not at equal distance, the result is, of course, the
nearest representable number. This can be found for all the rounding modes by
applying the SC_RND mode, that is, by adding the most significant of the deleted
bits to the remaining bits.
The right hand column in Table contains the expression that has to be added to
the remaining bits. It always evaluates to a one or a zero. The “&” operator used
in the table stands for a bitwise and, and the “|” for a bitwise or.

 Copyright 2003 Open SystemC Initiative. All rights reserved 52

SystemC 2.0.1 Language Reference Manual

Table 15 – Quantization Handling for Unsigned Fixed-Point Numbers

Quantization
Mode

Expression to Be Added

SC_RND mD
 Add the most significant deleted bit to the left bits.

SC_RND_ZERO 0
 Just copy the remaining bits.
SC_RND_MIN_INF 0
 Just copy the remaining bits.

SC_RND_INF mD
 Add the most significant deleted bit to the left bits.

SC_RND_CONV mD & (lR | r)
 If the most significant deleted bit is 1, and either the

least significant of the remaining bits or at least one
other deleted bit is 1, add 1 to the remaining bits.

SC_TRN 0
 Just copy the remaining bits.

SC_TRN_ZERO 0
 Just copy the remaining bits.

Note:
For all rounding modes, overflow can occur. One extra bit on the MSB side is
needed to represent the result in full precision.

 Copyright 2003 Open SystemC Initiative. All rights reserved 53

SystemC 2.0.1 Language Reference Manual

6.8.12.7.3 SC_RND
The result is rounded to the nearest representable number by adding the most
significant of the deleted LSBs to the remaining bits. This rule is used for all
rounding modes when the two nearest representable numbers are not at equal
distance. When the two nearest representable numbers are at equal distance,
this rule implies that there is rounding towards +�.

Figure 10 – Rounding to Plus Infinity

3q

2q
q

q 2q 3q

y

x

In Figure 10, the symbol “q” refers to the quantization step, i.e., the resolution of
the data type.
EXAMPLE (signed):

Numbers of type sc_fixed<4,2> are assigned to numbers of type
sc_fixed<3,2,SC_RND>.

 Copyright 2003 Open SystemC Initiative. All rights reserved 54

SystemC 2.0.1 Language Reference Manual

(1.25)
after rounding to plus infinity: 01.1 (1.5)

There is quantization because the decimal number 1.25 is outside the range
of values that can be represented exactly by means of a
sc_fixed<3,2,SC_RND> number. The most significant of the deleted
LSBs (1) is added to the new LSB.

10.11 (-1.25)
after rounding to plus infinity: 11.0 (-1)

There is quantization because the decimal number -1.25 is outside the
range of values that can be represented exactly by means of a
sc_fixed<3,2,SC_RND> number. The most significant of the deleted
LSBs (1) is added to the new LSB.

EXAMPLE (unsigned):

00100110.01001111 (38.30859375)
after rounding to plus infinity: 00100110.0101 (38.3125)

 Copyright 2003 Open SystemC Initiative. All rights reserved 55

SystemC 2.0.1 Language Reference Manual

6.8.12.7.4 SC_RND_ZERO
In case the two nearest representable numbers are not at equal distance, the
SC_RND mode is applied.
In case the two nearest representable numbers are at equal distance, the output
is rounded towards 0. For positive numbers the redundant bits on the LSB side
are deleted. For negative numbers the most significant of the deleted LSBs is
added to the remaining bits.

Figure 11 – Rounding to Zero

3q

2q
q

q 2q 3q

y

x

EXAMPLE (signed):
Numbers of type sc_fixed<4,2> are assigned to numbers of type
sc_fixed<3,2,SC_RND_ZERO>.

(1.25)
after rounding to zero: 01.0 (1)

There is quantization because the decimal number 1.25 is outside the range of
values that can be represented exactly by means of a
sc_fixed<3,2,SC_RND_ZERO> number. The redundant bits are omitted.

10.11 (-1.25)
after rounding to zero: 11.0 (-1)

There is quantization because the decimal number -1.25 is outside the range of
values that can be represented exactly by means of a
sc_fixed<3,2,SC_RND_ZERO> number. The most significant of the omitted
LSBs (1) is added to the new LSB.

 Copyright 2003 Open SystemC Initiative. All rights reserved 56

SystemC 2.0.1 Language Reference Manual

EXAMPLE (unsigned):

000100110.01001 (38.28125)
after rounding to zero: 000100110.0100 (38.25)

6.8.12.7.5 SC_RND_MIN_INF
In case the two nearest representable numbers are not at equal distance, the
SC_RND mode is applied.
In case the two nearest representable numbers are at equal distance, there is
rounding towards −� by omitting the redundant bits on the LSB side.

Figure 12 – Rounding to Minus Infinity

3q

2q
q

q 2q 3q

y

x

EXAMPLE (signed):

Numbers of type sc_fixed<4,2> are assigned to numbers of type
sc_fixed<3,2,SC_RND_MIN_INF>.

01.01 (1.25)
after rounding to minus infinity: 01.0 (1)

There is quantization because the decimal number 1.25 is outside the range of
values that can be represented exactly by means of a
sc_fixed<3,2,SC_RND_MIN_INF> number. The surplus bits are truncated.

10.11 (-1.25)
after rounding to minus infinity: 10.1 (-1.5)

There is quantization because the decimal number -1.25 is outside the range of
values that can be represented exactly by means of a
sc_fixed<3,2,SC_RND_MIN_INF> number. The surplus bits are truncated.

 Copyright 2003 Open SystemC Initiative. All rights reserved 57

SystemC 2.0.1 Language Reference Manual

EXAMPLE (unsigned):

000100110.01001 (38.28125)
after rounding to minus infinity: 000100110.0100

 (38.25)

6.8.12.7.6 SC_RND_INF
In case the two nearest representable numbers are not at equal distance, the
SC_RND mode is applied.
In case the two nearest representable numbers are at equal distance, the output
is rounded to +� or −�, depending on whether the number is positive or negative,
respectively. For positive numbers the most significant of the deleted LSBs is
added to the remaining bits. For negative numbers the surplus bits on the LSB
side are omitted.

Figure 13 – Rounding to Infinity

3q

2q
q

q 2q 3q

y

x

EXAMPLE (signed):

Numbers of type sc_fixed<4,2> are assigned to numbers of type
sc_fixed<3,2,SC_RND_INF>.

01.01 (1.25)
after rounding to infinity: 01.1 (1.5)

There is quantization because the decimal number 1.25 is outside the range of
values that can be represented exactly by means of a
sc_fixed<3,2,SC_RND_INF> number. The most significant of the deleted
LSBs (1) is added to the new LSB.

10.11 (-1.25)
after rounding to infinity: 10.1 (-1.5)

 Copyright 2003 Open SystemC Initiative. All rights reserved 58

SystemC 2.0.1 Language Reference Manual

There is quantization because the decimal number -1.25 is outside the range of
values that can be represented exactly by means of a
sc_fixed<3,2,SC_RND_INF> number. The surplus bits are truncated.

EXAMPLE (unsigned):

000100110.01001 (38.28125)
after rounding to infinity: 000100110.0101 (38.3125)

6.8.12.7.7 SC_RND_CONV
In case the two nearest representable numbers are not at equal distance, the
SC_RND mode is applied.
In case the two nearest representable numbers are at equal distance, there is
rounding towards +� if the LSB of the remaining bits is 1. There is rounding
towards -�, if the LSB of the remaining bits is 0.

Figure 14 – Convergent Rounding

3q

2q

q

q 2q 3q

y

x

EXAMPLE (signed):
Numbers of type sc_fixed<4,2> are assigned to numbers of type
sc_fixed<3,2,SC_RND_CONV>.

00.11 (0.75)
after convergent rounding: 01.0 (1)

There is quantization because the decimal number 0.75 is outside the range of
values that can be represented exactly by means of a

 Copyright 2003 Open SystemC Initiative. All rights reserved 59

SystemC 2.0.1 Language Reference Manual

sc_fixed<3,2,SC_RND_CONV> number. The surplus bits are truncated and
the result is rounded towards +�.

10.11 (-1.25)
after convergent rounding: 11.0 (-1)

There is quantization because the decimal number -1.25 is outside the range of
values that can be represented exactly by means of a
sc_fixed<3,2,SC_RND_CONV> number. The surplus bits are truncated and
the result is rounded towards +�.

EXAMPLE (unsigned):

000100110.01001 (38.28125)
after convergent rounding: 000100110.0100 (38.25)

000100110.01011 (38.34375)
after convergent rounding: 000100110.0110 (38.375)

6.8.12.7.8 SC_TRN
SC_TRN is the default quantization mode. The result is rounded towards -�, that
is, the superfluous bits on the LSB side are deleted. A number is then
represented by the first representable number that is lower within the required bit
range. In scientific literature it is usually called “value truncation.”

Figure 15 - Truncation

3q
2q

q

q 2q 3q x

y

EXAMPLE (signed):
Numbers of type sc_fixed<4,2> are assigned to numbers of type
sc_fixed<3,2,SC_TRN>.

 Copyright 2003 Open SystemC Initiative. All rights reserved 60

SystemC 2.0.1 Language Reference Manual

01.01 (1.25)
after truncation: 01.0 (1)

There is quantization because the decimal number 1.25 is outside the range of
values that can be represented exactly by means of a sc_fixed<3,2,SC_TRN>
number. The LSB is truncated.

10.11 (-1.25)
after truncation: 10.1 (-1.5)

There is quantization because the decimal number -1.25 is outside the range of
values that can be represented exactly by means of a sc_fixed<3,2,SC_TRN>
number. The LSB is truncated.

EXAMPLE (unsigned):
00100110.01001111 (38.30859375)
after truncation: 00100110.0100 (38.25)

6.8.12.7.9 SC_TRN_ZERO
For positive numbers this quantization mode corresponds to SC_TRN. For
negative numbers the result is rounded towards zero (SC_RND_ZERO), that is,
the superfluous bits on the right hand side are deleted and the sign bit is added
to the left LSBs, but only in case at least one of the deleted bits differs from zero.
A number is then approximated by the first representable number that is lower in
absolute value. In scientific literature this is usually called “magnitude truncation.”

Figure 16 – Truncation to Zero

3q
2q

q

q 2q 3q

y

x

 Copyright 2003 Open SystemC Initiative. All rights reserved 61

SystemC 2.0.1 Language Reference Manual

EXAMPLE (signed):
A number of type sc_fixed<4,2> is assigned to a number of type
sc_fixed<3,2,SC_TRN_ZERO>.

10.11 (-1.25)
after truncation to zero: 11.0 (-1)

There is quantization because the decimal number -1.25 is outside the range of
values that can be represented exactly by means of a
sc_fixed<3,2,SC_TRN_ZERO> number. The LSB is truncated and then the
sign bit (1) is added at the LSB side.

EXAMPLE (unsigned):

00100110.01001111 (38.30859375)
after truncation to zero: 00100110.0100 (38.25)

6.9 User-defined types
New data types may be created by using the enum types and struct or class
types. Channels of type sc_fifo, sc_signal and so forth may be declared to
be of such a type. However in such cases certain functions may be required to
be overloaded for the user-defined type if those functions are used.

For example a channel of type sc_signal (Chapter 11.60)requires the
following to be overloaded:
operator = (assignment)
operator == (equality)
operator << (stream output)
sc_trace()

 Copyright 2003 Open SystemC Initiative. All rights reserved 62

SystemC 2.0.1 Language Reference Manual

7 Modules
A Module is the basic structural building block in SystemC. It is a container class
in which processes and other modules are instantiated. Modules may contain:

• Ports (Chapter 8.3) for communication
• Data members
• Channel (Chapter 8.2)members
• Processes (Chapter 9)
• Member functions not registered as processes
• Instances of other modules

7.1 Module structure
A new type of module is created by publicly deriving from class sc_module.
Example:

class my_module : public sc_module { . . . };

Alternatively, a module may be created with use of the SC_MODULE macro as
follows:

SC_MODULE(module_name) {
 // ports, data members, member functions
 // processes etc.
 SC_CTOR(module_name) { // Constructor
 // body of constructor
 // process registration, sensitivity lists
 // module instantiations, port binding etc.
 }
};

7.1.1 SC_MODULE
The SC_MODULE macro provides a simple form of module definition. Use of the
SC_MODULE macro is not required. It is defined as follows:

#define SC_MODULE(user_module_name) \
 struct user_module_name : sc_module

It simply derives the class user_module_name from the base class
sc_module (Chapter 11.45).

 Copyright 2003 Open SystemC Initiative. All rights reserved 63

SystemC 2.0.1 Language Reference Manual

7.1.2 Module Constructors
Modules (classes derived from sc_module) require a constructor. The macro
SC_CTOR declares a constructor and is provided for convenience.

If the SC_CTOR macro does not meet the needs of the user, for example if a
second constructor argument is required, then the constructor must be explicitly
declared by the user.

If the user explicitly creates the constructor then one argument must be type
sc_module_name. The sc_module_name class is used to manage the string
names for (hierarchical) objects.

Example:
SC_MODULE(my_module) {
 // ports, channels, data members
 int some_parameter;
 // processes etc.
 my_module (sc_module_name name, int some_value):
 sc_module(name),
 some_parameter(some_value){
 // constructor body
 }
};

If a module has processes and the SC_CTOR macro is not used then the module
must contain the SC_HAS_PROCESS macro.

7.1.2.1 SC_CTOR
The SC_CTOR macro has one argument which is the name of the module.

SC_CTOR provides for the management of the module name.

SC_CTOR declares a special symbol for use with the SC_METHOD (Chapter
9.4) and SC_THREAD (Chapter 9.5) macros.

7.1.3 SC_HAS_PROCESS
SC_HAS_PROCESS is required in the module when the user does not include
the SC_CTOR macro and the module has processes.

SC_HAS_PROCESS declares a special symbol for use with the SC_METHOD
(Chapter 9.4) and SC_THREAD (Chapter 9.5) macros.

 Copyright 2003 Open SystemC Initiative. All rights reserved 64

SystemC 2.0.1 Language Reference Manual

7.1.4 Module instantiation
Modules may be instantiated inside of other modules to create hierarchy. To
create a module instance two steps are required, the declaration of the module
and the initialization of the module. A third step, port binding is required if the
module has any ports. It is possible to instantiate a module which has no ports,
which would not require port binding.

There are two valid approaches for module instantiation inside of another module.
One approach uses pointers and the other does not. In the two approaches the
declaration and initialization steps are different but the syntax for port binding is
the same.

A module requires that a string name be provided as part of instantiation. The
string name is not required to match the instance name. The string name is used
by SystemC to assign a hierarchical name to the instance automatically. This
hierarchical name is formed by the concatenation of the parent’s hierarchical
name and the string name of the child.

7.1.4.1 Module Instantiation Not Using Pointers

7.1.4.1.1 Declaration
The module instance is declared as a data member of the parent module.
Example:

SC_MODULE(ex3) {
 // Ports
 sc_fifo_in<int> a;
 sc_fifo_out<int> b;
 // Internal channel
 sc_fifo<int> ch1;
 // Instances of module types ex1 and ex2
 ex1 ex1_instance;
 ex2 ex2_instance;
 // Module Constructor
 SC_CTOR(ex3){
 // Constructor body not shown
 }
 // Rest of the module body not shown
};

 Copyright 2003 Open SystemC Initiative. All rights reserved 65

SystemC 2.0.1 Language Reference Manual

7.1.4.1.2 Initialization
The module instance is initialized in the initialization list of the constructor.
Example:

SC_MODULE(ex3){
 // Ports
 sc_fifo_in<int> a;
 sc_fifo_out<int> b;
 // Internal channel
 sc_fifo<int> ch1;
 // Instances of module type ex1 and ex2
 ex1 ex1_instance;
 ex2 ex2_instance;
 // Module Constructor
 SC_CTOR(ex3):
 ex1_instance("ex1_instance"),
 ex2_instance("ex2_instance")
 {
 // Rest of constructor body not shown
 }
 // Rest of the module body not shown
};

7.1.4.2 Module Instantiation Using Pointers

7.1.4.2.1 Declaration
The module instance is declared as a pointer to the module type in the parent
module.
Example:

SC_MODULE(ex3) {
 // Ports
 sc_fifo_in<int> a;
 sc_fifo_out<int> b;
 // Internal channel
 sc_fifo<int> ch1;
 // Pointers to instances of module type ex1
 // and ex2
 ex1 *ex1_instance;
 ex2 *ex2_instance;
 // Module Constructor
 SC_CTOR(ex3){
 // Constructor body not shown
 }
 // Rest of the module body not shown
};

 Copyright 2003 Open SystemC Initiative. All rights reserved 66

SystemC 2.0.1 Language Reference Manual

7.1.4.2.2 Allocation and Initialization
The module instance is allocated using the new command and initialized inside
the body of the constructor.
Example

SC_MODULE(ex3){
 // Ports
 sc_fifo_in<int> a;
 sc_fifo_out<int> b;
 // Internal channel
 sc_fifo<int> ch1;
 // Pointers to instances of module type ex1
 // and ex2
 ex1 *ex1_instance;
 ex2 *ex2_instance;
 // Module Constructor
 SC_CTOR(ex3){
 // allocate and initialize both instances
 ex1_instance = new ex1(”ex1_in_ex3");
 ex2_instance = new ex2("ex2_in_ex3");
 // Rest of constructor body not shown
 }
 // Rest of the module body not shown
};

Objects allocated with new should later be deleted again. This can be done in the
module destructor.
Example:

SC_MODULE(ex3) {
 // Rest of the module not shown
 ~ex3() {
 delete ex1_instance;
 delete ex2_instance;
 }
};

 Copyright 2003 Open SystemC Initiative. All rights reserved 67

SystemC 2.0.1 Language Reference Manual

7.1.4.3 Port Binding
Port binding occurs in the body of the constructor. The port binding syntax is the
same for either instantiation approaches (with or without pointers). There are two
different ways of port binding provided: named and positional.

The ports of a child module instance may be bound to a channel instance local to
the parent module or to a port of the parent module.

7.1.4.3.1 Named Port Binding
Named binding explicitly binds a named port to a channel.

Named binding syntax:
module_instance_name.port_name(channel_or_port_name) ;

Where:
module_instance_name is the instance name of the module.
port_name is the name of the port being bound
channel_or_port_name is either the instance name of the channel or the
name of the parent port the port is being bound to.

Example:
SC_MODULE(ex3){
 sc_fifo_in<int> a;
 sc_fifo_out<int> b;
 sc_fifo<int> ch1;
 // Instances of module type ex1 and ex2
 ex1 ex1_instance;
 ex2 ex2_instance;
 // Module Constructor
 SC_CTOR(ex3):
 ex1_instance("ex1_instance"),
 ex2_instance("ex2_instance")
 {
 // Named connection for ex1
 ex1_instance.m(a); // bind to parent port
 ex1_instance.n(ch1); // bind to channel
 // Positional binding for ex2
 ex2_instance(ch1, b);
 // Rest of constructor body not shown
 }
};

 Copyright 2003 Open SystemC Initiative. All rights reserved 68

SystemC 2.0.1 Language Reference Manual

7.1.4.3.2 Positional Port Binding
Positional binding connection implicitly binds a port to a channel by mapping the
ordered list of channels and ports to corresponding ports within the module. The
module ports are selected according to their declaration order within the module.

Named connection syntax:
module_instance_name(channel_or_port_name1,

channel_or_port_name2, ...) ;
Where:

module_instance_name is the instance name of the module.
channel_or_port_nameX is either the instance name of the channel or
the name of the parent port the port is being bound to The first channel or
port listed is bound to the first port declared in module_instance_name,
the second channel or port listed is bound to the second port declared in
module_instance_name and so forth.

Example:
SC_MODULE(ex3){
 sc_fifo_in<int> a;
 sc_fifo_out<int> b;
 sc_fifo<int> ch1;
 // Instances of module type ex1 and ex2
 ex1 ex1_instance;
 ex2 ex2_instance;
 // Module Constructor
 SC_CTOR(ex3):
 ex1_instance("ex1_instance"),
ex2_instance("ex2_instance")
 {
 // Named connection for ex1
 ex1_instance.m(a);
 ex1_instance.n(ch1);
 // Positional binding for ex2
 ex2_instance(ch1, b);
 // Rest of constructor body not shown
 }
};

 Copyright 2003 Open SystemC Initiative. All rights reserved 69

SystemC 2.0.1 Language Reference Manual

8 Interfaces, Ports & Channels
The basic modeling elements for communication for inter-module communication
consists of interfaces, ports and channels. An interface defines the set of access
functions (methods) for a channel. A channel implements the interface methods.
A port is a proxy object through which access to a channel is facilitated.

8.1 Interfaces
An interface defines a set of (member) functions. It is purely functional, that is it
does not provide the implementation of the functions, but only specifies the
signature of each function. It specifies the name, parameters and return type of
the function but does not specify how the operations are implemented.

There are a number of interfaces provided by SystemC. Future revisions may
provide additional interfaces:
sc_fifo_in_if (Chapter 11.15)
sc_fifo_out_if (Chapter 11.17)
sc_mutex_if (Chapter 11.49)
sc_semaphore_if (Chapter 11.49)
sc_signal_in_if (Chapter 11.61)
sc_signal_inout_if (Chapter 11.62)

8.2 Channels
Channels define how the functions (methods) of an interface are implemented.
Channels provide the communication between modules or within a module
provide the communication between processes.

Channels may implement one or more interfaces.

Different channels may implement the same interface in different ways.

There are two general classes of channels: primitive and hierarchical.

There are a number of primitive channels provided by SystemC. Future revisions
may provide additional channels.
sc_buffer (Chapter 11.6)
sc_fifo (Chapter 11.12)
sc_mutex (Chapter 11.47)
sc_sempahore (Chapter 11.56)
sc_signal (Chapter 11.60)
sc_signal_resolved (Chapter 11.63)
sc_signal_rv (Chapter 11.64)

 Copyright 2003 Open SystemC Initiative. All rights reserved 70

SystemC 2.0.1 Language Reference Manual

8.2.1 Primitive Channels
A base class, sc_prim_channel() (Chapter 11.55) is provided from which
primitive channels are derived. A primitive channel is one that supports the
request-update method of access and has no SystemC structures.

sc_prim_channel() provides two methods for implementation of the request-
update scheme. request_update() is a non-virtual function which can be
called during the evaluate phase of a delta-cycle. This instructs the scheduler
(Chapter 2.4.1) to place the channel in an update queue. update() is a virtual
function that must be specified by the derived channel as its behavior is
dependent upon the derived channel’s functionality. During the update phase of
the delta-cycle, the scheduler takes the channels from the update queue and
calls update() on each of them.

8.2.2 Hierarchical Channels
A channel that has SystemC structures is defined as a hierarchical channel.
Structures may include ports, instances of modules, other channels, and
processes. The channel itself may appear to be a module. This structure
provides for greater flexibility in the definition of a channel in comparison to a
primitive channel.

 Copyright 2003 Open SystemC Initiative. All rights reserved 71

SystemC 2.0.1 Language Reference Manual

8.3 Ports
A port is an object that provides a module with a means for connection and
communication with its surroundings. Through a port a module can
communicate with one or more channels.

A port requires an interface. All ports are directly or indirectly derived from the
template class sc_port (Chapter 11.54). An example port declaration is:
SC_MODULE(my_module){
 sc_port<IF, N > port_name ;

// rest of module not shown
};

sc_port takes two template parameters: an interface (Chapter 8.1) IF to
which the port may be connected, and an optional integer N that specifies the
maximum number of interfaces that may be attached to the port.

If N = 0 then an arbitrary number of interfaces may be connected to the port.
The default value of N is one. A port of value one is referred to as a simple port.
A port of value greater than one is referred to as a multiport.

A function (interface method) of an interface connected to a port is invoked using
the operator -> which returns a pointer to the interface the port is bound to.
Example:
 // Given:
sc_port<sc_signal_in_if<int> > a; //port declaration
 // then:
a->read();//calls the read() interface method
 // of the channel connected to port a

To access individual interfaces on a multiport the [] operator is used.
Example:
 // Given:
// port declaration, a is bound to two channels
sc_port<sc_signal_in_if<int>, 2 > a;
 // then:
// calls the read() interface method of the
// 2nd channel connected to port a
a[1]->read();
// calls the read() interface method of the
// 1st channel connected to port a
a[0]->read(); // or a->read();

 Copyright 2003 Open SystemC Initiative. All rights reserved 72

SystemC 2.0.1 Language Reference Manual

8.3.1 Specialized ports
Specialized ports are ports derived from the base class sc_port which are
customized for use with a particular (set of) interface(s). These ports typically
provide additional support for use with a channel or for ease of use. SystemC
provides several specialized ports. Future revisions may provide additional
specialized ports. The specialized ports include:
For sc_buffer (Chapter 11.6) and sc_signal (Chapter 11.60) channels
sc_in (Chapter 11.32)
sc_inout (Chapter 11.35)
sc_out (Chapter 11.51)
For sc_fifo (Chapter 11.12) channel
sc_fifo_in (Chapter 11.14)
sc_fifo_out (Chapter 11.16)
For sc_signal_rv (Chapter 11.64) channel
sc_in_rv (Chapter 11.34)
sc_inout_rv (Chapter 11.37)
sc_out_rv (Chapter 11.53)
For sc_signal_resolved (Chapter 11.63) channel
sc_in_resolved (Chapter 11.33)
sc_inout_resolved (Chapter 11.36)
sc_out_resolved (Chapter 11.52)

 Copyright 2003 Open SystemC Initiative. All rights reserved 73

SystemC 2.0.1 Language Reference Manual

9 Processes
Functionality is described in processes. Processes must be contained in a
module.

A process is a member function of a module. It is registered as a process with
the SystemC kernel using a process declaration in the module constructor.

Processes are not called directly from user code. A process is invoked based on
its sensitivity list, which consists of zero, one, or more events, which can change
during simulation run time .

Processes are not hierarchical.

SystemC has two kinds of processes: method processes and thread processes.
Two macros are provided to register a member function as a process:
SC_METHOD and SC_THREAD. Although not strictly required, the use of these
macros is strongly recommended.

During the initialization phase (Chapter 2.3) all processes are executed. To
avoid execution of a process during initialization, the dont_initialize() function
(Chapter 11.45) is invoked in the module constructor following the
corresponding process declaration.

9.1 Member Function Declaration
A process is declared as a member function of a module. It has a return type of
void and has no arguments.
Example:
SC_MODULE(my_module){
 //ports, channels etc. not shown
 // Process function declaration
 void my_proc();
 // rest of module not shown
};

 Copyright 2003 Open SystemC Initiative. All rights reserved 74

SystemC 2.0.1 Language Reference Manual

9.2 Process Declaration and Registration
A member function of a module is declared and registered as a process with the
SystemC kernel using either the SC_METHOD or the SC_THREAD macro. The
declaration occurs in the body of the module constructor. Both macros take one
argument which is the name of the function which is to be declared as a process.
The syntax for the declaration is shown below.

Declaration syntax:
SC_MODULE(my_module) {
 void my_thread_proc(); //member function declaration
 void my_method_proc(); //member function declaration
 SC_CTOR(my_module) {
 // thread process declaration and registration
 SC_THREAD(my_thread_proc);
 // method process declaration and registration
 SC_METHOD(my_method_proc);
 // rest of constructor not shown
 }
 // rest of module not shown
};

9.3 Process Static Sensitivity
A process is declared as statically sensitive to an event using sensitive in
the module constructor after the process declaration and before the next process
declaration. That is after a SC_METHOD or SC_THREAD statement and before
the next one.

The static sensitivity list for a particular process is the collection of events
declared in the module constructor for that process.

In the sc_module base class (Chapter 11.45) an object named sensitive of
type sc_sensitive (Chapter 11.59) is defined for use in creating static
sensitivity lists for processes. Both the () and the << operators are
overloaded for objects of the sc_sensitive class. These operators provide for
both a functional notation and a streaming style notation for defining static
sensitivity lists. These styles are described below.

 Copyright 2003 Open SystemC Initiative. All rights reserved 75

SystemC 2.0.1 Language Reference Manual

9.3.1 Functional Notation Syntax
The functional notation takes a single argument (event), which is the event the
process is sensitive too.
Syntax:
sensitive(event);

Example:
SC_MODULE(my_module) {
 sc_event c;
 void my_thread_proc();
 SC_CTOR(my_module) {
 SC_THREAD(my_thread_proc);
 // declare static sensitivity list
 sensitive(c); // sensitive to event c
 }
 // rest of module not shown
};

If the process is sensitive to more than one event, then multiple sensitive()
statements are required.
Example:
SC_MODULE(my_module) {
 sc_event c;
 sc_event d;
 void my_thread_proc();
 SC_CTOR(my_module) {
 SC_THREAD(my_thread_proc);
 // declare static sensitivity list
 sensitive(c); // sensitive to event c
 sensitive(d); //sensitive to event d
 }
 // rest of module not shown
};

 Copyright 2003 Open SystemC Initiative. All rights reserved 76

SystemC 2.0.1 Language Reference Manual

9.3.2 Streaming Style Notation Syntax
The streaming style notation supports multiple events.
sensitive << event_1 << event_2 …. ;

Example:
SC_MODULE(my_module) {
 sc_event c;
 sc_event d;
 void my_thread_proc();
 SC_CTOR(my_module) {
 SC_THREAD(my_thread_proc);
 // declare static sensitivity list
 sensitive << c << d; // sensitive to events c & d
 }
 // rest of module not shown
};

9.3.3 Multiple Processes in a Module
When multiple processes are declared, the pattern is declaration followed by
sensitivity list followed by declaration followed by sensitivity list and so on.
Example:
SC_MODULE(my_module) {
 sc_event c, d;
 void proc_1();
 void proc_2();
 void proc_3();
 SC_CTOR(my_module) {
 SC_THREAD(proc_1);
 sensitive << c << d; //proc_1 sensitive to c & d
 SC_THREAD(proc_2); // no static sensitivity
 SC_THREAD(proc_3);
 sensitive << d ; // proc_3 sensitive to d
 }
 // rest of module not shown
};

 Copyright 2003 Open SystemC Initiative. All rights reserved 77

SystemC 2.0.1 Language Reference Manual

9.4 Method Process
When made to run, the entire body of the method process is executed. Upon
completion it returns control to the SystemC kernel. The process does not
maintain its state implicitly, meaning that all local variables are automatic and
lose their value when the function returns. The user must manage process state
explicitly by using state variables that are data members of the module in which
the process resides.

A method process may not be explicitly suspended (may not have calls to
wait()).

A method process may use static sensitivity, dynamic sensitivity or both.
Dynamic sensitivity is created using the next_trigger() function (Chapter
11.45) with one or more arguments. The next_trigger() function may be
called in the body of the method process code, or it may be called in a function
called by the method process that is either a member function of the module or a
method of a channel.

A member function of a module is registered with the SystemC kernel as a
method process using the SC_METHOD macro in the module constructor.

The SC_METHOD macro has one argument. The argument is the name of the
member function to be declared as a method process and registered with the
SystemC kernel.

Example:
SC_MODULE(my_module) {
 sc_event c;
 // process member function declaration
 void my_method_proc();

 SC_CTOR(my_module) {
 // method process declaration & registration
 SC_METHOD(my_method_proc);
 // declare static sensitivity list
 sensitive(c); // sensitive to event c
 dont_initialize(); // don’t run at initialization
 }
 // Rest of module not shown
};

 Copyright 2003 Open SystemC Initiative. All rights reserved 78

SystemC 2.0.1 Language Reference Manual

9.4.1 Method Process Dynamic Sensitivity
When triggered, the entire body of the method process is executed. Execution of
a next_trigger() statement sets the sensitivity for the next trigger for the
method process. It does not cause the method process to end prematurely. The
function next_trigger() specifies the event, event list or time delay that is the
next trigger condition for the method process.

If multiple next_trigger(arg) statements are executed, the last one
executed before the method process is finished executing determines the next
trigger condition (i.e. last one wins).

After completion the process is invoked again when the event(s) specified by the
sensitivity list are notified.

9.4.1.1

9.4.1.2

Trigger on Static Sensitivity List
If the next_trigger() function is called without an argument, then the next
trigger is the static sensitivity list of the method process. In this case, if there is
no static sensitivity list specified then the method process will not be triggered
again during the simulation. Syntax for triggering on the static sensitivity list:

next_trigger();

Trigger On A Single Event
If the next_trigger() function is called with a single event argument then
the process will be triggered when that event is triggered. Syntax for triggering
on a single event:

sc_event e1; // event
next_trigger(e1);

 Copyright 2003 Open SystemC Initiative. All rights reserved 79

SystemC 2.0.1 Language Reference Manual

9.4.1.3

9.4.1.4

9.4.1.5

Trigger After A Specific Amount Of Time
If the next_trigger() function is called with a time value argument then the
process will be triggered after a delay of the specified time. Syntax for triggering
after a specific amount of time:

sc_time t(200, SC_NS); // variable t of type sc_time
next_trigger(t); // trigger 200 ns later
next_trigger(200, SC_NS); // trigger 200 ns later

If the time value argument is zero then the process will be triggered after one
delta-cycle (Chapter 2.4.1). Syntax for triggering after one delta-cycle delay:

next_trigger(0, SC_NS);
next_trigger(SC_ZERO_TIME);
sc_time t(0, SC_NS); // variable t of type sc_time
next_trigger(t); // trigger the next delta-cycle
next_trigger(0, SC_NS); // ditto
next_trigger(SC_ZERO_TIME); // ditto

Trigger On One Event In A List Of Events
If the next_trigger() function is called with an OR-list of events then the
process will be triggered when one event in the list of events has been triggered.
Syntax for triggering on one event in a list of events:

sc_event e1,e2,e3; // events
next_trigger(e1 | e2 | e3); //trigger on e1, e2 or e3

Trigger On All Events In A List Of Events
If the next_trigger() function is called with an AND-list of events, then the
process will be triggered when all events in the list of events have been triggered.
The events do not have to be triggered in the same delta-cycle or at the same
time. Syntax for triggering on all events in a list of events:

sc_event e1,e2,e3; // events
next_trigger(e1 & e2 & e3);//trigger on e1, e2 and e3

 Copyright 2003 Open SystemC Initiative. All rights reserved 80

SystemC 2.0.1 Language Reference Manual

9.4.1.6

9.4.1.7

Trigger On An Event In A List Of Events With Timeout
If the next_trigger() function is called with a combination of a specific
amount of time and an OR-list of events, then the process will be triggered when
one event in the list of events has been triggered or after the specified amount of
time which ever occurs first. Syntax for triggering on one event in a list of events
with timeout:

sc_time t(200, SC_NS); // variable t of type sc_time
// trigger on e1, e2, or e3, timeout after 200 ns
next_trigger(t, e1 | e2 | e3);
// trigger on e1, e2, or e3, timeout after 200 ns
next_trigger(200, SC_NS, e1 | e2 | e3);

Trigger On All Events In A List Of Events With Timeout
If the next_trigger() function is called with a combination of a specific
amount of time and an AND-list of events then the process will be triggered either
when all events in the list of events have been triggered or after the specified
amount of time which ever occurs first. Syntax for triggering on all events in a list
of events with timeout:

sc_time t(200, SC_NS); // variable t of type sc_time
// trigger on e1, e2, and e3, timeout after 200ns
next_trigger(t, e1 & e2 & e3);
// trigger on e1, e2, and e3, timeout after 200ns
next_trigger(200, SC_NS, e1 & e2 & e3);

9.5 Thread Process

A thread process is invoked only once (during simulation initialization). The
process executes until a wait()is executed where upon the process is
suspended. Upon suspension the state of the process is implicitly saved. The
process is resumed based upon its sensitivity list. Its State is then restored and
execution of the process resumes from the point of suspension (statement
following wait()).

If the body or parts of the body of the thread process are required to be executed
more than once then it must be implemented with a loop, typically an infinite loop.
This ensures that the process can be repeatedly reactivated.

If a thread process does not have an infinite loop and does not call wait() in any
way then the process will execute entirely and exit within the same delta-cycle.

If a thread process does have an infinite loop but does not call wait() in any way
then the process will continuously execute during the same delta-cycle. No other
process will execute.

 Copyright 2003 Open SystemC Initiative. All rights reserved 81

SystemC 2.0.1 Language Reference Manual

A thread process may use static sensitivity, dynamic sensitivity or both. Dynamic
sensitivity is created using the wait() function (Chapter 11.45). with one ore
more arguments. The wait()function can be called in the body of the thread
process code, or can be called in a function called by the method process that is
either of a member function of the module or a method of a channel.

A member function of a module is registered with the SystemC kernel as a thread
process using the SC_THREAD macro declaration in the module constructor.

The SC_THREAD macro has one argument. The argument is the name of the
member function that is to be declared as a thread process and registered with
the SystemC kernel.

Example:
SC_MODULE(my_module) {
 sc_event c;
 // process member function declaration
 void my_thread_proc();

 SC_CTOR(my_module) {
 // thread process declaration & registration
 SC_METHOD(my_thread_proc);
 // declare static sensitivity list
 sensitive(c); // sensitive to event c
 dont_initialize(); // don’t run at initialization
 }
 // Rest of module not shown
};

9.5.1 Thread Process Dynamic Sensitivity
When triggered, a thread process is executed until a wait() statement is
executed where upon the process is suspended. Execution of a wait()
statement specifies the sensitivity of a thread process, that is, it specifies the
condition for resuming the thread process.

The wait()function can be called with different arguments as described in the
following sections.

 Copyright 2003 Open SystemC Initiative. All rights reserved 82

SystemC 2.0.1 Language Reference Manual

9.5.1.1

9.5.1.2

9.5.1.3

9.5.1.4

Resume On Static Sensitivity List
If the wait() function is called without any argument then a thread process is
resumed depending on the static sensitivity list of the thread process. In this
case, if there is no static sensitivity list specified then the thread process will not
be resumed again during the simulation. Syntax for resuming on the static
sensitivity list:

wait();

Resume On A Single Event
If the wait() function is called with a single event argument then the process will
be resumed when that event is triggered. Syntax for resuming on a single event:

sc_event e1; // event
wait(e1);

Resume After A Specific Amount Of Time
If the wait() function is called with a time value argument then the process will be
resumed after a delay of the specified time. Syntax for resuming after a specific
amount of time:

sc_time t(200, SC_NS); // variable t of type sc_time
wait(t); // trigger 200 ns later
wait(200, SC_NS); // trigger 200 ns later

If the time value argument is zero then the process will be resumed after one
delta-cycle (Chapter 2.4.1). Syntax for resuming after a delta-cycle delay:

sc_time t(0, SC_NS); // variable t of type sc_time
wait(t); // resume after a delta-cycle delay
wait(0, SC_NS); // ditto
wait(SC_ZERO_TIME); // ditto

Resume On An Event In A List Of Events
If the wait() function is called with an OR-list of events then the process will be
resumed when one event in the list of events has been triggered. Syntax for
resuming on one event in a list of events:

sc_event e1,e2,e3; // events
wait(e1 | e2 | e3); //resume on e1, e2 or e3

 Copyright 2003 Open SystemC Initiative. All rights reserved 83

SystemC 2.0.1 Language Reference Manual

9.5.1.5

9.5.1.6

9.5.1.7

Resume On All Events In A List Of Events
If the wait() function is called with an AND-list of events then the process will be
resumed when all events in the list of events has been triggered. The events do
not have to be triggered in the same delta-cycle or at the same time. Syntax for
resuming on all events in a list of events:

sc_event e1,e2,e3; // events
wait(e1 & e2 & e3);//trigger on e1, e2 and e3

Resume On An Event In A List Of Events With Timeout
If the wait() functions is called with a combination of a specific amount of time
and an OR-list of events then the process will be resumed either when one event
in the list of events has been triggered or after the specified amount of time which
ever occurs first. Syntax for resuming on one event in a list of events with
timeout:

sc_time t(200, SC_NS); // variable t of type sc_time
// resume on e1, e2, or e3, timeout after 200 ns
wait(t, e1 | e2 | e3);
// resume on e1, e2, or e3, timeout after 200 ns
wait(200, SC_NS, e1 | e2 | e3);

Resume On All Events In A List Of Events With
Timeout

If the wait() function is called with a combination of a specific amount of time and
an AND-list of events then the process will be resumed either when all events in
the list of events have been triggered or after the specified amount of time which
ever occurs first.. Syntax for resuming on all events in a list of events with
timeout:

sc_time t(200, SC_NS); // variable t of type sc_time
// trigger on e1, e2, and e3, timeout after 200ns
wait(t, e1 & e2 & e3);
// trigger on e1, e2, and e3, timeout after 200ns
wait(200, SC_NS, e1 & e2 & e3);

 Copyright 2003 Open SystemC Initiative. All rights reserved 84

SystemC 2.0.1 Language Reference Manual

10 Utilities

10.1 Mathematical functions
The global functions sc_abs() (Chapter 12.1), sc_min()(Chapter 12.13)
and sc_max()(Chapter 12.12) are provided.

10.2 Utility functions
The following global functions provide information about or the status of the
simulator

sc_copyright() (Chapter 12.7)
sc_version() (Chapter 12.22)

10.3 Debugging support

10.3.1 Tracing
Tracing data in a channel or the data member of a module consists of three steps:
1) Create a trace file
2) Register the variables to be traced
3) Close the trace file before returning from sc_main().

To create a trace file the global function sc_create_vcd_trace_file()
(Chapter 12.4) is provided. This function creates a file and returns a pointer to it.
The trace files may be created in the sc_main() function or the constructor of a
module. The requirement is that the trace file must be created before the
registration of the variables to be traced.

Registration of the variable to be traced is done using the sc_trace() function
(Chapter 12.21). Only variables with a lifetime of the complete simulation may
be traced. This means local variables within a function may not be traced.
SystemC provides built-in support for tracing variables, ports and certain
channels.

To close a trace file the function sc_close_vcd_trace_file() (Chapter 12.3)
is provided.

 Copyright 2003 Open SystemC Initiative. All rights reserved 85

SystemC 2.0.1 Language Reference Manual

11 Class reference
The class reference is an alphabetical listing of classes. The entry for each
class contains:

• Synopsis
o Pseudo-class declaration

• Description

o Description of the class
o Sample use

• Functions and operators

o Description of functionality
• Depending upon the class other information may be provided

o Interfaces implemented by a channel
o Specialized ports associated with the channel
o Disabled member functions

Class Hierarchy. The classes are documented with the inheritance hierarchy
from the reference implementation intact. Unless explicitly noted this inheritance
hierarchy is not required for other implementations.

Base classes. In some cases base classes are referred to but are not
documented. The purpose of these base classes in the reference implementation
is to provide a single point for polymorphic access to derived template classes.
For example, when one of these base classes is specified as an argument type,
it means that any instantiated template class derived from this base class can be
used for that argument. In these cases, the public base class methods are
documented as if they belong to the derived class. These base classes are
shown in an italic font with a superscript dagger (†). They are not required
for other implementations.

Member functions are organized in categories according to general use, such
as public methods, public constructors and so forth. The categories are not part
of the C++ language but are used as a way to organize the functions.

Within the general categories member functions are listed alphabetically.
Functions for each class fall into these general types:

• Functions unique to a class. Complete documentation for these functions
are in the class where they occur

• Functions inherited from a documented base class without being redefined.
These functions are not listed in the derived class. Complete
documentation for these functions is in the defining base class.

• Functions inherited from an undocumented base class. Complete
documentation for these functions will be in the derived class.

 Copyright 2003 Open SystemC Initiative. All rights reserved 86

SystemC 2.0.1 Language Reference Manual

• Functions that are redefined in a derived class. Documentation contains
relevant information in the derived class, but may also direct to the base
class.

 Copyright 2003 Open SystemC Initiative. All rights reserved 87

SystemC 2.0.1 Language Reference Manual

11.1 sc_attr_base
Synopsis
class sc_attr_base
{
public:
 // constructors & destructor
 sc_attr_base(const sc_string& name__);
 sc_attr_base(const sc_attr_base&);
 virtual ~sc_attr_base();

 // other methods
 const sc_string& name() const;
private:
 // disabled
 sc_attr_base();
 sc_attr_base& operator = (const sc_attr_base&);
};

Description
sc_attr_base is the attribute base class, which provides the key of a
(key,value) attribute. The key (name) is of type sc_string. Classes derived
from sc_attr_base should provide the value of a (key,value) attribute.

Public Constructors & Destructor
sc_attr_base(const sc_string& name_);

Sets the attribute name to name_.

sc_attr_base(const sc_attr_base&);
Copy constructor.

virtual ~sc_attr_base();
Does nothing but enabling derived classes to define their own virtual
destructors.

Public Member Functions
const sc_string& name() const;

Returns a reference to the attribute name.

Disabled Member Functions
sc_attr_base();

Default constructor.

sc_attr_base& operator = (const sc_attr_base&);
Default assignment operator.

 Copyright 2003 Open SystemC Initiative. All rights reserved 88

SystemC 2.0.1 Language Reference Manual

11.2 sc_attribute
Synopsis
template <class T>
class sc_attribute
: public sc_attr_base
{
public:
 // constructors & destructor
 sc_attribute(const sc_string& name_);
 sc_attribute(const sc_string& name_,
 const T& value_);
 sc_attribute(const sc_attribute<T>& a);
 virtual ~sc_attribute();
public:
 T value;
private:
 // disabled
 sc_attribute();
 sc_attribute<T>& operator = (const

sc_attribute<T>&);
};
};

Description
sc_attribute is a template class that describes an attribute. An attribute
has a name and a value. Attributes can be attached to any sc_object.

Example
sc_attribute<int> a(“answer”, 42);
cout << a.name() << “,” << a.value; // prints ‘answer,42’

Public Constructors & Destructor
sc_attribute(const sc_string& name_);

Sets the attribute name to name_, default construction for value.

sc_attribute(const sc_string& name_, const T& value_);
Sets the attribute name to name_ and value to value_.

sc_attribute(const sc_attribute<T>&);
Copy constructor.

virtual
~sc_attribute();
Virtual destructor. Does nothing by default.

Public Data Members
T value;

 Copyright 2003 Open SystemC Initiative. All rights reserved 89

SystemC 2.0.1 Language Reference Manual

Provides direct access to the attribute value.

Disabled Member Functions
sc_attribute();

Default constructor.
sc_attribute& operator = (const sc_attribute<T>&);

Default assignment operator.

 Copyright 2003 Open SystemC Initiative. All rights reserved 90

SystemC 2.0.1 Language Reference Manual

11.3 sc_attr_cltn
Synopsis
class sc_attr_cltn
{
public:
 // typedefs
 typedef sc_attr_base* elem_type;
 typedef sc_attr_base* iterator;
 typedef const sc_attr_base* const_iterator;

 // constructors & destructor
 sc_attr_cltn();
 sc_attr_cltn(const sc_attr_cltn&);
 ~sc_attr_cltn();

 // other methods
 bool push_back(sc_attr_base*);
 sc_attr_base* operator [] (const sc_string& name_);
 const sc_attr_base* operator [] (const sc_string&

name_) const;
 sc_attr_base* remove(const sc_string& name_);
 void remove_all();
 int size() const ;
 iterator begin();
 const_iterator begin() const ;
 iterator end();
 const_iterator end() const ;
private:
 // disabled
 sc_attr_cltn& operator = (const sc_attr_cltn&);
};

Description

sc_attr_cltn is a collection of (pointers to) attributes. All SystemC objects
that inherit from sc_object have an attribute collection available. This allows
users to attach attributes to any such object.

Type Definitions
typedef sc_attr_base* elem_type;
typedef sc_attr_base* iterator;
typedef const sc_attr_base* const_iterator;

Public Constructors & Destructor
sc_attr_cltn();

Default constructor.

sc_attr_cltn(const sc_attr_cltn&);

Copy constructor.

 Copyright 2003 Open SystemC Initiative. All rights reserved 91

SystemC 2.0.1 Language Reference Manual

~sc_attr_cltn();

Destructor.

Public Member Functions
iterator
begin();

Returns an iterator pointing at the beginning of the collection.

const_iterator
begin() const;

Returns a const-iterator pointing at the beginning of the collection.

iterator
end();

Returns an iterator pointing at the end of the collection.

const_iterator
end() const;

Returns a const-iterator pointing at the end of the collection.

iterator
operator [](const sc_string& name) ;

Allows random access to attributes indexed by name. If the name does not
exist, returns 0.

const sc_attr_base
†
 *

operator [](const sc_string& name) const ;
Allows constant random access to attributes indexed by name. If the name
does not exist, returns 0.

bool
push_back(sc_attr_base

†
* new_attr) ;

Appends new_attr to the end of the collection and returns true if the name is
unique. If the name already exists in the collection, the attribute is not
added and the function returns false.

sc_attr_base

†
 *

remove(const sc_string& name) ;
Removes the specified attribute from the collection. Returns a pointer to the
removed attribute, or 0 if an attribute with the specified name does not exist.

void
remove_all() ;

Removes all attributes from the collection.

int
size() const ;

Returns the number of attributes stored in the collection.

 Copyright 2003 Open SystemC Initiative. All rights reserved 92

SystemC 2.0.1 Language Reference Manual

Disabled Member Functions
sc_attr_cltn&
operator = (const sc_attr_cltn&);

Default assignment operator.

 Copyright 2003 Open SystemC Initiative. All rights reserved 93

SystemC 2.0.1 Language Reference Manual

11.4 sc_bigint
Synopsis
class sc_bigint
 : public sc_signed
{
public:
 // constructors & destructors
 sc_bigint();
 sc_bigint(const sc_bigint<W>& v);
 sc_bigint(const sc_signed& v);
 sc_bigint(const sc_signed_subref& v);
 template <class T1, class T2>;
 sc_bigint(const sc_signed_concref<T1,T2>& a);
 sc_bigint(const sc_unsigned& v);
 sc_bigint(const sc_unsigned_subref& v);
 template <class T1, class T2>;
 sc_bigint(const sc_unsigned_concref<T1,T2>& a);
 sc_bigint(const char* v);
 sc_bigint(int64 v);
 sc_bigint(uint64 v);
 sc_bigint(long v);
 sc_bigint(unsigned long v);
 sc_bigint(int v);
 sc_bigint(unsigned int v);
 sc_bigint(double v);
 sc_bigint(const sc_bv_base& v);
 sc_bigint(const sc_lv_base& v);
 explicit sc_bigint(const sc_fxval& v);
 explicit sc_bigint(const sc_fxval_fast& v);
 explicit sc_bigint(const sc_fxnum& v);
 explicit sc_bigint(const sc_fxnum_fast& v);
 ~sc_bigint();

 // assignment operators
 sc_bigint<W>& operator = (const sc_bigint<W>& v);
 sc_bigint<W>& operator = (const sc_signed& v);
 sc_bigint<W>& operator = (const

 sc_signed_subref& v);
 template <class T1, class T2>
 sc_bigint<W>& operator = (const

 sc_signed_concref<T1,T2>& a);
 sc_bigint<W>& operator = (const sc_unsigned& v);
 sc_bigint<W>& operator = (const

 sc_unsigned_subref& v);
 template <class T1, class T2>
 sc_bigint<W>& operator = (const

 sc_unsigned_concref<T1,T2>& a);
 sc_bigint<W>& operator = (const char* v);
 sc_bigint<W>& operator = (int64 v);
 sc_bigint<W>& operator = (uint64 v);
 sc_bigint<W>& operator = (long v);
 sc_bigint<W>& operator = (unsigned long v);

 Copyright 2003 Open SystemC Initiative. All rights reserved 94

SystemC 2.0.1 Language Reference Manual

 sc_bigint<W>& operator = (int v);
 sc_bigint<W>& operator = (unsigned int v);
 sc_bigint<W>& operator = (double v);
 sc_bigint<W>& operator = (const sc_bv_base& v);
 sc_bigint<W>& operator = (const sc_lv_base& v);
 sc_bigint<W>& operator = (const sc_int_base& v);
 sc_bigint<W>& operator = (const sc_uint_base& v);
 sc_bigint<W>& operator = (const sc_fxval& v);
 sc_bigint<W>& operator = (const sc_fxval_fast& v);
 sc_bigint<W>& operator = (const sc_fxnum& v);
 sc_bigint<W>& operator = (const sc_fxnum_fast& v);
};

Description

sc_bigint<W> is an arbitrary sized signed integer. The word length is built
into the type and can never change. Methods allow for addressing an
individual bit or a sub range of bits.

Example
SC_MODULE(my_module) {
 // data types
 sc_uint<3> a;
 sc_uint<44> b;
 sc_bigint<88> c;
 sc_bigint<123> d;
 // process
 void my_proc();

 SC_CTOR(my_module) :
 a(0), // init
 c(7654321) // init
 {
 b = 33; // set value
 d = 2300; // set value
 SC_THREAD(my_proc);
 }
};

void my_module::my_proc() {
 a = 1;
 b[30] = a[0];
 cout << b.range(7,0) << endl;

 cout << c << endl;
 d[122] = b;

 wait(300, SC_NS);
 sc_stop();
}

 Copyright 2003 Open SystemC Initiative. All rights reserved 95

SystemC 2.0.1 Language Reference Manual

Public Constructors
sc_bigint();

Create an sc_bigint instance with an initial value of 0.

sc_bigint(T a) ;
T in { sc_bigint<W>, sc_[un]signed_subref

†
,

sc_[un]signed_concref
†
, const char*, [u]int64,

[unsigned] long, [unsigned] int, double, sc_bv_base,
sc_lv_base, sc_fxval, sc_fxval_fast, sc_fix[ed][_fast]}

Create an sc_bigint with value a. If the word length of a is greater then W,
a gets truncated to W bits.

Copy Constructor
sc_bigint(const sc_bigint&) ;

Methods
bool
iszero() const ;

Return true if the value of the sc_bigint instance is zero.

int
length() const ;

Return the word length.

void
print(ostream& os = cout) const ;

Print the sc_bigint instance to an output stream.

void
reverse() ;

Reverse the contents of the sc_bigint instance. I.e. LSB becomes MSB
and vice versa.

void
scan(istream& is = cin) ;

Read an sc_bigint value from an input stream.

bool
sign() const ;

Return false.

Assignment Operators
sc_bigint<W>& operator = (T) ;
T in { sc_bigint<W>, sc_[un]signed_subref

†
,

sc_[un]signed_concref
†
, const char*, [u]int64,

[unsigned] long, [unsigned] int, double, sc_bv_base,
sc_lv_base, sc_fxval, sc_fxval_fast, sc_fix[ed][_fast]}

 Copyright 2003 Open SystemC Initiative. All rights reserved 96

SystemC 2.0.1 Language Reference Manual

Assign the value of the right-hand side to the left-hand side. The value is
truncated, if its word length is greater than W.

Increment and Decrement Operators
sc_bigint<W>& operator ++ () ;
const sc_bigint<W> operator ++ (int) ;

The operation is performed as done for type unsigned int.

sc_bigint<W>& operator -- () ;
const sc_bigint<W> operator -- (int) ;

The operation is performed as done for type unsigned int.

Bit Selection
sc_signed_bitref

†
 operator [] (int i) ;

sc_signed_bitref_r
†
 operator [] (int i) const ;

sc_signed_bitref
†
 bit(int i) ;

sc_signed_bitref_r
†
 bit(int i) const ;

Return a reference to a single bit at index i.

Part Selection
sc_signed_subref

†
 range(int high, int low)

sc_signed_subref_r
†
 range(int high, int low) const

sc_signed_subref
†
 operator () (int high, int low)

sc_signed_subref_r
†
 operator () (int high, int low)

const
Return a reference to a range of bits. The MSB is set to the bit at position
high, the LSB is set to the bit at position low.

Explicit Conversion
double to_double() const ;
int to_int() const ;
int64 to_int64() const ;
long to_long() const ;
uint64 to_uint64() const ;
unsigned int to_uint() const ;
unsigned long to_ulong() const ;

Converts the value of sc_bigint instance into the corresponding data type. If
the requested type has less word length than the sc_bigint instance, the
value gets truncated accordingly. If the requested type has greater word
length than the sc_bigint instance, the value gets sign extended, if
necessary.

to_string(sc_numrep = SC_DEC) const
to_string(sc_numrep, bool) const

Convert the sc_bigint instance into its string representation.

 Copyright 2003 Open SystemC Initiative. All rights reserved 97

SystemC 2.0.1 Language Reference Manual

Arithmetic Operators
friend sc_bigint operator OP (sc_biguint , sc_bigint)
friend sc_bigint operator OP (sc_bigint ,
sc_biguint)friend sc_bigint operator OP (sc_bigint,

sc_bigint) ;
friend sc_bigint operator OP (sc_bigint , T) ;
friend sc_bigint operator OP (T , sc_bigint) ;
OP in { + - * / % & | ^ == != < <= > >= }
T in { sc_[u]int_base, [u]int64, [unsigned] long,

[unsigned] int}
The operation OP is performed and the result is returned.

sc_bigint& operator OP (T)
OP in { += -= *= /= %= &= |= ^= } ;
T in { sc_[un]signed, sc_[u]int_base, [u]int64, [unsigned]

long, unsigned] int }
The operation OP is performed and the result is assigned to the left hand
side.

Shift Operators
friend sc_biguint operator OP (sc_biguint a , sc_bigint

b);
friend sc_bigint operator OP (sc_bigint a, sc_bigint b);
friend sc_bigint operator OP (sc_bigint a, T b);
OP in { << >> }
T in { sc_[u]int_base, [u]int64, [unsigned] long,

[unsigned] int }
Shift a to the left/right by b bits and return the result.

sc_bigint& operator OP (T i);
OP in { <<= >>= }
T in { sc_[un]signed, sc_[u]int_base, [u]int64, [unsigned]

long, [unsigned] int } ;
Shift the sc_bigint instance to the left/right by i bits and assign the result to
the sc_bigint instance.

Bitwise not
friend sc_bigint
operator ~ (sc_bigint a);

Return the bitwise not of a;

 Copyright 2003 Open SystemC Initiative. All rights reserved 98

SystemC 2.0.1 Language Reference Manual

11.5 sc_biguint
Synopsis
class sc_biguint
 : public sc_unsigned
{
public:
 // constructors
 sc_biguint();
 sc_biguint(const sc_biguint<W>& v);
 sc_biguint(const sc_unsigned& v);
 sc_biguint(const sc_unsigned_subref& v);
 template <class T1, class T2>;
 sc_biguint(const sc_unsigned_concref<T1,T2>& a);
 sc_biguint(const sc_signed& v);
 sc_biguint(const sc_signed_subref& v);
 template <class T1, class T2>;
 sc_biguint(const sc_signed_concref<T1,T2>& a);
 sc_biguint(const char* v);
 sc_biguint(int64 v);
 sc_biguint(uint64 v);
 sc_biguint(long v);
 sc_biguint(unsigned long v);
 sc_biguint(int v);
 sc_biguint(unsigned int v);
 sc_biguint(double v);
 sc_biguint(const sc_bv_base& v);
 sc_biguint(const sc_lv_base& v);
 explicit sc_biguint(const sc_fxval& v);
 explicit sc_biguint(const sc_fxval_fast& v);
 explicit sc_biguint(const sc_fxnum& v);
 explicit sc_biguint(const sc_fxnum_fast& v);
 ~sc_biguint();

 // assignment operators
 sc_biguint<W>& operator = (const sc_biguint<W>& v);
 sc_biguint<W>& operator = (const sc_unsigned& v);
 sc_biguint<W>& operator = (const

 sc_unsigned_subref& v);
 template <class T1, class T2>
 sc_biguint<W>& operator = (const

 sc_unsigned_concref<T1,T2>& a);
 sc_biguint<W>& operator = (const sc_signed& v);
 sc_biguint<W>& operator = (const

 sc_signed_subref& v);
 template <class T1, class T2>
 sc_biguint<W>& operator = (const

 sc_signed_concref<T1,T2>& a);
 sc_biguint<W>& operator = (const char* v) ;
 sc_biguint<W>& operator = (int64 v);
 sc_biguint<W>& operator = (uint64 v);
 sc_biguint<W>& operator = (long v);
 sc_biguint<W>& operator = (unsigned long v);

 Copyright 2003 Open SystemC Initiative. All rights reserved 99

SystemC 2.0.1 Language Reference Manual

 sc_biguint<W>& operator = (int v) ;
 sc_biguint<W>& operator = (unsigned int v) ;
 sc_biguint<W>& operator = (double v);
 sc_biguint<W>& operator = (const sc_bv_base& v);
 sc_biguint<W>& operator = (const sc_lv_base& v);
 sc_biguint<W>& operator = (const sc_int_base& v);
 sc_biguint<W>& operator = (const sc_uint_base& v);
 sc_biguint<W>& operator = (const sc_fxval& v);
 sc_biguint<W>& operator = (const sc_fxval_fast& v);
 sc_biguint<W>& operator = (const sc_fxnum& v);
 sc_biguint<W>& operator = (const sc_fxnum_fast& v);
};

Description

sc_biguint<W> is an arbitrary sized unsigned integer. The word length is
built into the type and can never change. Methods allow for addressing an
individual bit or a sub range of bits.

Example
SC_MODULE(my_module) {
 // data types
 sc_uint<3> a;
 sc_uint<44> b;
 sc_biguint<88> c;
 sc_biguint<123> d;
 // process
 void my_proc();

 SC_CTOR(my_module) :
 a(0), // init
 c(7654321) // init
 {
 b = 33; // set value
 d = 2300; // set value
 SC_THREAD(my_proc);
 }
};

void my_module::my_proc() {
 a = 1;
 b[30] = a[0];
 cout << b.range(7,0) << endl;

 cout << c << endl;
 d[122] = b;

 wait(300, SC_NS);
 sc_stop();
}

 Copyright 2003 Open SystemC Initiative. All rights reserved 100

SystemC 2.0.1 Language Reference Manual

Public Constructors
sc_biguint();

Create an sc_biguint instance with an initial value of 0.

sc_biguint(T a) ;
T in { sc_biguint<W>, sc_[un]signed_subref

†
,

sc_[un]signed_concref
†
, const char*, [u]int64,

[unsigned] long, [unsigned] int, double, sc_bv_base,
sc_lv_base, sc_fxval, sc_fxval_fast, sc_fix[ed][_fast]}

Create an sc_biguint with value a. If the word length of a is greater then
W, a gets truncated to W bits.

Copy Constructor
sc_biguint(const sc_biguint&) ;

Methods
bool
iszero() const ;

Return true if the value of the sc_biguint instance is zero.

int
length() const ;

Return the word length.

void
print(ostream& os = cout) const ;

Print the sc_biguint instance to an output stream.

void
reverse() ;

Reverse the contents of the sc_biguint instance. I.e. LSB becomes MSB
and vice versa.

void
scan(istream& is = cin) ;

Read an sc_biguint value from an input stream.

bool
sign() const ;

Return false.

Assignment Operators
sc_biguint<W>&
operator = (T) ;
T in { sc_biguint<W>, sc_[un]signed_subref

†
,

sc_[un]signed_concref
†
, const char*, [u]int64,

[unsigned] long, [unsigned] int, double, sc_bv_base,
sc_lv_base, sc_fxval, sc_fxval_fast, sc_fix[ed][_fast]}

 Copyright 2003 Open SystemC Initiative. All rights reserved 101

SystemC 2.0.1 Language Reference Manual

Assign the value of the right-hand side to the left-hand side. The value is
truncated, if its word length is greater than W.

Arithmetic Assignment Operators

sc_biguint<W>&
operator OP (uint64) ;
OP in { += -= *= /= %= }

The operation of OP is performed and the result is assigned to the lefthand
side. If necessary, the result gets truncated.

Bitwise Assignment Operators
sc_biguint<W>&
operator OP (uint64) ;
OP in { &= |= ^= <<= >>= }

The operation of OP is performed and the result is assigned to the left hand
side. The result gets truncated.

Prefix and Postfix Increment and Decrement Operators
sc_biguint<W>& operator ++ () ;
const sc_biguint<W> operator ++ (int) ;

The operation of OP is performed as done for type unsigned int.

sc_biguint<W>& operator -- () ;
const sc_biguint<W> operator -- (int) ;

The operation is performed as done for type unsigned int.

Relational Operators
friend bool operator OP (sc_biguint, sc_biguint) ;
OP in { == != < <= > >= }

These functions return the boolean result of the corresponding equality/
inequality check.

Arithmetic Operators
friend sc_biguint operator OP (sc_biguint, sc_biguint) ;
friend sc_biguint operator OP (sc_biguint , T) ;
friend sc_biguint operator OP (T , sc_biguint) ;
OP in { + - * / % & | ^ == != }
T in { sc_[u]int_base, [u]int64, [unsigned] long,

[unsigned] int }
The operation OP is performed and the result is returned.

sc_biguint& operator OP (T)
OP in { += -= *= /= %= &= |= ^= } ;
T in { sc_[un]signed, sc_[u]int_base, [u]int64, [unsigned]

long, [unsigned] int }
The operation OP is performed and the result is assigned to the left hand
side.

 Copyright 2003 Open SystemC Initiative. All rights reserved 102

SystemC 2.0.1 Language Reference Manual

Shift Operators
friend sc_biguint operator OP (sc_biguint a, sc_biguint

b);
friend sc_biguint operator OP (sc_biguint a, T b);
OP in { << >> }
T in { sc_[u]int_base, [u]int64, [unsigned] long,

[unsigned] int }
Shift a to the left/right by b bits and return the result.

sc_biguint& operator OP (T i);
OP in { <<= >>= }
T in { sc_[un]signed, sc_[u]int_base, [u]int64, [unsigned]

long, [unsigned] int } ;
Shift the sc_biguint instance to the left/right by i bits and assign the result
to the sc_biguint instance.

Bitwise not
friend sc_biguint
operator ~ (sc_biguint a);

Return the bitwise not of a;

Bit Selection
sc_unsigned_bitref

†
 operator [] (int i) ;

sc_unsigned_bitref_r
†
 operator [] (int i) const ;

sc_unsigned_bitref
†
 bit(int i) ;

sc_unsigned_bitref_r
†
 bit(int i) const ;

Return a reference to a single bit at index i.

Part Selection
sc_unsigned_subref

†
 range(int high, int low)

sc_unsigned_subref_r
†
 range(int high, int low) const

sc_unsigned_subref
†
 operator () (int high, int low)

sc_unsigned_subref_r
†
 operator () (int high, int low)

const
Return a reference to a range of bits. The MSB is set to the bit at position
high, the LSB is set to the bit at position low.

Explicit Conversion
double to_double() const ;
int to_int() const ;
int64 to_int64() const ;
long to_long() const ;
uint64 to_uint64() const ;
unsigned int to_uint() const ;
unsigned long to_ulong() const ;

 Copyright 2003 Open SystemC Initiative. All rights reserved 103

SystemC 2.0.1 Language Reference Manual

Converts the value of sc_biguint instance into the corresponding data type.
If the requested type has less word length than the sc_biguint instance,
the value gets truncated accordingly. If the requested type has greater word
length than the sc_biguint instance, the value gets sign extended, if
necessary.

to_string(sc_numrep = SC_DEC) const
to_string(sc_numrep, bool) const

Convert the sc_biguint instance into its string representation.

 Copyright 2003 Open SystemC Initiative. All rights reserved 104

SystemC 2.0.1 Language Reference Manual

11.6 sc_bit
Synopsis
class sc_bit
{
public:
 // constructors & destructor
 sc_bit();
 explicit sc_bit(bool a);
 explicit sc_bit(int a);
 explicit sc_bit(char a);
 explicit sc_bit(const sc_logic& a);
 ~sc_bit();

 // copy constructor
 sc_bit(const sc_bit& a);

 // assignment operators
 sc_bit& operator = (const sc_bit& b);
 sc_bit& operator = (int b);
 sc_bit& operator = (bool b);
 sc_bit& operator = (char b);
 sc_bit& operator = (const sc_logic& b);

 // bitwise assignment operators
 sc_bit& operator &= (const sc_bit& b);
 sc_bit& operator &= (int b);
 sc_bit& operator &= (bool b);
 sc_bit& operator &= (char b);
 sc_bit& operator |= (const sc_bit& b);
 sc_bit& operator |= (int b);
 sc_bit& operator |= (bool b);
 sc_bit& operator |= (char b);
 sc_bit& operator ^= (const sc_bit& b);
 sc_bit& operator ^= (int b);
 sc_bit& operator ^= (bool b);
 sc_bit& operator ^= (char b);

 // implicit conversion to bool
 operator bool () const ;
 bool operator ! () const ;

 // explicit conversions
 bool to_bool() const ;
 char to_char() const ;

 // relational operators and functions
 friend bool operator == (const sc_bit& a, const

sc_bit& b);
 friend bool operator == (const sc_bit& a, int b);
 friend bool operator == (const sc_bit& a, bool b);
 friend bool operator == (const sc_bit& a, char b);
 friend bool operator == (int a, const sc_bit& b);

 Copyright 2003 Open SystemC Initiative. All rights reserved 105

SystemC 2.0.1 Language Reference Manual

 friend bool operator == (bool a, const sc_bit& b);
 friend bool operator == (char a, const sc_bit& b);
 friend bool equal(const sc_bit& a, const sc_bit& b);
 friend bool equal(const sc_bit& a, int b);
 friend bool equal(const sc_bit& a, bool b);
 friend bool equal(const sc_bit& a, char b);
 friend bool equal(int a, const sc_bit& b);
 friend bool equal(bool a, const sc_bit& b);
 friend bool equal(char a, const sc_bit& b);
 friend bool operator != (const sc_bit& a, const

sc_bit& b);
 friend bool operator != (const sc_bit& a, int b);
 friend bool operator != (const sc_bit& a, bool b);
 friend bool operator != (const sc_bit& a, char b);
 friend bool operator != (int a, const sc_bit& b);
 friend bool operator != (bool a, const sc_bit& b);
 friend bool operator != (char a, const sc_bit& b);
 friend bool not_equal(const sc_bit& a, const sc_bit&

b);
 friend bool not_equal(const sc_bit& a, int b);
 friend bool not_equal(const sc_bit& a, bool b);
 friend bool not_equal(const sc_bit& a, char b);
 friend bool not_equal(int a, const sc_bit& b);
 friend bool not_equal(bool a, const sc_bit& b);
 friend bool not_equal(char a, const sc_bit& b);

 // bitwise complement
 friend const sc_bit operator ~ (const sc_bit& a);
 sc_bit& b_not();
 friend void b_not(sc_bit& r, const sc_bit& a);
 friend const sc_bit b_not(const sc_bit& a);

 // bitwise or
 friend const sc_bit operator | (const sc_bit& a, const

sc_bit& b);
 friend const sc_bit operator | (const sc_bit& a, int

b);
 friend const sc_bit operator | (const sc_bit& a, bool

b);
 friend const sc_bit operator | (const sc_bit& a, char

b);
 friend const sc_bit operator | (int a, const sc_bit&

b);
 friend const sc_bit operator | (bool a, const sc_bit&

b);
 friend const sc_bit operator | (char a, const sc_bit&

b);
 friend const sc_bit b_or(const sc_bit& a, const

sc_bit& b);
 friend const sc_bit b_or(const sc_bit& a, int b);
 friend const sc_bit b_or(const sc_bit& a, bool b);
 friend const sc_bit b_or(const sc_bit& a, char b);
 friend const sc_bit b_or(int a, const sc_bit& b);
 friend const sc_bit b_or(bool a, const sc_bit& b);

 Copyright 2003 Open SystemC Initiative. All rights reserved 106

SystemC 2.0.1 Language Reference Manual

 friend const sc_bit b_or(char a, const sc_bit& b);
 friend void b_or(sc_bit& r, const sc_bit& a, const

sc_bit& b);
 friend void b_or(sc_bit& r, const sc_bit& a, int b);
 friend void b_or(sc_bit& r, const sc_bit& a, bool b);
 friend void b_or(sc_bit& r, const sc_bit& a, char b);
 friend void b_or(sc_bit& r, int a, const sc_bit& b);
 friend void b_or(sc_bit& r, bool a, const sc_bit& b);
 friend void b_or(sc_bit& r, char a, const sc_bit& b);

 // bitwise and
 friend const sc_bit operator & (const sc_bit& a, const

sc_bit& b);
 friend const sc_bit operator & (const sc_bit& a, int

b);
 friend const sc_bit operator & (const sc_bit& a, bool

b);
 friend const sc_bit operator & (const sc_bit& a, char

b);
 friend const sc_bit operator & (int a, const sc_bit&

b);
 friend const sc_bit operator & (bool a, const sc_bit&

b);
 friend const sc_bit operator & (char a, const sc_bit&

b);
 friend const sc_bit b_and(const sc_bit& a, const

sc_bit& b);
 friend const sc_bit b_and(const sc_bit& a, int b);
 friend const sc_bit b_and(const sc_bit& a, bool b);
 friend const sc_bit b_and(const sc_bit& a, char b);
 friend const sc_bit b_and(int a, const sc_bit& b);
 friend const sc_bit b_and(bool a, const sc_bit& b);
 friend const sc_bit b_and(char a, const sc_bit& b);
 friend void b_and(sc_bit& r, const sc_bit& a, const

sc_bit& b);
 friend void b_and(sc_bit& r, const sc_bit& a, int b);
 friend void b_and(sc_bit& r, const sc_bit& a, bool b);
 friend void b_and(sc_bit& r, const sc_bit& a, char b);
 friend void b_and(sc_bit& r, int a, const sc_bit& b);
 friend void b_and(sc_bit& r, bool a, const sc_bit& b);
 friend void b_and(sc_bit& r, char a, const sc_bit& b);

 // bitwise exor
 friend const sc_bit operator ^ (const sc_bit& a, const

sc_bit& b);
 friend const sc_bit operator ^ (const sc_bit& a, int

b);
 friend const sc_bit operator ^ (const sc_bit& a, bool

b);
 friend const sc_bit operator ^ (const sc_bit& a, char

b);
 friend const sc_bit operator ^ (int a, const sc_bit&

b);

 Copyright 2003 Open SystemC Initiative. All rights reserved 107

SystemC 2.0.1 Language Reference Manual

 friend const sc_bit operator ^ (bool a, const sc_bit&
b);

 friend const sc_bit operator ^ (char a, const sc_bit&
b);

 friend const sc_bit b_xor(const sc_bit& a, const
sc_bit& b);

 friend const sc_bit b_xor(const sc_bit& a, int b);
 friend const sc_bit b_xor(const sc_bit& a, bool b);
 friend const sc_bit b_xor(const sc_bit& a, char b);
 friend const sc_bit b_xor(int a, const sc_bit& b);
 friend const sc_bit b_xor(bool a, const sc_bit& b);
 friend const sc_bit b_xor(char a, const sc_bit& b);
 friend void b_xor(sc_bit& r, const sc_bit& a, const

sc_bit& b);
 friend void b_xor(sc_bit& r, const sc_bit& a, int b);
 friend void b_xor(sc_bit& r, const sc_bit& a, bool b);
 friend void b_xor(sc_bit& r, const sc_bit& a, char b);
 friend void b_xor(sc_bit& r, int a, const sc_bit& b);
 friend void b_xor(sc_bit& r, bool a, const sc_bit& b);
 friend void b_xor(sc_bit& r, char a, const sc_bit& b);

 // other functions
 void print(ostream& os = cout) const ;
 void scan(istream& = cin);
};

Description
Instances of sc_bit can have the values 0 and 1. This maps to other types as
follows:

 Type | Values
 --------+-------+------
 sc_bit | 0 | 1
 bool | false | true
 int | 0 | 1
 char | '0' | '1'

For T in { sc_bit bool int char }. Values of type T not found in the table produce
undefined behavior.

Public Constructors
sc_bit() ;

Create an sc_bit with the value set to zero.

explicit
sc_bit(T a) ;
T in { sc_bit bool int char }

Create an sc_bit with the converted contents of a. If a is not specified the
value is zero.

explicit

 Copyright 2003 Open SystemC Initiative. All rights reserved 108

SystemC 2.0.1 Language Reference Manual

sc_bit(sc_logic) ;
If initilized with an sc_logic instance, which is neither Log_0 nor Log_1, a
warning is printed at runtime.

Copy Constructor
sc_bit(const sc_bit&) ;

Public Member Functions & Operators
ostream&
operator << (ostream&, sc_bit);

Print the sc_bit value to an output stream.

istream&
operator >> (istream&, sc_bit&);

Read an sc_bit value from an input stream.

void
print(ostream& os = cout) const ;

Print the sc_bit value to an output stream.

void
scan(istream& is = cin) ;

Read an sc_bit value from an input stream.

Assignment Operators
sc_bit& operator = (T) ;
T in { sc_bit bool int char }
If assigned with an sc_logic instance, which is neither Log_0 nor Log_1, a
warning is printed at runtime.

Bitwise Assignment Operators
sc_bit& operator &= (T) ;
sc_bit& operator |= (T) ;
sc_bit& operator ^= (T) ;

These operators calculate the boolean value of the AND, OR and XOR function
and assign the result to the left-hand side.

Conversions
operator bool () const ;
Convert an sc_bit implicitly to type bool.

bool
operator ! () const ;
The NOT operator returns a value of type bool. This is the negated value of the
sc_bit instance.

bool
to_bool() const ;

 Copyright 2003 Open SystemC Initiative. All rights reserved 109

SystemC 2.0.1 Language Reference Manual

Convert an sc_bit explicitly to type bool.

char
to_char() const ;
Convert an sc_bit explicitly to type char.

Test for Equality
friend bool operator == (sc_bit, T);
friend bool operator == (T, sc_bit);
friend bool equal(sc_bit, T);
friend bool equal(T, sc_bit);

Test for Inequality
friend bool operator != (sc_bit, T);
friend bool operator != (T, sc_bit);
friend bool not_equal(sc_bit, T);
friend bool not_equal(T, sc_bit);

Bitwise Complement
friend const sc_bit operator ~ (sc_bit);
sc_bit& b_not();
friend const sc_bit b_not(sc_bit);

This functions return their result in the first argument:
friend void b_not(sc_bit&, sc_bit) ;

Bitwise Or
friend const sc_bit operator | (sc_bit, T);
friend const sc_bit operator | (T, sc_bit);
friend const sc_bit b_or(sc_bit, T);
friend const sc_bit b_or(T, sc_bit);

These functions return their result in the first argument:
friend void b_or(sc_bit&, sc_bit, T);
friend void b_or(sc_bit&, T, sc_bit);

Bitwise And
friend const sc_bit operator | (sc_bit, T);
friend const sc_bit operator | (T, sc_bit);
friend const sc_bit b_or(sc_bit, T);
friend const sc_bit b_or(T, sc_bit);

These functions return their result in the first argument:
friend void b_and(sc_bit&, sc_bit, T);
friend void b_and(sc_bit&, T, sc_bit);

Bitwise Xor
friend const sc_bit operator ^ (sc_bit, T);
friend const sc_bit operator ^ (T, sc_bit);
friend const sc_bit b_xor(sc_bit, T);

 Copyright 2003 Open SystemC Initiative. All rights reserved 110

SystemC 2.0.1 Language Reference Manual

friend const sc_bit b_xor(T, sc_bit);

These functions return their result in the first argument:
friend void b_xor(sc_bit&, sc_bit, T);
friend void b_xor(sc_bit&, T, sc_bit);

 Copyright 2003 Open SystemC Initiative. All rights reserved 111

SystemC 2.0.1 Language Reference Manual

11.7 sc_buffer
Synopsis
template <class T>
class sc_buffer
: public sc_signal<T>
{
public:
 // constructors
 sc_buffer();
 explicit sc_buffer(const char* name_);

 // interface methods
 virtual void write(const T&);

 // other methods
 sc_buffer<T>& operator = (const T& a);
 sc_buffer<T>& operator = (const base_type& a);
 sc_buffer<T>& operator = (const this_type& a);
 static const char* const kind_string;
 virtual const char* kind() const;

protected:
 virtual void update();

private:
 // disabled
 sc_buffer(const sc_buffer<T>&);
};

Description
sc_buffer is a primitive channel that implements the sc_signal_inout_if.
Its behavior is the same as the sc_signal channel with the exception of its
write behavior and related events.

sc_buffer is a primitive channel that implements the sc_signal_inout_if
interface.

In the description of sc_buffer, current_value refers to the value of the
sc_buffer instance, new_value is the value to be written and old_value is
the previous value. Chapter 2.4.1 describes the scheduler steps referred to in
the description of sc_buffer.

Initialization
The initial current_value of a sc_buffer instance is dependent upon type T
and is undefined. The current_value may be explicitly initialized in the sc_main
function or in the constructor of the module where it is created.

 Copyright 2003 Open SystemC Initiative. All rights reserved 112

SystemC 2.0.1 Language Reference Manual

A sc_buffer may be written by only one process, but may be read by
multiple processes.

sc_buffer writes and reads follows evaluate-update semantics suitable for
describing hardware.

Write
The write method is executed during the evaluate phase of a delta-cycle during
which an update is requested. During the update phase the current_value is
assigned the new_value and an event occurs.
The evaluate-update is accomplished using the request_update() and
update() methods. request_update() is called during the execution of
the write method (in the evaluate phase) indicating to the kernel that an update
is required. During the update phase the kernel calls the update method
provided by the sc_buffer channel.

Multiple writes in same delta-cycle
If multiple writes by a process to the same sc_buffer occur during a
particular evaluate phase of a delta-cycle, the last write executed determines
the new_value the sc_buffer will receive in the update phase of the same
delta-cycle.

Read
A read is executed during the evaluate phase of a delta-cycle and returns the
current_value. It does not consume the data.

Simultaneous reads and writes
If during the evaluate phase of a delta-cycle a read and write occur to the same
sc_buffer, the read will return the current_value. The new_value from the
write will not be available to read until the next delta-cycle as described above.

Example
// GIVEN
sc_buffer<int> m; // channel of type int
 // channel of type sc_uint<12>
sc_buffer<sc_uint<12> > n;
sc_buffer<bool> clk; // channel of type bool
int i;

//THEN
m.write(i); //write m with value of i
n.write(8); //write n with value of 8
if(clk.posedge()) // was there a posedge?
i = m.read(); // assign value of m to i
 // wait for posedge of clk
wait(clk.posedge_event()) ;

Public Constructors

 Copyright 2003 Open SystemC Initiative. All rights reserved 113

SystemC 2.0.1 Language Reference Manual

sc_buffer() ;
Create a sc_buffer instance.

explicit
sc_buffer(const char* name_) ;

Create a sc_buffer instance with the string name initialized to name_.

Public Member Functions
virtual const char*
kind() const ;

Returns “sc_buffer”.

virtual void
write(const T& val);

Schedules an update with val as new_value.

Public Operators
sc_buffer<T>&
operator = (const T& val) ;

Schedules an update with val as the new_value of the left hand side.
Returns a reference to the instance.

sc_buffer<T>&
operator = (const sc_buffer<T>& val) ;

Schedules an update with the current_value of val as the new_value of
the left hand side. Returns a reference to the instance.

sc_buffer<T>&
operator = (const sc_signal<T>&) ;

Schedules an update with the current_value of val as the new_value of
the left hand side. Returns a reference to the instance.

Protected Member Functions
virtual void
update();

Assigns new_value to current_value and causes an event to occur. Called
by the kernel during the update phase in response to the execution of a
request_update method.

Disabled Member Function
sc_buffer(const sc_buffer<T>&);

 Copyright 2003 Open SystemC Initiative. All rights reserved 114

SystemC 2.0.1 Language Reference Manual

11.8 sc_bv
Synopsis
template <int W>
class sc_bv
 : public sc_bv_base
{
public:
 // constructors
 sc_bv();
 explicit sc_bv(bool init_value);
 explicit sc_bv(char init_value);
 sc_bv(const char* a);
 sc_bv(const bool* a);
 sc_bv(const sc_logic* a);
 sc_bv(const sc_unsigned& a);
 sc_bv(const sc_signed& a);
 sc_bv(const sc_uint_base& a);
 sc_bv(const sc_int_base& a);
 sc_bv(unsigned long a);
 sc_bv(long a);
 sc_bv(unsigned int a);
 sc_bv(int a);
 sc_bv(uint64 a);
 sc_bv(int64 a);
 sc_bv(const sc_bv_base& a);
 sc_bv(const sc_bv<W>& a);

 // assignment operators
 template <class X>
 sc_bv<W>& operator = (const sc_bv_base& a);
 sc_bv<W>& operator = (const sc_bv<W>& a);
 sc_bv<W>& operator = (const char* a);
 sc_bv<W>& operator = (const bool* a);
 sc_bv<W>& operator = (const sc_logic* a);
 sc_bv<W>& operator = (const sc_unsigned& a);
 sc_bv<W>& operator = (const sc_signed& a);
 sc_bv<W>& operator = (const sc_uint_base& a);
 sc_bv<W>& operator = (const sc_int_base& a);
 sc_bv<W>& operator = (unsigned long a);
 sc_bv<W>& operator = (long a);
 sc_bv<W>& operator = (unsigned int a);
 sc_bv<W>& operator = (int a);
 sc_bv<W>& operator = (uint64 a);
 sc_bv<W>& operator = (int64 a);
};

Description
sc_bv< W > is a bit vector of arbitary length. Its word length is set at
construction time and can not change later.

Public Constructors

 Copyright 2003 Open SystemC Initiative. All rights reserved 115

SystemC 2.0.1 Language Reference Manual

sc_bv() ;
Create an sc_bv with all bits set to zero.

explicit
sc_bv(bool a) ;

Create an sc_bv with all bits set to a.

explicit
sc_bv(char a) ;

Create an sc_bv with all bits set to a, while a can be '0' or '1'.

sc_bv(T a) ;
T in { const char*, const bool*, const sc_logic*, const

sc_unsigned&, const sc_signed&, const sc_[u]int_base&,
unsigned long, long, unsigned int, int, [u]int64 }

Create an sc_bv with the converted contents of a. If the length of a is
greater than the length of sc_bv, a gets truncated. If the length of a is less
than the length of sc_bv, the MSBs get padded with Log_0.

Copy Constructor
sc_bv(const sc_bv<W>&) ;

Assignment Operators
sc_bv<W>& operator = (const sc_bv<W>& a) ;
sc_bv<W>& operator = (T a) ;
T in { const char*, const bool*, const sc_logic*, const

sc_unsigned&, const sc_signed&, const sc_[u]int_base&,
unsigned long, long, unsigned int, int, [u]int64 }

The value of the righthand side is assigned to the sc_bv. If the length of a is
greater than the length of sc_bv, a gets truncated. If the length of a is less
than the length of sc_bv, the MSBs get padded with Log_0.

 Copyright 2003 Open SystemC Initiative. All rights reserved 116

SystemC 2.0.1 Language Reference Manual

11.9 sc_bv_base
Synopsis
class sc_bv_base
{
public:
 // constructors
 explicit sc_bv_base(int length_ =
 sc_length_param().len());
 explicit sc_bv_base(bool a,
 int length_ = sc_length_param().len());
 sc_bv_base(const char* a);
 sc_bv_base(const char* a, int length_);
 template <class X>
 sc_bv_base(const sc_bv_base& a);
 virtual ~sc_bv_base();

 // assignment operators
 template <class X>
 sc_bv_base& operator = (const sc_bv_base& a);
 sc_bv_base& operator = (const char* a);
 sc_bv_base& operator = (const bool* a);
 sc_bv_base& operator = (const sc_logic* a);
 sc_bv_base& operator = (const sc_unsigned& a);
 sc_bv_base& operator = (const sc_signed& a);
 sc_bv_base& operator = (const sc_uint_base& a);
 sc_bv_base& operator = (const sc_int_base& a);
 sc_bv_base& operator = (unsigned long a);
 sc_bv_base& operator = (long a);
 sc_bv_base& operator = (unsigned int a);
 sc_bv_base& operator = (int a);
 sc_bv_base& operator = (uint64 a);
 sc_bv_base& operator = (int64 a);

 // methods
 int length() const;
 bool is_01() const;
};

Description
sc_bv_base is a bit vector of arbitrary length. Its word length is set at
construction time and can not change later.

For sc_bv_base description:

T in { const char*, const bool*, const sc_logic*,

sc_[un]signed, sc_[u]int_base [unsigned] long,
[unsigned] int, [u]int64 }

Pointer arguments are arrays. In the case of 'const bool*' and 'const
sc_logic*' the size has to be at least as large as the length of the bitvector.

 Copyright 2003 Open SystemC Initiative. All rights reserved 117

SystemC 2.0.1 Language Reference Manual

Public Constructors
explicit
sc_bv_base(int = sc_length_param().len()) ;

Create an sc_bv_base of specified length. All bits are set to zero.

explicit
sc_bv_base(bool a, int = sc_length_param().len()) ;

Create an sc_bv_base of specified length. All bits are set to a.

sc_bv_base(const char* a) ;

Create an sc_bv_base with the contents of a. The character string a must
be convertible into a binary string. The length of the newly created
sc_bv_base is identical to the length of the binary representation of a.

sc_bv_base(const char* a, int b) ;

Create an sc_bv_base with the contents of a. The character string a must
be convertible into a binary string. The length of the newly created
sc_bv_base is set to b. Sign extension takes place, if b is greater than the
bit length of a. If b is less then the length of a, a gets truncated.

Copy Constructor
sc_bv_base(sc_bv_base) ;

Methods
int
length() const ;
 Return the length of the bit vector.

void
print(ostream& os = cout) const ;

Print the sc_bv_base instance to an output stream.

void
scan(istream& is = cin) ;

Read an sc_bv_base value from an input stream.

Assignment Operators
sc_bv_base& operator = (const sc_bv_base&) ;
sc_bv_base& operator = (T) ;

The value of the right-hand side is assigned to the left-hand side. The length
of the left-hand side does not change. This means that the right-hand side
gets either truncated or sign extended.

Bitwise Operators
sc_bv_base& operator &= (T) ;

 Copyright 2003 Open SystemC Initiative. All rights reserved 118

SystemC 2.0.1 Language Reference Manual

Calculate the bitwise AND operation and assign the result to the left-hand
side. Both operands have to be of equal length.

const sc_bv_base operator & (T) const ;

Return the result of the bitwise AND operation. Both operands have to be of
equal length.

sc_bv_base& operator |= (T) ;

Calculate the bitwise OR operation and assign the result to the left-hand
side. Both operands have to be of equal length.

const sc_bv_base operator | (T) const ;

Return the result of the bitwise OR operation. Both operands have to be of
equal length.

sc_bv_base& operator ^= (T) ;

Calculate the bitwise XOR operation and assign the result to the left-hand
side. Both operands have to be of equal length.

const sc_bv_base operator ^ (T) const ;

Return the result of the bitwise XOR operation. Both operands have to be of
equal length.

sc_bv_base& operator <<= (int i) ;

Shift the contents of the left-hand side operand i bits to the left and assign
the result to the left-hand side operand. Zero bits are inserted at the LSB
side.

const sc_bv_base operator << (int i) const ;

Shift the contents of the left-hand side operand i bits to the left and return
the result. Zero bits are inserted at the LSB side.

sc_bv_base& operator >>= (int i) ;

Shift the contents of the left-hand side operand i bits to the right and
assign the result to the left-hand side operand. Zero bits are inserted at the
MSB side.

const sc_bv_base operator >> (int i) const ;

Shift the contents of the left hand side operand i bits to the right and
return the result. Zero bits are inserted at the MSB side.

Bitwise Rotation & Reverse Methods

sc_bv_base&
lrotate(int i) ;
 Rotate the contents of the bit vector i bits to the left.

sc_bv_base&

 Copyright 2003 Open SystemC Initiative. All rights reserved 119

SystemC 2.0.1 Language Reference Manual

rrotate(int i) ;
Rotate the contents of the bit vector i bits to the right.

sc_bv_base&
reverse() ;

Reverse the contents of the bit vector. LSB becomes MSB and vice versa.

Bit Selection

sc_bitref

†
<sc_bv_base> operator [] (int i) ;

sc_bitref_r
†
<sc_bv_base> operator [] (int i) const ;

sc_bitref
†
<sc_bv_base> bit(int i) ;

sc_bitref_r
†
<sc_bv_base> bit(int i) const ;

Return a reference to the i-th bit. Return an r-value if the bit vector is
constant.

Part Selection

sc_subref

†
<sc_bv_base> operator () (int, int) ;

sc_subref_r
†
<sc_bv_base> operator () (int, int) const ;

sc_subref
†
<sc_bv_base> range(int, int) ;

sc_subref_r
†
<sc_bv_base> range(int, int) const ;

Return a reference to a range of bits. Return an r-value if the bit vector is
constant.

Reduction Methods

sc_logic_value_t and_reduce() const ;
sc_logic_value_t nand_reduce() const ;
sc_logic_value_t or_reduce() const ;
sc_logic_value_t nor_reduce() const ;
sc_logic_value_t xor_reduce() const ;
sc_logic_value_t xnor_reduce() const ;

Return the result of function F with all bits of the bit vector as input
arguments.

 F in { and nand or nor xor xnor }

Relational Operators

bool operator == (T) const ;

Return true if the two bit vectors are equal.

 Copyright 2003 Open SystemC Initiative. All rights reserved 120

SystemC 2.0.1 Language Reference Manual

Explicit Conversion
int to_int() const ;
long to_long() const ;
unsigned int to_uint() const ;
unsigned long to_ulong() const ;

Convert the bit vector into an int, unsigned int, long or unsigned long
respectively. The LSB of the bit vector is put into the LSB of the returned
value, etc.

Explicit Conversion to Character String

const sc_string to_string() const ;

Convert the bit vector into a string representing its contents. Every character
represents a bit. MSBs are on the left.

const sc_string to_string(sc_numrep nr) const ;

Convert the bit vector into a string representing its contents. The nr
argument specifies the base of the number string. A prefix ensures that the
string can be read back without changing the value.

const sc_string to_string(sc_numrep, bool prefix) const ;

Convert the bit vector into a string representing its contents. The nr
argument specifies the base of the number string. A prefix ensures that the
string can be read back without changing the value. If prefix is false, no
prefix is pre-pended to the value string.

11.10 sc_clock
Synopsis
class sc_clock
: public sc_signal_in_if<bool>,
 public sc_module
{
public:
 // constructors & destructor
 sc_clock();
 explicit sc_clock(sc_module_name name_);
 sc_clock(sc_module_name name_,
 const sc_time& period_,
 double duty_cycle_ = 0.5,
 const sc_time& start_time_ = SC_ZERO_TIME,
 bool posedge_first_ = true);
 sc_clock(sc_module_name name_,
 double period_v_,
 sc_time_unit period_tu_,
 double duty_cycle_ = 0.5);
 sc_clock(sc_module_name name_,
 double period_v_,

 Copyright 2003 Open SystemC Initiative. All rights reserved 121

SystemC 2.0.1 Language Reference Manual

 sc_time_unit period_tu_,
 double duty_cycle_,
 double start_time_v_,
 sc_time_unit start_time_tu_,
 bool posedge_first_ = true);
 sc_clock(sc_module_name name_,
 double period_,
 double duty_cycle_ = 0.5,
 double start_time_ = 0.0,
 bool posedge_first_ = true

);virtual ~sc_clock();

 // interface methods
 virtual const sc_event& default_event() const;
 virtual const sc_event& value_changed_event() const;
 virtual const sc_event& posedge_event() const;
 virtual const sc_event& negedge_event() const;
 virtual const bool& read() const;
 virtual const bool& get_data_ref() const;
 virtual bool event() const;
 virtual bool posedge() const;
 virtual bool negedge() const;

 // other methods
 operator const bool& () const;
 const sc_time& period() const;
 double duty_cycle() const;
 virtual void print(ostream&) const;
 virtual void dump(ostream&) const;
 virtual const char* kind() const;

private:
 // disabled
 sc_clock(const sc_clock&);
 sc_clock& operator = (const sc_clock&);
};

Description
The sc_clock hierarchical channel implements the
sc_signal_in_if<bool> interface.

An sc_clock instance (clock) has the same semantics used in describing
hardware clocks.

In the description of sc_clock, string_name refers to the string name of the
instance, period refers to amount of time between two edges of the same
polarity, duty_cycle is the percentage of the period the clock is true expressed
as a number of type double (0.5 = 50%), start_time is the simulation time
when the first edge of the clock occurs, posedge_first refers to if the first edge
of the clock is a positive edge or not, current_value refers to the value of the

 Copyright 2003 Open SystemC Initiative. All rights reserved 122

SystemC 2.0.1 Language Reference Manual

clock. Chapter 2.4.1 describes the scheduler steps referred to in the
description of sc_clock.

The period must have a value greater than zero. The duty_cycle must have a
value between 0 and 1.0.

Clock objects may be created only in the sc_main function (Chapter 5).

Examples
// GIVEN
 // variables of type sc_time
sc_time t (10, SC_NS), t2 (5, SC_NS);

// THEN
 // period of 10ns, 50% duty cycle, start at time = 5ns,
 //first edge positive
sc_clock clk1("clk1", t, 0.5, t2);
 // period of 1, 50% duty cycle, start at time = 0,
 // first edge positive
sc_clock clk2("clk2") ;
 // period = 20ns,50% duty cycle, start at time = 0,
 // first edge positive
sc_clock clk3("clk3", 20, SC_NS);

Public Constructors & Destructor
sc_clock();

Create an sc_clock instance with an initialization of:
string_name = auto-generated unique string
period = 1 default time unit
duty_cycle = 0.5
start_time = SC_ZERO_TIME
posedge_first = true
current_value = false

explicit
sc_clock(sc_module_name n);

Create an sc_clock instance with an initialization of:
string_name = n
period = 1 default time unit
duty_cycle = 0.5
start_time = SC_ZERO_TIME
posedge_first = true
current_value = false

sc_clock(sc_module_name n,
 const sc_time& p ,
 double dc = 0.5,
 const sc_time& st = SC_ZERO_TIME,
 bool pf = true);

 Copyright 2003 Open SystemC Initiative. All rights reserved 123

SystemC 2.0.1 Language Reference Manual

Create an sc_clock instance with a initialization of:
string_name = n
period = p
duty_cycle = dc
start_time = st
posedge_first = pf

 sc_clock(sc_module_name n,
 double p_val,
 sc_time_unit p_tu,
 double dc = 0.5);

Create an sc_clock instance with an initialization of:
string_name = n
period = sc_time(p_val, p_tu)
duty_cycle = dc0.5
start_time = SC_ZERO_TIME0,
posedge_first = true
current_value = false

sc_clock(sc_module_name n ,
 double p_val,
 sc_time_unit p_tu,
 double dc,
 double st_val,
 sc_time_unit st_tu,

 bool pf = true);
Create an sc_clock instance with a initialization of:

string_name = n
period = sc_time(p_val, p_tu)
duty_cycle = dc
start_time = sc_time(st_val, st_tu)
posedge_first = pf
current_value = !pf

sc_clock(sc_module_name n,
 double p_val,
 double dc = 0.5,
 double st = 0.0,
 bool pf = true);

Create an sc_clock instance with a initialization of:
string_name = n
period = p_val default time units
duty_cycle = dc
start_time = st
posedge_first = pf
current_value = !pf

 Copyright 2003 Open SystemC Initiative. All rights reserved 124

SystemC 2.0.1 Language Reference Manual

~sc_clock();
Destructor (does nothing).

Public Member Functions
virtual const sc_event&
default_event() const;

Returns a reference to an event that occurs when the value of the clock
changes.

double
duty_cycle() const ;

Returns duty_cycle of the clock.

virtual void
dump(ostream&) const;

Prints the name and value of the clock to an output stream.

virtual bool
event() const;

Returns true if an event occurred in the previous delta-cycle.

virtual const bool&
get_data_ref() const ;

Returns a reference to current_value.

virtual const char*
kind() const ;

Returns the character string “sc_clock”.

virtual bool
negedge() const;

Returns true if an event occurred in the previous delta-cycle and
current_value is false.

virtual const sc_event&
negedge_event() const ;

Returns a reference to an event, if an event occurred in the previous delta-
cycle and current_value is false.

operator const bool& () const ;

Returns a reference to the current_value.

const sc_time&
period() const ;

Returns period.

virtual bool
posedge() const;

Returns true if an event occurred in the previous delta-cycle and
current_value is true.

 Copyright 2003 Open SystemC Initiative. All rights reserved 125

SystemC 2.0.1 Language Reference Manual

virtual const sc_event&
posedge_event() const;

Returns a reference to an event if an event occurred in the previous delta-
cycle and current_value is true.

virtual void
print(ostream&) const;

Prints current_value to an output stream.

virtual const bool&
read() const;

Returns a reference to the current_value.

static const sc_time&
time_stamp();

Returns the current simulation time.

void
trace(sc_trace_file* tf) const;

Adds a trace of current_value to the trace file tf.

virtual const sc_event&
value_changed_event() const;

Returns a reference to an event that occurs when the current_value of the
clock changes.

Disabled Member Functions
sc_clock(const sc_clock&);

Copy constructor.

sc_clock&
operator = (const sc_clock&);

Default assignment operator.

 Copyright 2003 Open SystemC Initiative. All rights reserved 126

SystemC 2.0.1 Language Reference Manual

11.11 sc_event
Synopsis
class sc_event
{
public:
 // constructors & destructor
 sc_event();
 ~sc_event();

 // methods
 void cancel();
 void notify();
 void notify(const sc_time&);
 void notify(double, sc_time_unit);

 // operators
 sc_event_or_list& operator | (const
 sc_event&) const;
 sc_event_and_list& operator & (const
 sc_event&) const;

private:
 // disabled
 sc_event(const sc_event&);
 sc_event& operator = (const sc_event&);
};

Description
An sc_event instance (event) determines when and whether a process
execution is triggered.

In the description of sc_event, event refers to the sc_event object, delta-
delay refers to a delay of one delta-cycle, notify_method refers to the methods
that causes event notification and pending_notification_time refers to the
simulation time the notification or occurrence of the event is scheduled for.
Chapter 2.4.1 describes the scheduler steps referred to in the description of
sc_event.

The event keeps a list of processes that are sensitive to occurrences of the
event. Execution of the notify_method schedules or causes the occurrence of
an event. Upon occurrence of the event, the event causes processes sensitive
to the event to trigger. When the event occurrence happens relative to the
execution of the notify_method is dependent upon the type of notification.
There are three types of notification:

Immediate notification.

 Copyright 2003 Open SystemC Initiative. All rights reserved 127

SystemC 2.0.1 Language Reference Manual

Event occurs in the same evaluate phase within a delta-cycle as the
notify_method execution causing processes sensitive to the event to be
triggered in the same evaluate phase within the delta-cycle.

Delta-delay notification.
Event occurs in the evaluate phase within the next delta-cycle as the
notify_method execution causing processes sensitive to the event to be
triggered in the evaluate phase in the next delta-cycle.

Non-zero delay notification (timed notification).
Event occurs delayed by the time value supplied by the notify_method
causing processes sensitive to the event to be triggered after the
designated amount of time.

A given sc_event object can have at most one pending notification at any point.
If multiple notifications are made to an event that would violate this rule, the
“earliest notification wins” rule is applied to determine which notification is
discarded.

Public Constructors
sc_event();

Create an sc_event instance.

Public Member Functions
void
cancel();

Removes pending notification of the event.

void
notify();

Causes notification of the event in the current delta-cycle.

void
notify(const sc_time& t_var);

If t_var = 0 then causes notification in the next delta-cycle else schedules
notification at current time + t_var.

void
notify(double t_val , sc_time_unit tu);

If t_val = 0 then causes notification in the next delta-cycle else schedules
notification at current time + (t_val, tu).

 Copyright 2003 Open SystemC Initiative. All rights reserved 128

SystemC 2.0.1 Language Reference Manual

Public Operators
sc_event_or_list

†
&

operator | (const sc_event& ev) const ;

Adds ev to the sc_event_or_list† referenced on the left hand side.

sc_event_and_list
†
&

operator & (const sc_event& ev) const ;

Adds ev to the sc_event_and_list† referenced on the left hand side.

Disabled Member Functions
sc_event(const sc_event&) ;

Copy constructor.

sc_event&
operator = (const sc_event&) ;

Default assignment operator.

 Copyright 2003 Open SystemC Initiative. All rights reserved 129

SystemC 2.0.1 Language Reference Manual

11.12 sc_event_finder_t
Synopsis
template <class IF>
class sc_event_finder_t
: public sc_event_finder

†

{
public:
 // constructors and destructor
 sc_event_finder_t(const sc_port_base

†
& port_,

 const sc_event& (IF::*event_method_) () const)
 virtual ~sc_event_finder_t()

 // methods
 const sc_port_base

†
& port() const;

 virtual const sc_event& find_event() const;

private:
 // disabled
 sc_event_finder_t();
 sc_event_finder_t(const sc_event_finder_t<IF>&);
 sc_event_finder_t<IF>& operator = (const

sc_event_finder_t<IF>&);
};

Description
sc_event_finder_t is a class that is used to allow a port or port method to be
used in a static sensitivity list. It provides deferred access to channel events
through an interface function that returns a sc_event.

Example
// A special port method that can be used in
// static sensitivity
sc_event_finder& data_written() const
{
 return *new sc_event_finder_t<in_if_type>(*this,
 &in_if_type::data_written_event_func);
}

Public Constructor and Destructor
sc_event_finder_t(const sc_port_base

†
&, const sc_event&

(IF::*event_method_) () const);
Creates an event finder object and registers the port and event method in
question.

virtual ~sc_event_finder_t();

Virtual destructor. Does nothing by default.

Public Member Functions

 Copyright 2003 Open SystemC Initiative. All rights reserved 130

SystemC 2.0.1 Language Reference Manual

const sc_port_base
†
&

port() const;
Returns the port that was registered with this event finder.

virtual const sc_event&
find_event() const;

Returns a reference to the event returned by the registered event method.
Can only be called when the associated port is bound.

Disabled Member Functions
sc_event_finder_t();

Default constructor.

sc_event_finder_t(const sc_event_finder_t<IF>&);
Copy constructor.

sc_event_finder_t<IF>& operator = (const
sc_event_finder_t<IF>&);

Default assignment operator.

 Copyright 2003 Open SystemC Initiative. All rights reserved 131

SystemC 2.0.1 Language Reference Manual

11.13 sc_fifo
Synopsis
template <class T>
class sc_fifo
: public sc_fifo_in_if<T>,
 public sc_fifo_out_if<T>,
 public sc_prim_channel
{
public:
 // constructors and destructor
 explicit sc_fifo(int size_ = 16);
 explicit sc_fifo(const char* name_, int size_=16);
 virtual ~sc_fifo();

 // interface methods
 virtual void read(T&);
 virtual T read();
 virtual bool nb_read(T&);
 virtual int num_available() const;
 virtual const sc_event& data_written_event() const;
 virtual void write(const T&);
 virtual bool nb_write(const T&);
 virtual int num_free() const;
 virtual const sc_event& data_read_event() const;

 // other methods
 operator T ();
 sc_fifo<T>& operator = (const T& a);
 void trace(sc_trace_file* tf) const;
 virtual void print(ostream&) const;
 virtual void dump(ostream&) const;
 static const char* const kind_string;
 virtual const char* kind() const;

protected:
 virtual void update();

private:
 // disabled
 sc_fifo(const sc_fifo<T>&);
 sc_fifo& operator = (const sc_fifo<T>&);
};

Description
sc_fifo is a primitive channel that implements the sc_fifo_in_if and
sc_fifo_out_if interfaces. It implements the behavior of a FIFO having a
fixed maximum size which is set at the point of construction.
.

 Copyright 2003 Open SystemC Initiative. All rights reserved 132

SystemC 2.0.1 Language Reference Manual

In the description of sc_fifo, element refers to an entry in the FIFO, size
refers to the maximum number of entries the FIFO may have. Chapter 2.4.1
describes the scheduler steps referred to in the description of sc_fifo.

Initialization.
The size of the FIFO may be explicitly set to any value. If no size is specified
the value defaults to 16.

A sc_fifo channel may be connected to only one output (write) and one input
(read) port. Multiple different processes may write and read a sc_fifo
channel.

sc_fifo writes and reads follow the evaluate-update semantics. Both
blocking and non-blocking reads and writes are provided.

Blocking write.
The write method is executed during the evaluate phase of a delta-cycle. If the
FIFO is full then the write method suspends until space is available. If space is
available an update is requested. During the update phase the value is
inserted into the FIFO.
The evaluate-update is accomplished using the request_update() and
update() methods. request_update() is called during the execution of
the write method indicating to the kernel that an update is required. During the
update phase the kernel calls the update method provided by the sc_fifo
channel.

Non-blocking write.
If the FIFO is full then the non-blocking write method does nothing. If there is
space available then it behaves the same as a blocking write.

Multiple writes in same delta-cycle.
If multiple writes to the same sc_fifo occur during a particular evaluate phase
of a delta-cycle, all values will be inserted during update phase of the same
delta-cycle in the order they were written. No data is lost.

Blocking read.
A read is executed during the evaluate phase of a delta-cycle. If the FIFO is
not empty, the read returns the value of the element and requests an update.
During the update phase the element is deleted from the FIFO. The evaluate-
update is accomplished using the request_update() and update()
methods.

Non-blocking read.
If the FIFO is empty then the non-blocking read method does nothing. If there
is data available then it behaves the same as a blocking read.

 Copyright 2003 Open SystemC Initiative. All rights reserved 133

SystemC 2.0.1 Language Reference Manual

Multiple reads in same delta-cycle.
If multiple reads to the same sc_fifo occur during a particular evaluate phase
of a delta-cycle, all values will be returned during the evaluate phase, in the
order they were written to the FIFO. The elements are deleted during update
phase of the same delta-cycle. Every element that is read is thus deleted from
the FIFO.

Simultaneous reads and writes.
Assume a sc_fifo channel of depth 1. If during the evaluate phase of a
delta-cycle a write followed by a read occur to the same sc_fifo, the write will
complete, scheduling a value to be inserted on the FIFO. The read will
suspend as the FIFO is empty. During the update phase the write value will be
inserted and the FIFO status updated. The read will resume in the next delta-
cycle where it will return the value written the previous delta-cycle.

Example
// GIVEN
sc_fifo<int> m; // channel of type int
 // channel of type sc_uint<12>
sc_fifo<sc_uint<12> > n;
int i;

//THEN
m.write(i); //write value of i into the FIFO m
 // wait for data written to n
wait(n.data_written_event()) ;
i = n.read(); // read a value from and assign to i
if (m.num_free() > 0) // check for room in the FIFO
 m.write(8); // write the value 8 to into the FIFO

Public Constructors
explicit
sc_fifo(int size_ = 16) ;

Create a sc_fifo instance with size initialized to 16.

explicit
sc_fifo(const char* name_, int size_ = 16) ;

Create a sc_fifo instance with size initialized to 16 and the string name
initialized to name_.

Public Member Functions
virtual const sc_event&
data_read_event() const ;

Returns a reference to an event that occurs when an element is read.

virtual const sc_event&
data_written_event() const ;

Returns a reference to an event that occurs when an element is written.

 Copyright 2003 Open SystemC Initiative. All rights reserved 134

SystemC 2.0.1 Language Reference Manual

virtual void
dump(ostream&) const;

Prints the string name and all the element values of the sc_fifo instance
to an output stream.

virtual const char*
kind() const ;

Returns “sc_fifo”.

virtual bool
nb_read(T& val);

Returns false if the FIFO is empty. Returns true, places the element
value in val and schedules the elements deletion if the FIFO is not empty.

virtual bool
nb_write(const T& val) ;

Returns false if the FIFO is full. Returns true and schedules an insertion
of val as an element if the FIFO is not full.

virtual int
num_available() const ;

Returns the number of elements that are currently in the FIFO. However
elements written in the current evaluate phase will not affect the value
returned by num_available() until the next evaluate phase.

virtual int
num_free() const ;

Returns the number of free spaces currently in the FIFO. However elements
read in the current evaluate phase will not affect the value returned by
num_free() until the next evaluate phase.

virtual void
print(ostream&) const;

Prints all the element values of the sc_fifo instance to an output stream.

virtual T
read();

Returns an element value from the FIFO and schedules the elements
deletion. If the FIFO is empty it suspends until an element is written on the
FIFO.

virtual void
read(T& val);

Places an element value from the FIFO in val and schedules the elements
deletion

virtual void
register_port(sc_port_base&, const char*);

 Copyright 2003 Open SystemC Initiative. All rights reserved 135

SystemC 2.0.1 Language Reference Manual

Checks to ensure at most only one input and one output port is connected
to the sc_fifo instance.

void
trace(sc_trace_file* tf) const;

Adds a trace for each element to the trace file tf.

virtual void
write(const T& val) ;

Schedules an insertion of val as an element on the FIFO. If the FIFO is full
it suspends until an element is read from the FIFO.

Public Operators
operator T () ;

Returns an element value from the FIFO and schedules the elements
deletion. If the FIFO is empty it suspends until an element is written on the
FIFO.

sc_fifo<T>&
operator = (const T& val) ;

Schedules an insertion of val into the sc_fifo instance on the left hand side.
If the FIFO is full it suspends until an element is read from the FIFO.
Returns a reference to the instance.

Protected Member Functions
virtual void
update();

Disabled Member Functions
sc_fifo(const sc_fifo<T>&);

sc_fifo&
operator = (const sc_fifo<T>&);

 Copyright 2003 Open SystemC Initiative. All rights reserved 136

SystemC 2.0.1 Language Reference Manual

11.14 sc_fifo_in
Synopsis
template <class T>
class sc_fifo_in
: public sc_port<sc_fifo_in_if<T>,0>
{
public:
 // constructors and destructor
 sc_fifo_in();
 sc_fifo_in(const char* name_);
 sc_fifo_in(sc_fifo_in_if<T>& interface_);
 sc_fifo_in(const char* name_,
 sc_fifo_in_if<T>& interface_);
 sc_fifo_in(sc_port_b

†
<sc_fifo_in_if<T> >& parent_);

 sc_fifo_in(const char* name_,
 sc_port_b

†
<sc_fifo_in_if<T> >& parent_);

 sc_fifo_in(sc_fifo_in<T>& parent_);
 sc_fifo_in(const char* name_,
 sc_fifo_in<T>& parent_);
 virtual ~sc_fifo_in();

 // methods
 void read(T& value_);
 T read();
 bool nb_read(T& value_);
 int num_available() const ;
 const sc_event& data_written_event() const ;
 sc_event_finder& data_written() const ;
 static const char* const kind_string;
 virtual const char* kind() const

private:
 // disabled
 sc_fifo_in(const sc_fifo_in<T>&);
 sc_fifo_in<T>& operator = (const sc_fifo_in<T>&);
};

Description
sc_fifo_in is a specialized port for use with sc_fifo channels (Chapter
11.13). Its behavior is that of a sc_port which has only one interface that is of
type sc_fifo_in_if<T>. It has additional methods for convenience in
accessing the FIFO channel connected to the port.

In the description of sc_fifo_in, port refers to the sc_fifo_in instance
and FIFO refers to the fifo channel connected to the port.

Example
SC_MODULE(my_module) {
 // output port

 Copyright 2003 Open SystemC Initiative. All rights reserved 137

SystemC 2.0.1 Language Reference Manual

 sc_fifo_out<int> output;
 sc_fifo_in<int> input;
 int a;
 // process
 void my_proc();

 SC_CTOR(my_module) {
 SC_THREAD(my_proc);
 sensitive << input.data_written();
 }
};

void my_module::my_proc() {
 output->write(5);
 output.write(6);
 wait(input->data_written_event());
 input->nb_read(a);
 a = input->read();
 a = input.read();
 sc_stop();
}

Protected Constructor
sc_fifo_in() ;

Default constructor

explicit
sc_fifo_in(const char* name_) ;

Create a sc_fifo_in instance with the string name initialized to name_.

Public Member functions
const sc_event&
data_written_event() const ;

Returns a reference to an event that occurs when an element is written to
the FIFO.

sc_event_finder
†
&

data_written() const ;

Returns a reference to an sc_event_finder† that finds the event that occurs
when an element is written to FIFO. For use with static sensitivity list of a
process.

virtual const char*
kind() const ;

Returns “sc_fifo_in”.

bool
nb_read(T& value_) ;

Returns false if the FIFO is full. Returns true and schedules an insertion
of value_ as an element if the FIFO is not full.

 Copyright 2003 Open SystemC Initiative. All rights reserved 138

SystemC 2.0.1 Language Reference Manual

int
num_available() const ;

Returns the number of elements that are in the FIFO.

void
read(T& value_) ;

Places an element value from the FIFO in value_ and schedules the
elements deletion

T
read() ;

Returns an element value from the FIFO and schedules the elements
deletion. If the FIFO is empty it suspends until an element is written on the
FIFO.

Disabled Member Functions
sc_fifo_in(const sc_fifo_in<T>&) ;

sc_fifo_in<T>&
operator = (const sc_fifo_in<T>&) ;

 Copyright 2003 Open SystemC Initiative. All rights reserved 139

SystemC 2.0.1 Language Reference Manual

11.15 sc_fifo_in_if
Synopsis
template <class T>
class sc_fifo_in_if
: virtual public sc_interface
{
public:
 virtual void read(T&) = 0;
 virtual T read() = 0;
 virtual bool nb_read(T&) = 0;
 virtual int num_available() const = 0;
 virtual const sc_event&
 data_written_event() const = 0;

private:
 // disabled
 sc_fifo_in_if(const sc_fifo_in_if<T>&);
 sc_fifo_in_if<T>&
 operator = (const sc_fifo_in_if<T>&);
};

Description
The sc_fifo_in_if class provides the signatures of the functions for the
sc_fifo_in_if interface. See Chapter 8.1 and sc_fifo for a description of
interfaces. Implemented by the sc_fifo channel (Chapter 11.12)

Example
SC_MODULE(my_module) {
sc_port<sc_fifo_in_if<int> > p1; // “read” FIFO port

template <class T>
class sc_fifo
: public sc_fifo_in_if<T>,
 public sc_fifo_out_if<T>,
 public sc_prim_channel
{ };

Protected Constructor
sc_fifo_in_if();

Create a sc_fifo_in_if instance.

Public Member functions
virtual const sc_event&
data_written_event() const = 0;

virtual bool
nb_read(T&) = 0;

virtual int

 Copyright 2003 Open SystemC Initiative. All rights reserved 140

SystemC 2.0.1 Language Reference Manual

num_available() const = 0;

virtual T
read() = 0;

virtual void
read(T&) = 0;

Disabled Member Functions
sc_fifo_in_if(const sc_fifo_in_if<T>&);

sc_fifo_in_if<T>&
operator = (const sc_fifo_in_if<T>&);

 Copyright 2003 Open SystemC Initiative. All rights reserved 141

SystemC 2.0.1 Language Reference Manual

11.16 sc_fifo_out
Synopsis
class sc_fifo_out
: public sc_port<sc_fifo_out_if<T>,0>
{
public:
 // constructors and destructor
 sc_fifo_out();
 sc_fifo_out(const char* name_);
 sc_fifo_out(sc_fifo_out_if<T>& interface_);
 sc_fifo_out(const char* name_,
 sc_fifo_out_if<T>& interface_);
 sc_fifo_out(sc_port_b

†
<sc_fifo_out_if<T> >& parent_);

 sc_fifo_out(const char* name_,
 sc_port_b

†
<sc_fifo_out_if<T> >& parent_);

 sc_fifo_out(sc_fifo_out<T>& parent_);
 sc_fifo_out(const char* name_,
 sc_fifo_out<T>& parent_);
 virtual ~sc_fifo_out();

 // methods
 void write(const T& value_);
 bool nb_write(const T& value_);
 int num_free() const;
 const sc_event& data_read_event() const;
 sc_event_finder& data_read() const;
 static const char* const kind_string;
 virtual const char* kind() const;

private:
 // disabled
 sc_fifo_out(const sc_fifo_out<T>&);
 sc_fifo_out<T>& operator = (const sc_fifo_out<T>&);
};

Description
sc_fifo_out is a specialized port for use with sc_fifo channels (Chapter
11.13). Its behavior is that of a sc_port which has only one interface that is of
type sc_fifo_out_if<T>. It has additional methods for convenience in
accessing the channel connected to the port.

In the description of sc_fifo_out, port refers to the sc_fifo_out instance
and FIFO refers to the fifo channel connected to the port.

Example
SC_MODULE(my_module) {
 // output port
 sc_fifo_out<int> output;
 sc_fifo_in<int> input;

 Copyright 2003 Open SystemC Initiative. All rights reserved 142

SystemC 2.0.1 Language Reference Manual

 int a;
 // process
 void my_proc();

 SC_CTOR(my_module) {
 SC_THREAD(my_proc);
 sensitive << input.data_written();
 }
};

void my_module::my_proc() {
 output->write(5);
 output.write(6);
 wait(input->data_written_event());
 input->nb_read(a);
 a = input->read();
 a = input.read();
 sc_stop();
}

Protected Constructor
sc_fifo_out() ;

Default constructor.

explicit
sc_fifo_out(const char* name_) ;

Create a sc_fifo_out instance with the string name initialized to name_.

Public Member Functions
const sc_event&
data_read_event() const ;

Returns a reference to an event that occurs when an element is read from
FIFO.

sc_event_finder
†
&

data_read() const ;

Returns a reference to an sc_event_finder† that finds the event that occurs
when an element is read from FIFO. For use with static sensitivity list of a
process.

virtual const char*
kind() const ;

Returns "sc_fifo_out".

bool
nb_write(const T& value_) ;

Returns false if the FIFO is full. Returns true and schedules an insertion
of val as an element if the FIFO is not full.

int

 Copyright 2003 Open SystemC Initiative. All rights reserved 143

SystemC 2.0.1 Language Reference Manual

num_free() const ;
Returns the number of elements that can be written to the FIFO.

void
write(const T& value_) ;

Schedules an insertion of value_ as an element on the FIFO. If the FIFO
is full it suspends until an element is read from the FIFO.

Disabled Member Functions
sc_fifo_out(const sc_fifo_out<T>&) ;

sc_fifo_out<T>&
operator = (const sc_fifo_out<T>&) ;

 Copyright 2003 Open SystemC Initiative. All rights reserved 144

SystemC 2.0.1 Language Reference Manual

11.17 sc_fifo_out_if
Synopsis
template <class T>
class sc_fifo_out_if
: virtual public sc_interface
{
public:
 virtual void write(const T&) = 0;
 virtual bool nb_write(const T&) = 0;
 virtual int num_free() const = 0;
 virtual const sc_event& data_read_event() const = 0;

private:
 // disabled
 sc_fifo_out_if(const sc_fifo_out_if<T>&);
 sc_fifo_out_if<T>& operator =
 (const sc_fifo_out_if<T>&);
};

Description
The sc_fifo_out_if class provides the signatures of the functions for the
sc_fifo_out_if interface. See Chapter 8.1 and sc_fifo for a description
of interfaces. Implemented by the sc_fifo channel (Chapter 11.12)

Example
SC_MODULE(my_module) {
sc_port<sc_fifo_out_if<int> > p1; // “write” FIFO port

template <class T>
class sc_fifo
: public sc_fifo_in_if<T>,
 public sc_fifo_out_if<T>,
 public sc_prim_channel
{ };

Protected Constructor
sc_fifo_out_if();

Create a sc_fifo_in_if instance.

Public Member Functions
virtual const sc_event&
data_read_event() const = 0;

virtual bool
nb_write(const T&) = 0;

virtual int
num_free() const = 0;

 Copyright 2003 Open SystemC Initiative. All rights reserved 145

SystemC 2.0.1 Language Reference Manual

virtual void
write(const T&) = 0;

Disabled Member Functions
sc_fifo_out_if(const sc_fifo_out_if<T>&);

sc_fifo_out_if<T>&
operator = (const sc_fifo_out_if<T>&);

 Copyright 2003 Open SystemC Initiative. All rights reserved 146

SystemC 2.0.1 Language Reference Manual

11.18 sc_fix
Synopsis
class sc_fix : public sc_fxnum

†

{
public:
 // constructors and destructor
 sc_fix(sc_fxnum_observer* = 0);
 sc_fix(int, int,
 sc_fxnum_observer* = 0);
 sc_fix(sc_q_mode, sc_o_mode,
 sc_fxnum_observer* = 0);
 sc_fix(sc_q_mode, sc_o_mode, int,
 sc_fxnum_observer* = 0);
 sc_fix(int, int, sc_q_mode, sc_o_mode,
 sc_fxnum_observer* = 0);
 sc_fix(int, int, sc_q_mode, sc_o_mode, int,
 sc_fxnum_observer* = 0);
 sc_fix(const sc_fxcast_switch&,
 sc_fxnum_observer* = 0);
 sc_fix(int, int,
 const sc_fxcast_switch&,
 sc_fxnum_observer* = 0);
 sc_fix(sc_q_mode, sc_o_mode,
 const sc_fxcast_switch&,
 sc_fxnum_observer* = 0);
 sc_fix(sc_q_mode, sc_o_mode, int,
 const sc_fxcast_switch&,
 sc_fxnum_observer* = 0);
 sc_fix(int, int, sc_q_mode, sc_o_mode,
 const sc_fxcast_switch&,
 sc_fxnum_observer* = 0);
 sc_fix(int, int, sc_q_mode, sc_o_mode, int,
 const sc_fxcast_switch&,
 sc_fxnum_observer* = 0);
 sc_fix(const sc_fxtype_params&,
 sc_fxnum_observer* = 0);
 sc_fix(const sc_fxtype_params&,
 const sc_fxcast_switch&,
 sc_fxnum_observer* = 0);

#define DECL_CTORS_T(tp) \
 sc_fix(tp, int, int, \
 sc_fxnum_observer* = 0); \
 sc_fix(tp, sc_q_mode, sc_o_mode, \
 sc_fxnum_observer* = 0); \
 sc_fix(tp, sc_q_mode, sc_o_mode, int, \
 sc_fxnum_observer* = 0); \
 sc_fix(tp, int, int, sc_q_mode, sc_o_mode, \
 sc_fxnum_observer* = 0); \
 sc_fix(tp, int, int, sc_q_mode, sc_o_mode, int, \
 sc_fxnum_observer* = 0); \

 Copyright 2003 Open SystemC Initiative. All rights reserved 147

SystemC 2.0.1 Language Reference Manual

 sc_fix(tp, const sc_fxcast_switch&, \
 sc_fxnum_observer* = 0); \
 sc_fix(tp, int, int, const sc_fxcast_switch&, \
 sc_fxnum_observer* = 0); \
 sc_fix(tp, sc_q_mode, sc_o_mode, \
 const sc_fxcast_switch&, \
 sc_fxnum_observer* = 0); \
 sc_fix(tp, sc_q_mode, sc_o_mode, int, \
 const sc_fxcast_switch&, \
 sc_fxnum_observer* = 0); \
 sc_fix(tp, int, int, sc_q_mode, sc_o_mode, \
 const sc_fxcast_switch&, \
 sc_fxnum_observer* = 0); \
 sc_fix(tp, int, int, sc_q_mode, sc_o_mode, int, \
 const sc_fxcast_switch&, \
 sc_fxnum_observer* = 0); \
 sc_fix(tp, const sc_fxtype_params&, \
 sc_fxnum_observer* = 0); \
 sc_fix(tp, const sc_fxtype_params&, \
 const sc_fxcast_switch&, \
 sc_fxnum_observer* = 0);

#define DECL_CTORS_T_A(tp) \
 sc_fix(tp, sc_fxnum_observer* = 0); \
 DECL_CTORS_T(tp)

#define DECL_CTORS_T_B(tp) \
 explicit sc_fix(tp, sc_fxnum_observer* = 0); \
 DECL_CTORS_T(tp)

 DECL_CTORS_T_A(int)
 DECL_CTORS_T_A(unsigned int)
 DECL_CTORS_T_A(long)
 DECL_CTORS_T_A(unsigned long)
 DECL_CTORS_T_A(double)
 DECL_CTORS_T_A(const char*)
 DECL_CTORS_T_A(const sc_fxval&)
 DECL_CTORS_T_A(const sc_fxval_fast&)
 DECL_CTORS_T_A(const sc_fxnum&)
 DECL_CTORS_T_A(const sc_fxnum_fast&)
 DECL_CTORS_T_B(int64)
 DECL_CTORS_T_B(uint64)
 DECL_CTORS_T_B(const sc_int_base&)
 DECL_CTORS_T_B(const sc_uint_base&)
 DECL_CTORS_T_B(const sc_signed&)
 DECL_CTORS_T_B(const sc_unsigned&)
 sc_fix(const sc_fix&);

 // unary bitwise operators
 const sc_fix operator ~ () const;

 // unary bitwise functions
 friend void b_not(sc_fix&, const sc_fix&);

 Copyright 2003 Open SystemC Initiative. All rights reserved 148

SystemC 2.0.1 Language Reference Manual

 // binary bitwise operators
 friend const sc_fix operator & (const sc_fix&,
 const sc_fix&);
 friend const sc_fix operator & (const sc_fix&,
 const sc_fix_fast&);
 friend const sc_fix operator & (const sc_fix_fast&,
 const sc_fix&);
 friend const sc_fix operator | (const sc_fix&,
 const sc_fix&);
 friend const sc_fix operator | (const sc_fix&,
 const sc_fix_fast&);
 friend const sc_fix operator | (const sc_fix_fast&,
 const sc_fix&);
 friend const sc_fix operator ^ (const sc_fix&,
 const sc_fix&);
 friend const sc_fix operator ^ (const sc_fix&,
 const sc_fix_fast&);
 friend const sc_fix operator ^ (const sc_fix_fast&,
 const sc_fix&);

 // binary bitwise functions
 friend void b_and(sc_fix&, const sc_fix&,
 const sc_fix&);
 friend void b_and(sc_fix&, const sc_fix&,
 const sc_fix_fast&);
 friend void b_and(sc_fix&, const sc_fix_fast&,
 const sc_fix&);
 friend void b_or (sc_fix&, const sc_fix&,
 const sc_fix&);
 friend void b_or (sc_fix&, const sc_fix&,
 const sc_fix_fast&);
 friend void b_or (sc_fix&, const sc_fix_fast&,
 const sc_fix&);
 friend void b_xor(sc_fix&, const sc_fix&,
 const sc_fix&);
 friend void b_xor(sc_fix&, const sc_fix&,
 const sc_fix_fast&);
 friend void b_xor(sc_fix&, const sc_fix_fast&,
 const sc_fix&);

 sc_fix& operator = (const sc_fix&);

#define DECL_ASN_OP_T(op,tp) \
 sc_fix& operator op (tp);

#define DECL_ASN_OP_OTHER(op) \
 DECL_ASN_OP_T(op,int64) \
 DECL_ASN_OP_T(op,uint64) \
 DECL_ASN_OP_T(op,const sc_int_base&) \
 DECL_ASN_OP_T(op,const sc_uint_base&) \
 DECL_ASN_OP_T(op,const sc_signed&) \
 DECL_ASN_OP_T(op,const sc_unsigned&)

#define DECL_ASN_OP(op) \

 Copyright 2003 Open SystemC Initiative. All rights reserved 149

SystemC 2.0.1 Language Reference Manual

 DECL_ASN_OP_T(op,int) \
 DECL_ASN_OP_T(op,unsigned int) \
 DECL_ASN_OP_T(op,long) \
 DECL_ASN_OP_T(op,unsigned long) \
 DECL_ASN_OP_T(op,double) \
 DECL_ASN_OP_T(op,const char*)\
 DECL_ASN_OP_T(op,const sc_fxval&)\
 DECL_ASN_OP_T(op,const sc_fxval_fast&)\
 DECL_ASN_OP_T(op,const sc_fxnum&) \
 DECL_ASN_OP_T(op,const sc_fxnum_fast&) \
 DECL_ASN_OP_OTHER(op)

 DECL_ASN_OP(=)
 DECL_ASN_OP(*=)
 DECL_ASN_OP(/=)
 DECL_ASN_OP(+=)
 DECL_ASN_OP(-=)
 DECL_ASN_OP_T(<<=,int)
 DECL_ASN_OP_T(>>=,int)
 DECL_ASN_OP_T(&=,const sc_fix&)
 DECL_ASN_OP_T(&=,const sc_fix_fast&)
 DECL_ASN_OP_T(|=,const sc_fix&)
 DECL_ASN_OP_T(|=,const sc_fix_fast&)
 DECL_ASN_OP_T(^=,const sc_fix&)
 DECL_ASN_OP_T(^=,const sc_fix_fast&)

 const sc_fxval operator ++ (int);
 const sc_fxval operator -- (int);
 sc_fix& operator ++ ();
 sc_fix& operator -- ();
};

Description
Unconstrained type sc_fix is a signed (two's complement) type. sc_fix
allows specifying the fixed-point type parameters wl, iwl, q_mode, o_mode, and
n_bits as variables. See Chapter 6.8.12.1.

Declaration Syntax
sc_fix var_name([init_val]
 [,wl,iwl]
 [,q_mode,o_mode[,n_bits]]
 [,cast_switch]
 [,observer]);

sc_fix var_name([init_val]
 ,type_params
 [,cast_switch]
 [,observer]);

Examples
sc_fix a(1.5);
sc_fix c(16,1,SC_RND_CONV,SC_SAT_SYM);

 Copyright 2003 Open SystemC Initiative. All rights reserved 150

SystemC 2.0.1 Language Reference Manual

sc_fix b = -1;

Public Constructors
sc_fix (
 [type_ init_val]
 [,int wl,int iwl]
 [,sc_q_mode q_mode,sc_o_mode o_mode[,int n_bits]]
 [,const sc_fxcast_switch& cast_switch]
 , sc_fxnum_observer* observer) ;
type_ in {short, unsigned short, int, unsigned int, long,

unsigned long, float, double, const char*, int64,
uint64, const sc_int_base

†
&, const sc_uint_base

†
&,

const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

sc_fix (
 [type_ init_val]
 ,const sc_fxtype_param& type_params
 [,sc_fxcast_switch cast_switch]
 , sc_fxnum_observer* observer) ;
type_ in {short, unsigned short, int, unsigned int, long,

unsigned long, float, double, const char*, int64,
uint64, const sc_int_base

†
&, const sc_uint_base

†
&,

const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

Notes on type_
For all types in type_ , except sc_[u]fix and sc_[u]fix_fast, only the
value of the argument is taken, that is, any type information is discarded. This
ensures that initialization during declaration and initialization after declaration
behave identical.
A fixed-point variable can be initialized with a C/C++ character string (type
const char*) either when the number will be expressed in binary form or when
the number is too large to be written as a C/C++ built-in type literal

init_val
The initial value of the variable. If the initial value is not specified, the instance
is uninitialized.
wl
The total number of bits in the fixed-point format. wl must be greater than zero,
otherwise, a runtime error is produced. The default value for wl is obtained
from the fixed-point context type sc_fxtype_context. See Chapter 11.26.
The total word length parameter cannot change after declaration.
iwl
The number of integer bits in the fixed-point format. iwl can be positive or
negative. The default value for iwl is obtained from the fixed-point context type

 Copyright 2003 Open SystemC Initiative. All rights reserved 151

SystemC 2.0.1 Language Reference Manual

sc_fxtype_context. See See Chapter 11.26. The number of integer bits
parameter cannot change after declaration.
q_mode
The quantization mode to use. Valid values for q_mode are given in Section 0 .
The default value for q_mode is obtained from the fixed-point context type
sc_fxtype_context. See See Chapter 11.26. The quantization mode
parameter cannot change after declaration.
o_mode
The overflow mode to use. Valid values for o_mode are given in Section 0. The
default value for o_mode is obtained from the fixed-point context type
sc_fxtype_context. See Chapter 11.26. The overflow mode parameter
cannot change after declaration.
n_bits
The number of saturated bits parameter for the selected overflow mode.
n_bits must be greater than or equal to zero, otherwise a runtime error is
produced. If the overflow mode is specified, the default value is zero. If the
overflow mode is not specified, the default value is obtained from the fixed-point
context type sc_fxtype_context. See Chapter 11.26. The number of
saturated bits parameter cannot change after declaration.
type_params
A fixed-point type parameters object.
cast_switch
The cast switch, which allows to switch fixed-point type casting on or off. Valid
values for cast_switch are:
SC_OFF for casting off
SC_ON for casting on
The default value for cast_switch is obtained from the fixed-point context
type sc_fxcast_context. The cast_switch parameter cannot change
after declaration.
observer
A pointer to an observer object. The observer argument is of type
sc_fxnum_observer*. See Chapter 11.25. The default value for observer
is 0 (null pointer). The observer parameter cannot change after declaration.

Copy Constructor
sc_fix(const sc_fix&);

Operators
The operators defined for the sc_fix are given in Table 16.

Table 16. Operators for sc_fix
Operator
class

Operators in class

Bitwise ~ & ^ |

Arithmetic * / + - << >> ++ --

 Copyright 2003 Open SystemC Initiative. All rights reserved 152

SystemC 2.0.1 Language Reference Manual

Equality == !=

Relational <<= >>=

Assignment = *= /= += -= <<= >>= &= ^= |=

Note:
Operators << and operator >> define arithmetic shifts, not bitwise shifts. The
difference is that no bits are lost and proper sign extension is done.

In expressions with the non-bitwise operators from Table 16, fixed-point types
can be mixed with all types given:
type_ in {short, unsigned short, int, unsigned int, long,

unsigned long, float, double, const char*, int64,
uint64, const sc_int_base

†
&, const sc_uint_base

†
&,

const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

The return type of any arithmetic operation is the fixed-point value type, which
guarantees that the operation is performed without overflow or quantization.

A floating-point variable or a fixed-point value variable can contain one of the
special values +Inf (plus infinity), -Inf (minus infinity), or Nan (not a number).
Assignment of one of these special values to a fixed-point variable will produce
a runtime error.

For the fixed-point types, a minimal set of bitwise operators is defined. These
bitwise operators are only defined on either the signed fixed-point types or the
unsigned fixed- point types. Mixing between signed and unsigned fixed-point
types is not allowed. Mixing with any other type is also not allowed.

The semantics of the bitwise operators is as follows. For the unary ~ operator,
the type of the result is the type of the operand. The bits in the two’s
complement mantissa of the operand are inverted to get the mantissa of the
result. For the binary operators, the type of the result is the maximum aligned
type of the two operands, that is, the two operands are aligned by the binary
point and the maximum integer word length and the maximum fractional word
length is taken. The operands are temporarily extended to this type before
performing a bitwise and, bitwise exclusive-or, or bitwise or.

Member Functions
The functions defined for sc_fix are given in Table 17.

Table 17. Functions for sc_fix
Function
class

Functions in class

Bitwise b_not, b_and, b_xor, b_or

 Copyright 2003 Open SystemC Initiative. All rights reserved 153

SystemC 2.0.1 Language Reference Manual

Arithmetic neg, mult, div, add, sub, lshift, rshift

The functions in Table 17 have return type void. The first argument of these
functions is a reference to the result object. The remaining arguments of these
functions are the operands.

For the bitwise functions, the result object and the operands are of the same
type, which is either sc_fix or sc_ufix.

The neg arithmetic function takes one operand, the other arithmetic functions
take two operands. At least one of the operands of the arithmetic functions
should have a fixed- point type, the other operand can have any of the types
given:
type_ in {short, unsigned short, int, unsigned int, long,

unsigned long, float, double, const char*, int64,
uint64, const sc_int_base

†
&, const sc_uint_base

†
&,

const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

The arithmetic functions are defined twice: once with the result object of type
sc_fxval, and once with the result object of type sc_fix or sc_ufix.

Bit Selection
const sc_fxnum_bitref

†
 operator [] (int i) const;

sc_fxnum_bitref
†
 operator [] (int i);

const sc_fxnum_bitref

†
 bit(int i) const;

sc_fxnum_bitref
†
 bit(int i);

These functions take one argument of type int, which is the index into the fixed-
point mantissa. The index argument must be between wl-1 (MSB) and 0
(LSB). Otherwise, a runtime error is produced. The return type of the bit
selection functions is (const or non- const) sc_fxnum_bitref†, which is a
proxy class. The proxy class allows bit selection to be used both as rvalue
(for reading) and lvalue (for writing). For bit selection, the fixed-point binary
point is ignored.

Part Selection
const sc_fxnum_subref

†
 operator () (int, int) const;

sc_fxnum_subref
†
 operator () (int, int);

const sc_fxnum_subref

†
 range(int, int) const;

sc_fxnum_subref
†
 range(int, int);

 Copyright 2003 Open SystemC Initiative. All rights reserved 154

SystemC 2.0.1 Language Reference Manual

These functions take two arguments of type int, which are the begin and end
indices into the fixed-point mantissa. The index arguments must be between
wl-1 (MSB) and 0 (LSB). Otherwise, a runtime error is produced. The return
type of the part selection functions is (const or non-const) sc_fxnum_subref†,
which is a proxy class that behaves like type sc_bv_base. The proxy class
allows part selection to be used both as rvalue (for reading) and lvalue (for
writing). All operators and methods that are available for type sc_bv_base are
also available for part selection. For part selection, the fixed-point binary point
is ignored.

const sc_fxnum_subref

†
 operator () () const;

sc_fxnum_subref
†
 operator () ();

const sc_fxnum_subref

†
 range() const;

sc_fxnum_subref
†
 range();

As a shortcut for part selection of the complete mantissa, operator () and the
range() method can be called without any arguments.

Query Parameters
const sc_fxcast_switch&
cast_switch() const;

Returns the cast switch parameter.

int
iwl() const;

Returns the integer word length parameter.

int
n_bits() const;

Returns the number of saturated bits parameter.

sc_o_mode
o_mode() const;

Returns the overflow mode parameter.

sc_q_mode
q_mode() const;

Return the quantization mode parameter.

const sc_fxtype_params&
type_params() const;

Returns the type parameters.

int
wl() const;

 Copyright 2003 Open SystemC Initiative. All rights reserved 155

SystemC 2.0.1 Language Reference Manual

Returns the total word length parameter.

Query Value
bool
is_neg() const;

Returns true if the variable holds a negative value. Returns false otherwise.

bool
is_zero() const;

Returns true if the variable holds a zero value. Returns false otherwise.

bool
overflow_flag() const;

Returns true if the last write action on this variable caused overflow. Returns
false otherwise.

bool
quantization_flag() const;

Returns true if the last write action on this variable caused quantization.
Returns false otherwise.

const sc_fxval
value() const;

Returns the value.

Implicit Conversion
operator double() const;

Implicit conversion to the implementation type double. The value does not
change.

The value of a fixed-point variable can be converted to a character string
with the to_string() method. This method takes different arguments for

Explicit Conversion

short to_short() const;
unsigned short to_ushort() const;
int to_int() const;
unsigned int to_uint() const;
long to_long() const;
unsigned long to_ulong() const;
float to_float() const;
double to_double() const

const sc_string to_string() const;
const sc_string to_string(sc_numrep) const;
const sc_string to_string(sc_numrep, bool) const;
const sc_string to_string(sc_fmt) const;
const sc_string to_string(sc_numrep, sc_fmt) const;
const sc_string to_string(sc_numrep, bool, sc_fmt) const;

 Copyright 2003 Open SystemC Initiative. All rights reserved 156

SystemC 2.0.1 Language Reference Manual

formatting purposes. See Chapter 6.8.8 for more information on converting
fixed-point variables to/from character strings. Furthermore, writing to C++
output streams with operator << is supported, e.g. cout << a;, where a is a
fixed-point variable. The decimal number representation is used in this case.

const sc_string to_oct() const;

const sc_string to_dec() const;
const sc_string to_bin() const;

const sc_string to_hex() const;
Shortcut methods for conversion to a character string. See Chapter 6.8.9.2.

Print or dump content
void
print(ostream& = cout) const;

Print the sc_fix instance value to an output stream.

void
scan(istream& = cin);

Read an sc_fix value from an input stream.

void
dump(ostream& = cout)
const;

Prints the sc_fix instance value, parameters and flags to an output stream.

ostream&
operator << (ostream& os, const sc_fix& a)

Print the instance value of a to an output stream os.

 Copyright 2003 Open SystemC Initiative. All rights reserved 157

SystemC 2.0.1 Language Reference Manual

11.19 sc_fix_fast
Synopsis
class sc_fix_fast : public sc_fxnum_fast

†

{
public:
 // constructors
 sc_fix_fast(sc_fxnum_fast_observer* = 0);
 sc_fix_fast(int, int,
 sc_fxnum_fast_observer* = 0);
 sc_fix_fast(sc_q_mode, sc_o_mode,
 sc_fxnum_fast_observer* = 0);
 sc_fix_fast(sc_q_mode, sc_o_mode, int,
 sc_fxnum_fast_observer* = 0);
 sc_fix_fast(int, int, sc_q_mode, sc_o_mode,
 sc_fxnum_fast_observer* = 0);
 sc_fix_fast(int, int, sc_q_mode, sc_o_mode, int,
 sc_fxnum_fast_observer* = 0);
 sc_fix_fast(const sc_fxcast_switch&,
 sc_fxnum_fast_observer* = 0);
 sc_fix_fast(int, int,
 const sc_fxcast_switch&,
 sc_fxnum_fast_observer* = 0);
 sc_fix_fast(sc_q_mode, sc_o_mode,
 const sc_fxcast_switch&,
 sc_fxnum_fast_observer* = 0);
 sc_fix_fast(sc_q_mode, sc_o_mode, int,
 const sc_fxcast_switch&,
 sc_fxnum_fast_observer* = 0);
 sc_fix_fast(int, int, sc_q_mode, sc_o_mode,
 const sc_fxcast_switch&,
 sc_fxnum_fast_observer* = 0);
 sc_fix_fast(int, int, sc_q_mode, sc_o_mode, int,
 const sc_fxcast_switch&,
 sc_fxnum_fast_observer* = 0);
 sc_fix_fast(const sc_fxtype_params&,
 sc_fxnum_fast_observer* = 0);
 sc_fix_fast(const sc_fxtype_params&,
 const sc_fxcast_switch&,
 sc_fxnum_fast_observer* = 0);

#define DECL_CTORS_T(tp) \
 sc_fix_fast(tp, int, int, \
 sc_fxnum_fast_observer* = 0); \
 sc_fix_fast(tp, sc_q_mode, sc_o_mode, \
 sc_fxnum_fast_observer* = 0); \
 sc_fix_fast(tp, sc_q_mode, sc_o_mode, int, \
 sc_fxnum_fast_observer* = 0); \
 sc_fix_fast(tp, int, int, sc_q_mode, sc_o_mode, \
 sc_fxnum_fast_observer* = 0); \
 sc_fix_fast(tp, \
 int, int, sc_q_mode, sc_o_mode, int, \

 Copyright 2003 Open SystemC Initiative. All rights reserved 158

SystemC 2.0.1 Language Reference Manual

 sc_fxnum_fast_observer* = 0); \
 sc_fix_fast(tp, const sc_fxcast_switch&,\
 sc_fxnum_fast_observer* = 0); \
 sc_fix_fast(tp, int, int, \
 const sc_fxcast_switch&,\
 sc_fxnum_fast_observer* = 0); \
 sc_fix_fast(tp, sc_q_mode, sc_o_mode, \
 const sc_fxcast_switch&,\
 sc_fxnum_fast_observer* = 0); \
 sc_fix_fast(tp, sc_q_mode, sc_o_mode, int, \
 const sc_fxcast_switch&,\
 sc_fxnum_fast_observer* = 0); \
 sc_fix_fast(tp, int, int, sc_q_mode, sc_o_mode, \
 const sc_fxcast_switch&,\
 sc_fxnum_fast_observer* = 0); \
 sc_fix_fast(tp, int, int, sc_q_mode, sc_o_mode, int, \
 const sc_fxcast_switch&,\
 sc_fxnum_fast_observer* = 0); \
 sc_fix_fast(tp, const sc_fxtype_params&,\
 sc_fxnum_fast_observer* = 0); \
 sc_fix_fast(tp, const sc_fxtype_params&,\
 const sc_fxcast_switch&,\
 c_fxnum_fast_observer* = 0);

#define DECL_CTORS_T_A(tp) \
 sc_fix_fast(tp, sc_fxnum_fast_observer* = 0); \
 DECL_CTORS_T(tp)

#define DECL_CTORS_T_B(tp) \

 DECL_CTORS_T_A(const sc_fxval_fast&)

 explicit sc_fix_fast(tp, \
 sc_fxnum_fast_observer* = 0); \
 DECL_CTORS_T(tp)

 DECL_CTORS_T_A(int)
 DECL_CTORS_T_A(unsigned int)
 DECL_CTORS_T_A(long)
 DECL_CTORS_T_A(unsigned long)
 DECL_CTORS_T_A(double)
 DECL_CTORS_T_A(const char*)
 DECL_CTORS_T_A(const sc_fxval&)

 DECL_CTORS_T_A(const sc_fxnum&)
 DECL_CTORS_T_A(const sc_fxnum_fast&)
 DECL_CTORS_T_B(int64)
 DECL_CTORS_T_B(uint64)
 DECL_CTORS_T_B(const sc_int_base&)
 DECL_CTORS_T_B(const sc_uint_base&)
 DECL_CTORS_T_B(const sc_signed&)
 DECL_CTORS_T_B(const sc_unsigned&)

 // copy constructor
 sc_fix_fast(const sc_fix_fast&);

 // operators

 Copyright 2003 Open SystemC Initiative. All rights reserved 159

SystemC 2.0.1 Language Reference Manual

 const sc_fix_fast operator ~ () const;
 friend void b_not(sc_fix_fast&, const
 sc_fix_fast&);
 friend const sc_fix_fast operator & (const
 sc_fix_fast&,
 const sc_fix_fast&);
 friend const sc_fix_fast operator ^ (const
 sc_fix_fast&,
 const sc_fix_fast&);
 friend const sc_fix_fast operator | (const
 sc_fix_fast&,
 const sc_fix_fast&);
 friend void b_and(sc_fix_fast&, const sc_fix_fast&,
 const sc_fix_fast&);
 friend void b_or (sc_fix_fast&, const sc_fix_fast&,
 const sc_fix_fast&);
 friend void b_xor(sc_fix_fast&, const sc_fix_fast&,
 const sc_fix_fast&);
 sc_fix_fast& operator = (const sc_fix_fast&);

#define DECL_ASN_OP_T(op,tp) \
 sc_fix_fast& operator op (tp);

#define DECL_ASN_OP_OTHER(op) \
 DECL_ASN_OP_T(op,int64) \
 DECL_ASN_OP_T(op,uint64) \
 DECL_ASN_OP_T(op,const sc_int_base&)\
 DECL_ASN_OP_T(op,const sc_uint_base&)\
 DECL_ASN_OP_T(op,const sc_signed&)\
 DECL_ASN_OP_T(op,const sc_unsigned&)

#define DECL_ASN_OP(op) \
 DECL_ASN_OP_T(op,int) \
 DECL_ASN_OP_T(op,unsigned int) \
 DECL_ASN_OP_T(op,long) \
 DECL_ASN_OP_T(op,unsigned long) \
 DECL_ASN_OP_T(op,double) \
 DECL_ASN_OP_T(op,const char*)\
 DECL_ASN_OP_T(op,const sc_fxval&)\
 DECL_ASN_OP_T(op,const sc_fxval_fast&)\
 DECL_ASN_OP_T(op,const sc_fxnum&)\
 DECL_ASN_OP_T(op,const sc_fxnum_fast&)\
 DECL_ASN_OP_OTHER(op)

 DECL_ASN_OP(=)
 DECL_ASN_OP(*=)
 DECL_ASN_OP(/=)
 DECL_ASN_OP(+=)
 DECL_ASN_OP(-=)
 DECL_ASN_OP_T(<<=,int)
 DECL_ASN_OP_T(>>=,int)
 DECL_ASN_OP_T(&=,const sc_fix&)
 DECL_ASN_OP_T(&=,const sc_fix_fast&)
 DECL_ASN_OP_T(|=,const sc_fix&)

 Copyright 2003 Open SystemC Initiative. All rights reserved 160

SystemC 2.0.1 Language Reference Manual

 DECL_ASN_OP_T(|=,const sc_fix_fast&)
 DECL_ASN_OP_T(^=,const sc_fix&)
 DECL_ASN_OP_T(^=,const sc_fix_fast&)

 const sc_fxval_fast operator ++ (int);
 const sc_fxval_fast operator -- (int);
 sc_fix_fast& operator ++ ();
 sc_fix_fast& operator -- ();
};

Description
sc_fix_fast is a signed (two's complement) limited precision type.
sc_fix_fast allows specifying the fixed-point type parameters wl, iwl, q_mode,
o_mode, and n_bits as variables. See Chapter 6.8.1.

sc_fix_fast provides the same API as sc_fix.

sc_fix_fast uses double precision (floating-point) values. The mantissa of a
double precision value is limited to 53 bits. This means that bit-true behavior
cannot be guaranteed with the limited precision types. For bit-true behavior with
the limited precision types, the following guidelines should be followed:
Make sure that the word length of the result of any operation or expression does
not exceed 53 bits.
The result of an addition or subtraction requires a word length that is one bit
more than the maximum aligned word length of the two operands.
The result of a multiplication requires a word length that is the sum of the word
lengths of the two operands.

Declaration Syntax
sc_fix_fast var_name([init_val]
 [,wl,iwl]
 [,q_mode,o_mode[,n_bits]]
 [,cast_switch]
 [,observer]);

sc_fix_fast var_name([init_val]
 ,type_params
 [,cast_switch]
 [,observer]);

Examples
sc_fix_fast a(1.5);
sc_fix_fast c(16,1,SC_RND_CONV,SC_SAT_SYM);
sc_fix_fast b = -1;

Public Constructors
sc_fix_fast (
 [type_ init_val]
 [,int wl,int iwl]

 Copyright 2003 Open SystemC Initiative. All rights reserved 161

SystemC 2.0.1 Language Reference Manual

 [,sc_q_mode q_mode,sc_o_mode o_mode[,int n_bits]]
 [,const sc_fxcast_switch& cast_switch]
 , sc_fxnum_fast_observer* observer) ;
type_ in {short, unsigned short, int, unsigned int, long,

unsigned long, float, double, const char*, int64,
uint64, const sc_int_base

†
&, const sc_uint_base

†
&,

const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

sc_fix_fast (
 [type_ init_val]
 ,const sc_fxtype_param& type_params
 [,sc_fxcast_switch cast_switch]
 , sc_fxnum_fast_observer* observer) ;
type_ in {short, unsigned short, int, unsigned int, long,

unsigned long, float, double, const char*, int64,
uint64, const sc_int_base

†
&, const sc_uint_base

†
&,

const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

Notes on type_
For all types in type_ , except sc_[u]fix and sc_[u]fix_fast, only the
value of the argument is taken, that is, any type information is discarded. This
ensures that initialization during declaration and initialization after declaration
behave identical.
A fixed-point variable can be initialized with a C/C++ character string (type
const char*) either when the number will be expressed in binary form or when
the number is too large to be written as a C/C++ built-in type literal

init_val
The initial value of the variable. If the initial value is not specified, the instance
is uninitialized.
wl
The total number of bits in the fixed-point format. wl must be greater than zero,
otherwise, a runtime error is produced. The default value for wl is obtained
from the fixed-point context type sc_fxtype_context. See Chapter 11.26.
The total word length parameter cannot change after declaration.
iwl
The number of integer bits in the fixed-point format. iwl can be positive or
negative. The default value for iwl is obtained from the fixed-point context type
sc_fxtype_context. See See Chapter 11.26. The number of integer bits
parameter cannot change after declaration.
q_mode
The quantization mode to use. Valid values for q_mode are given in Section 0 .
The default value for q_mode is obtained from the fixed-point context type
sc_fxtype_context. See See Chapter 11.26. The quantization mode
parameter cannot change after declaration.

 Copyright 2003 Open SystemC Initiative. All rights reserved 162

SystemC 2.0.1 Language Reference Manual

o_mode
The overflow mode to use. Valid values for o_mode are given in Section 0. The
default value for o_mode is obtained from the fixed-point context type
sc_fxtype_context. See Chapter 11.26. The overflow mode parameter
cannot change after declaration.
n_bits
The number of saturated bits parameter for the selected overflow mode.
n_bits must be greater than or equal to zero, otherwise a runtime error is
produced. If the overflow mode is specified, the default value is zero. If the
overflow mode is not specified, the default value is obtained from the fixed-point
context type sc_fxtype_context. See Chapter 11.26. The number of
saturated bits parameter cannot change after declaration.
type_params
A fixed-point type parameters object.
cast_switch
The cast switch, which allows to switch fixed-point type casting on or off. Valid
values for cast_switch are:
SC_OFF for casting off
SC_ON for casting on
The default value for cast_switch is obtained from the fixed-point context
type sc_fxcast_context. The cast_switch parameter cannot change
after declaration.
observer
A pointer to an observer object. The observer argument is of type
sc_fxnum_fast_observer*. See Chapter 11.24. The default value for
observer is 0 (null pointer). The observer parameter cannot change after
declaration.

Copy Constructor
sc_fix_fast(const sc_fix_fast&);

Operators
The operators defined for the sc_fix_fast are given in Table 18.

Table 18. Operators for sc_fix_fast
Operator
class

Operators in class

Bitwise ~ & ^ |

Arithmetic * / + - << >> ++ --

Equality == !=

Relational <<= >>=

Assignment = *= /= += -= <<= >>= &= ^= |=

Note:

 Copyright 2003 Open SystemC Initiative. All rights reserved 163

SystemC 2.0.1 Language Reference Manual

Operators << and operator >> define arithmetic shifts, not bitwise shifts. The
difference is that no bits are lost and proper sign extension is done.

In expressions with the non-bitwise operators from Table 18, fixed-point types
can be mixed with all types given:
type_ in {short, unsigned short, int, unsigned int, long,

unsigned long, float, double, const char*, int64,
uint64, const sc_int_base

†
&, const sc_uint_base

†
&,

const sc_signed&, const sc_unsigned&, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

The return type of any arithmetic operation is the fixed-point value type, which
guarantees that the operation is performed without overflow or quantization.

A floating-point variable or a fixed-point value variable can contain one of the
special values +Inf (plus infinity), -Inf (minus infinity), or Nan (not a number).
Assignment of one of these special values to a fixed-point variable will produce
a runtime error.

For the fixed-point types, a minimal set of bitwise operators is defined. These
bitwise operators are only defined on either the signed fixed-point types or the
unsigned fixed- point types. Mixing between signed and unsigned fixed-point
types is not allowed. Mixing with any other type is also not allowed.

The semantics of the bitwise operators is as follows. For the unary ~ operator,
the type of the result is the type of the operand. The bits in the two’s
complement mantissa of the operand are inverted to get the mantissa of the
result. For the binary operators, the type of the result is the maximum aligned
type of the two operands, that is, the two operands are aligned by the binary
point and the maximum integer word length and the maximum fractional word
length is taken. The operands are temporarily extended to this type before
performing a bitwise and, bitwise exclusive-or, or bitwise or.

Member Functions
The functions defined for sc_fix_fast are given in Table 19.

Table 19. Functions for sc_fix_fast
Function
class

Functions in class

Bitwise b_not, b_and, b_xor, b_or

Arithmetic neg, mult, div, add, sub, lshift, rshift

The functions in Table 19 have return type void. The first argument of these
functions is a reference to the result object. The remaining arguments of these
functions are the operands.

 Copyright 2003 Open SystemC Initiative. All rights reserved 164

SystemC 2.0.1 Language Reference Manual

For the bitwise functions, the result object and the operands are of the same
type, which is either sc_fix_fast or sc_ufix_fast.

The neg arithmetic function takes one operand, the other arithmetic functions
take two operands. At least one of the operands of the arithmetic functions
should have a fixed- point type, the other operand can have any of the types
given:
type_ in {short, unsigned short, int, unsigned int, long,

unsigned long, float, double, const char*, int64,
uint64, const sc_int_base

†
&, const sc_uint_base

†
&,

const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

The arithmetic functions are defined twice: once with the result object of type
sc_fxval, and once with the result object of type sc_fix_fast.

Bit Selection
const sc_fxnum_bitref

†
 operator [] (int i) const;

sc_fxnum_bitref
†
 operator [] (int i);

const sc_fxnum_bitref
†
 bit(int i) const;

sc_fxnum_bitref
†
 bit(int i);

These functions take one argument of type int, which is the index into the fixed-
point mantissa. The index argument must be between wl-1 (MSB) and 0
(LSB). Otherwise, a runtime error is produced. The return type of the bit
selection functions is (const or non- const) sc_fxnum_bitref†, which is a
proxy class. The proxy class allows bit selection to be used both as rvalue
(for reading) and lvalue (for writing). For bit selection, the fixed-point binary
point is ignored.

Part Selection
const sc_fxnum_subref

†
 operator () (int, int) const;

sc_fxnum_subref
†
 operator () (int, int);

const sc_fxnum_subref
†
 range(int, int) const;

sc_fxnum_subref
†
 range(int, int);

These functions take two arguments of type int, which are the begin and end
indices into the fixed-point mantissa. The index arguments must be between
wl-1 (MSB) and 0 (LSB). Otherwise, a runtime error is produced. The return
type of the part selection functions is (const or non-const) sc_fxnum_subref†,

 Copyright 2003 Open SystemC Initiative. All rights reserved 165

SystemC 2.0.1 Language Reference Manual

which is a proxy class that behaves like type sc_bv_base. The proxy class
allows part selection to be used both as rvalue (for reading) and lvalue (for
writing). All operators and methods that are available for type sc_bv_base are
also available for part selection. For part selection, the fixed-point binary point
is ignored.

cast_switch() const;

int

wl() const;

const sc_fxnum_subref
†
 operator () () const;

sc_fxnum_subref
†
 operator () ();

const sc_fxnum_subref
†
 range() const;

sc_fxnum_subref
†
 range();

As a shortcut for part selection of the complete mantissa, operator () and the
range() method can be called without any arguments.

Query Parameters
const sc_fxcast_switch&

Returns the cast switch parameter.

iwl() const;
Returns the integer word length parameter.

int
n_bits() const;

Returns the number of saturated bits parameter.

sc_o_mode
o_mode() const;

Returns the overflow mode parameter.

sc_q_mode
q_mode() const;

Return the quantization mode parameter.

const sc_fxtype_params&
type_params() const;

Returns the type parameters.

int

Returns the total word length parameter.

Query Value
bool
is_neg() const;

Returns true if the variable holds a negative value. Returns false otherwise.

 Copyright 2003 Open SystemC Initiative. All rights reserved 166

SystemC 2.0.1 Language Reference Manual

bool
is_zero() const;

Returns true if the variable holds a zero value. Returns false otherwise.

bool
overflow_flag() const;

Implicit conversion to the implementation type double. The value does not
change.

unsigned short to_ushort() const;

const sc_string to_string() const;

Returns true if the last write action on this variable caused overflow. Returns
false otherwise.

bool
quantization_flag() const;

Returns true if the last write action on this variable caused quantization.
Returns false otherwise.

const sc_fxval
value() const;

Returns the value.

Implicit Conversion
operator double() const;

Explicit Conversion

short to_short() const;

int to_int() const;
unsigned int to_uint() const;
long to_long() const;
unsigned long to_ulong() const;
float to_float() const;
double to_double() const

const sc_string to_string(sc_numrep) const;
const sc_string to_string(sc_numrep, bool) const;
const sc_string to_string(sc_fmt) const;
const sc_string to_string(sc_numrep, sc_fmt) const;
const sc_string to_string(sc_numrep, bool, sc_fmt) const;

The value of a fixed-point variable can be converted to a character string
with the to_string() method. This method takes different arguments for
formatting purposes. See Chapter 6.8.8 for more information on converting
fixed-point variables to/from character strings. Furthermore, writing to C++
output streams with operator << is supported, e.g. cout << a;, where a is a
fixed-point variable. The decimal number representation is used in this case.

const sc_string to_dec() const;

 Copyright 2003 Open SystemC Initiative. All rights reserved 167

SystemC 2.0.1 Language Reference Manual

const sc_string to_bin() const;
const sc_string to_oct() const;
const sc_string to_hex() const;

Shortcut methods for conversion to a character string. See Chapter 6.8.9.2.

Print or dump content
void
print(ostream& = cout) const;

Print the sc_fix_fast instance value to an output stream.

void
scan(istream& = cin);

Read an sc_fix_fast value from an input stream.

void
dump(ostream& = cout)
const;

Prints the sc_fix_fast instance value, parameters and flags to an output
stream.

ostream&
operator << (ostream& os, const sc_fix_fast& a)

Print the instance value of a to an output stream os.

 Copyright 2003 Open SystemC Initiative. All rights reserved 168

SystemC 2.0.1 Language Reference Manual

11.20 sc_fixed
Synopsis
template <int W, int I,
 sc_q_mode Q = SC_DEFAULT_Q_MODE_,
 sc_o_mode O = SC_DEFAULT_O_MODE_, int N =
 SC_DEFAULT_N_BITS_>
class sc_fixed : public sc_fix
{
public:
// constructors
 sc_fixed(sc_fxnum_observer* = 0);
 sc_fixed(const sc_fxcast_switch&,

 DECL_CTORS_T_A(const sc_fxnum_fast&)

 DECL_ASN_OP_T(op,int64) \

 sc_fxnum_observer* = 0);

#define DECL_CTORS_T_A(tp) \
 sc_fixed(tp, sc_fxnum_observer* = 0); \
 sc_fixed(tp, const sc_fxcast_switch&,
 sc_fxnum_observer* = 0);

#define DECL_CTORS_T_B(tp) \
 sc_fixed(tp, sc_fxnum_observer* = 0); \
 sc_fixed(tp, const sc_fxcast_switch&,
 sc_fxnum_observer* = 0);

 DECL_CTORS_T_A(int)
 DECL_CTORS_T_A(unsigned int)
 DECL_CTORS_T_A(long)
 DECL_CTORS_T_A(unsigned long)
 DECL_CTORS_T_A(double)
 DECL_CTORS_T_A(const char*)
 DECL_CTORS_T_A(const sc_fxval&)
 DECL_CTORS_T_A(const sc_fxval_fast&)
 DECL_CTORS_T_A(const sc_fxnum&)

 DECL_CTORS_T_B(int64)
 DECL_CTORS_T_B(uint64)
 DECL_CTORS_T_B(const sc_int_base&)
 DECL_CTORS_T_B(const sc_uint_base&)
 DECL_CTORS_T_B(const sc_signed&)
 DECL_CTORS_T_B(const sc_unsigned&)
 sc_fixed(const sc_fixed<W,I,Q,O,N>&);

 // operators
 sc_fixed& operator = (const sc_fixed<W,I,Q,O,N>&);

#define DECL_ASN_OP_T(op,tp) \
 sc_fixed& operator op (tp);

#define DECL_ASN_OP_OTHER(op) \

 DECL_ASN_OP_T(op,uint64) \
 DECL_ASN_OP_T(op,const sc_int_base&)\

 Copyright 2003 Open SystemC Initiative. All rights reserved 169

SystemC 2.0.1 Language Reference Manual

 DECL_ASN_OP_T(op,const sc_uint_base&)\
 DECL_ASN_OP_T(op,const sc_signed&)\
 DECL_ASN_OP_T(op,const sc_unsigned&)

#define DECL_ASN_OP(op) \
 DECL_ASN_OP_T(op,int) \
 DECL_ASN_OP_T(op,unsigned int) \
 DECL_ASN_OP_T(op,long) \
 DECL_ASN_OP_T(op,unsigned long) \
 DECL_ASN_OP_T(op,double) \
 DECL_ASN_OP_T(op,const char*) \
 DECL_ASN_OP_T(op,const sc_fxval&) \
 DECL_ASN_OP_T(op,const sc_fxval_fast&) \
 DECL_ASN_OP_T(op,const sc_fxnum&) \
 DECL_ASN_OP_T(op,const sc_fxnum_fast&) \
 DECL_ASN_OP_OTHER(op)

 DECL_ASN_OP(=)
 DECL_ASN_OP(*=)
 DECL_ASN_OP(/=)
 DECL_ASN_OP(+=)
 DECL_ASN_OP(-=)

 DECL_ASN_OP_T(&=,const sc_fix_fast&)

 DECL_ASN_OP_T(<<=,int)
 DECL_ASN_OP_T(>>=,int)
 DECL_ASN_OP_T(&=,const sc_fix&)

 DECL_ASN_OP_T(|=,const sc_fix&)
 DECL_ASN_OP_T(|=,const sc_fix_fast&)
 DECL_ASN_OP_T(^=,const sc_fix&)
 DECL_ASN_OP_T(^=,const sc_fix_fast&)

 const sc_fxval operator ++ (int);
 const sc_fxval operator -- (int);
 sc_fixed& operator ++ ();
 sc_fixed& operator -- ();

};

Description

Templatized type sc_fixed is a signed (two's complement) type. The fixed-
point type parameters wl, iwl, q_mode, o_mode, and n_bits are part of the type in
sc_fixed. It is required that these parameters be constant expressions. See
Chapter 6.8.1.

Declaration syntax

sc_fixed <wl,iwl[,q_mode[,o_mode[,n_bits]]]>

var_name([init_val][,cast_switch])
[,observer]);

wl

 Copyright 2003 Open SystemC Initiative. All rights reserved 170

SystemC 2.0.1 Language Reference Manual

The total number of bits in the fixed-point format. The wl argument is of type int
and must be greater than zero. Otherwise, a runtime error is produced. The wl
argument must be a constant expression. The total word length parameter
cannot change after declaration.
iwl
The number of integer bits in the fixed-point format. The iwl argument is of type
int and can be positive or negative. See Chapter 6.8.1. The iwl argument must
be a constant expression. The number of integer bits parameter cannot change
after declaration.
q_mode
The quantization mode to use. The q_mode argument is of type sc_q_mode.
Valid values for q_mode are given in Chapter 6.8.2.2 . The q_mode argument
must be a constant expression. The default value for q_mode is obtained from
the set of built-in default values. See Chapter 6.8.8. The quantization mode
parameter cannot change after declaration.
o_mode
The overflow mode to use. The o_mode argument is of type sc_o_mode. Valid
values for o_mode are given in Chapter 6.8.2.1 . The o_mode argument must
be a constant expression. The default value for o_mode is obtained from the
set of built-in default values. See Chapter 6.8.8. The overflow mode parameter
cannot change after declaration.
n_bits
The number of saturated bits parameter for the selected overflow mode. The
n_bits argument is of type int and must be greater than or equal to zero.
Otherwise, a runtime error is produced. The n_bits argument must be a
constant expression. If the overflow mode is specified, the default value is zero.
If the overflow mode is not specified, the default value is obtained from the set
of built-in default values. See Chapter 6.8.8. The number of saturated bits
parameter cannot change after declaration.

Examples

sc_fixed<32,32> a;
sc_fixed<8,1,SC_RND> c(b);

Public Constructor

explicit sc_fixed ([type_ init_val]
 [, const sc_fxcast_switch& cast_switch]
 [, sc_fxnum_observer* observer]);

type_ in {short, unsigned short, int, unsigned int, long,

unsigned long, float, double, const char*, int64,
uint64, const sc_int_base

†
&, const sc_uint_base

†
&,

const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

 Copyright 2003 Open SystemC Initiative. All rights reserved 171

SystemC 2.0.1 Language Reference Manual

Notes on type_
For all types in type_ , except sc_[u]fix and sc_[u]fix_fast, only the
value of the argument is taken, that is, any type information is discarded. This
ensures that initialization during declaration and initialization after declaration
behave identical.
A fixed-point variable can be initialized with a C/C++ character string (type
const char*) either when the number will be expressed in binary form or when
the number is too large to be written as a C/C++ built-in type literal

init_val
The initial value of the variable. If the initial value is not specified, the instance
is uninitialized.
cast_switch
The cast switch, which allows to switch fixed-point type casting on or off. Valid
values for cast_switch are:
SC_OFF for casting off
SC_ON for casting on
The default value for cast_switch is obtained from the fixed-point context
type sc_fxcast_context. The cast_switch parameter cannot change
after declaration.
observer
A pointer to an observer object. The observer argument is of type
sc_fxnum_observer*. See Chapter 11.25. The default value for observer
is 0 (null pointer). The observer parameter cannot change after declaration.

Copy Constructor
sc_fixed(const sc_fixed<W,I,Q,O,N>&);

Operators
The operators defined for the sc_fixed are given in Table 20.

Table 20. Operators for sc_fixed
Operator
class

Operators in class

Bitwise ~ & ^ |

Arithmetic * / + - << >> ++ --

Equality == !=

Relational <<= >>=

Assignment = *= /= += -= <<= >>= &= ^= |=

Note:
Operator << and operator >> define arithmetic shifts, not bitwise shifts. The
difference is that no bits are lost and proper sign extension is done.

In expressions with the non-bitwise operators from Table 20, fixed-point types
can be mixed with all types given:

 Copyright 2003 Open SystemC Initiative. All rights reserved 172

SystemC 2.0.1 Language Reference Manual

type_ in {short, unsigned short, int, unsigned int, long,
unsigned long, float, double, const char*, int64,
uint64, const sc_int_base

†
&, const sc_uint_base

†
&,

const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

The return type of any arithmetic operation is the fixed-point value type, which
guarantees that the operation is performed without overflow or quantization.

A floating-point variable or a fixed-point value variable can contain one of the
special values +Inf (plus infinity), -Inf (minus infinity), or Nan (not a number).
Assignment of one of these special values to a fixed-point variable will produce
a runtime error.

For the fixed-point types, a minimal set of bitwise operators is defined. These
bitwise operators are only defined on either the signed fixed-point types or the
unsigned fixed- point types. Mixing between signed and unsigned fixed-point
types is not allowed. Mixing with any other type is also not allowed.

The semantics of the bitwise operators is as follows. For the unary ~ operator,
the type of the result is the type of the operand. The bits in the two’s
complement mantissa of the operand are inverted to get the mantissa of the
result. For the binary operators, the type of the result is the maximum aligned
type of the two operands, that is, the two operands are aligned by the binary
point and the maximum integer word length and the maximum fractional word
length is taken. The operands are temporarily extended to this type before
performing a bitwise and, bitwise exclusive-or, or bitwise or.

Member Functions
The functions defined for sc_fixed are given in Table 21.

Table 21. Functions for sc_fixed
Function
class

Functions in class

Bitwise b_not, b_and, b_xor, b_or

Arithmetic neg, mult, div, add, sub, lshift, rshift

The functions in Table 21 have return type void. The first argument of these
functions is a reference to the result object. The remaining arguments of these
functions are the operands.

For the bitwise functions, the type of the result is sc_fixed, and the type of the
operands are either both sc_fixed or a mix of sc_fixed and
sc_fixed_fast.

 Copyright 2003 Open SystemC Initiative. All rights reserved 173

SystemC 2.0.1 Language Reference Manual

The neg arithmetic function takes one operand, the other arithmetic functions
take two operands. At least one of the operands of the arithmetic functions
should have a fixed- point type, the other operand can have any of the types
given:

These functions take one argument of type int, which is the index into the fixed-
point mantissa. The index argument must be between wl-1 (MSB) and 0
(LSB). Otherwise, a runtime error is produced. The return type of the bit
selection functions is (const or non- const) sc_fxnum_bitref
proxy class. The proxy class allows bit selection to be used both as rvalue
(for reading) and lvalue (for writing). For bit selection, the fixed-point binary
point is ignored.

type_ in {short, unsigned short, int, unsigned int, long,
unsigned long, float, double, const char*, int64,
uint64, const sc_int_base

†
&, const sc_uint_base

†
&,

const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

The arithmetic functions are defined twice: once with the result object of type
sc_fxval, and once with the result object of type sc_fixed or sc_ufixed.

Bit Selection
const sc_fxnum_bitref

†
 operator [] (int i) const;

sc_fxnum_bitref
†
 operator [] (int i);

const sc_fxnum_bitref
†
 bit(int i) const;

sc_fxnum_bitref
†
 bit(int i);

†, which is a

Part Selection
const sc_fxnum_subref

†
 operator () (int, int) const;

sc_fxnum_subref
†
 operator () (int, int);

const sc_fxnum_subref
†
 range(int, int) const;

sc_fxnum_subref
†
 range(int, int);

These functions take two arguments of type int, which are the begin and end
indices into the fixed-point mantissa. The index arguments must be between
wl-1 (MSB) and 0 (LSB). Otherwise, a runtime error is produced. The return
type of the part selection functions is (const or non-const) sc_fxnum_subref†,
which is a proxy class that behaves like type sc_bv_base. The proxy class
allows part selection to be used both as rvalue (for reading) and lvalue (for
writing). All operators and methods that are available for type sc_bv_base are

 Copyright 2003 Open SystemC Initiative. All rights reserved 174

SystemC 2.0.1 Language Reference Manual

also available for part selection. For part selection, the fixed-point binary point
is ignored.

const sc_fxnum_subref
†
 operator () () const;

sc_fxnum_subref
†
 operator () ();

const sc_fxnum_subref
†
 range() const;

sc_fxnum_subref
†
 range();

As a shortcut for part selection of the complete mantissa, operator () and the
range() method can be called without any arguments.

Query Parameters
const sc_fxcast_switch&
cast_switch() const;

Returns the cast switch parameter.

int
iwl() const;

Returns the integer word length parameter.

int
n_bits() const;

Returns the number of saturated bits parameter.

sc_o_mode
o_mode() const;

Returns the overflow mode parameter.

sc_q_mode
q_mode() const;

Return the quantization mode parameter.

const sc_fxtype_params&
type_params() const;

Returns the type parameters.

int
wl() const;

Returns the total word length parameter.

Query Value
bool
is_neg() const;

Returns true if the variable holds a negative value. Returns false otherwise.

bool
is_zero() const;

 Copyright 2003 Open SystemC Initiative. All rights reserved 175

SystemC 2.0.1 Language Reference Manual

Returns true if the variable holds a zero value. Returns false otherwise.

bool
overflow_flag() const;

Returns true if the last write action on this variable caused overflow. Returns
false otherwise.

bool
quantization_flag() const;

Returns true if the last write action on this variable caused quantization.
Returns false otherwise.

const sc_fxval
value() const;

Returns the value.

Implicit Conversion
operator double() const;

Implicit conversion to the implementation type double. The value does not
change, if the wordlength of the sc_fixed is less than or equal to 53 bits.

Explicit Conversion

short to_short() const;
unsigned short to_ushort() const;
int to_int() const;
unsigned int to_uint() const;
long to_long() const;
unsigned long to_ulong() const;
float to_float() const;
double to_double() const

const sc_string to_string() const;
const sc_string to_string(sc_numrep) const;
const sc_string to_string(sc_numrep, bool) const;
const sc_string to_string(sc_fmt) const;
const sc_string to_string(sc_numrep, sc_fmt) const;
const sc_string to_string(sc_numrep, bool, sc_fmt) const;

The value of a fixed-point variable can be converted to a character string
with the to_string() method. This method takes different arguments for
formatting purposes. See Chapter 6.8.8 for more information on converting
fixed-point variables to/from character strings. Furthermore, writing to C++
output streams with operator << is supported, e.g. cout << a;, where a is a
fixed-point variable. The decimal number representation is used in this case.

const sc_string to_dec() const;
const sc_string to_bin() const;
const sc_string to_oct() const;
const sc_string to_hex() const;

Shortcut methods for conversion to a character string. See Chapter 6.8.9.2.

 Copyright 2003 Open SystemC Initiative. All rights reserved 176

SystemC 2.0.1 Language Reference Manual

Print or dump content
void
print(ostream& = cout) const;

Print the sc_fixed instance value to an output stream.

void
scan(istream& = cin);

Read an sc_fixed value from an input stream.

void
dump(ostream& = cout)
const;

Prints the sc_fixed instance value, parameters and flags to an output
stream.

ostream&
operator << (ostream& os, const sc_fixed& a)

Print the instance value of a to an output stream os.

 Copyright 2003 Open SystemC Initiative. All rights reserved 177

SystemC 2.0.1 Language Reference Manual

11.21 sc_fixed_fast
Synopsis
template <int W, int I,
 sc_q_mode Q = SC_DEFAULT_Q_MODE_,
 sc_o_mode O = SC_DEFAULT_O_MODE_, int N =
 SC_DEFAULT_N_BITS_>
class sc_fixed_fast : public sc_fix_fast
{
public:
 // constructors

 sc_fixed_fast(sc_fxnum_fast_observer* = 0);
 sc_fixed_fast(const sc_fxcast_switch&,
 sc_fxnum_fast_observer* = 0);

#define DECL_CTORS_T_A(tp) \

 DECL_CTORS_T_A(long)

 DECL_CTORS_T_B(const sc_uint_base&)

 sc_fixed_fast(tp, sc_fxnum_fast_observer* = 0); \
 sc_fixed_fast(tp, const sc_fxcast_switch&, \
 sc_fxnum_fast_observer* = 0);

#define DECL_CTORS_T_B(tp) \
 sc_fixed_fast(tp, sc_fxnum_fast_observer* = 0); \
 sc_fixed_fast(tp, const sc_fxcast_switch&, \
 sc_fxnum_fast_observer* = 0);

 DECL_CTORS_T_A(int)
 DECL_CTORS_T_A(unsigned int)

 DECL_CTORS_T_A(unsigned long)
 DECL_CTORS_T_A(double)
 DECL_CTORS_T_A(const char*)
 DECL_CTORS_T_A(const sc_fxval&)
 DECL_CTORS_T_A(const sc_fxval_fast&)
 DECL_CTORS_T_A(const sc_fxnum&)
 DECL_CTORS_T_A(const sc_fxnum_fast&)
 DECL_CTORS_T_B(int64)
 DECL_CTORS_T_B(uint64)
 DECL_CTORS_T_B(const sc_int_base&)

 DECL_CTORS_T_B(const sc_signed&)
 DECL_CTORS_T_B(const sc_unsigned&)

 sc_fixed_fast(const sc_fixed_fast<W,I,Q,O,N>&);

 // operators
 sc_fixed_fast& operator = (const
 sc_fixed_fast<W,I,Q,O,N>&);

#define DECL_ASN_OP_T(op,tp) \
 sc_fixed_fast& operator op (tp);

#define DECL_ASN_OP_OTHER(op) \

 Copyright 2003 Open SystemC Initiative. All rights reserved 178

SystemC 2.0.1 Language Reference Manual

 DECL_ASN_OP_T(op,int64) \
 DECL_ASN_OP_T(op,uint64) \
 DECL_ASN_OP_T(op,const sc_int_base&) \
 DECL_ASN_OP_T(op,const sc_uint_base&) \
 DECL_ASN_OP_T(op,const sc_signed&) \
 DECL_ASN_OP_T(op,const sc_unsigned&)

#define DECL_ASN_OP(op) \
 DECL_ASN_OP_T(op,int) \
 DECL_ASN_OP_T(op,unsigned int) \
 DECL_ASN_OP_T(op,long) \
 DECL_ASN_OP_T(op,unsigned long) \
 DECL_ASN_OP_T(op,double) \
 DECL_ASN_OP_T(op,const char*) \
 DECL_ASN_OP_T(op,const sc_fxval&) \
 DECL_ASN_OP_T(op,const sc_fxval_fast&) \
 DECL_ASN_OP_T(op,const sc_fxnum&) \
 DECL_ASN_OP_T(op,const sc_fxnum_fast&) \
 DECL_ASN_OP_OTHER(op)

 DECL_ASN_OP(=)
 DECL_ASN_OP(*=)
 DECL_ASN_OP(/=)
 DECL_ASN_OP(+=)
 DECL_ASN_OP(-=)
 DECL_ASN_OP_T(<<=,int)
 DECL_ASN_OP_T(>>=,int)
 DECL_ASN_OP_T(&=,const sc_fix&)
 DECL_ASN_OP_T(&=,const sc_fix_fast&)
 DECL_ASN_OP_T(|=,const sc_fix&)
 DECL_ASN_OP_T(|=,const sc_fix_fast&)
 DECL_ASN_OP_T(^=,const sc_fix&)
 DECL_ASN_OP_T(^=,const sc_fix_fast&)

 const sc_fxval_fast operator ++ (int);
 const sc_fxval_fast operator -- (int);
 sc_fixed_fast& operator ++ ();
 sc_fixed_fast& operator -- ();

};

Description

Templatized type sc_fixed_fast is a signed (two's complement) type. The
fixed-point type parameters wl, iwl, q_mode, o_mode, and n_bits are part of the
type in sc_fixed_fast. It is required that these parameters be constant
expressions. See Chapter 6.8.1.

sc_fixed_fast provides the same API as sc_fixed.

sc_fixed_fast uses double precision (floating-point) values. The mantissa of
a double precision value is limited to 53 bits. This means that bit-true behavior

 Copyright 2003 Open SystemC Initiative. All rights reserved 179

SystemC 2.0.1 Language Reference Manual

cannot be guaranteed with the limited precision types. For bit-true behavior with
the limited precision types, the following guidelines should be followed:
Make sure that the word length of the result of any operation or expression does
not exceed 53 bits.
The result of an addition or subtraction requires a word length that is one bit
more than the maximum aligned word length of the two operands.
The result of a multiplication requires a word length that is the sum of the word
lengths of the two operands.

Declaration syntax

sc_fixed_fast <wl,iwl[,q_mode[,o_mode[,n_bits]]]>

var_name([init_val][,cast_switch])
[,observer]);

wl
The total number of bits in the fixed-point format. The wl argument is of type int
and must be greater than zero. Otherwise, a runtime error is produced. The wl
argument must be a constant expression. The total word length parameter
cannot change after declaration.
iwl
The number of integer bits in the fixed-point format. The iwl argument is of type
int and can be positive or negative. See Chapter 6.8.1. The iwl argument must
be a constant expression. The number of integer bits parameter cannot change
after declaration.
q_mode
The quantization mode to use. The q_mode argument is of type sc_q_mode.
Valid values for q_mode are given in Chapter 6.8.2.2 . The q_mode argument
must be a constant expression. The default value for q_mode is obtained from
the set of built-in default values. See Chapter 6.8.8. The quantization mode
parameter cannot change after declaration.
o_mode
The overflow mode to use. The o_mode argument is of type sc_o_mode. Valid
values for o_mode are given in Chapter 6.8.2.1 . The o_mode argument must
be a constant expression. The default value for o_mode is obtained from the
set of built-in default values. See Chapter 6.8.8. The overflow mode parameter
cannot change after declaration.
n_bits
The number of saturated bits parameter for the selected overflow mode. The
n_bits argument is of type int and must be greater than or equal to zero.
Otherwise, a runtime error is produced. The n_bits argument must be a
constant expression. If the overflow mode is specified, the default value is zero.
If the overflow mode is not specified, the default value is obtained from the set
of built-in default values. See Chapter 6.8.8. The number of saturated bits
parameter cannot change after declaration.

Examples

 Copyright 2003 Open SystemC Initiative. All rights reserved 180

SystemC 2.0.1 Language Reference Manual

sc_fixed_fast<32,32> a;
sc_fixed_fast<8,1,SC_RND> c(b);
sc_fixed_fast<8,8> c = “0.1”;
sc_fixed_fast<8,8> d = 1;
sc_ufixed<16,8> e = 2;
sc_fixed_fast<16,16> f = d + e;
d *= 2;

Public Constructor

explicit sc_fixed_fast ([type_ init_val]

observer

 [, const sc_fxcast_switch& cast_switch]
 [, sc_fxnum_fast_observer* observer]);

type_ in {short, unsigned short, int, unsigned int, long,
unsigned long, float, double, const char*, int64,
uint64, const sc_int_base

†
&, const sc_uint_base

†
&,

const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

Notes on type_
For all types in type_ , except sc_[u]fix and sc_[u]fix_fast, only the
value of the argument is taken, that is, any type information is discarded. This
ensures that initialization during declaration and initialization after declaration
behave identical.
A fixed-point variable can be initialized with a C/C++ character string (type
const char*) either when the number will be expressed in binary form or when
the number is too large to be written as a C/C++ built-in type literal

init_val
The initial value of the variable. If the initial value is not specified, the instance
is uninitialized.
cast_switch
The cast switch, which allows to switch fixed-point type casting on or off. Valid
values for cast_switch are:
SC_OFF for casting off
SC_ON for casting on
The default value for cast_switch is obtained from the fixed-point context
type sc_fxcast_context. The cast_switch parameter cannot change
after declaration.

A pointer to an observer object. The observer argument is of type
sc_fxnum_fast_observer*. See Chapter 11.24. The default value for
observer is 0 (null pointer). The observer parameter cannot change after
declaration.

Copy Constructor

 Copyright 2003 Open SystemC Initiative. All rights reserved 181

SystemC 2.0.1 Language Reference Manual

sc_fixed_fast(const sc_fixed_fast<W,I,Q,O,N>&);

Operators
The operators defined for the sc_fixed_fast are given in Table 22.

Table 22. Operators for sc_fixed_fast
Operator
class

Operators in class

Bitwise ~ & ^ |

Arithmetic * / + - << >> ++ --

Equality == !=

Relational <<= >>=

Assignment = *= /= += -= <<= >>= &= ^= |=

Note:
Operator << and operator >> define arithmetic shifts, not bitwise shifts. The
difference is that no bits are lost and proper sign extension is done.

In expressions with the non-bitwise operators from Table 22, fixed-point types
can be mixed with all types given:
type_ in {short, unsigned short, int, unsigned int, long,

unsigned long, float, double, const char*, int64,
uint64, const sc_int_base

†
&, const sc_uint_base

†
&,

const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

The return type of any arithmetic operation is the fixed-point value type, which
guarantees that the operation is performed without overflow or quantization.

A floating-point variable or a fixed-point value variable can contain one of the
special values +Inf (plus infinity), -Inf (minus infinity), or Nan (not a number).
Assignment of one of these special values to a fixed-point variable will produce
a runtime error.

For the fixed-point types, a minimal set of bitwise operators is defined. These
bitwise operators are only defined on either the signed fixed-point types or the
unsigned fixed- point types. Mixing between signed and unsigned fixed-point
types is not allowed. Mixing with any other type is also not allowed.

The semantics of the bitwise operators is as follows. For the unary ~ operator,
the type of the result is the type of the operand. The bits in the two’s
complement mantissa of the operand are inverted to get the mantissa of the
result. For the binary operators, the type of the result is the maximum aligned
type of the two operands, that is, the two operands are aligned by the binary
point and the maximum integer word length and the maximum fractional word

 Copyright 2003 Open SystemC Initiative. All rights reserved 182

SystemC 2.0.1 Language Reference Manual

length is taken. The operands are temporarily extended to this type before
performing a bitwise and, bitwise exclusive-or, or bitwise or.

Member Functions
The functions defined for sc_fixed_fast are given in Table 23.

Table 23. Functions for sc_fixed_fast
Function
class

Functions in class

b_not, b_and, b_xor, b_or

Arithmetic neg, mult, div, add, sub, lshift, rshift

Bitwise

The functions in Table 23 have return type void. The first argument of these
functions is a reference to the result object. The remaining arguments of these
functions are the operands.

type_ in {short, unsigned short, int, unsigned int, long,
unsigned long, float, double, const char*, int64,
uint64, const sc_int_base &, const sc_uint_base &,
const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

The arithmetic functions are defined twice: once with the result object of type
sc_fxval, and once with the result object of type sc_fixed_fast or sc_ufixed_fast.

const sc_fxnum_bitref operator [] (int i) const;

For the bitwise functions, the type of the result is sc_fixed_fast and the
type of the operands are either both sc_fixed_fast or a mix of sc_fixed
and sc_fixed_fast.

The neg arithmetic function takes one operand, the other arithmetic functions
take two operands. At least one of the operands of the arithmetic functions
should have a fixed- point type, the other operand can have any of the types
given:

† †

Bit Selection

†

sc_fxnum_bitref
†
 operator [] (int i);

const sc_fxnum_bitref
†
 bit(int i) const;

sc_fxnum_bitref
†
 bit(int i);

These functions take one argument of type int, which is the index into the fixed-
point mantissa. The index argument must be between wl-1 (MSB) and 0
(LSB). Otherwise, a runtime error is produced. The return type of the bit
selection functions is (const or non- const) sc_fxnum_bitref†, which is a

 Copyright 2003 Open SystemC Initiative. All rights reserved 183

SystemC 2.0.1 Language Reference Manual

proxy class. The proxy class allows bit selection to be used both as rvalue
(for reading) and lvalue (for writing). For bit selection, the fixed-point binary
point is ignored.

Part Selection
const sc_fxnum_subref

†
 operator () (int, int) const;

sc_fxnum_subref
†
 operator () (int, int);

sc_fxnum_subref range();

Returns the cast switch parameter.

const sc_fxnum_subref
†
 range(int, int) const;

sc_fxnum_subref
†
 range(int, int);

These functions take two arguments of type int, which are the begin and end
indices into the fixed-point mantissa. The index arguments must be between
wl-1 (MSB) and 0 (LSB). Otherwise, a runtime error is produced. The return
type of the part selection functions is (const or non-const) sc_fxnum_subref†,
which is a proxy class that behaves like type sc_bv_base. The proxy class
allows part selection to be used both as rvalue (for reading) and lvalue (for
writing). All operators and methods that are available for type sc_bv_base are
also available for part selection. For part selection, the fixed-point binary point
is ignored.

const sc_fxnum_subref
†
 operator () () const;

sc_fxnum_subref
†
 operator () ();

const sc_fxnum_subref
†
 range() const;

†

As a shortcut for part selection of the complete mantissa, operator () and the
range() method can be called without any arguments.

Query Parameters
const sc_fxcast_switch&
cast_switch() const;

int
iwl() const;

Returns the integer word length parameter.

int
n_bits() const;

Returns the number of saturated bits parameter.

sc_o_mode

 Copyright 2003 Open SystemC Initiative. All rights reserved 184

SystemC 2.0.1 Language Reference Manual

o_mode() const;
Returns the overflow mode parameter.

sc_q_mode
q_mode() const;

Return the quantization mode parameter.

const sc_fxtype_params&

Query Value

bool

Returns true if the last write action on this variable caused quantization.
Returns false otherwise.

unsigned short to_ushort() const;

type_params() const;
Returns the type parameters.

int
wl() const;

Returns the total word length parameter.

bool
is_neg() const;

Returns true if the variable holds a negative value. Returns false otherwise.

bool
is_zero() const;

Returns true if the variable holds a zero value. Returns false otherwise.

bool
overflow_flag() const;

Returns true if the last write action on this variable caused overflow. Returns
false otherwise.

quantization_flag() const;

const sc_fxval
value() const;

Returns the value.

Implicit Conversion
operator double() const;

Implicit conversion to the implementation type double. The value does not
change, if the wordlength of the sc_fixed_fast is less than or equal to 53
bits.

Explicit Conversion

short to_short() const;

int to_int() const;
unsigned int to_uint() const;

 Copyright 2003 Open SystemC Initiative. All rights reserved 185

SystemC 2.0.1 Language Reference Manual

long to_long() const;
unsigned long to_ulong() const;
float to_float() const;
double to_double() const

const sc_string to_string(sc_numrep) const;

const sc_string to_string(sc_fmt) const;

const sc_string to_dec() const;

void

const sc_string to_string() const;

const sc_string to_string(sc_numrep, bool) const;

const sc_string to_string(sc_numrep, sc_fmt) const;
const sc_string to_string(sc_numrep, bool, sc_fmt) const;

The value of a fixed-point variable can be converted to a character string
with the to_string() method. This method takes different arguments for
formatting purposes. See Chapter 6.8.8 for more information on converting
fixed-point variables to/from character strings. Furthermore, writing to C++
output streams with operator << is supported, e.g. cout << a;, where a is a
fixed-point variable. The decimal number representation is used in this case.

const sc_string to_bin() const;
const sc_string to_oct() const;
const sc_string to_hex() const;

Shortcut methods for conversion to a character string. See Chapter 6.8.9.2.

Print or dump content
print(ostream& = cout) const;

Print the sc_fixed_fast instance value to an output stream.

void
scan(istream& = cin);

Read an sc_fixed_fast value from an input stream.

void
dump(ostream& = cout)
const;

Prints the sc_fixed_fast instance value, parameters and flags to an
output stream.

ostream&
operator << (ostream& os, const sc_fixed_fast& a)

Print the instance value of a to an output stream os.

 Copyright 2003 Open SystemC Initiative. All rights reserved 186

SystemC 2.0.1 Language Reference Manual

11.22 sc_fxcast_context
Synopsis
template <class sc_fxcast_switch>
class sc_context
{
public:
// constructors and destructor
 sc_context(const sc_fxcast_switch&,
 sc_context_begin = SC_NOW);
 ~sc_context();

// methods
 void begin();
 void end();
 static const sc_fxcast_switch& default_value();
 const sc_fxcast_switch& value() const;

// disabled
private:
 sc_context(const sc_context<sc_fxcast_switch>&);
 void* operator new(size_t);
};

typedef sc_context<sc_fxcast_switch> sc_fxcast_context;

Description
sc_fxcast_context instance is used to set a new default value for the fixed-
point cast switch cast_switch. This new default value affects the behavior of
fixed-point types sc_fixed, sc_ufixed, sc_fix, sc_ufix, sc_fixed_fast,
sc_ufixed_fast, sc_fix_fast, and sc_ufix_fast. When declaring a variable of any
of these types without specifying the cast_switch argument, it is obtained from
the current default value.

Examples
sc_fxcast_context no_casting(SC_OFF,SC_LATER);
...
{
 ...
 no_casting.begin();
 sc_fix a; // no casting
 no_casting.end();
 sc_fix b; // casting
}

Public Constructor

sc_fxcast_context (
 sc_fxcast_switch cast_switch
 [,sc_context_begin context_begin]);

 Copyright 2003 Open SystemC Initiative. All rights reserved 187

SystemC 2.0.1 Language Reference Manual

cast_switch
A cast switch object, which contains the new default value.
context_begin
A context begin object. Valid values for context_begin are:

SC_NOW (set new default value now)
SC_LATER (set new default value later)

The default value for context_begin is SC_NOW, which means to set the new
default value during declaration of the fixed-point context variable.

Public Member Functions
void
begin();

Sets the default fixed-point cast switch value to the value specified when
declaring a sc_fxcast_context variable var_name. The old default
fixed-point cast switch value is stored. The begin() method can be called
either after var_name has been declared with the context_begin argument
set to SC_LATER, or after calling the end() method on var_name.
Otherwise, a runtime error is produced.

static const T&
default_value();

Returns the default fixed-point cast switch value.

void
end();

Restores the old default fixed-point cast switch value. The end method can
be called either after the sc_fxcast_context variable var_name has
been declared with the context_begin argument set to SC_NOW (or not
specified at all), or after calling the begin() method on var_name.
Otherwise, a runtime error is produced.

value() const;
Returns the fixed-point cast switch value specified with the instance.

Disabled Member Functions
sc_context(const sc_context<sc_fxcast_switch>&);

const T&

void* operator new(size_t);

 Copyright 2003 Open SystemC Initiative. All rights reserved 188

SystemC 2.0.1 Language Reference Manual

11.23 sc_fxcast_switch
Synopsis
class sc_fxcast_switch
{
public:

 sc_fxcast_switch();
 sc_fxcast_switch(sc_switch);
 sc_fxcast_switch(const sc_fxcast_switch&);
 sc_fxcast_switch(sc_without_context);

 sc_fxcast_switch& operator = (const
 sc_fxcast_switch&);
 friend bool operator == (const sc_fxcast_switch&,
 const sc_fxcast_switch&);
 friend bool operator != (const sc_fxcast_switch&,

// constructors

// operators

 const sc_fxcast_switch&);

// methods
 const sc_string to_string() const;
 void print(ostream& = cout) const;
 void dump(ostream& = cout) const;
};

Description
sc_fxcast_switch variable is used to configure the type parameters of a
variable of fixed-point type sc_fix and sc_ufix (and the corresponding
limited precision types).

A sc_fxcast_switch variable can be initialized with another sc_fxcast_switch
variable. Variables of this type can also be used in assignment to a
sc_fxcast_switch variable.

Examples
sc_fxcast_switch my_casting(SC_OFF);
sc_fixed<12,4> a(my_casting);

Public Constructors
sc_fxcast_switch [(sc_switch cast_switch)];

cast_switch
The cast switch value. The cast_switch argument is of type sc_switch. Valid
values for cast_switch are:
SC_OFF for casting off
SC_ON for casting on

 Copyright 2003 Open SystemC Initiative. All rights reserved 189

SystemC 2.0.1 Language Reference Manual

The default value for cast_switch is obtained from the fixed-point context type
sc_fxcast_context.

Public Member Functions
void
print(ostream& = cout) const;

Print the sc_fxcast_switch instance value to an output stream.

void
dump(ostream& = cout) const;

Print the sc_fxcast_switch instance value to an output stream.

Explicit Conversion

const sc_string
to_string() const;

The value of the sc_fxcast_switch value is converted to a character
string

Operators
sc_fxcast_switch&
operator = (const sc_fxtype_params& cast_switch);

cast_switch is assigned to the left hand side.

friend bool
operator == (const sc_fxcast_switch& switch_a , const

sc_fxcast_switch& switch_b) ;
Returns true if switch_a is equal to switch_b else false.

friend bool
operator != (const sc_fxcast_switch& switch_a ,

const sc_fxcast_switch& switch_b);
Returns true if switch_a is not equal to switch_b else false.

ostream&
operator << (ostream& os, const sc_fxcast_switch& a)

Print the instance value of a to an output stream os.

 Copyright 2003 Open SystemC Initiative. All rights reserved 190

SystemC 2.0.1 Language Reference Manual

11.24 sc_fxnum_fast_observer
Synopsis
class sc_fxnum_fast_observer
{
protected:
 sc_fxnum_fast_observer() {}

 // methods

sc_fxnum_fast_observer is an abstract base class provided as a hook to
define one’s own observer functionality.

 virtual ~sc_fxnum_fast_observer() {}
public:

 virtual void construct(const sc_fxnum_fast&);
 virtual void destruct(const sc_fxnum_fast&);
 virtual void read(const sc_fxnum_fast&);
 virtual void write(const sc_fxnum_fast&);
 static sc_fxnum_fast_observer* (*default_observer)();
};

Description

Public Methods
 virtual void construct(const sc_fxnum_fast&);
 virtual void destruct(const sc_fxnum_fast&);
 virtual void read(const sc_fxnum_fast&);
 virtual void write(const sc_fxnum_fast&);

These methods allow to observe construction, destruction, read, and write
actions on a particular variable. The destruct and read methods are called
before the action takes place, while the construct and write methods are called
after the action has taken place. Each of these methods can query the variable
under observation, which is passed as the single argument to the methods.

The default behavior of the methods is to do nothing (and return).

 Copyright 2003 Open SystemC Initiative. All rights reserved 191

SystemC 2.0.1 Language Reference Manual

11.25 sc_fxnum_observer
Synopsis

 static sc_fxnum_observer* (*default_observer) ();

Description

class sc_fxnum_observer
{
protected:
 sc_fxnum_observer() {}
 virtual ~sc_fxnum_observer() {}
public:
 // methods
 virtual void construct(const sc_fxnum&);
 virtual void destruct(const sc_fxnum&);
 virtual void read(const sc_fxnum&);
 virtual void write(const sc_fxnum&);

};

sc_fxnum_observer is an abstract base class provided as a hook to define
one’s own observer functionality.

Public Methods
 virtual void construct(const sc_fxnum &);
 virtual void destruct(const sc_fxnum &);
 virtual void read(const sc_fxnum &);
 virtual void write(const sc_fxnum &);

These methods allow to observe construction, destruction, read, and write
actions on a particular variable. The destruct and read methods are called
before the action takes place, while the construct and write methods are called
after the action has taken place. Each of these methods can query the variable
under observation, which is passed as the single argument to the methods.

The default behavior of the methods is to do nothing (and return).

 Copyright 2003 Open SystemC Initiative. All rights reserved 192

SystemC 2.0.1 Language Reference Manual

11.26 sc_fxtype_context
Synopsis
template <class sc_fxtype_params>
class sc_context

 const sc_fxtype_params& value() const;

 void* operator new(size_t);

{
public:
// constructors and destructor
 sc_context(const sc_fxtype_params&,
 sc_context_begin = SC_NOW);
 ~sc_context();

// methods
 void begin();
 void end();
 static const sc_fxtype_params& default_value();

// disabled
 sc_context(const sc_context< sc_fxtype_params >&);

};

typedef sc_context<sc_fxtype_params> sc_fxtype_context;

Description
sc_fxtype_context variable is used to set new default values for the fixed-
point type parameters wl, iwl, q_mode, o_mode, and n_bits. These new default
values affect the behavior of fixed-point types sc_fix, sc_ufix,
sc_fix_fast, and sc_ufix_fast. When declaring a variable of these types,
any type parameter that is missing as argument is obtained from the current
default values.

Examples
sc_fxtype_params p1(16,16,SC_TRN,SC_WRAP);
sc_fxtype_params p2(16,1,SC_RND_CONV,SC_SAT);
...
{
 sc_fxtype_context c1(p1);
 sc_fxtype_context c2(p2,SC_LATER);
 ...
 sc_fix a; // uses p1
 c2.begin();
 sc_fix b; // uses p2
 c2.end();
 sc_fix c; // uses p1
}

Public Constructor
sc_fxtype_context (

 Copyright 2003 Open SystemC Initiative. All rights reserved 193

SystemC 2.0.1 Language Reference Manual

 sc_fxtype_params type_params
 [,sc_context_begin context_begin]);

type_params

The default value for context_begin is SC_NOW, which means to set the new
default values during declaration of the fixed-point context variable.

void

value() const;

A fixed-point type parameters object, which contains the new default values.
The type_params argument is of type sc_fxtype_params.
context_begin
A context begin object. The optional context_begin argument is of type
sc_context_begin. Valid values for context_begin are:

SC_NOW (set new default values now)
SC_LATER (set new default values later)

Public Member Functions
begin();

Sets the default fixed-point type values to the values specified when
declaring the sc_fxtype_context instance var_name . The old default
fixed-point type values are stored. The begin() method can be called
either after var_name has been declared with the context_begin
argument set to SC_LATER, or after calling the end() method on
var_name. Otherwise, a runtime error is produced.

static const T&
default_value();

Returns the default fixed-point type values.

void
end();

Restores the old default fixed-point type values. The end() method can be
called either after the sc_fxcast_context instance var_name has been
declared with the context_begin argument set to SC_NOW (or not
specified at all), or after calling begin() method on var_name. Otherwise,
a runtime error is produced.

const T&

Returns the fixed-point type values specified with the instance.

 Copyright 2003 Open SystemC Initiative. All rights reserved 194

SystemC 2.0.1 Language Reference Manual

11.27 sc_fxtype_params
Synopsis
class sc_fxtype_params
{

 sc_fxtype_params(sc_q_mode, sc_o_mode, int = 0);

 sc_o_mode o_mode() const;

public:
// constructors and destructor
 sc_fxtype_params();
 sc_fxtype_params(int, int);

 sc_fxtype_params(int, int, sc_q_mode, sc_o_mode,
 int = 0);
 sc_fxtype_params(const sc_fxtype_params&);
 sc_fxtype_params(const sc_fxtype_params&,
 int, int);
 sc_fxtype_params(const sc_fxtype_params&,
 sc_q_mode, sc_o_mode, int = 0);
 sc_fxtype_params(sc_without_context);

// operators
 sc_fxtype_params& operator = (const
 sc_fxtype_params&);
 friend bool operator == (const sc_fxtype_params&,
 const sc_fxtype_params&);
 friend bool operator != (const sc_fxtype_params&,
 const sc_fxtype_params&);

// methods
 int wl() const;
 void wl(int);
 int iwl() const;
 void iwl(int);
 sc_q_mode q_mode() const;
 void q_mode(sc_q_mode);

 void o_mode(sc_o_mode);
 int n_bits() const;
 void n_bits(int);
 const sc_string to_string() const;
 void print(ostream& = cout) const;
 void dump(ostream& = cout) const;
};

Description
sc_fxtype_params variable is used to configure the type parameters of a
variable of fixed-point type sc_fix and sc_ufix (and the corresponding
limited precision types).

An sc_fxtype_params variable can be initialized with another sc_fxtype_params
variable. Variables of this type can also be used in assignment to an
sc_fxtype_params variable.

 Copyright 2003 Open SystemC Initiative. All rights reserved 195

SystemC 2.0.1 Language Reference Manual

Public Constructors
sc_fxtype_params ([int wl,int iwl]
 [,sc_q_mode q_mode,sc_o_mode o_mode[,int n_bits]]) ;

wl
The total number of bits in the fixed-point format. wl must be greater than zero,
otherwise, a runtime error is produced. The default value for wl is obtained
from the fixed-point context type sc_fxtype_context. See Chapter 11.26.
iwl
The number of integer bits in the fixed-point format. iwl can be positive or
negative. The default value for iwl is obtained from the fixed-point context type
sc_fxtype_context. See See Chapter 11.26.
q_mode
The quantization mode to use. Valid values for q_mode are given in Chapter
6.8.12.7. The default value for q_mode is obtained from the fixed-point context
type sc_fxtype_context. See See Chapter 11.26
o_mode
The overflow mode to use. Valid values for o_mode are given in Chapter
6.8.12.1. The default value for o_mode is obtained from the fixed-point context
type sc_fxtype_context. See Chapter 11.26.
n_bits
The number of saturated bits parameter for the selected overflow mode.
n_bits must be greater than or equal to zero, otherwise a runtime error is
produced. If the overflow mode is specified, the default value is zero. If the
overflow mode is not specified, the default value is obtained from the fixed-point
context type sc_fxtype_context. See Chapter 11.26.

Public Member Functions
int
iwl() const;

Returns the iwl value.

Sets the iwl value to val.

void
iwl(int val);

int
n_bits() const;

Returns the n_bits value.

void
n_bits(int);

Sets the n_bits value to val.

sc_o_mode
o_mode() const;

Returns the o_mode.

 Copyright 2003 Open SystemC Initiative. All rights reserved 196

SystemC 2.0.1 Language Reference Manual

void
o_mode(sc_o_mode mode);

Sets the o_mode to mode.

sc_q_mode
q_mode() const;

Returns the q_mode.

void
q_mode(sc_q_mode mode);

Sets the q_mode to mode.

int
wl() const;

Returns the wl value.

void
wl(int val);

Sets the wl value to val.

Operators
sc_fxtype_params&
operator = (const sc_fxtype_params& param_);

The wl, iwl, q_mode, o_mode and n_bits of param_ are assigned to the left
hand side.

friend bool
operator == (const sc_fxtype_params& param_a, const

sc_fxtype_params& param_b);
Returns true if the wl, iwl, q_mode, o_mode and n_bits of param_a are
equal to the corresponding values of param_b else false.

friend bool
operator != (const sc_fxtype_params&,
 const sc_fxtype_params&)

Returns true if all of wl, iwl, q_mode, o_mode and n_bits of param_a are
not equal to the corresponding values of param_b else false.

ostream&
operator << (ostream& os, const sc_fxtype_params& a)

Print the instance value of a to an output stream os.

 Copyright 2003 Open SystemC Initiative. All rights reserved 197

SystemC 2.0.1 Language Reference Manual

11.28 sc_fxval
Synopsis
class sc_fxval
{
protected:
 sc_fxval_observer* observer() const;
public:
// Constructors and destructor
 sc_fxval(sc_fxval_observer* = 0);
 sc_fxval(int,

 sc_fxval(const sc_fxval&,

 sc_fxval(const sc_fxnum_fast&,

 sc_fxval_observer* = 0);

 const sc_fxval operator - () const;

 friend const sc_fxval operator op (const \

 sc_fxval_observer* = 0);
 sc_fxval(unsigned int,
 sc_fxval_observer* = 0);
 sc_fxval(long,
 sc_fxval_observer* = 0);
 sc_fxval(unsigned long,
 sc_fxval_observer* = 0);
 sc_fxval(double,
 sc_fxval_observer* = 0);
 sc_fxval(const char*,
 sc_fxval_observer* = 0);

 sc_fxval_observer* = 0);
 sc_fxval(const sc_fxval_fast&,
 sc_fxval_observer* = 0);
 sc_fxval(const sc_fxnum&,
 sc_fxval_observer* = 0);

 sc_fxval_observer* = 0);
 sc_fxval(int64,
 sc_fxval_observer* = 0);
 sc_fxval(uint64,
 sc_fxval_observer* = 0);
 sc_fxval(const sc_int_base&,
 sc_fxval_observer* = 0);
 sc_fxval(const sc_uint_base&,
 sc_fxval_observer* = 0);
 sc_fxval(const sc_signed&,
 sc_fxval_observer* = 0);
 sc_fxval(const sc_unsigned&,

 ~sc_fxval();

// unary operators

 const sc_fxval& operator + () const;
 friend void neg(sc_fxval&, const sc_fxval&);

// binary operators
#define DECL_BIN_OP_T(op,tp) \

 sc_fxval&, tp); \

 Copyright 2003 Open SystemC Initiative. All rights reserved 198

SystemC 2.0.1 Language Reference Manual

 friend const sc_fxval operator op (tp, const \
 sc_fxval&);

 DECL_BIN_OP_T(op,int64) \

 DECL_BIN_OP_T(op,const sc_uint_base&) \

 DECL_BIN_OP_T(/,const sc_fxnum_fast&)

 DECL_BIN_OP_T(/,const sc_uint_base&) \

 friend void fnc (sc_fxval&, tp, const sc_fxval&);

#define DECL_BIN_OP_OTHER(op) \

 DECL_BIN_OP_T(op,uint64) \
 DECL_BIN_OP_T(op,const sc_int_base&) \

 DECL_BIN_OP_T(op,const sc_signed&) \
 DECL_BIN_OP_T(op,const sc_unsigned&)

#define DECL_BIN_OP(op,dummy) \
 friend const sc_fxval operator op (const \
 sc_fxval&, const sc_fxval&); \
 DECL_BIN_OP_T(op,int) \
 DECL_BIN_OP_T(op,unsigned int) \
 DECL_BIN_OP_T(op,long) \
 DECL_BIN_OP_T(op,unsigned long) \
 DECL_BIN_OP_T(op,double) \
 DECL_BIN_OP_T(op,const char*) \
 DECL_BIN_OP_T(op,const sc_fxval_fast&) \
 DECL_BIN_OP_T(op,const sc_fxnum_fast&) \
 DECL_BIN_OP_OTHER(op)

 DECL_BIN_OP(*,mult)
 DECL_BIN_OP(+,add)
 DECL_BIN_OP(-,sub)
 DECL_BIN_OP(/,div)
 DECL_BIN_OP_T(/,int)
 DECL_BIN_OP_T(/,unsigned int)
 DECL_BIN_OP_T(/,long)
 DECL_BIN_OP_T(/,unsigned long)
 DECL_BIN_OP_T(/,double)
 DECL_BIN_OP_T(/,const char*)
 DECL_BIN_OP_T(/,const sc_fxval_fast&)

 DECL_BIN_OP_T(/,int64) \
 DECL_BIN_OP_T(/,uint64) \
 DECL_BIN_OP_T(/,const sc_int_base&) \

 DECL_BIN_OP_T(/,const sc_signed&) \
 DECL_BIN_OP_T(/,const sc_unsigned&)

 friend const sc_fxval operator << (const sc_fxval&,
 int);
 friend const sc_fxval operator >> (const sc_fxval&,
 int);

// binary functions
#define DECL_BIN_FNC_T(fnc,tp) \
 friend void fnc (sc_fxval&, const sc_fxval&, tp);\

 Copyright 2003 Open SystemC Initiative. All rights reserved 199

SystemC 2.0.1 Language Reference Manual

#define DECL_BIN_FNC_OTHER(fnc) \
 DECL_BIN_FNC_T(fnc,int64) \
 DECL_BIN_FNC_T(fnc,uint64) \
 DECL_BIN_FNC_T(fnc,const sc_int_base&) \
 DECL_BIN_FNC_T(fnc,const sc_uint_base&) \
 DECL_BIN_FNC_T(fnc,const sc_signed&) \
 DECL_BIN_FNC_T(fnc,const sc_unsigned&)

#define DECL_BIN_FNC(fnc) \
 friend void fnc (sc_fxval&, const sc_fxval&, const\
 sc_fxval&); \
 DECL_BIN_FNC_T(fnc,int) \
 DECL_BIN_FNC_T(fnc,unsigned int) \
 DECL_BIN_FNC_T(fnc,long) \
 DECL_BIN_FNC_T(fnc,unsigned long) \
 DECL_BIN_FNC_T(fnc,double) \
 DECL_BIN_FNC_T(fnc,const char*) \
 DECL_BIN_FNC_T(fnc,const sc_fxval_fast&) \
 DECL_BIN_FNC_T(fnc,const sc_fxnum_fast&) \
 DECL_BIN_FNC_OTHER(fnc)

 DECL_BIN_FNC(mult)
 DECL_BIN_FNC(div)
 DECL_BIN_FNC(add)
 DECL_BIN_FNC(sub)

 friend void lshift(sc_fxval&, const sc_fxval&,int);
 friend void rshift(sc_fxval&, const sc_fxval&,int);

// relational (including equality) operators
#define DECL_REL_OP_T(op,tp) \
 friend bool operator op (const sc_fxval&, tp); \
 friend bool operator op (tp, const sc_fxval&);

#define DECL_REL_OP_OTHER(op) \
 DECL_REL_OP_T(op,int64) \
 DECL_REL_OP_T(op,uint64) \
 DECL_REL_OP_T(op,const sc_int_base&) \
 DECL_REL_OP_T(op,const sc_uint_base&) \
 DECL_REL_OP_T(op,const sc_signed&) \
 DECL_REL_OP_T(op,const sc_unsigned&)

#define DECL_REL_OP(op) \
 friend bool operator op (const sc_fxval&, const \
 sc_fxval&); \
 DECL_REL_OP_T(op,int) \
 DECL_REL_OP_T(op,unsigned int) \
 DECL_REL_OP_T(op,long) \
 DECL_REL_OP_T(op,unsigned long) \
 DECL_REL_OP_T(op,double) \
 DECL_REL_OP_T(op,const char*) \
 DECL_REL_OP_T(op,const sc_fxval_fast&) \
 DECL_REL_OP_T(op,const sc_fxnum_fast&) \
 DECL_REL_OP_OTHER(op)

 Copyright 2003 Open SystemC Initiative. All rights reserved 200

SystemC 2.0.1 Language Reference Manual

 DECL_ASN_OP_T(op,const char*) \

 DECL_REL_OP(<)
 DECL_REL_OP(<=)
 DECL_REL_OP(>)
 DECL_REL_OP(>=)
 DECL_REL_OP(==)
 DECL_REL_OP(!=)

// assignment operators
#define DECL_ASN_OP_T(op,tp) \
 sc_fxval& operator op(tp);

#define DECL_ASN_OP_OTHER(op) \
 DECL_ASN_OP_T(op,int64) \
 DECL_ASN_OP_T(op,uint64) \
 DECL_ASN_OP_T(op,const sc_int_base&) \
 DECL_ASN_OP_T(op,const sc_uint_base&) \
 DECL_ASN_OP_T(op,const sc_signed&) \
 DECL_ASN_OP_T(op,const sc_unsigned&)

#define DECL_ASN_OP(op) \
 DECL_ASN_OP_T(op,int) \
 DECL_ASN_OP_T(op,unsigned int) \
 DECL_ASN_OP_T(op,long) \
 DECL_ASN_OP_T(op,unsigned long) \
 DECL_ASN_OP_T(op,double) \

 DECL_ASN_OP_T(op,const sc_fxval&) \
 DECL_ASN_OP_T(op,const sc_fxval_fast&) \
 DECL_ASN_OP_T(op,const sc_fxnum&) \
 DECL_ASN_OP_T(op,const sc_fxnum_fast&) \
 DECL_ASN_OP_OTHER(op)

 DECL_ASN_OP(=)
 DECL_ASN_OP(*=)
 DECL_ASN_OP(/=)
 DECL_ASN_OP(+=)
 DECL_ASN_OP(-=)

 DECL_ASN_OP_T(<<=,int)
 DECL_ASN_OP_T(>>=,int)

// auto-increment and auto-decrement
 const sc_fxval operator ++ (int);
 const sc_fxval operator -- (int);
 sc_fxval& operator ++ ();
 sc_fxval& operator -- ();

// implicit conversion
 operator double() const;

// explicit conversion to primitive types
 short to_short() const;
 unsigned short to_ushort() const;

 Copyright 2003 Open SystemC Initiative. All rights reserved 201

SystemC 2.0.1 Language Reference Manual

 int to_int() const;
 unsigned int to_uint() const;
 long to_long() const;
 unsigned long to_ulong() const;
 float to_float() const;
 double to_double() const;

 // explicit conversion to character string
 const sc_string to_string() const;
 const sc_string to_string(sc_numrep) const;
 const sc_string to_string(sc_numrep, bool) const;
 const sc_string to_string(sc_fmt) const;
 const sc_string to_string(sc_numrep,sc_fmt) const;
 const sc_string to_string(sc_numrep, bool,
 sc_fmt) const;
 const sc_string to_dec() const;
 const sc_string to_bin() const;
 const sc_string to_oct() const;
 const sc_string to_hex() const;

// methods
 bool is_neg() const;
 bool is_zero() const;
 bool is_nan() const;
 bool is_inf() const;
 bool is_normal() const;
 bool rounding_flag() const;
 void print(ostream& = cout) const;
 void scan(istream& = cin);
 void dump(ostream& = cout) const;

protected:
 sc_fxval_observer* lock_observer() const;
 void unlock_observer(sc_fxval_observer*) const;
 void get_type(int&, int&, sc_enc&) const;
 const sc_fxval quantization(const scfx_params&,
 bool&) const;
 const sc_fxval overflow(const scfx_params&,
 bool&) const;
};

Description
Type sc_fxval is the arbitrary precision value type. It can hold the value of any
of the fixed-point types, and it performs the arbitrary precision fixed-point
arithmetic operations. Type casting is performed by the fixed-point types
themselves. Limited precision type sc_fxval_fast and arbitrary precision type
sc_fxval can be mixed freely.
See Chapter 6.8.4.

In some cases, such as division, using arbitrary precision would lead to infinite
word lengths. To limit the resulting word lengths in these cases, three parameters
are provided:

 Copyright 2003 Open SystemC Initiative. All rights reserved 202

SystemC 2.0.1 Language Reference Manual

div_wl
The maximum word length for the result of a division operation. If the result of a
division exceeds div_wl, it will be convergent rounded to div_wl bits. The div_wl
argument is of type int. It must be greater than zero. Otherwise, a runtime error is
produced. The default value for div_wl is obtained from the set of built-in default
values. See 6.8.8. This default value can be overruled with compiler flag
SC_FXDIV_WL.
cte_wl
The maximum word length for the result of converting a decimal character string
constant into a sc_fxval variable. If the result of such a conversion exceeds
cte_wl, it will be convergent rounded to cte_wl bits. The cte_wl argument is of
type int. It must be greater than zero. Otherwise, a runtime error is produced. The
default value for cte_wl is obtained from the set of built-in default values. See
6.8.8. This default value can be overruled with compiler flag SC_FXCTE_WL.
max_wl
The maximum word length for the mantissa used in a sc_fxval variable. If the
result of an operation exceeds max_wl, it will be convergent rounded to max_wl
bits. The max_wl argument is of type int. It must be greater than zero, or minus
one. Otherwise, a runtime error is produced. Minus one is used to indicate no
maximum word length. The default value for max_wl is obtained from the set of
built-in default values. See 6.8.8. This default value can be overruled with
compiler flag SC_FXMAX_WL.
Caution!
Be careful with changing the default values of the div_wl, cte_wl, and max_wl
parameters, as they affect both bit-true behavior and simulation performance.

Type sc_fxval is used to hold fixed-point values for the arbitrary precision fixed-
point types. The div_wl, cte_wl, and max_wl parameters should be set higher
than the word lengths used by the fixed-point types in the user code, otherwise
bit-true behavior cannot be guaranteed. On the other hand, these parameters
should not be set too high, because that would degrade simulation performance.
Typically, the max_wl parameter should be set (much) higher than the div_wl and
cte_wl parameters.

The div_wl, cte_wl, and max_wl parameters will be used by the fixed-point value
type, whether used directly or as part of a fixed-point type. By default, the built-in
default values given in Chapter 6.8.8 are used. These default values can be
overruled per translation unit by specifying the compiler flags SC_FXDIV_WL,
SC_FXCTE_WL, and SC_FXMAX_WL with the appropriate values. For example:
 CC -DSC_FXDIV_WL=128 -c my_file.cpp
This compiles my_file.cpp with the div_wl parameter set to 128 bits i.s.o. 64 bits.

A sc_fxval variable that is declared without initial value is uninitialized, unless it is
declared as a static variable, which is always initialized to zero. Uninitialized
variables can be used anywhere initialized variables can be used. An operation

 Copyright 2003 Open SystemC Initiative. All rights reserved 203

SystemC 2.0.1 Language Reference Manual

on an uninitialized variable does not produce an error or warning. The result of
such an operation is undefined.

Examples
sc_fxval a = 1;
sc_fxval b = 0.5;
sc_fixed<8,8> c = 1.25;
sc_fxval d = c;
sc_biguint<16> e = 8;
sc_fxval f = e;
sc_fxval j;
sc_fxval k(0.5);
sc_fxval l = 0;

sc_fxval m = 1;
sc_fxval n = 2;
sc_fxval p = m / n;
n *= 1.25;

Public Constructors
sc_fxval ([type_ init_val]
 [,sc_fxnum_observer* observer]) ;
type_ in {short, unsigned short, int, unsigned int, long,

unsigned long, float, double, const char*, int64,
uint64, const sc_int_base

†
&, const sc_uint_base

†
&,

const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

Notes on type_
For all types in type_ only the value of the argument is taken, that is, any type
information is discarded.
A variable of type sc_fxval can be initialized with a C/C++ character string (type
const char*) either when the number will be expressed in binary form or when
the number is too large to be written as a C/C++ built-in type literal.

init_val
The initial value of the variable. If the initial value is not specified, the variable is
uninitialized.
observer
A pointer to an observer object. The observer argument is of type
sc_fxval_observer*. See Chapter 11.31. The default value for observer is 0
(null pointer). The observer parameter cannot change after declaration.

Operators
The operators defined for the sc_fxval are given in Table 24.

Table 24. Operators for sc_fxval
Operator Operators in class

 Copyright 2003 Open SystemC Initiative. All rights reserved 204

SystemC 2.0.1 Language Reference Manual

class

Arithmetic * / + - << >> ++ --

Equality == !=

Relational <<= >>=

Assignment = *= /= += -= <<= >>=

Note:
Operator << and operator >> define arithmetic shifts, not bitwise shifts. The
difference is that no bits are lost and proper sign extension is done. Hence,
these operators are well defined also for signed types, such as sc_fxval.

In expressions with the operators from Table 24, variables of type sc_fxval can
be mixed with all types given:
type_ in {short, unsigned short, int, unsigned int, long,

unsigned long, float, double, const char*, int64,
uint64, const sc_int_base &, const sc_uint_base &,
const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

† †

The return type of any arithmetic operation is sc_fxval.

Member Functions
The functions defined for sc_fxval are given in Table 25.

Table 25. Functions for sc_fxval
Function
class

Functions in class

Arithmetic neg, mult, div, add, sub, lshift, rshift

The functions in Table 25 have return type void. The first argument of these
functions is a reference to the result object. The remaining arguments of these
functions are the operands.

The neg arithmetic function takes one operand, the other arithmetic functions
take two operands. At least one of the operands of the arithmetic functions
should have a fixed- point value type, the other operand can have any of the
types given:
type_ in {short, unsigned short, int, unsigned int, long,

unsigned long, float, double, const char*, int64,
uint64, const sc_int_base

†
&, const sc_uint_base

†
&,

const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

The arithmetic are defined with the result object of type sc_fxval.

 Copyright 2003 Open SystemC Initiative. All rights reserved 205

SystemC 2.0.1 Language Reference Manual

Query Value
bool
is_inf() const;

Returns true if the variable holds an (plus or minus) infinity value. Returns
false otherwise.

bool
is_nan() const;

Returns true if the variable holds not-a-number value. Returns false
otherwise.

bool
is_neg() const;

Returns true if the variable holds a negative value. Returns false otherwise.

bool
is_zero() const;

Returns true if the variable holds a zero value. Returns false otherwise.

bool
rounding_flag() const;

Returns true if the last write action on this variable caused rounding to
div_wl, cte_wl, or max_wl. Returns false otherwise.

bool
is_normal() const;

Returns true if both is_nan() and is_inf() return false. Returns false
otherwise.

Implicit Conversion
operator double() const;

Implicit conversion to the implementation type double. The value does not
change.

Explicit Conversion

short to_short() const;
unsigned short to_ushort() const;
int to_int() const;
unsigned int to_uint() const;
long to_long() const;
unsigned long to_ulong() const;
float to_float() const;
double to_double() const

const sc_string to_string() const;
const sc_string to_string(sc_numrep) const;
const sc_string to_string(sc_numrep, bool) const;
const sc_string to_string(sc_fmt) const;

 Copyright 2003 Open SystemC Initiative. All rights reserved 206

SystemC 2.0.1 Language Reference Manual

const sc_string to_string(sc_numrep, sc_fmt) const;
const sc_string to_string(sc_numrep, bool, sc_fmt) const;

The value of a fixed-point variable can be converted to a character string
with the to_string() method. This method takes different arguments for
formatting purposes. See Chapter 6.8.8 for more information on converting
fixed-point variables to/from character strings. Furthermore, writing to C++
output streams with operator << is supported, e.g. cout << a;, where a is a
fixed-point variable. The decimal number representation is used in this case.

const sc_string to_dec() const;
const sc_string to_bin() const;
const sc_string to_oct() const;
const sc_string to_hex() const;

Shortcut methods for conversion to a character string. See Chapter 6.8.9.2.

Print or dump content
void
print(ostream& = cout) const;

Print the sc_fxval instance value to an output stream.

void
scan(istream& = cin);

Read an sc_fxval value from an input stream.

void
dump(ostream& = cout)
const;

Prints the sc_fxval instance value, parameters and flags to an output
stream.

ostream&
operator << (ostream& os, const sc_fix& a)

Print the instance value of a to an output stream os.

 Copyright 2003 Open SystemC Initiative. All rights reserved 207

SystemC 2.0.1 Language Reference Manual

11.29 sc_fxval_fast
Synopsis
class sc_fxval_fast
{
protected:
 sc_fxval_fast_observer* observer() const;

public:
 sc_fxval_fast(sc_fxval_fast_observer* = 0);
 sc_fxval_fast(int,
 sc_fxval_fast_observer* = 0);
 sc_fxval_fast(unsigned int,
 sc_fxval_fast_observer* = 0);
 sc_fxval_fast(long,
 sc_fxval_fast_observer* = 0);
 sc_fxval_fast(unsigned long,
 sc_fxval_fast_observer* = 0);
 sc_fxval_fast(double,
 sc_fxval_fast_observer* = 0);
 sc_fxval_fast(const char*,
 sc_fxval_fast_observer* = 0);
 sc_fxval_fast(const sc_fxval&,
 sc_fxval_fast_observer* = 0);
 sc_fxval_fast(const sc_fxval_fast&,
 sc_fxval_fast_observer* = 0);
 sc_fxval_fast(const sc_fxnum&,
 sc_fxval_fast_observer* = 0);
 sc_fxval_fast(const sc_fxnum_fast&,
 sc_fxval_fast_observer* = 0);
 sc_fxval_fast(int64,
 sc_fxval_fast_observer* = 0);
 sc_fxval_fast(uint64,
 sc_fxval_fast_observer* = 0);
 sc_fxval_fast(const sc_int_base&,
 sc_fxval_fast_observer* = 0);
 sc_fxval_fast(const sc_uint_base&,
 sc_fxval_fast_observer* = 0);
 sc_fxval_fast(const sc_signed&,
 sc_fxval_fast_observer* = 0);
 sc_fxval_fast(const sc_unsigned&,
 sc_fxval_fast_observer* = 0);
 ~sc_fxval_fast();

 // unary operators
 const sc_fxval_fast operator - () const;
 const sc_fxval_fast& operator + () const;

 // unary functions
 friend void neg(sc_fxval_fast&, const
 sc_fxval_fast&);

 // binary operators

 Copyright 2003 Open SystemC Initiative. All rights reserved 208

SystemC 2.0.1 Language Reference Manual

#define DECL_BIN_OP_T(op,tp) \
 friend const sc_fxval_fast operator op (const \
 sc_fxval_fast&, tp); \
 friend const sc_fxval_fast operator op (tp, const \
 sc_fxval_fast&);

#define DECL_BIN_OP_OTHER(op) \
 DECL_BIN_OP_T(op,int64) \
 DECL_BIN_OP_T(op,uint64) \
 DECL_BIN_OP_T(op,const sc_int_base&) \
 DECL_BIN_OP_T(op,const sc_uint_base&) \
 DECL_BIN_OP_T(op,const sc_signed&) \
 DECL_BIN_OP_T(op,const sc_unsigned&)

#define DECL_BIN_OP(op,dummy) \
 friend const sc_fxval_fast operator op (const \
 sc_fxval_fast&, const sc_fxval_fast&); \
 DECL_BIN_OP_T(op,int) \
 DECL_BIN_OP_T(op,unsigned int) \
 DECL_BIN_OP_T(op,long) \
 DECL_BIN_OP_T(op,unsigned long) \
 DECL_BIN_OP_T(op,double) \
 DECL_BIN_OP_T(op,const char*) \
 DECL_BIN_OP_OTHER(op)

 DECL_BIN_OP(*,mult)
 DECL_BIN_OP(+,add)
 DECL_BIN_OP(-,sub)
 DECL_BIN_OP(/,div)
 DECL_BIN_OP_T(/,int)
 DECL_BIN_OP_T(/,unsigned int)
 DECL_BIN_OP_T(/,long)
 DECL_BIN_OP_T(/,unsigned long)
 DECL_BIN_OP_T(/,double)
 DECL_BIN_OP_T(/,const char*)
 DECL_BIN_OP_OTHER(/)
 DECL_BIN_OP_T(/,int64) \
 DECL_BIN_OP_T(/,uint64) \
 DECL_BIN_OP_T(/,const sc_int_base&) \
 DECL_BIN_OP_T(/,const sc_uint_base&) \
 DECL_BIN_OP_T(/,const sc_signed&) \
 DECL_BIN_OP_T(/,const sc_unsigned&)

 friend const sc_fxval_fast operator << (const
 sc_fxval_fast&, int);
 friend const sc_fxval_fast operator >> (const
 sc_fxval_fast&, int);

 // binary functions
#define DECL_BIN_FNC_T(fnc,tp) \
 friend void fnc (sc_fxval_fast&, const \
 sc_fxval_fast&, tp); \
 friend void fnc (sc_fxval_fast&, tp, const \
 sc_fxval_fast&);

 Copyright 2003 Open SystemC Initiative. All rights reserved 209

SystemC 2.0.1 Language Reference Manual

#define DECL_BIN_FNC_OTHER(fnc) \
 DECL_BIN_FNC_T(fnc,int64) \
 DECL_BIN_FNC_T(fnc,uint64) \
 DECL_BIN_FNC_T(fnc,const sc_int_base&) \
 DECL_BIN_FNC_T(fnc,const sc_uint_base&) \
 DECL_BIN_FNC_T(fnc,const sc_signed&) \
 DECL_BIN_FNC_T(fnc,const sc_unsigned&)

#define DECL_BIN_FNC(fnc) \
 friend void fnc (sc_fxval_fast&, const \
 sc_fxval_fast&, const sc_fxval_fast&); \
 DECL_BIN_FNC_T(fnc,int) \
 DECL_BIN_FNC_T(fnc,unsigned int) \
 DECL_BIN_FNC_T(fnc,long) \
 DECL_BIN_FNC_T(fnc,unsigned long) \
 DECL_BIN_FNC_T(fnc,double) \
 DECL_BIN_FNC_T(fnc,const char*) \
 DECL_BIN_FNC_T(fnc,const sc_fxval&) \
 DECL_BIN_FNC_T(fnc,const sc_fxnum&) \
 DECL_BIN_FNC_OTHER(fnc)

 DECL_BIN_FNC(mult)
 DECL_BIN_FNC(div)
 DECL_BIN_FNC(add)
 DECL_BIN_FNC(sub)

 friend void lshift(sc_fxval_fast&, const
 sc_fxval_fast&, int);
 friend void rshift(sc_fxval_fast&, const
 sc_fxval_fast&, int);

 // relational (including equality) operators
#define DECL_REL_OP_T(op,tp) \
 friend bool operator op (const sc_fxval_fast&,tp);\
 friend bool operator op (tp, const sc_fxval_fast&);

#define DECL_REL_OP_OTHER(op) \
 DECL_REL_OP_T(op,int64) \
 DECL_REL_OP_T(op,uint64) \
 DECL_REL_OP_T(op,const sc_int_base&) \
 DECL_REL_OP_T(op,const sc_uint_base&) \
 DECL_REL_OP_T(op,const sc_signed&) \
 DECL_REL_OP_T(op,const sc_unsigned&)

#define DECL_REL_OP(op) \
 friend bool operator op (const sc_fxval_fast&, \
 const sc_fxval_fast&); \
 DECL_REL_OP_T(op,int) \
 DECL_REL_OP_T(op,unsigned int) \
 DECL_REL_OP_T(op,long) \
 DECL_REL_OP_T(op,unsigned long) \
 DECL_REL_OP_T(op,double) \
 DECL_REL_OP_T(op,const char*) \

 Copyright 2003 Open SystemC Initiative. All rights reserved 210

SystemC 2.0.1 Language Reference Manual

 DECL_REL_OP_OTHER(op)

 DECL_REL_OP(<)
 DECL_REL_OP(<=)
 DECL_REL_OP(>)
 DECL_REL_OP(>=)
 DECL_REL_OP(==)
 DECL_REL_OP(!=)

 // assignment operators
#define DECL_ASN_OP_T(op,tp) \
 sc_fxval_fast& operator op(tp);

#define DECL_ASN_OP_OTHER(op) \
 DECL_ASN_OP_T(op,int64) \
 DECL_ASN_OP_T(op,uint64) \
 DECL_ASN_OP_T(op,const sc_int_base&) \
 DECL_ASN_OP_T(op,const sc_uint_base&) \
 DECL_ASN_OP_T(op,const sc_signed&) \
 DECL_ASN_OP_T(op,const sc_unsigned&)

#define DECL_ASN_OP(op) \
 DECL_ASN_OP_T(op,int) \
 DECL_ASN_OP_T(op,unsigned int) \
 DECL_ASN_OP_T(op,long) \
 DECL_ASN_OP_T(op,unsigned long) \
 DECL_ASN_OP_T(op,double) \
 DECL_ASN_OP_T(op,const char*) \
 DECL_ASN_OP_T(op,const sc_fxval&) \
 DECL_ASN_OP_T(op,const sc_fxval_fast&) \
 DECL_ASN_OP_T(op,const sc_fxnum&) \
 DECL_ASN_OP_T(op,const sc_fxnum_fast&) \
 DECL_ASN_OP_OTHER(op)

 DECL_ASN_OP(=)
 DECL_ASN_OP(*=)
 DECL_ASN_OP(/=)
 DECL_ASN_OP(+=)
 DECL_ASN_OP(-=)
 DECL_ASN_OP_T(<<=,int)
 DECL_ASN_OP_T(>>=,int)

 // auto-increment and auto-decrement
 const sc_fxval_fast operator ++ (int);
 const sc_fxval_fast operator -- (int);
 sc_fxval_fast& operator ++ ();
 sc_fxval_fast& operator -- ();

 // implicit conversion
 operator double() const;

 // explicit conversion to primitive types
 short to_short() const;
 unsigned short to_ushort() const;

 Copyright 2003 Open SystemC Initiative. All rights reserved 211

SystemC 2.0.1 Language Reference Manual

 int to_int() const;
 unsigned int to_uint() const;
 long to_long() const;
 unsigned long to_ulong() const;
 float to_float() const;
 double to_double() const;

 // explicit conversion to character string
 const sc_string to_string() const;
 const sc_string to_string(sc_numrep) const;
 const sc_string to_string(sc_numrep, bool) const;
 const sc_string to_string(sc_fmt) const;
 const sc_string to_string(sc_numrep,
 sc_fmt) const;
 const sc_string to_string(sc_numrep, bool,
 sc_fmt) const;
 const sc_string to_dec() const;
 const sc_string to_bin() const;
 const sc_string to_oct() const;
 const sc_string to_hex() const;

 // other methods
 bool is_neg() const;
 bool is_zero() const;
 bool is_nan() const;
 bool is_inf() const;
 bool is_normal() const;
 bool rounding_flag() const;
 void print(ostream& = cout) const;
 void scan(istream& = cin);
 void dump(ostream& = cout) const;
};

Description
Type sc_fxval_fast is the fixed precision value type and is limited to a
mantissa of 53 bits. It can hold the value of any of the fixed-point types, and it
performs the fixed precision fixed-point arithmetic operations. Type casting is
performed by the fixed-point types themselves. Limited precision type
sc_fxval_fast and arbitrary precision type sc_fxval can be mixed freely.
See Chapter 6.8.4.

Type sc_fxval is used to hold fixed-point values for the fixed precision fixed-point
types.

A sc_fxval variable that is declared without initial value is uninitialized, unless it is
declared as a static variable, which is always initialized to zero. Uninitialized
variables can be used anywhere initialized variables can be used. An operation
on an uninitialized variable does not produce an error or warning. The result of
such an operation is undefined.

 Copyright 2003 Open SystemC Initiative. All rights reserved 212

SystemC 2.0.1 Language Reference Manual

Examples
sc_fxval_fast a = 1;
sc_fxval_fast b = 0.5;
sc_fixed<8,8> c = 1.25;
sc_fxval_fast d = c;
sc_biguint<16> e = 8;
sc_fxval_fast f = e;
sc_fxval_fast j;
sc_fxval_fast k(0.5);
sc_fxval_fast l = 0;

sc_fxval_fast m = 1;
sc_fxval_fast n = 2;
sc_fxval_fast p = m / n;
n *= 1.25;

Public Constructors
sc_fxval_fast ([type_ init_val]
 [,sc_fxval_fast_observer* observer]) ;
type_ in {short, unsigned short, int, unsigned int, long,

unsigned long, float, double, const char*, int64,
uint64, const sc_int_base

†
&, const sc_uint_base

†
&,

const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

Notes on type_
For all types in type_ only the value of the argument is taken, that is, any type
information is discarded.
A variable of type sc_fxval_fast can be initialized with a C/C++ character
string (type const char*) either when the number will be expressed in binary
form or when the number is too large to be written as a C/C++ built-in type
literal.

init_val
The initial value of the variable. If the initial value is not specified, the variable is
uninitialized.
observer
A pointer to an observer object. The observer argument is of type
sc_fxval_fast_observer*. See Chapter 11.30. The default value for observer is
0 (null pointer). The observer parameter cannot change after declaration.

Operators
The operators defined for the sc_fxval are given in Table 26.

Table 26. Operators for sc_fxval _fast
Operator
class

Operators in class

 Copyright 2003 Open SystemC Initiative. All rights reserved 213

SystemC 2.0.1 Language Reference Manual

Arithmetic * / + - << >> ++ --

Equality == !=

Relational <<= >>=

Assignment = *= /= += -= <<= >>=

Note:
Operator << and operator >> define arithmetic shifts, not bitwise shifts. The
difference is that no bits are lost and proper sign extension is done. Hence,
these operators are well defined also for signed types, such as sc_fxval_fast.

In expressions with the operators from Table 26, variables of type sc_fxval_fast
can be mixed with all types given:
type_ in {short, unsigned short, int, unsigned int, long,

unsigned long, float, double, const char*, int64,
uint64, const sc_int_base

†
&, const sc_uint_base

†
&,

const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

The return type of any arithmetic operation is sc_fxval_fast.

Member Functions
The functions defined for sc_fxval_fast are given in Table 27.

Table 27. Functions for sc_fxval_fast
Function
class

Functions in class

Arithmetic neg, mult, div, add, sub, lshift, rshift

The functions in Table 27 have return type void. The first argument of these
functions is a reference to the result object. The remaining arguments of these
functions are the operands.

The neg arithmetic function takes one operand, the other arithmetic functions
take two operands. At least one of the operands of the arithmetic functions
should have a fixed- point value type, the other operand can have any of the
types given:
type_ in {short, unsigned short, int, unsigned int, long,

unsigned long, float, double, const char*, int64,
uint64, const sc_int_base

†
&, const sc_uint_base

†
&,

const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

The arithmetic are defined with the result object of type sc_fxval_fast.

Query Value

 Copyright 2003 Open SystemC Initiative. All rights reserved 214

SystemC 2.0.1 Language Reference Manual

bool
is_inf() const;

Returns true if the variable holds an (plus or minus) infinity value. Returns
false otherwise.

bool
is_nan() const;

Returns true if the variable holds not-a-number value. Returns false
otherwise.

bool
is_neg() const;

Returns true if the variable holds a negative value. Returns false otherwise.

bool
is_zero() const;

Returns true if the variable holds a zero value. Returns false otherwise.

bool
rounding_flag() const;

Returns true if the last write action on this variable caused rounding to
div_wl, cte_wl, or max_wl. Returns false otherwise.

bool
is_normal() const;

Returns true if both is_nan() and is_inf() return false. Returns false
otherwise.

Implicit Conversion
operator double() const;

Implicit conversion to the implementation type double. The value does not
change.

Explicit Conversion

short to_short() const;
unsigned short to_ushort() const;
int to_int() const;
unsigned int to_uint() const;
long to_long() const;
unsigned long to_ulong() const;
float to_float() const;
double to_double() const

const sc_string to_string() const;
const sc_string to_string(sc_numrep) const;
const sc_string to_string(sc_numrep, bool) const;
const sc_string to_string(sc_fmt) const;
const sc_string to_string(sc_numrep, sc_fmt) const;

 Copyright 2003 Open SystemC Initiative. All rights reserved 215

SystemC 2.0.1 Language Reference Manual

const sc_string to_string(sc_numrep, bool, sc_fmt) const;
The value of a fixed-point variable can be converted to a character string
with the to_string() method. This method takes different arguments for
formatting purposes. See Chapter 6.8.8 for more information on converting
fixed-point variables to/from character strings. Furthermore, writing to C++
output streams with operator << is supported, e.g. cout << a;, where a is a
fixed-point variable. The decimal number representation is used in this case.

const sc_string to_dec() const;
const sc_string to_bin() const;
const sc_string to_oct() const;
const sc_string to_hex() const;

Shortcut methods for conversion to a character string. See Chapter 6.8.9.2.

Print or dump content
void
print(ostream& = cout) const;

Print the sc_fxval_fast instance value to an output stream.

void
scan(istream& = cin);

Read an sc_fxval_fast value from an input stream.

void
dump(ostream& = cout)
const;

Prints the sc_fxval_fast instance value, parameters and flags to an
output stream.

ostream&
operator << (ostream& os, const sc_fix& a)

Print the instance value of a to an output stream os.

 Copyright 2003 Open SystemC Initiative. All rights reserved 216

SystemC 2.0.1 Language Reference Manual

11.30 sc_fxval_fast_observer
Synopsis
class sc_fxval_fast_observer
{
protected:
 sc_fxval_fast_observer() {}
 virtual ~sc_fxval_fast_observer() {}

public:
 virtual void construct(const sc_fxval_fast&);
 virtual void destruct(const sc_fxval_fast&);
 virtual void read(const sc_fxval_fast&);
 virtual void write(const sc_fxval_fast&);
 static sc_fxval_fast_observer*
 (*default_observer) ();
};

Description
sc_fxval_fast_observer is an abstract base class provided as a hook to
define one’s own observer functionality.

Public Methods
 virtual void construct(const sc_fxval_fast&);
 virtual void destruct(const sc_fxval_fast&);
 virtual void read(const sc_fxval_fast&);
 virtual void write(const sc_fxval_fast&);

These methods allow to observe construction, destruction, read, and write
actions on a particular variable. The destruct and read methods are called
before the action takes place, while the construct and write methods are called
after the action has taken place. Each of these methods can query the variable
under observation, which is passed as the single argument to the methods.

The default behavior of the methods is to do nothing (and return).

 Copyright 2003 Open SystemC Initiative. All rights reserved 217

SystemC 2.0.1 Language Reference Manual

11.31 sc_fxval_observer
Synopsis
class sc_fxval_observer
{
protected:
 sc_fxval_observer() {}
 virtual ~sc_fxval_observer() {}

public:
 virtual void construct(const sc_fxval&);
 virtual void destruct(const sc_fxval&);
 virtual void read(const sc_fxval&);
 virtual void write(const sc_fxval&);
 static sc_fxval_observer* (*default_observer) ();
};

Description
sc_fxval_observer is an abstract base class provided as a hook to define
one’s own observer functionality.

Public Methods
 virtual void construct(const sc_fxval&);
 virtual void destruct(const sc_fxval&);
 virtual void read(const sc_fxval&);
 virtual void write(const sc_fxval&);

These methods allow to observe construction, destruction, read, and write
actions on a particular variable. The destruct and read methods are called
before the action takes place, while the construct and write methods are called
after the action has taken place. Each of these methods can query the variable
under observation, which is passed as the single argument to the methods.

The default behavior of the methods is to do nothing (and return).

 Copyright 2003 Open SystemC Initiative. All rights reserved 218

SystemC 2.0.1 Language Reference Manual

11.32 sc_in
Synopsis
template <class T>
class sc_in
: public sc_port<sc_signal_in_if<T>,1>
{
public:

 // constructors and destructor
 sc_in();
 sc_in(const char* name_);
 sc_in(const sc_signal_in_if<T>& interface_);
 sc_in(const char* name_,

 const sc_signal_in_if<T>& interface_);
 sc_in(sc_port<sc_signal_in_if<T> >& parent_);
 sc_in(const char* name_,

 sc_port<sc_signal_in_if<T> >& parent_);
 sc_in(sc_port<sc_signal_inout_if<T> >& parent_);
 sc_in(const char* name_,

 sc_port<sc_signal_inout_if<T> >& parent_);
 sc_in(sc_in<T>& parent_);
 sc_in(const char* name_, sc_in<T>& parent_);
 virtual ~sc_in();

// methods
 void bind(const sc_signal_in_if<T>& interface_);
 void operator () (const
 sc_signal_in_if<T>& interface_);
 void bind(sc_port< sc_signal_in_if<T> >& parent_);

 sc_event_finder& value_changed() const;

Description

 void operator () (
 sc_port< sc_signal_in_if<T> >& parent_);
 void bind(
 sc_port<sc_signal_inout_if<T> >& parent_);
 void operator () (
 sc_port<sc_signal_inout_if<T> >& parent_);
 const sc_event& default_event() const;
 const sc_event& value_changed_event() const;
 const T& read() const;
 operator const T& () const;
 bool event() const;

 virtual void end_of_elaboration();
 static const char* const kind_string;
 virtual const char* kind() const;
 void add_trace(sc_trace_file*,
 const sc_string&) const;
};

sc_in is a specialized port for use with sc_signal channels (Chapter 11.59).
Its behavior is that of a sc_port which has only one interface that is of type

 Copyright 2003 Open SystemC Initiative. All rights reserved 219

SystemC 2.0.1 Language Reference Manual

sc_signal_in_if<T>. It has additional methods for convenience in
accessing the channel connected to the port.

In the description of sc_in, port refers to the sc_in instance, current_value
refers to the value of the sc_signal instance connected to the port,
new_value is the value to be written and old_value is the previous value.
Chapter 2.4.1 describes the scheduler steps referred to in the description of
sc_inout.

end_of_elaboration();

Public Constructors
sc_in();

Create a sc_in instance.

explicit
sc_in(const char* name_) ;

Create a sc_in instance with the string name initialized to name_.

Public Member Functions
void
add_trace(sc_trace_file

†
*, const sc_string&) const;

void
bind(const sc_signal_in_if<T>& interface_) ;

Binds interface_ to the port. For port to channel binding.

void
bind(sc_port<sc_signal_in_if<T>,1 >& parent_) ;

Binds parent_ to the port. For port to port binding.

void
bind(sc_port<sc_signal_inout_if<T>,1 >& parent_);

Binds parent_ to the port. For port to port binding.

const sc_event&
default_event() const ;

Returns a reference to an event that occurs when new_value on a write is
different from current_value.

bool
event() const ;

Returns true if an event occurred in the previous delta-cycle.

virtual void

Called at the end of the elaboration phase, after ports have been bound to
channels. If a trace has been requested on this port during elaboration, then
end_of_elaboration adds a trace using the attached channel’s data.

virtual const char*

 Copyright 2003 Open SystemC Initiative. All rights reserved 220

SystemC 2.0.1 Language Reference Manual

kind() const ;
Returns “sc_in”.

sc_event_finder
†
&

neg() const ;
Type bool and sc_logic only. Returns a reference to an
sc_event_finder† that occurs when new_value on a write is false and the
current_value is not false. For use with static sensitivity list of a process.

bool
negedge() const ;

Type bool and sc_logic only. Returns true if an event occurred in the
previous delta-cycle and current_value is false.

const sc_event&
negedge_event() const ;

Type bool and sc_logic only. Returns a reference to an event that
occurs when new_value on a write is false and the current_value is not false.

sc_event_finder
†
&

pos() const ;
Type bool and sc_logic only. Returns a reference to an
sc_event_finder† that occurs when new_value on a write is true and the
current_value is not true. For use with static sensitivity list of a process.

bool
posedge() const ;

Type bool and sc_logic only. Returns a reference to an event that
occurs when new_value on a write is true and the current_value is not true.

const sc_event&
posedge_event() const ;

Type bool and sc_logic only. Returns a reference to an event that
occurs when new_value on a write is true and the current_value is not true.

const T&
read() const ;

Returns a reference to current_value.

sc_event_finder
†
&

value_changed() const ;

Returns a reference to an sc_event_finder† that occurs when new_value on
a write is different from current_value. For use with static sensitivity list of a
process.

const sc_event&
value_changed_event() const ;

 Copyright 2003 Open SystemC Initiative. All rights reserved 221

SystemC 2.0.1 Language Reference Manual

Returns a reference to an event that occurs when new_value on a write is
different from current_value.

Public Operators
void
operator () (const sc_signal_in_if<T>&) ;

Binds interface_ to the port. For port to channel binding.

void
operator () (sc_port<sc_signal_in_if<T>,1 >&) ;

Binds parent_ to the port. For port to port binding.

void
operator () (sc_port<sc_signal_inout_if<T>,1 >&) ;

Binds parent_ to the port. For port to port binding.

operator const T& () const ;

Disabled Member Functions
sc_in(const sc_in<T>&);
sc_in<T>& operator = (const sc_in<T>&);

 Copyright 2003 Open SystemC Initiative. All rights reserved 222

SystemC 2.0.1 Language Reference Manual

11.33 sc_in_resolved

 const sc_signal_in_if<sc_logic>& interface_);

Synopsis
class sc_in_resolved
 : public sc_in<sc_logic>
{
public:
// constructors and destructor
 sc_in_resolved();
 sc_in_resolved(const char* name_);
 sc_in_resolved(const
 sc_signal_in_if<sc_logic>& interface_);
 sc_in_resolved(const char* name_,

 sc_in_resolved(
 sc_port<sc_signal_in_if<sc_logic> >& parent_);
 sc_in_resolved(const char* name_,
 sc_port<sc_signal_in_if<sc_logic> >& parent_);
 sc_in_resolved(
 sc_port<sc_signal_inout_if<sc_logic> >& parent_);
 sc_in_resolved(const char* name_,
 sc_port<sc_signal_inout_if<sc_logic> >& parent_);
 sc_in_resolved(sc_in_resolved& parent_);
 sc_in_resolved(const char* name_,
 sc_in_resolved& parent_);
 virtual ~sc_in_resolved();

// methods
 virtual void end_of_elaboration();
 static const char* const kind_string;
 virtual const char* kind() const;

// disabled
 sc_in_resolved(const sc_in_resolved&);
 sc_in_resolved& operator = (const sc_in_resolved&);
};

Description
sc_in_resolved is a specialized port for use with sc_signal_resolved
channels (Chapter 11.63). Its behavior is that of a sc_port which has only one
interface that is of type sc_signal_in_if<sc_logic>. It has additional
methods for convenience in accessing the channel connected to the port.

In the description of sc_in_resolved, port refers to the sc_in_resolved
instance.

Public Constructors
sc_in_resolved() ;

Create a sc_in_resolved instance.

 Copyright 2003 Open SystemC Initiative. All rights reserved 223

SystemC 2.0.1 Language Reference Manual

explicit
sc_in_resolved(const char*);

Create a sc_in_resolved instance with the string name initialized to
name_.

Public Member Functions
virtual void
end_of_elaboration() ;

Checks to make sure the channel bound to the port is of type
sc_signal_resolved.

virtual const char*
kind() const ;

Returns “sc_in_resolved”.

Disabled Member Functions
sc_in_resolved (const sc_in_resolved&);
sc_in_resolved& operator = (const sc_in_resolved&);

 Copyright 2003 Open SystemC Initiative. All rights reserved 224

SystemC 2.0.1 Language Reference Manual

11.34 sc_in_rv
Synopsis
template <int W>
class sc_in_rv
 : public sc_in<sc_lv<W> >
{
public:
// constructors and destructor
 sc_in_rv();
 sc_in_rv(const char* name_);
 sc_in_rv(const
 sc_signal_in_if<sc_lv<W> >& interface_);
 sc_in_rv(const char* name_,
 const sc_signal_in_if<sc_lv<W> >& interface_);
 sc_in_rv(
 sc_port< sc_signal_in_if<sc_lv<W> > >& parent_);
 sc_in_rv(const char* name_,
 sc_port< sc_signal_in_if<sc_lv<W> > >& parent_);
 sc_in_rv(
 sc_port<sc_signal_inout_if<sc_lv<W> > >& parent_);
 sc_in_rv(const char* name_,
 sc_port<sc_signal_inout_if<sc_lv<W> > >& parent_);
 sc_in_rv(sc_in_rv<W>& parent_);
 sc_in_rv(const char* name_, sc_in_rv<W>& parent_);
 virtual ~sc_in_rv();

// methods
 virtual void end_of_elaboration();
 static const char* const kind_string;
 virtual const char* kind() const;

private:
// disabled
 sc_in_rv(const sc_in_rv<W>&);
 sc_in_rv<W>& operator = (const sc_in_rv<W>&);
};

Description
sc_in_rv is a specialized port for use with sc_signal_rv channels
(Chapter 11.63). Its behavior is that of a sc_port which has only one interface
that is of type sc_signal_in_if<sc_lv<W> >. It has additional methods
for convenience in accessing the channel connected to the port.

In the description of sc_in_rv, port refers to the sc_in_rv instance.

Public Constructors
sc_in_rv() ;

Create a sc_in_rv instance.

 Copyright 2003 Open SystemC Initiative. All rights reserved 225

SystemC 2.0.1 Language Reference Manual

explicit
sc_in_rv(const char*);

Create a sc_in_rv instance with the string name initialized to name_.

Public Member Functions
virtual void
end_of_elaboration() ;

Checks to make sure the channel bound to the port is of type
sc_signal_rv.

virtual const char*
kind() const ;

Returns “sc_in_rv”.

Disabled Member Functions
sc_in_rv(const sc_in_rv<W>&);
sc_in_rv<W>& operator = (const sc_in_rv<W>&);

 Copyright 2003 Open SystemC Initiative. All rights reserved 226

SystemC 2.0.1 Language Reference Manual

11.35 sc_inout
Synopsis
template <class T>
class sc_inout
: public sc_port<sc_signal_inout_if<T>,1>
{
public:
 // constructors and destructor

 sc_inout();
 sc_inout(const char* name_);
 sc_inout(sc_signal_inout_if<T>& interface_);
 sc_inout(const char* name_,
 sc_signal_inout_if<T>& interface_);
 sc_inout(sc_port<sc_signal_inout_if<T> >& parent_);
 sc_inout(const char* name_,
 sc_port<sc_signal_inout_if<T> >& parent_);
 sc_inout(sc_inout<T>& parent_);
 sc_inout(const char* name_, sc_inout<T>& parent_);
 virtual ~sc_inout();

 // methods
 const sc_event& default_event() const;
 const sc_event& value_changed_event() const;
 const T& read() const;
 operator const T& () const;
 bool event() const;
 sc_inout<T>& write(const T& value_);
 sc_inout<T>& operator = (const T& value_);
 sc_inout<T>& operator = (const
 sc_signal_in_if<T>& interface_);
 sc_inout<T>& operator = (const
 sc_port< sc_signal_inout_if<T> >& port_);
 sc_inout<T>& operator = (const
 sc_port< sc_signal_inout_if<T> >& port_);
 sc_inout<T>& operator = (const sc_inout<T>& port_);
 void initialize(const T& value_);
 void initialize(const
 sc_signal_in_if<T>& interface_);
 virtual void end_of_elaboration();
 sc_event_finder& value_changed() const
 static const char* const kind_string;
 virtual const char* kind() const;
 void add_trace(sc_trace_file*,
 const sc_string&) const;
};

Description
sc_inout is a specialized port for use with sc_signal channels (Chapter
11.59). Its behavior is that of a sc_port which has only one interface that is of

 Copyright 2003 Open SystemC Initiative. All rights reserved 227

SystemC 2.0.1 Language Reference Manual

type sc_signal_inout_if<T>. It has additional methods for convenience in
accessing the channel connected to the port.

In the description of sc_in, port refers to the sc_inout instance,
current_value refers to the value of the sc_signal instance connected to the
port, new_value is the value to be written and old_value is the previous value.
Chapter 2.4.1 describes the scheduler steps referred to in the description of
sc_inout.

Public Constructors
sc_inout();

Create a sc_inout instance.

explicit
sc_inout(const char*) ;

Create a sc_inout instance with the string name initialized to name_.

Public Member Functions
void
add_trace(sc_trace_file*, const sc_string&) const;

const sc_event&
default_event() const ;

Returns a reference to an event that occurs when new_value on a write is
different from current_value.

virtual void
end_of_elaboration();

Sets up tracing of the port.

bool
event() const ;

Returns true if an event occurred in the previous delta-cycle.

void
initialize(const T& val);

Sets current_value to val.

void
initialize(const sc_signal_in_if<T>& interface_) ;

Sets current_value to the current_value of the channel argument
interface_.

virtual const char*
kind() const ;

Returns “sc_inout”.

sc_event_finder
†
&

neg() const ;

 Copyright 2003 Open SystemC Initiative. All rights reserved 228

SystemC 2.0.1 Language Reference Manual

Type bool and sc_logic only. Returns a reference to an
sc_event_finder† that occurs when new_value on a write is false and the
current_value is not false. For use with static sensitivity list of a process.

bool
negedge() const ;

Type bool and sc_logic only. Returns true if an event occurred in the
previous delta-cycle and current_value is false.

negedge_event() const ;

const sc_event&

Type bool and sc_logic only. Returns a reference to an event that
occurs when new_value on a write is false and the current_value is not false.

sc_event_finder
†
&

pos() const ;
Type bool and sc_logic only. Returns a reference to an
sc_event_finder† that occurs when new_value on a write is true and the
current_value is not true. For use with static sensitivity list of a process.

bool
posedge() const ;

Type bool and sc_logic only. Returns a reference to an event that
occurs when new_value on a write is true and the current_value is not true.

const T&
read() const ;

Returns a reference to current_value.

sc_event_finder
†
&

value_changed() const ;
For use with static sensitivity list for a process. Returns a reference to an
sc_event_finder† that occurs when new_value on a write is different from
current_value. For use with static sensitivity list of a process.

const sc_event&
value_changed_event() const ;

Returns a reference to an event that occurs when new_value on a write is
different from current_value.

sc_inout<T>&
write(const T& val) ;

If val is not equal to current_value then schedules an update with val as
new_value.

Public Operators
operator const T& () const ;

 Copyright 2003 Open SystemC Initiative. All rights reserved 229

SystemC 2.0.1 Language Reference Manual

Returns current_value.

sc_inout<T>&
operator = (const Type_& val) ;
Type_ in {T, sc_signal_in_if<T>, sc_port<

sc_signal_in_if<T> >, sc_port< sc_signal_inout_if<T> >,
sc_inout<T> }

If val is not equal to current_value of the left hand side, then an update is
scheduled with val as the new_value of the left hand side. Returns a
reference to the instance.

Disabled Member Function
sc_inout(const sc_inout<T>&);

 Copyright 2003 Open SystemC Initiative. All rights reserved 230

SystemC 2.0.1 Language Reference Manual

11.36 sc_inout_resolved
Synopsis

{

 sc_inout_resolved& operator = (const

 sc_inout_resolved(const sc_inout_resolved&);

class sc_inout_resolved
 : public sc_inout<sc_logic>

public:
 // constructors and destructor
 sc_inout_resolved();
 sc_inout_resolved(const char* name_);
 sc_inout_resolved(
 sc_signal_inout_if<sc_logic>& interface_);
 sc_inout_resolved(const char* name_,
 sc_signal_inout_if<sc_logic>& interface_);
 sc_inout_resolved(
 sc_port<sc_signal_inout_if<sc_logic> >& parent_);
 sc_inout_resolved(const char* name_,
 sc_port<sc_signal_inout_if<sc_logic> >& parent_);
 sc_inout_resolved(sc_inout_resolved& parent_);
 sc_inout_resolved(const char* name_,
 sc_inout_resolved& parent_);
 virtual ~sc_inout_resolved();

 // methods
 sc_inout_resolved& operator = (const
 sc_logic& value_);

 sc_signal_in_if<sc_Logic>& interface_);
 sc_inout_resolved& operator = (const
 sc_port<sc_signal_in_if<sc_logic> >& port_);
 sc_inout_resolved& operator = (const
 sc_port<sc_signal_inout_if<sc_logic> >& port_);
 sc_inout_resolved& operator = (const
 sc_inout_resolved& port_);
 virtual void end_of_elaboration();
 static const char* const kind_string;
 virtual const char* kind() const;
private:
 // disabled

};

Description
sc_inout_resolved is a specialized port for use with
sc_signal_resolved channels (Chapter 11.63). Its behavior is that of a
sc_port which has only one interface that is of type
sc_signal_inout_if<sc_logic>. It has additional methods for
convenience in accessing the channel connected to the port.

Public Constructors
sc_inout_resolved() ;

 Copyright 2003 Open SystemC Initiative. All rights reserved 231

SystemC 2.0.1 Language Reference Manual

Create a sc_inout_resolved instance.

explicit
sc_inout_resolved(const char*);

Create a sc_inout_resolved instance with the string name initialized to
name_.

If val is not equal to current_value of the left hand side, then an update is
scheduled with val as the new_value of the left hand side. Returns a
reference to the instance.

Public Member Functions
virtual void
end_of_elaboration() ;

Checks to make sure the channel bound to the port is of type
sc_signal_resolved.

virtual const char*
kind() const ;

Returns “sc_inout_resolved”.

Public Operators
sc_inout_resolved&
operator = (const Type_& val) ;
Type_ in {sc_logic, sc_signal_inout_if<sc_logic>, sc_port<

sc_signal_inout_if <sc_logic> >, sc_inout_resolved& }

Disabled Member Function
sc_inout_resolved (const sc_inout_resolved&);

 Copyright 2003 Open SystemC Initiative. All rights reserved 232

SystemC 2.0.1 Language Reference Manual

11.37 sc_inout_rv
Synopsis
template <int W>
class sc_inout_rv
 : public sc_inout<sc_lv<W> >
{
public:
 // constructors and destructor
 sc_inout_rv();
 sc_inout_rv(const char* name_);
 sc_inout_rv(
 sc_signal_inout_if<sc_lv<W> >& interface_);
 sc_inout_rv(const char* name_,
 sc_signal_inout_if<sc_lv<W> >& interface_);
 sc_inout_rv(
 sc_port<sc_signal_inout_if<sc_lv<W> > >& parent_);
 sc_inout_rv(const char* name_,
 sc_port<sc_signal_inout_if<sc_lv<W> > >& parent_);
 sc_inout_rv(sc_inout_rv<W>& parent_);
 sc_inout_rv(const char* name_,
 sc_inout_rv<W>& parent_);
 virtual ~sc_inout_rv();

 // methods
 sc_inout_rv<W>& operator = (const
 sc_lv<W>& value_);
 sc_inout_rv<W>& operator = (const
 sc_signal_in_if<sc_lv<W> >& interface_);
 sc_inout_rv<W>& operator = (const
 sc_port<sc_signal_in_if<sc_lv<W> > >& port_);
 sc_inout_rv<W>& operator = (const
 sc_port<sc_signal_inout_if<sc_lv<W> > >& port_);
 sc_inout_rv<W>& operator = (const
 sc_inout_rv<W>& port_);
 virtual void end_of_elaboration();
 static const char* const kind_string;
 virtual const char* kind() const;
private:
 // disabled
 sc_inout_rv(const sc_inout_rv<W>&);
};

Description
sc_inout_rv is a specialized port for use with sc_signal_rv channels
(Chapter 11.63). Its behavior is that of a sc_port which has only one interface
that is of type sc_signal_inout_if<sc_lv<W> >. It has additional
methods for convenience in accessing the channel connected to the port.

In the description of sc_inout_rv, port refers to the sc_inout_rv instance.

 Copyright 2003 Open SystemC Initiative. All rights reserved 233

SystemC 2.0.1 Language Reference Manual

Public Constructors
sc_inout_rv() ;

Create a sc_inout_rv instance.

explicit
sc_inout_rv(const char*);

Create a sc_inout_rv instance with the string name initialized to name_.

Public Member Functions
virtual void
end_of_elaboration() ;

Checks to make sure the channel bound to the port is of type
sc_signal_rv.

virtual const char*
kind() const ;

Returns “sc_inout_rv”.

Public Operators
sc_inout_rv<W>&
operator = (const Type_& val) ;
Type_ in {sc_lv<W>, sc_signal_inout_if<T>, sc_port<

sc_signal_inout_if<T>,1>, sc_inout_rv<W> }
If val is not equal to current_value of the left hand side, then an update is
scheduled with val as the new_value of the left hand side. Returns a
reference to the instance.

Disabled Member Functions
sc_inout_rv(const sc_inout_rv<W>&);

 Copyright 2003 Open SystemC Initiative. All rights reserved 234

SystemC 2.0.1 Language Reference Manual

11.38 sc_int
Synopsis
template <int W>
class sc_int

 sc_int(int a);

 // assignment operators

 : public sc_int_base
{
public:
 // constructors
 sc_int();
 sc_int(int64 v);
 sc_int(const sc_int<W>& a);
 sc_int(const sc_int_base& a);
 sc_int(const sc_int_subref_r& a);
 template <class T1, class T2>
 sc_int(const sc_int_concref_r<T1,T2>& a);
 sc_int(const sc_signed& a);
 sc_int(const sc_unsigned& a);
 explicit sc_int(const sc_fxval& a);
 explicit sc_int(const sc_fxval_fast& a);
 explicit sc_int(const sc_fxnum& a);
 explicit sc_int(const sc_fxnum_fast& a);
 sc_int(const sc_bv_base& a);
 sc_int(const sc_lv_base& a);
 sc_int(const char* a);
 sc_int(unsigned long a);
 sc_int(long a);
 sc_int(unsigned int a);

 sc_int(uint64 a);
 sc_int(double a);

 sc_int<W>& operator = (int64 v);
 sc_int<W>& operator = (const sc_int_base& a);
 sc_int<W>& operator = (const sc_int_subref_r& a);
 sc_int<W>& operator = (const sc_int<W>& a);
 template <class T1, class T2>
 sc_int<W>& operator = (const sc_int_concref_r<T1,T2>&

a);
 sc_int<W>& operator = (const sc_signed& a);
 sc_int<W>& operator = (const sc_unsigned& a);
 sc_int<W>& operator = (const sc_fxval& a);
 sc_int<W>& operator = (const sc_fxval_fast& a);
 sc_int<W>& operator = (const sc_fxnum& a);
 sc_int<W>& operator = (const sc_fxnum_fast& a);
 sc_int<W>& operator = (const sc_bv_base& a);
 sc_int<W>& operator = (const sc_lv_base& a);
 sc_int<W>& operator = (const char* a);
 sc_int<W>& operator = (unsigned long a);
 sc_int<W>& operator = (long a);
 sc_int<W>& operator = (unsigned int a);
 sc_int<W>& operator = (int a);

 Copyright 2003 Open SystemC Initiative. All rights reserved 235

SystemC 2.0.1 Language Reference Manual

 sc_int<W>& operator = (uint64 a);
 sc_int<W>& operator = (double a);

 // arithmetic assignment operators
 sc_int<W>& operator += (int64 v);
 sc_int<W>& operator -= (int64 v);
 sc_int<W>& operator *= (int64 v);
 sc_int<W>& operator /= (int64 v);
 sc_int<W>& operator %= (int64 v);

 // bitwise assignment operators
 sc_int<W>& operator &= (int64 v);
 sc_int<W>& operator |= (int64 v);
 sc_int<W>& operator ^= (int64 v);
 sc_int<W>& operator <<= (int64 v);
 sc_int<W>& operator >>= (int64 v);

 // prefix and postfix increment and decrement operators
 sc_int<W>& operator ++ (); // prefix
 const sc_int<W> operator ++ (int); // postfix
 sc_int<W>& operator -- (); // prefix
 const sc_int<W> operator -- (int); // postfix
};

Description

sc_int<W> is an integer with a fixed word length W between 1 and 64 bits.
The word length is built into the type and can never change. If the chosen word
length exceeds 64 bits, an error is reported and simulation ends. All operations
are performed with 64 bits of precision with the result converted to appropriate
size through truncation.
Methods allow for addressing an individual bit or a sub range of bits.

Example
SC_MODULE(my_module) {
 // data types
 sc_int<3> a;
 sc_int<44> b;
 sc_biguint<88> c;
 sc_biguint<123> d;
 // process
 void my_proc();

 SC_CTOR(my_module) :
 a(0), // init
 c(7654321) // init
 {
 b = 33; // set value
 d = 2300; // set value
 SC_THREAD(my_proc);
 }
};

 Copyright 2003 Open SystemC Initiative. All rights reserved 236

SystemC 2.0.1 Language Reference Manual

void my_module::my_proc() {
 a = 1;
 b[30] = a[0];
 cout << b.range(7,0) << endl;

 cout << c << endl;
 d[122] = b;

 wait(300, SC_NS);
 sc_stop();
}

Public Constructors
sc_int();

Create an sc_int instance with an initial value of 0.

sc_int(int64 a) ;

bool and_reduce() const;

Create an sc_int with value a. If the word length of a is greater then W, a
gets truncated to W bits.

sc_int(T a) ;
T in { sc_int, sc_int_base, sc_int_subref

†
, sc_int_concref

†
,

sc_[un]signed
†
, sc_fxval, sc_fxval_fast,

sc_fix[ed][_fast], sc_bv_base, sc_lv_base, const char*,
[unsigned] long, [unsigned] int, int64, double }

Create an sc_int with value a. If the word length of a is greater then W, a
gets truncated to W bits.

Copy Constructor
sc_int(const sc_int&)

Methods
int
length() const ;

Return the word length.

void
print(ostream& os = cout) const ;

Print the sc_int instance to an output stream.

void
scan(istream& is = cin) ;

Read an sc_int value from an input stream.

Reduction Methods

bool nand_reduce() const ;

 Copyright 2003 Open SystemC Initiative. All rights reserved 237

SystemC 2.0.1 Language Reference Manual

bool or_reduce() const ;
bool nor_reduce() const ;

friend bool operator OP (sc_int, sc_int) ;

bool xor_reduce() const ;
bool xnor_reduce() const ;
F in { and nand or nor xor xnor }

Return the result of function F with all bits of the sc_int instance as input
arguments.

Assignment Operators
sc_int<W>&
operator = (int64) ;

sc_int<W>&
operator = (T) ;
T in { sc_int, sc_int_base, sc_int_subref

†
, sc_int_concref

†
,

sc_[un]signed
†
, sc_fxval, sc_fxval_fast,

sc_fix[ed][_fast], sc_bv_base,
sc_lv_base, const char*, [unsigned] long, [unsigned]
int, int64, double }

Assign the value of the right-hand side to the left-hand side. The value is
truncated, if its word length is greater than W.

Arithmetic Assignment Operators

sc_int<W>&
operator OP (int64) ;
OP in { += -= *= /= %= }

The operation of OP is performed and the result is assigned to the lefthand
side. If necessary, the result gets truncated.

Bitwise Assignment Operators
sc_int<W>&
operator OP (uint64) ;
OP in { &= |= ^= <<= >>= }

The operation of OP is performed and the result is assigned to the left hand
side. The result gets truncated.

Prefix and Postfix Increment and Decrement Operators
sc_int<W>& operator ++ () ;
const sc_int<W> operator ++ (int) ;

The operation of OP is performed as done for type int.

sc_int<W>& operator -- () ;
const sc_int<W> operator -- (int) ;

The operation is performed as done for type int.

Relational Operators

 Copyright 2003 Open SystemC Initiative. All rights reserved 238

SystemC 2.0.1 Language Reference Manual

OP in { == != < <= > >= }
These functions return the boolean result of the corresponding equality/
inequality check.

Bit Selection
sc_int_bitref operator [] (int i) ;

†

sc_int_bitref_r
†
 operator [] (int i) const ;

sc_int_bitref
†
 bit(int i) ;

sc_int_bitref_r
†
 bit(int i) const ;

Return a reference to a single bit at index i.

Implicit Conversion
operator int64() const

Implicit conversion to the implementation type uint64. The value does not
change.

Explicit Conversion
int64
value() const ;

Returns the value without changing it.

int to_int() const ;
double to_double() const ;
int64 to_int64() const ;
long to_long() const ;
uint64 to_uint64() const ;
unsigned int to_uint() const ;
unsigned long to_ulong() const ;

Converts the value of sc_int instance into the corresponding data type. If
the requested type has less word length than the sc_int instance, the
value gets truncated accordingly. If the requested type has greater word
length than the sc_int instance, the value gets sign extended, if necessary.

 Copyright 2003 Open SystemC Initiative. All rights reserved 239

SystemC 2.0.1 Language Reference Manual

11.39 sc_int_base
Synopsis
class sc_int_base
{
public:
 // constructors & destructors
 explicit sc_int_base(int w = sc_length_param().len())
 sc_int_base(int64 v, int w)
 sc_int_base(const sc_int_base& a)
 explicit sc_int_base(const sc_int_subref_r& a)
 template <class T1, class T2>
 explicit sc_int_base(const sc_int_concref_r<T1,T2>& a)
 explicit sc_int_base(const sc_signed& a);
 explicit sc_int_base(const sc_unsigned& a);
 ~sc_int_base()

 // assignment operators
 sc_int_base& operator = (int64 v)
 sc_int_base& operator = (const sc_int_base& a)
 sc_int_base& operator = (const sc_int_subref_r& a)
 template <class T1, class T2>
 sc_int_base& operator = (const

sc_int_concref_r<T1,T2>& a)
 sc_int_base& operator = (const sc_signed& a);
 sc_int_base& operator = (const sc_unsigned& a);
 sc_int_base& operator = (const sc_fxval& a);
 sc_int_base& operator = (const sc_fxval_fast& a);
 sc_int_base& operator = (const sc_fxnum& a);
 sc_int_base& operator = (const sc_fxnum_fast& a);
 sc_int_base& operator = (const sc_bv_base& a);
 sc_int_base& operator = (const sc_lv_base& a);
 sc_int_base& operator = (const char* a);
 sc_int_base& operator = (unsigned long a)
 sc_int_base& operator = (long a)
 sc_int_base& operator = (unsigned int a)
 sc_int_base& operator = (int a)
 sc_int_base& operator = (uint64 a)
 sc_int_base& operator = (double a)

 // arithmetic assignment operators
 sc_int_base& operator += (int64 v)
 sc_int_base& operator -= (int64 v)
 sc_int_base& operator *= (int64 v)
 sc_int_base& operator /= (int64 v)
 sc_int_base& operator %= (int64 v)

 // bitwise assignment operators
 sc_int_base& operator &= (int64 v)
 sc_int_base& operator |= (int64 v)
 sc_int_base& operator ^= (int64 v)
 sc_int_base& operator <<= (int64 v)
 sc_int_base& operator >>= (int64 v)

 Copyright 2003 Open SystemC Initiative. All rights reserved 240

SystemC 2.0.1 Language Reference Manual

 // prefix and postfix increment and decrement operators
 sc_int_base& operator ++ ()

 // Methods

 long to_long() const

 const sc_int_base operator ++ (int) // postfix
 sc_int_base& operator -- () // prefix
 const sc_int_base operator -- (int) // postfix

 // relational operators
 friend bool operator == (const sc_int_base& a, const

sc_int_base& b)
 friend bool operator != (const sc_int_base& a, const

sc_int_base& b)
 friend bool operator < (const sc_int_base& a, const

sc_int_base& b)
 friend bool operator <= (const sc_int_base& a, const

sc_int_base& b)
 friend bool operator > (const sc_int_base& a, const

sc_int_base& b)
 friend bool operator >= (const sc_int_base& a, const

sc_int_base& b)

 // bit selection
 sc_int_bitref operator [] (int i);
 sc_int_bitref_r operator [] (int i) const;
 sc_int_bitref bit(int i);
 sc_int_bitref_r bit(int i) const;

 // part selection
 sc_int_subref operator () (int left, int right);
 sc_int_subref_r operator () (int left, int right)

const;
 sc_int_subref range(int left, int right);
 sc_int_subref_r range(int left, int right) const;

 // bit access
 bool test(int i) const
 void set(int i)
 void set(int i, bool v)

 int length() const
 bool and_reduce() const;
 bool nand_reduce() const
 bool or_reduce() const;
 bool nor_reduce() const
 bool xor_reduce() const;
 bool xnor_reduce() const
 operator int64() const
 int64 value() const
 int to_int() const
 unsigned int to_uint() const

 unsigned long to_ulong() const
 int64 to_int64() const

 Copyright 2003 Open SystemC Initiative. All rights reserved 241

SystemC 2.0.1 Language Reference Manual

 uint64 to_uint64() const
 double to_double() const
 const sc_string to_string(sc_numrep numrep = SC_DEC)

const;
 const sc_string to_string(sc_numrep numrep, bool

w_prefix) const;
 void print(ostream& os = cout) const
 void scan(istream& is = cin);
};

Description

sc_int_base is an integer with a fixed word length between 1 and 64 bits.
The word length is set when construction takes place and cannot be changed
later.

Public Constructors
explicit
sc_int_base(int = sc_length_param().len());
Create an sc_int_base instance with specified word length. Its initial value is
0.

sc_int_base(int64 a, int b);
Create an sc_int_base instance with value a and word length b.

sc_int_base(T a) ;
T in { sc_int_subref

†
, sc_int_concref

†
, sc_[un]signed }

Create an sc_int_base with value a. The word length of a must not exceed
64 bits. If it does, an error is reported and simulation ends.

Copy Constructor
sc_int_base(const sc_int_base&)

Methods
int
length() const ;

Return the word length.

void
print(ostream& os = cout) const ;

Print the sc_int_base instance to an output stream.

void
scan(istream& is = cin) ;

Read a sc_int_base value from an input stream.

Reduction Methods
bool and_reduce() const;
bool nand_reduce() const ;

 Copyright 2003 Open SystemC Initiative. All rights reserved 242

SystemC 2.0.1 Language Reference Manual

bool nor_reduce() const ;
bool or_reduce() const ;
bool xnor_reduce() const ;
bool xor_reduce() const;
F in { and nand or nor xor xnor }

Return the result of function F with all bits of the sc_int_base instance as
input arguments.

Assignment Operators
sc_int_base& operator = (int64) ;
sc_int_base& operator = (T) ;
T in { sc_int_base, sc_int_subref

†
, sc_int_concref

†
,

sc_[un]signed, sc_fxval, sc_fxval_fast, sc_fxnum,
sc_fxnum_fast, sc_bv_base, sc_lv_base, char*, [unsigned]
long, [unsigned] int, uint64, double }

Assign the value of the right-hand side to the left-hand side. The value is
truncated, if its word length does not fit into the sc_int_base instance on the left
hand side . If not, the value is sign extended.

Arithmetic Assignment Operators

sc_int_base&
operator OP (int64) ;
OP in { += -= *= /= %= }

The operation of OP is performed and the result is assigned to the lefthand
side. If necessary, the result gets truncated or sign extended.

Bitwise Assignment Operators
sc_int_base&
operator OP (int64) ;
OP in { &= |= ^= <<= >>= }

The operation of OP is performed and the result is assigned to the lefthand
side. The result gets truncated or sign extended.

Prefix and Postfix Increment and Decrement Operators
sc_int_base<W>& operator ++ () ;
const sc_int_base<W> operator ++ (int) ;

The operation is performed as done for type unsigned int.

sc_int_base<W>& operator -- () ;
const sc_int<W> operator -- (int) ;

The operation is performed as done for type unsigned int.

Relational Operators
friend bool operator OP (sc_int_base, sc_int_base) ;
OP in { == != < <= > >= }

These functions return the boolean result of the corresponding equality/
inequality check.

 Copyright 2003 Open SystemC Initiative. All rights reserved 243

SystemC 2.0.1 Language Reference Manual

Bit Selection
sc_int_bitref operator [] (int i) ;
sc_int_bitref_r operator [] (int i) const ;
sc_int_bitref bit(int i) ;
sc_int_bitref_r bit(int i) const ;

Return a reference to a single bit at index i.

Implicit Conversion
operator int64() const ;

Implicit conversion to the implementation type int64. The value does not
change.

Explicit Conversion

int64 to_int64() const ;

double to_double() const ;
int to_int() const ;

long to_long() const ;
uint64 to_uint64() const ;
unsigned int to_uint() const ;
unsigned long to_ulong() const ;

Converts the value of sc_int_base instance into the corresponding data
type. If the requested type has less word length than the sc_int_base
instance, the value gets truncated accordingly.

 Copyright 2003 Open SystemC Initiative. All rights reserved 244

SystemC 2.0.1 Language Reference Manual

11.40 sc_interface
Synopsis

class sc_interface
{
public:
 virtual void register_port(sc_port_base& port_,
 const char* if_typename_);
 virtual const sc_event& default_event() const;
 virtual ~sc_interface();

protected:
 // constructor
 sc_interface();

private:
 // disabled
 sc_interface(const sc_interface&);
 sc_interface& operator = (const sc_interface&);
};

Description
Class sc_interface is the abstract class for interfaces. Users inherit from
this class to create their own interfaces. The methods default_event() and
register_port() are “placeholders” for classes that inherit from
sc_interface. Classes that directly derive from sc_interface must do
this virtual.

Example
// define an interface
class my_if : virtual public sc_interface {
public:
 virtual int read() = 0;
};

// define a channel implementing interface my_if
class my_ch : public my_if, public sc_channel {
public:
 ...
 virtual int read() { return m_val; }
 virtual const sc_event& default_event() const { return

m_ev; }
 ...
};

Protected Constructor
sc_interface();

Default constructor.

Public Member Functions

 Copyright 2003 Open SystemC Initiative. All rights reserved 245

SystemC 2.0.1 Language Reference Manual

virtual const sc_event&
default_event() const;

Except produce a warning message, does nothing by default. Can be
defined by channels.

virtual void
register_port(sc_port_base†&, const char*);

Does nothing by default. Can be defined by channels for registering ports.

Disabled Member Functions
sc_interface(const sc_interface&);

Copy constructor.

sc_interface& operator = (const sc_interface&);

Default assignment operator.

 Copyright 2003 Open SystemC Initiative. All rights reserved 246

SystemC 2.0.1 Language Reference Manual

11.41 sc_length_context
Synopsis

begin() ;

void

typedef sc_context<sc_length_param> sc_length_context;

Description
sc_length_context manage a stack of sc_length_param objects. When
a new sc_length_context is created, it gets stacked together with its
sc_length_param object. When the sc_length_context leaves scope, it
gets destructed, and therefore removed from that global stack.

Public Constructors
explicit
sc_length_context(const sc_length_param& a,

sc_context_begin b = SC_NOW);
Create an sc_length_context with sc_length_param a. If b equals SC_NOW,
which is the default, it gets pushed onto the global sc_length_context stack.
If b equals SC_LATER, it is not pushded onto that stack.

Public Methods

void

Push the sc_length_context object onto the stack. An sc_length_context
must not be pushed more than once onto the stack.

end() ;
Remove the sc_length_context object from the stack. It must be the top
most object on that stack.

static const sc_length_param&
default_value();

Return the default length parameter.

const sc_length_param&
value() const;

Return the sc_length_param object of the sc_length_context object.

 Copyright 2003 Open SystemC Initiative. All rights reserved 247

SystemC 2.0.1 Language Reference Manual

11.42 sc_length_param

Description

sc_length_param(int n) ;

Synopsis
class sc_length_param
{
public:

 sc_length_param();
 sc_length_param(int);
 sc_length_param(const sc_length_param&);
 explicit sc_length_param(sc_without_context);

 sc_length_param& operator = (const sc_length_param&);
 friend bool operator == (const sc_length_param&,
 const sc_length_param&);
 friend bool operator != (const sc_length_param&,
 const sc_length_param&);

 int len() const;
 void len(int);
 const sc_string to_string() const;
 void print(ostream& = cout) const;
 void dump(ostream& = cout) const;
};

Instances of sc_length_param define the default word length of newly created
sc_[u]int_base, sc_[un]signed, sc_bv_base and sc_lv_base objects. This is
especially needed to construct arrays of those data types, because this is the
only way to pass the length parameter to these objects.

With the help of sc_length_context objects, sc_length_params are put onto a
stack. If, for example, an sc_bv_base is constructed by using its default
constructor, which gets the word length from the top element of that stack.

Public Constructors
sc_length_param();

Create an sc_length_param with the default word length of 32.

Create an sc_length_param with n as the word length with n > 0.

explicit
sc_length_param(sc_without_context) ;

Create an sc_length_param with the default word length of 32.

Copy Constructor
sc_length_param(const sc_length_param&);

 Copyright 2003 Open SystemC Initiative. All rights reserved 248

SystemC 2.0.1 Language Reference Manual

Public Methods
int
len() const;

Get the word length stored in the sc_length_param.

void
len(int n);

Set the word length of the sc_length_param to n, with n > 0.

print(ostream& = cout) const;

operator != (const sc_length_param& a, const
sc_length_param& b);

const sc_string
to_string() const;

Convert the sc_length_param into its string representation.

void

Print the contents to a stream.

Public Operators
sc_length_param&
operator = (const sc_length_param& a)

Assign the word length value of a to the lefthand side sc_length_param
instance.

friend bool
operator == (const sc_length_param& a, sc_length_param&

b);
Return true if the stored lengths of a and b are equal.

friend bool

Return true if the stored lengths of a and b are not equal.

 Copyright 2003 Open SystemC Initiative. All rights reserved 249

SystemC 2.0.1 Language Reference Manual

11.43 sc_logic

 ~sc_logic();

 sc_logic& operator = (int a);

 sc_logic& operator &= (const sc_logic& b);

 sc_logic& operator |= (const sc_logic& b);

 sc_logic& operator ^= (bool b);

Synopsis
class sc_logic
{
public:
 // constructors & destructor
 sc_logic();
 sc_logic(const sc_logic& a);
 sc_logic(sc_logic_value_t v);
 explicit sc_logic(bool a);
 explicit sc_logic(char a);
 explicit sc_logic(int a);
 explicit sc_logic(const sc_bit& a);

 // assignment operators
 sc_logic& operator = (const sc_logic& a);
 sc_logic& operator = (sc_logic_value_t v);
 sc_logic& operator = (bool a);
 sc_logic& operator = (char a);

 sc_logic& operator = (const sc_bit& a);

 // bitwise assignment operators

 sc_logic& operator &= (sc_logic_value_t v);
 sc_logic& operator &= (bool b);
 sc_logic& operator &= (char b);
 sc_logic& operator &= (int b);

 sc_logic& operator |= (sc_logic_value_t v);
 sc_logic& operator |= (bool b);
 sc_logic& operator |= (char b);
 sc_logic& operator |= (int b);
 sc_logic& operator ^= (const sc_logic& b);
 sc_logic& operator ^= (sc_logic_value_t v);

 sc_logic& operator ^= (char b);
 sc_logic& operator ^= (int b);

 // bitwise complement
 const sc_logic operator ~ () const ;
 sc_logic& b_not();

 // bitwise and
 friend const sc_logic operator & (const sc_logic& a,

const sc_logic& b);
 friend const sc_logic operator & (const sc_logic& a,

sc_logic_value_t b);
 friend const sc_logic operator & (const sc_logic& a,

bool b);

 Copyright 2003 Open SystemC Initiative. All rights reserved 250

SystemC 2.0.1 Language Reference Manual

 friend const sc_logic operator & (const sc_logic& a,
char b);

 friend const sc_logic operator & (const sc_logic& a,
int b);

 friend const sc_logic operator & (sc_logic_value_t a,
const sc_logic& b);

 friend const sc_logic operator & (bool a, const
sc_logic& b);

 friend const sc_logic operator & (char a, const
sc_logic& b);

 friend const sc_logic operator & (int a, const
sc_logic& b);

 // bitwise or
 friend const sc_logic operator | (const sc_logic& a,

const sc_logic& b);
 friend const sc_logic operator | (const sc_logic& a,

sc_logic_value_t b);
 friend const sc_logic operator | (const sc_logic& a,

bool b);
 friend const sc_logic operator | (const sc_logic& a,

char b);
 friend const sc_logic operator | (const sc_logic& a,

int b);
 friend const sc_logic operator | (sc_logic_value_t a,

const sc_logic& b);
 friend const sc_logic operator | (bool a, const

sc_logic& b);
 friend const sc_logic operator | (char a, const

sc_logic& b);
 friend const sc_logic operator | (int a, const

sc_logic& b);

 // bitwise xor
 friend const sc_logic operator ^ (const sc_logic& a,

const sc_logic& b);
 friend const sc_logic operator ^ (const sc_logic& a,

sc_logic_value_t b);
 friend const sc_logic operator ^ (const sc_logic& a,

bool b);
 friend const sc_logic operator ^ (const sc_logic& a,

char b);
 friend const sc_logic operator ^ (const sc_logic& a,

int b);
 friend const sc_logic operator ^ (sc_logic_value_t a,

const sc_logic& b);
 friend const sc_logic operator ^ (bool a, const

sc_logic& b);
 friend const sc_logic operator ^ (char a, const

sc_logic& b);
 friend const sc_logic operator ^ (int a, const

sc_logic& b);

 // relational operators and functions

 Copyright 2003 Open SystemC Initiative. All rights reserved 251

SystemC 2.0.1 Language Reference Manual

 friend bool operator == (const sc_logic& a, const
sc_logic& b);

 friend bool operator == (const sc_logic& a,
sc_logic_value_t b);
friend bool operator == (const sc_logic& a, bool b);
friend bool operator == (const sc_logic& a, char b);

 friend bool operator == (const sc_logic& a, int b);
 friend bool operator == (sc_logic_value_t a, const

sc_logic& b);
friend bool operator == (bool a, const sc_logic& b);
friend bool operator == (char a, const sc_logic& b);

 friend bool operator == (int a, const sc_logic& b);
 friend bool operator != (const sc_logic& a, const

sc_logic& b);
 friend bool operator != (const sc_logic& a,

sc_logic_value_t b);
friend bool operator != (const sc_logic& a, bool b);
friend bool operator != (const sc_logic& a, char b);

 friend bool operator != (const sc_logic& a, int b);
 friend bool operator != (sc_logic_value_t a, const

sc_logic& b);
friend bool operator != (bool a, const sc_logic& b);
friend bool operator != (char a, const sc_logic& b);

 friend bool operator != (int a, const sc_logic& b);

 // explicit conversions
 sc_logic_value_t value() const ;
 bool is_01()const ;
 bool to_bool()const ;
 char to_char()const ;

 // other methods
 void print(ostream& os = cout) const ;
 void scan(istream& is = cin);

 // memory (de);allocation
 static void* operator new(size_t, void* p); //

placement new
 static void* operator new(size_t sz);
 static void operator delete(void* p, size_t sz);
 static void* operator new [] (size_t sz);
 static void operator delete [] (void* p, size_t sz);

private:
 // disabled
 explicit sc_logic(const char*);
 sc_logic& operator = (const char*);
};

Description

Instances of type sc_logic can have the values shown in Table 28.

 Copyright 2003 Open SystemC Initiative. All rights reserved 252

SystemC 2.0.1 Language Reference Manual

Table 28 – sc_logic Values
Type Values

to_bool() const ;

sc_logic_value_t Log_0 Log_1 Log_Z Log_X
bool false true n/a n/a
int 0 1 n/a n/a
char ‘0’ ‘1’ ‘Z’ ‘X’

Values of types not found in Table 28 (sc_logic_value_t, bool, int,
char) produce undefined behavior.

Public Constructors
sc_logic() ;
sc_logic(sc_logic) ;
sc_logic(sc_logic_value_t) ;
explicit
sc_logic(T) ;
T in { sc_logic, bool, int, char }

If not otherwise specified, an sc_logic is initialized with Log_X.

General functions
bool
is_01() const ;

Return true if the sc_logic instance is either Log_0 or Log_1, else return
false.

friend ostream&
operator << (ostream&, sc_logic) ;

Print the value of the sc_logic object to a stream.

friend istream&
operator >> (istream&, sc_logic&) ;

 Read the next value from a stream.

void
print(ostream& os = cout) const ;

Print the value of the sc_logic object to a stream.

void
scan(istream& is = cin) ;

 Read the next value from a stream.
bool

Explicit conversion.to type bool.

char
to_char() const ;

Explicit conversion.to type char

sc_logic_value_t

 Copyright 2003 Open SystemC Initiative. All rights reserved 253

SystemC 2.0.1 Language Reference Manual

value() const ;
Explicit conversion.to type sc_logic_value_t. Value remains the same.

Assignment Operators
sc_logic& operator = (sc_logic_value_t) ;
sc_logic& operator = (sc_bit) ;
sc_logic& operator = (T) ;
T in { sc_logic, bool, int, char }

Bitwise Assignment Operators
sc_logic& operator &= (sc_logic_value_t v) ;
sc_logic& operator &= (T) ;

sc_logic& operator |= (sc_logic_value_t v) ;
sc_logic& operator |= (T) ;

sc_logic& operator ^= (sc_logic_value_t v) ;
sc_logic& operator ^= (T) ;

T in { sc_logic, bool, int, char }

These operators calculate the four logic value of the AND, OR and XOR
function and assign the result to the left-hand side.

sc_logic& b_not() ;

Bitwise OR

Bitwise complement
const sc_logic operator ~ () const ;

Bitwise AND
friend const sc_logic operator & (sc_logic,

sc_logic_value_t) ;
friend const sc_logic operator & (sc_logic_value_t,

sc_logic) ;
friend const sc_logic operator & (sc_logic, T) ;
friend const sc_logic operator & (T, sc_logic) ;
T in { sc_logic, bool, int, char }

friend const sc_logic operator | (sc_logic,
sc_logic_value_t) ;

friend const sc_logic operator | (sc_logic_value_t,
sc_logic) ;

friend const sc_logic operator | (sc_logic, T) ;
friend const sc_logic operator | (T, sc_logic) ;
T in { sc_logic, bool, int, char }

Bitwise XOR
friend const sc_logic operator ^ (sc_logic,

sc_logic_value_t) ;
friend const sc_logic operator ^ (sc_logic_value_t,

sc_logic) ;

 Copyright 2003 Open SystemC Initiative. All rights reserved 254

SystemC 2.0.1 Language Reference Manual

friend const sc_logic operator ^ (sc_logic, T) ;
friend const sc_logic operator ^ (T, sc_logic) ;
T in { sc_logic, bool, int, char }

friend bool operator != (sc_logic, T) ;

Test for equality:
friend bool operator == (sc_logic, sc_logic_value_t) ;
friend bool operator == (sc_logic_value_t, sc_logic) ;
friend bool operator == (sc_logic, T) ;
friend bool operator == (T, sc_logic) ;
T in { sc_logic, bool, int, char }

Test for inequality:
friend bool operator != (sc_logic, sc_logic_value_t) ;
friend bool operator != (sc_logic_value_t, sc_logic) ;

friend bool operator != (T, sc_logic) ;
T in { sc_logic, bool, int, char }

Disabled Member Functions
explicit
sc_logic(const char*);

sc_logic&
operator = (const char*);

 Copyright 2003 Open SystemC Initiative. All rights reserved 255

SystemC 2.0.1 Language Reference Manual

11.44 sc_lv
Synopsis
template <int W>
class sc_lv
 : public sc_lv_base
{
public:
 // constructors
 sc_lv();

 sc_lv(long a);

 sc_lv(int64 a);

};

 explicit sc_lv(const sc_logic& init_value);
 explicit sc_lv(bool init_value);
 explicit sc_lv(char init_value);
 sc_lv(const char* a);
 sc_lv(const bool* a);
 sc_lv(const sc_logic* a);
 sc_lv(const sc_unsigned& a);
 sc_lv(const sc_signed& a);
 sc_lv(const sc_uint_base& a);
 sc_lv(const sc_int_base& a);
 sc_lv(unsigned long a);

 sc_lv(unsigned int a);
 sc_lv(int a);
 sc_lv(uint64 a);

 template <class X>
 sc_lv(const sc_bv_base& a);
 sc_lv(const sc_lv<W>& a);

 // assignment operators
 template <class X>
 sc_lv<W>& operator = (const sc_bv_base& a);
 sc_lv<W>& operator = (const sc_lv<W>& a);
 sc_lv<W>& operator = (const char* a);
 sc_lv<W>& operator = (const bool* a);
 sc_lv<W>& operator = (const sc_logic* a);
 sc_lv<W>& operator = (const sc_unsigned& a);
 sc_lv<W>& operator = (const sc_signed& a);
 sc_lv<W>& operator = (const sc_uint_base& a);
 sc_lv<W>& operator = (const sc_int_base& a);
 sc_lv<W>& operator = (unsigned long a);
 sc_lv<W>& operator = (long a);
 sc_lv<W>& operator = (unsigned int a);
 sc_lv<W>& operator = (int a);
 sc_lv<W>& operator = (uint64 a);
 sc_lv<W>& operator = (int64 a);

Description
sc_lv< W > is a four value logic vector of arbitrary length. Its length is built
into the type and can not change later.

 Copyright 2003 Open SystemC Initiative. All rights reserved 256

SystemC 2.0.1 Language Reference Manual

Pointer arguments are arrays. In the case of 'const bool*' and 'const sc_logic*'
the size has to be at least as large as the length of the bit vector.

Public Constructors

Create an sc_lv with all bits set to a. a can be '0', '1', 'Z' or 'X'.

sc_lv<W>& operator = (T a) ;

Examples
sc_lv<38> a; // 38-bit bit vector
sc_lv<4> b;
b = "ZZZZ";

sc_lv() ;
Create an sc_lv with all bits set to Log_X.

explicit
sc_lv(bool a) ;

Create an sc_lv with all bits set to a.

explicit
sc_lv(char a) ;

sc_lv(T a) ;
T in { const char*, const bool*, const sc_logic*, const

sc_unsigned&, const sc_signed&, const sc_uint_base
†
&,

const sc_int_base&, [unsigned] long, [unsigned] int,
[u]int64 }

Create an sc_lv with the converted contents of a. If the length of a is
greater than the length of sc_lv, a gets truncated. If the length of a is less
than the length of sc_lv, the MSBs get padded with Log_0.

Copy Constructor
sc_lv(const sc_lv<W>&) ;

Assignment Operators
sc_lv<W>& operator = (const sc_lv<W>& a) ;

T in { const char*, const bool*, const sc_logic*, const
sc_unsigned&, const sc_signed&, const sc_uint_base

†
&,

const sc_int_base&, unsigned long, long, unsigned int,
int, [u]int64 }

The value of the right handside is assigned to the sc_lv. If the length of a
is greater than the length of sc_lv, a gets truncated. If the length of a is
less than the length of sc_lv, the MSBs get padded with Log_0.

 Copyright 2003 Open SystemC Initiative. All rights reserved 257

SystemC 2.0.1 Language Reference Manual

11.45 sc_lv_base
Synopsis

 sc_lv_base& operator = (const sc_int_base& a);

class sc_lv_base
{
public:
 // constructors & destructors
 explicit sc_lv_base(int length_ =

sc_length_param().len());
 explicit sc_lv_base(const sc_logic& a,
 int length_ = sc_length_param().len());
 sc_lv_base(const char* a);
 sc_lv_base(const char* a, int length_);
 template <class X>
 sc_lv_base(const sc_bv_base& a);
 sc_lv_base(const sc_lv_base& a);
 virtual ~sc_lv_base();

 // assignment operators
 template <class X>
 sc_lv_base& operator = (const sc_bv_base& a);
 sc_lv_base& operator = (const sc_lv_base& a);
 sc_lv_base& operator = (const char* a);
 sc_lv_base& operator = (const bool* a);
 sc_lv_base& operator = (const sc_logic* a);
 sc_lv_base& operator = (const sc_unsigned& a);
 sc_lv_base& operator = (const sc_signed& a);
 sc_lv_base& operator = (const sc_uint_base& a);

 sc_lv_base& operator = (unsigned long a);
 sc_lv_base& operator = (long a);
 sc_lv_base& operator = (unsigned int a);
 sc_lv_base& operator = (int a);
 sc_lv_base& operator = (uint64 a);
 sc_lv_base& operator = (int64 a);

 // Methods
 int length() const;
 bool is_01() const;
};

Description
sc_lv_base is a vector of four value logic values of arbitary length. Its length is
set at construction and can not be changed later.

For sc_lv_base description:

A bit means a four value logic bit.

T in { const char*, const bool*, const sc_logic*, const

sc_unsigned&, const sc_signed&, const sc_uint_base&,

 Copyright 2003 Open SystemC Initiative. All rights reserved 258

SystemC 2.0.1 Language Reference Manual

const sc_int_base&, unsigned long, long, unsigned int,
int, uint64, int64 }

Pointer arguments are arrays. In the case of 'const bool*' and 'const
sc_logic*' the size has to be at least as large as the length of the bit
vector.

Public Constructors
explicit
sc_lv_base(int = sc_length_param().len()) ;
Create an sc_lv_base of specified length. All bits are set to Log_X.

explicit
sc_lv_base(const sc_logic& a, int =

sc_length_param().len()) ;
Create an sc_lv_base of specified length. All bits are set to a.

sc_lv_base(const char* a) ;

sc_lv_base(const char *a, int i) ;

Create an sc_lv_base with the contents of a. The character string a must be
convertible into a bit string. The length of the newly created sc_lv_base is
identical to the length of the bit value representation of a.

Create an sc_lv_base with the contents of a. The character string a must be
convertible into a bit string. The length of the bit vector is determined by i. If the
length of a is less than i, the MSBs are set to Log_X. If the length of a is greater
than i, the MSBs are truncated.

Copy Constructor
sc_lv_base(const sc_lv_base&) ;

Methods
bool
is_01() const ;
 Return true, if all bits are Log_0 or Log_1.

int
length() const
 Return the length of the bit vector.

void
print(ostream& os = cout) const ;

Print the sc_bv_base instance to an output stream.

void
scan(istream& is = cin) ;

Read an sc_bv_base value from an input stream.

Assignment Operators

 Copyright 2003 Open SystemC Initiative. All rights reserved 259

SystemC 2.0.1 Language Reference Manual

sc_lv_base& operator = (const sc_lv_base&)
sc_lv_base& operator = (T)

The value of the right-hand side is assigned to the left-hand side. If the lengths
of the two operands are different, the right-hand side gets either truncated or
sign extended.

Bitwise Operators
sc_lv_base& operator &= (T) ;

Calculate the bitwise AND operation and assign the result to the left-hand
side. Both operands have to be of equal length.

const sc_lv_base operator & (T) const ;

Return the result of the bitwise AND operation. Both operands have to be of
equal length.

sc_lv_base& operator |= (T) ;

Calculate the bitwise OR operation and assign the result to the left-hand
side. Both operands have to be of equal length.

const sc_lv_base operator | (T) const ;

Return the result of the bitwise OR operation. Both operands have to be of
equal length.

sc_lv_base& operator ^= (T) ;

Calculate the bitwise XOR operation and assign the result to the left-hand
side. Both operands have to be of equal length.

const sc_lv_base operator ^ (T) const ;

Return the result of the bitwise XOR operation. Both operands have to be of
equal length.

sc_lv_base& operator <<= (int i) ;

Shift the contents of the left hand side operand i bits to the left and assign
the result to the left hand side operand. i must not be negative. Log_0
values are inserted at the LSB side.

const sc_lv_base operator << (int i) const ;

Shift the contents of the left-hand side operand i bits to the left and return
the result. i must not be negative. Log_0 bits are inserted at the LSB side.

sc_lv_base& operator >>= (int i) ;

Shift the contents of the left-hand side operand i bits to the right and assign
the result to the left-hand side operand. i must not be negative. Log_0
values are inserted at the MSB side.

const sc_lv_base operator >> (int i) const ;

 Copyright 2003 Open SystemC Initiative. All rights reserved 260

SystemC 2.0.1 Language Reference Manual

Shift the contents of the left-hand side operand i bits to the right and return
the result. i must not be negative. Log_0 bits are inserted at the MSB side.

Bitwise Rotation & Reverse Methods

sc_lv_base&

Bit Selection

sc_bitref <sc_lv_base> bit(int i) ;

sc_logic_value_t xnor_reduce() const ;

lrotate(int i) ;
Rotate the contents of the bit vector i bits to the left.

sc_lv_base&
rrotate(int i) ;

Rotate the contents of the bit vector i bits to the right.

sc_lv_base&
reverse() ;

Reverse the contents of the bit vector. LSB becomes MSB and vice versa.

sc_bitref
†
<sc_lv_base> operator [] (int i) ;

sc_bitref_r
†
<sc_lv_base> operator [] (int i) const ;

†

sc_bitref_r
†
<sc_lv_base> bit(int i) const ;

Return a reference to the i-th bit. Return an r-value if the logic vector is
constant.

Part Selection

sc_subref<sc_lv_base> operator () (int, int) ;
sc_subref_r<sc_lv_base> operator () (int, int) const ;
sc_subref<sc_lv_base> range(int, int) ;
sc_subref_r<sc_lv_base> range(int, int) const ;

Return a reference to a range of bits. Return an r-value if the logic vector is
constant.

Reduction Methods

sc_logic_value_t and_reduce() const ;
sc_logic_value_t nand_reduce() const ;
sc_logic_value_t or_reduce() const ;
sc_logic_value_t nor_reduce() const ;
sc_logic_value_t xor_reduce() const ;

 Copyright 2003 Open SystemC Initiative. All rights reserved 261

SystemC 2.0.1 Language Reference Manual

Return the result of function F with all bits of the logic vector as input
arguments.

Relational Operators

Return true if the two logic vectors are equal.

 F in { and nand or nor xor xnor }

bool operator == (T) const ;

Explicit Conversion
int to_int() const ;
long to_long() const ;
unsigned int to_uint() const ;
unsigned long to_ulong() const ;

Convert the logic vector into an int, unsigned int, long or unsigned long
respectively. The LSB of the logic vector is put into the LSB of the returned
value, etc.

Explicit Conversion to Character String

const sc_string to_string() const ;

Convert the logic vector into a string representing its contents. Every
character represents a logic value. MSBs are on the left.

const sc_string to_string(sc_numrep nr) const ;

Convert the logic vector into a string representing its contents. The nr
argument specifies the base of the number string. A prefix ensures that the
string can be read back without changing the value.

const sc_string to_string(sc_numrep, bool prefix) const ;

Convert the logic vector into a string representing its contents. The nr
argument specifies the base of the number string. A prefix ensures that the
string can be read back without changing the value. If prefix is false, no
prefix is pre-pended to the value string.

 Copyright 2003 Open SystemC Initiative. All rights reserved 262

SystemC 2.0.1 Language Reference Manual

11.46 sc_module
Synopsis
class sc_module
: public sc_object
{
protected:
 virtual void end_of_elaboration();

public:

 void wait(sc_event_or_list& el);

 // constructors
 sc_module(const char* nm);
 sc_module(const sc_string& nm);
 sc_module(const sc_module_name& nm); sc_module();

 // destructor
 virtual ~sc_module();

 const sc_pvector<sc_object*>& get_child_objects() const;

protected:
 void dont_initialize();
 void wait();

 // dynamic sensitivity for SC_THREADs and SC_CTHREADs
 void wait(const sc_event& e);

 void wait(sc_event_and_list& el);
 void wait(const sc_time& t);
 void wait(double v, sc_time_unit tu);
 void wait(const sc_time& t, const sc_event& e);
 void wait(double v, sc_time_unit tu, const sc_event&

e);
 void wait(const sc_time& t, sc_event_or_list& el);
 void wait(double v, sc_time_unit tu, sc_event_or_list&

el);
 void wait(const sc_time& t, sc_event_and_list& el);
 void wait(double v, sc_time_unit tu,

sc_event_and_list& el);

 // static sensitivity for SC_METHODs
 void next_trigger();

 // dynamic sensitivity for SC_METHODs
 void next_trigger(const sc_event& e);
 void next_trigger(sc_event_or_list& el);
 void next_trigger(sc_event_and_list& el);
 void next_trigger(const sc_time& t);
 void next_trigger(double v, sc_time_unit tu);
 void next_trigger(const sc_time& t, const sc_event&

e);
 void next_trigger(double v, sc_time_unit tu, const

sc_event& e);

 Copyright 2003 Open SystemC Initiative. All rights reserved 263

SystemC 2.0.1 Language Reference Manual

 void next_trigger(const sc_time& t, void
next_trigger(double v, sc_time_unit tu,
sc_event_or_list& el);

 void next_trigger(const sc_time& t, const sc_event&
e);

 void next_trigger(double v, sc_time_unit tu,
sc_event_and_list& el);

 sc_sensitive sensitive;
 void set_stack_size(size_t);
public:

 // positional binding methods (cont'd)
 void operator () (const sc_bind_proxy& p001,
 const sc_bind_proxy& p002 = SC_BIND_PROXY_NIL,
 . . .
 const sc_bind_proxy& p064 = SC_BIND_PROXY_NIL);
};

Description
An sc_module is the base class for modules. Users inherit from this class to
create their own modules.

The wait() and next_trigger() methods provide for static and dynamic
sensitivity for processes. Refer to Chapters 9.3 , 9.4.1 and 9.5.1.

In the description of sc_module, module refers to the sc_module instance.
Chapter 2.4.1 describes the scheduler steps referred to in the description of
sc_module.

Protected Constructors

sc_module(const char* name_) ;

Create a sc_module instance with the instance name initialized to name_.

sc_module(const sc_string& name_) ;
Create a sc_module instance with the instance name initialized to name_.

sc_module(const sc_module_name& name_) ;

Create an sc_module instance with the instance name initialized to name_.

sc_module() ;

Create an sc_module instance. The instance name will be obtained from
the module name stack via the construction of the sc_module_name object
passed to the derived module class’s constructor.

Protected Member functions
void
dont_initialize();

Prevents initialization of SC_METHODs and SC_THREADs. This method is
typically invoked in the module constructor immediately after SC_METHOD

 Copyright 2003 Open SystemC Initiative. All rights reserved 264

SystemC 2.0.1 Language Reference Manual

or SC_THREAD statements, and indicates that the specified thread or
method should not be triggered by default at the beginning of simulation.

virtual void
end_of_elaboration();

This virtual method is automatically invoked at the end of elaboration phase
at the point where all modules and channels have been instantiated and
before simulation is started. By default this method does nothing, but users
can override the default implementation to perform user-defined actions at
the end of elaboration.

Protected Data Members

sc_sensitive sensitive;

Provides the object through which process sensitivities are specified, using
its << and () operators. The calls to these operators must occur before the
start of simulation, thus these operators are typically used in module
constructors. When event sensitivity is specified using this form, the process
that was most recently declared is made statically sensitive to the specified
events.

Protected Member Functions for Process Sensitivity
bool
timed_out();

Returns true if the triggering of a process was based on the time out value
of a wait() or next_trigger() method else returns false.

void
next_trigger();

Sets the calling process to be triggered based upon its static sensitivity list.

void
next_trigger(type_);

type_ in { const sc_event&, sc_event_or_list &,

sc_event_and_list &, (double, sc_time_unit), const
sc_time& }

†

†

Sets the calling_process to be triggered based upon type_ (dynamic
sensitivity).

void

 Copyright 2003 Open SystemC Initiative. All rights reserved 265

SystemC 2.0.1 Language Reference Manual

next_trigger(double t_out_val , sc_time_unit t_out_tu,
type_);

type_ in { const sc_event&, sc_event_or_list
†
&,

sc_event_and_list
†
& }

Sets the calling_process to be triggered based upon either the time out
(t_out_val, t_out_tu) or type_.

void
next_trigger(const sc_time& t_out, type_);

type_ in { const sc_event&, sc_event_or_list
†
&,

sc_event_and_list
†
& }

Sets the calling_process to be triggered based upon either the time out
(t_out) or type_.

void
wait() ;

Suspends the calling process. Calling process is triggered based upon its
static sensitivity list.

void
wait(type_);

type_ in { const sc_event&, sc_event_or_list
†
&,

sc_event_and_list
†
&, (double, sc_time_unit), const

sc_time& }
Sets the calling_process to be triggered based upon type_ (dynamic
sensitivity).

void
wait(double, sc_time_unit, type_);

type_ in { const sc_event&, sc_event_or_list
†
&,

sc_event_and_list
†
& }

Sets the calling_process to be triggered based upon either the time out
sc_time(double, sc_time_unit) or type_.

void
wait(const sc_time&, type_);

type_ in { const sc_event&, sc_event_or_list
†
&,

sc_event_and_list
†
& }

Sets the calling_process to be triggered based upon either the time out
sc_time(double, sc_time_unit) or type_.

 Copyright 2003 Open SystemC Initiative. All rights reserved 266

SystemC 2.0.1 Language Reference Manual

Public Operators

void
operator () (
 const sc_bind_proxy

†
& p001,

 const sc_bind_proxy & p002 = SC_BIND_PROXY_NIL,

†

 . . .
 const sc_bind_proxy

†
& p063 = SC_BIND_PROXY_NIL,

 const sc_bind_proxy
†
& p064 = SC_BIND_PROXY_NIL) ;

Positionally bind one or more ports or interfaces to the ports of the specified
module instance. No more than 64 ports or interfaces can be specified using
this form. If you need to bind more than 64 ports or interfaces, use named
port binding instead.

 Copyright 2003 Open SystemC Initiative. All rights reserved 267

SystemC 2.0.1 Language Reference Manual

11.47 sc_module_name
Synopsis
class sc_module_name
{
public:
 sc_module_name(const char*);
 sc_module_name(const sc_module_name&);

 ~sc_module_name();

 operator const char*() const;
private:
 // disabled
 sc_module_name();
 sc_module_name& operator = (const sc_module_name&);
};

Description
The sc_module_name class serves two purposes. Firstly, instances of
sc_module_name are passed to module constructors to provide instance
names for all modules within the design hierarchy. Secondly,
sc_module_name instances help SystemC determine when classes derived
from sc_module have started and completed construction. SystemC needs to
know when sc_module classes have started and completed construction in
order to properly associate child objects such as ports with their containing
module instance.

Constructors for classes derived from sc_module should have one constructor
argument of this type. Furthermore, when such classes from sc_module are
instantiated, a normal C string should be passed to the derived class
constructor, which will then be converted to sc_module_name via an implicit
conversion. The execution of this implicit conversion informs SystemC that a
new module has started construction, and later the destruction of the same
sc_module_name object informs SystemC that the construction of a module
has completed.

It should be emphasized that while sc_module_name must be used within the
declaration of constructor arguments for classes derived from sc_module, users
should never explicitly instantiate any sc_module_name objects.

Example
class my_module : public sc_module {
public:
 int some_parameter;
 SC_HAS_PROCESS(my_module);

 my_module (sc_module_name name, int some_value):
 sc_module(name),

 Copyright 2003 Open SystemC Initiative. All rights reserved 268

SystemC 2.0.1 Language Reference Manual

 some_parameter(some_value)
 {
 // constructor body not shown
 }
 // rest of module body not shown
};

Public Constructors
sc_module_name(const char *name);

 Constructs an sc_module_name object from a C string.

sc_module_name(const sc_module_name& orig_);

Copy constructor.

Disabled Constructors
sc_module_name();

The default constructor is disabled.

Public Operators
operator const char *() const;

Provides an implicit type conversion to a constant character string.

 Copyright 2003 Open SystemC Initiative. All rights reserved 269

SystemC 2.0.1 Language Reference Manual

11.48 sc_mutex
Synopsis
class sc_mutex
: public sc_mutex_if,
 public sc_prim_channel
{
public:
 // constructors
 sc_mutex();
 explicit sc_mutex(const char* name_);

 // interface methods
 virtual int lock();
 virtual int trylock();
 virtual int unlock();
 static const char* const kind_string;
 virtual const char* kind() const
protected:

 bool in_use() const
private:

 sc_mutex(const sc_mutex&);
 sc_mutex& operator = (const sc_mutex&);

Description

 // support methods

 // disabled

};

An sc_mutex channel (mutex) is used for a mutual-exclusion lock for access
to a shared resource. It implements the sc_mutex_if interface.

A process may lock the mutex. Only the process that locked the mutex may
unlock it.

If multiple processes attempt to lock an unlocked mutex during the same delta-
cycle, only one will be successful. Since the order of execution of processes in
a delta-cycle is indeterminate it is indeterminate as to which process is
successful. The unsuccessful processes will be suspended as described in the
next paragraph.

If a process attempts to lock the mutex, when it is already locked, then the
process is suspended. When the mutex is unlocked then the suspended
process is triggered and continues the attempt to lock the mutex. The
unsuspended process is not guaranteed to be successful in locking the mutex if
there are other processes also attempting to lock the mutex.

Public Constructors
sc_mutex();

 Copyright 2003 Open SystemC Initiative. All rights reserved 270

SystemC 2.0.1 Language Reference Manual

Create an sc_mutex instance.

explicit
sc_mutex(const char* name_);

Create an sc_mutex instance with the string name initialized to name_.

Public Member Functions
virtual const char*
kind() const ;

Returns string “sc_mutex”.

Virtual int
lock() ;

Returns 0. If the mutex is not locked then locks mutex else suspends the
calling process.

virtual int
trylock();

If the mutex is not locked then locks mutex and returns 0, else returns -1.

virtual int
unlock();

If mutex was locked by calling process then unlocks mutex, triggers any
processes suspended while attempting to lock the mutex and returns 0, else
returns -1.

Disabled Member Functions
sc_mutex(const sc_mutex&);

sc_mutex&
operator = (const sc_mutex&);

 Copyright 2003 Open SystemC Initiative. All rights reserved 271

SystemC 2.0.1 Language Reference Manual

11.49 sc_mutex_if
Synopsis
class sc_mutex_if
: virtual public sc_interface
{
public:
 virtual int lock() = 0;
 virtual int trylock() = 0;
 virtual int unlock() = 0;
protected:
 // constructor
 sc_mutex_if();
private:
 // disabled
 sc_mutex_if(const sc_mutex_if&);
 sc_mutex_if& operator = (const sc_mutex_if&);
};

Description
The sc_mutex_if class provides the signatures of the functions for the
sc_mutex_if interface. See Chapter 8.1 for a description of interfaces.
Implemented by the sc_mutex channel (Chapter 11.12)

Example
class sc_mutex
: public sc_mutex_if,
 public sc_prim_channel
{ };

Protected Constructor
sc_mutex_if();

Create a sc_mutex_if instance.

Public Member Functions
virtual int
lock() = 0;

virtual int
trylock() = 0;

virtual int
unlock() = 0;

Disabled Member Functions
sc_mutex_if(const sc_mutex_if&);

sc_mutex_if&
operator = (const sc_mutex_if&);

 Copyright 2003 Open SystemC Initiative. All rights reserved 272

SystemC 2.0.1 Language Reference Manual

11.50 sc_object
Synopsis
class sc_object
{
public:
 const char* name() const;
 const char* basename() const;
 void print() const;
 virtual void print(ostream& os) const;
 void dump() const;
 virtual void dump(ostream& os) const;
 virtual void trace(sc_trace_file*) const;
 virtual const char* kind() const;
 sc_simcontext* simcontext() const ;
 bool add_attribute(sc_attr_base&);
 sc_attr_base* get_attribute(const sc_string&);
 const sc_attr_base* get_attribute(const sc_string&)

const;
 sc_attr_base* remove_attribute(const sc_string&);
 void remove_all_attributes();
 int num_attributes() const;
 sc_attr_cltn& attr_cltn();
 const sc_attr_cltn& attr_cltn() const;
protected:
 sc_object();
 sc_object(const char*);
 virtual ~sc_object();
};

Description
sc_object is the abstract base class for all channel, module, port and
process objects.

Protected Constructors and Destructor
sc_object();

Default constructor. Creates a sc_object instance.

sc_object(const char* name_);
Creates a sc_object instance with the string name initialized to name_.

virtual ~sc_object();
Virtual destructor.

Public Member Functions
bool
add_attribute(sc_attr_base

†
&) ;

Adds an attribute to a collection stored in the object. Returns true if the
attribute name is unique, false otherwise. If the name is not unique, the
attribute is not added to the collection.

 Copyright 2003 Open SystemC Initiative. All rights reserved 273

SystemC 2.0.1 Language Reference Manual

sc_attr_cltn&
attr_cltn();

Returns a reference to the collection of attributes of this object.

const sc_attr_cltn&
attr_cltn() const;

Returns a constant reference to the collection of attributes of this object.

const char*
basename() const ;

Returns the string name of the instance without hierarchical path name.

void
print() const ;

Prints the string name.

virtual void
print(ostream& os) const ;

Prints the string name to output stream os.

void
dump() const ;

Prints the string name and the kind.

virtual void
dump(ostream& os) const ;

Prints the string name and the kind to an output stream os.

sc_attr_base
†
*

get_attribute(const sc_string&_) ;
Returns a constant pointer to the named attribute of the object. If the
attribute with this name is not found, returns 0.

const sc_attr_base
†
*

get_attribute(const sc_string&) const ;
Returns a pointer to the named attribute of the object. If the attribute with
this name is not found, returns 0.

virtual const char*
kind() const ;

Returns “sc_object”.

const char*
name() const ;

 Returns the string name of the instance with hierarchical path name.

int
num_attributes() const;

Returns the number of attributes attached to this object.

 Copyright 2003 Open SystemC Initiative. All rights reserved 274

SystemC 2.0.1 Language Reference Manual

sc_attr_base

†
*

remove_attribute(const sc_string&) ;
Removes the named attribute from this object. Returns a pointer to the
attribute. If the attribute with this name is not found, returns 0.

void
remove_all_attributes();

Removes all attributes from this object.

sc_simcontext*
simcontext() const ;

Returns a pointer to the simulation context of the object.

virtual void
trace(sc_trace_file* tf) const ;

Does nothing.

 Copyright 2003 Open SystemC Initiative. All rights reserved 275

SystemC 2.0.1 Language Reference Manual

11.51 sc_out
Synopsis
template <class T>
class sc_out
: public sc_inout<T>
{
public:
 // typedefs
 typedef T data_type;
 typedef sc_out<data_type>this_type;
 typedef sc_inout<data_type> base_type;
 typedef typename base_type::in_if_type in_if_type;
 typedef typename base_type::in_port_type in_port_type;
 typedef typename base_type::inout_if_type inout_if_type;
 typedef typename base_type::inout_port_type

inout_port_type;
public:
 // constructors & destructor
 sc_out();
 explicit sc_out(const char* name_);
 explicit sc_out(inout_if_type& interface_);
 sc_out(const char* name_, inout_if_type& interface_);
 explicit sc_out(inout_port_type& parent_);

sc_out(const char* name_, inout_port_type& parent_);
 sc_out(this_type& parent_);
 sc_out(const char* name_, this_type& parent_);
 virtual ~sc_out();

 this_type& operator = (const data_type& value_);
 this_type& operator = (const in_if_type& interface_);
 this_type& operator = (const in_port_type& port_);
 this_type& operator = (const inout_port_type& port_);
 this_type& operator = (const this_type& port_);
 static const char* const kind_string;
 virtual const char* kind() const ;
private:
 // disabled
 sc_out(const this_type&);
};

Description
sc_out is a specialized port for use with sc_signal channels (Chapter 11.59).
Its behavior is that of a sc_port which has only one interface that is of type
sc_signal_inout_if<T>. It has the same functionality as an sc_inout port.

In the description of sc_in, current_value refers to the value of the
sc_signal instance connected to the port, new_value is the value to be
written and old_value is the previous value. Chapter 2.4.1 describes the
scheduler steps referred to in the description of sc_inout.

 Copyright 2003 Open SystemC Initiative. All rights reserved 276

SystemC 2.0.1 Language Reference Manual

Public Constructors
sc_out() ;

Create a sc_out instance.

explicit
sc_out(const char* name_) ;

Create a sc_out instance with the string name initialized to name_.

Public Member Functions
virtual const char*
kind() const ;

Returns “sc_out”.

Assignment Operator
operator const T& () const ;

Returns current_value.

sc_inout<T>&
operator = (const Type_& val) ;
Type_ in {T, sc_signal_in_if<T>, sc_port<

sc_signal_in_if<T> >, sc_port< sc_signal_inout_if<T> >,
sc_out<T> }

If val is not equal to current_value of the left hand side, then an update is
scheduled with val as the new_value of the left hand side. Returns a
reference to the instance.

Disabled Member Functions
sc_out(const sc_out<T>&);

 Copyright 2003 Open SystemC Initiative. All rights reserved 277

SystemC 2.0.1 Language Reference Manual

11.52 sc_out_resolved
Synopsis
class sc_out_resolved
 : public sc_inout_resolved
{
public:
 // typedefs
 typedef sc_out_resolved this_type;
 typedef sc_inout_resolved base_type;
 typedef base_type::data_type data_type;
 typedef base_type::in_if_type in_if_type;
 typedef base_type::in_port_type in_port_type;
 typedef base_type::inout_if_type inout_if_type;
 typedef base_type::inout_port_type inout_port_type;
public:
 // constructors & destructor
 sc_out_resolved();
 explicit sc_out_resolved(const char* name_);
 explicit sc_out_resolved(inout_if_type& interface_);
 sc_out_resolved(const char* name_, inout_if_type&

interface_);
 explicit sc_out_resolved(inout_port_type& parent_);
 sc_out_resolved(const char* name_, inout_port_type&

parent_);
 sc_out_resolved(this_type& parent_);
 sc_out_resolved(const char* name_, this_type&

parent_);
 virtual ~sc_out_resolved();

 // Methods
 this_type& operator = (const data_type& value_);
 this_type& operator = (const in_if_type& interface_);
 this_type& operator = (const in_port_type& port_);
 this_type& operator = (const inout_port_type& port_);
 this_type& operator = (const this_type& port_);
 static const char* const kind_string;
 virtual const char* kind() const;
private:
 // disabled
 sc_out_resolved(const this_type&);
};

Description
sc_out_resolved is a specialized port for use with sc_signal_resolved
channels (Chapter 11.63). Its behavior is that of a sc_port which has only one
interface that is of type sc_signal_inout_if<sc_logic>. It has the same
functionality as an sc_inout_resolved port.

Public Constructors
sc_out_resolved() ;

 Copyright 2003 Open SystemC Initiative. All rights reserved 278

SystemC 2.0.1 Language Reference Manual

Create a sc_inout_resolved instance.

explicit
sc_out_resolved(const char*);

Create a sc_inout_resolved instance with the string name initialized to
name_.

Public Member Functions
virtual const char*
kind() const ;

Returns “sc_out_resolved”.

Assignment Operator
sc_out_resolved&
operator = (const Type_& val) ;
Type_ in {sc_logic, sc_signal_inout_if<sc_logic>, sc_port<

sc_signal_inout_if <sc_logic> >, sc_out_resolved& }
If val is not equal to current_value of the left hand side, then an update is
scheduled with val as the new_value of the left hand side. Returns a
reference to the instance.

Disabled Member Functions
sc_out_resolved (const sc_out_resolved&);

 Copyright 2003 Open SystemC Initiative. All rights reserved 279

SystemC 2.0.1 Language Reference Manual

11.53 sc_out_rv
Synopsis
template <int W>
class sc_out_rv
 : public sc_inout_rv<W>
{
public:
// typedefs
 typedef sc_out_rv<W> this_type;
 typedef sc_inout_rv<W> base_type;
 typedef typename base_type::data_type data_type;
 typedef typename base_type::in_if_type in_if_type;
 typedef typename base_type::in_port_type in_port_type;

 typedef typename base_type::inout_if_type inout_if_type;
typedef typename base_type::inout_port_type inout_port_type;
public:
 // constructors, destructor
 sc_out_rv();
 explicit sc_out_rv(const char* name_);
 explicit sc_out_rv(inout_if_type& interface_);
 sc_out_rv(const char* name_, inout_if_type&

interface_);
 explicit sc_out_rv(inout_port_type& parent_);
 sc_out_rv(const char* name_, inout_port_type&

parent_);
 sc_out_rv(this_type& parent_);
 sc_out_rv(const char* name_, this_type& parent_);
 virtual ~sc_out_rv();

 // methods
 this_type& operator = (const data_type& value_);
 this_type& operator = (const in_if_type& interface_);
 this_type& operator = (const in_port_type& port_);
 this_type& operator = (const inout_port_type& port_);
 this_type& operator = (const this_type& port_);
 static const char* const kind_string;
 virtual const char* kind() const;
private:
 // disabled
 sc_out_rv(const this_type&);
};

Description
sc_out_rv is a specialized port for use with sc_signal_rv channels
(Chapter 11.63). Its behavior is that of a sc_port which has only one interface
that is of type sc_signal_inout_if<sc_lv<W> >. It has the same
functionality as an sc_inout_rv port.

In the description of sc_out_rv, port refers to the sc_out_rv instance.

 Copyright 2003 Open SystemC Initiative. All rights reserved 280

SystemC 2.0.1 Language Reference Manual

Example
SC_MODULE (module_name) {
 // ports
 sc_in_rv<8> a ;
 sc_out_rv<13> b ;
 sc_inout_rv<44> c;

 // rest of module
} ;

Public Constructors
sc_out_rv() ;

Create a sc_out_rv instance.

explicit
sc_out_rv(const char*);

Create a sc_out_rv instance with the string name initialized to name_.

Public Member Functions
virtual const char*
kind() const ;

Returns “sc_out_rv”.

Public Operators
sc_out_rv<W>&
operator = (const Type_& val) ;
Type_ in {sc_lv<W>, sc_signal_inout_if<T>, sc_port<

sc_signal_inout_if<T>,1>, sc_out_rv<W> }
If val is not equal to current_value of the left hand side, then an update is
scheduled with val as the new_value of the left hand side. Returns a
reference to the instance.

Disabled Member Function
sc_out_rv(const sc_out_rv<W>&);

 Copyright 2003 Open SystemC Initiative. All rights reserved 281

SystemC 2.0.1 Language Reference Manual

11.54 sc_port
Synopsis
template <class IF, int N = 1>
class sc_port
: public sc_port_b<IF>
{
 // typdefs
 typedef sc_port_b<IF> base_type;
 typedef sc_port<IF,N> this_type;
public:
 // constructors, destructor
 sc_port();
 explicit sc_port(const char* name_);
 explicit sc_port(IF& interface_);
 sc_port(const char* name_, IF& interface_);
 explicit sc_port(base_type& parent_);
 sc_port(const char* name_, base_type& parent_);
 sc_port(this_type& parent_);
 sc_port(const char* name_, this_type& parent_);
 virtual ~sc_port();

 static const char* const kind_string;
 virtual const char* kind() const;
private:
 // disabled
 sc_port(const this_type&);
 this_type& operator = (const this_type&);
};

Description
An sc_port instance is associated with an interface of type IF

In the description of sc_port, port refers to the sc_port object, interface
refers to the sc_interface type IF.

N signifies the maximum number of interfaces that may be attached to the port.
If N = 0 then an arbitrary number of interfaces may be connected.

A port may not be bound after elaboration.

Example
SC_MODULE(my_module) {
sc_port<sc_fifo_in_if<int> > p1; //“read” fifo port
sc_port<sc_fifo_out_if<int> > p2; // “write” fifo port
sc_port<sc_fifo_in_if<int>,2> in_p;

// body of module
};

 Copyright 2003 Open SystemC Initiative. All rights reserved 282

SystemC 2.0.1 Language Reference Manual

Public Constructors and Destructor
sc_port() ;

Default constructor.

explicit
sc_port(const char* name_);

Create a sc_port instance with string name initialized to name_.

virtual ~sc_port();

Does nothing.

Public Member Functions
void
bind(IF& interface_) ;

Binds interface_ to the port. For port to channel binding.

void
bind(sc_port<IF>& parent_port) ;

Binds parent_ to the port. For port to port binding.

virtual sc_interface*
get_interface() ;

Returns a pointer to the first interface of the port. No error checking is
provided.

virtual const sc_interface*
get_interface() const ;

Returns a constant pointer to the first interface of the port. No error
checking is provided.

virtual const char*
kind() const ;

Returns “sc_port”.

int
size() const ;

Returns the number of connected interfaces.

Protected Member Functions
virtual void
end_of_elaboration();

Does nothing.

Public Operators
void
operator () (IF& interface_) ;

Binds interface_ to the sc_port instance. For port to channel binding.

void

 Copyright 2003 Open SystemC Initiative. All rights reserved 283

SystemC 2.0.1 Language Reference Manual

operator () (sc_port<IF>& parent_);
Binds parent_ to the sc_port instance. For port to port binding.

IF*
operator -> ();

Returns a pointer to the first interface of the port. Reports an error if the
port is not bound. Allows for calling of methods provided by the interface.

const IF*
operator -> () const ;

Returns a pointer to the first interface of the port. Reports an error if the
port is not bound. Allows for calling of methods provided by the interface.

IF*
operator [] (int index_);

Returns a pointer to the interface of the port at index_. Reports an error if
the port is not bound. Allows for calling of methods provided by the
interface at index.

const IF*
operator [] (int index_) const;

Returns a pointer to the interface of the port at index_. Reports an error if
the port is not bound. Allows for calling of methods provided by the
interface at index.

Disabled Member Functions
sc_port(const sc_port<IF,N>&);

sc_port<IF,N>&
operator = (const sc_port<IF,N>&);

 Copyright 2003 Open SystemC Initiative. All rights reserved 284

SystemC 2.0.1 Language Reference Manual

11.55 sc_prim_channel
Synopsis
class sc_prim_channel
: public sc_object
{
public:
 static const char* const kind_string;
 virtual const char* kind() const ;
protected:
 // constructors, destructor
 sc_prim_channel();
 explicit sc_prim_channel(const char*);
 virtual ~sc_prim_channel();

 void request_update();
 virtual void update();
 virtual void end_of_elaboration();
protected:
 // static sensitivity for SC_THREADs
 void wait();

 //dynamic sensitivity for SC_THREADs and SC_CTHREADs
 void wait(const sc_event& e);
 void wait(sc_event_or_list& el);
 void wait(sc_event_and_list& el);
 void wait(const sc_time& t);
 void wait(double v, sc_time_unit tu);
 void wait(const sc_time& t, const sc_event& e);
 void wait(double v, sc_time_unit tu, const sc_event&

e);
 void wait(const sc_time& t, sc_event_or_list& el);
 void wait(double v, sc_time_unit tu, sc_event_or_list&

el);
 void wait(const sc_time& t, sc_event_and_list& el);
 void wait(double v, sc_time_unit tu,

 // static sensitivity for SC_METHODs
 void next_trigger();

 // dynamic sensitivity for SC_METHODs
 void next_trigger(const sc_event& e);
 void next_trigger(sc_event_or_list& el);
 void next_trigger(sc_event_and_list& el);
 void next_trigger(const sc_time& t);
 void next_trigger(double v, sc_time_unit tu);
 void next_trigger(const sc_time& t, const sc_event&

e);
 void next_trigger(double v, sc_time_unit tu, const

sc_event& e);
 void next_trigger(const sc_time& t, sc_event_or_list&

el);

 Copyright 2003 Open SystemC Initiative. All rights reserved 285

SystemC 2.0.1 Language Reference Manual

 void next_trigger(double v, sc_time_unit tu,
sc_event_or_list& el);

 void next_trigger(const sc_time& t, sc_event_and_list&
el);

 void next_trigger(double v, sc_time_unit tu,
sc_event_and_list& el);

 bool timed_out();
private:
 // disabled
 sc_prim_channel(const sc_prim_channel&);
 sc_prim_channel& operator = (const sc_prim_channel&);
};

Description

An sc_prim_channel is the base class for primitive channels. Users inherit
from this class to create their own primitive channels.

In the description of sc_prim_channel, channel refers to the
sc_prim_channel instance, calling_process refers to the process that calls
the method in the channel. Chapter 2.4.1 describes the scheduler steps
referred to in the description of sc_prim_channel.

The wait() and next_trigger() methods provide for static and dynamic
sensitivity for processes. Refer to Chapters 9.3 , 9.4.1 and 9.5.1.

It provides for support of the request-update method of access.

sc_prim_channel() ;

Example
template <class T>
class sc_fifo
: public sc_fifo_in_if<T>,
 public sc_fifo_out_if<T>,
 public sc_prim_channel
{
public:

 // constructors

 explicit sc_fifo(int size_ = 16)
 : sc_prim_channel(sc_gen_unique_name("fifo"))
 { init(size_); }
. . . .
}

Protected Constructors

Create an sc_prim_channel instance.

 Copyright 2003 Open SystemC Initiative. All rights reserved 286

SystemC 2.0.1 Language Reference Manual

explicit
sc_prim_channel(const char* name_);

Sets the calling_process to be triggered based upon type_ (dynamic
sensitivity).

Create a sc_prim_channel instance with the string name initialized to
name

Public Member Functions
virtual const char*
kind() const ;

Returns “sc_prim_channel”.

Protected Member Functions
virtual void
end_of_elaboration() ;

Does nothing.

void
request_update();

Requests that the update method be executed during the update of the
current delta-cycle.

virtual void
update();

Does nothing by default.

Protected Member Functions for Process Sensitivity
bool
timed_out();

Returns true if the triggering of a process was based on the time out value
of a wait() or next_trigger() method else returns false.

void
next_trigger();

Sets the calling process to be triggered based upon its static sensitivity list.

void
next_trigger(type_);

type_ in { const sc_event&, sc_event_or_list
†
&,

sc_event_and_list
†
&, (double, sc_time_unit), const

sc_time& }

void
next_trigger(double t_out_val , sc_time_unit t_out_tu,

type_);

type_ in { const sc_event&, sc_event_or_list
†
&,

sc_event_and_list
†
& }

 Copyright 2003 Open SystemC Initiative. All rights reserved 287

SystemC 2.0.1 Language Reference Manual

Sets the calling_process to be triggered based upon either the time out
(t_out_val, t_out_tu) or type_.

void
next_trigger(const sc_time& t_out, type_);

type_ in { const sc_event&, sc_event_or_list
†
&,

sc_event_and_list
†
& }

Sets the calling_process to be triggered based upon either the time out
(t_out) or type_.

void
wait() ;

Suspends the calling process. Calling process is triggered based upon its
static sensitivity list.

void
wait(type_);

type_ in { const sc_event&, sc_event_or_list
†
&,

sc_event_and_list
†
&, (double, sc_time_unit), const

sc_time& }
Sets the calling_process to be triggered based upon type_ (dynamic
sensitivity).

void
wait(double, sc_time_unit, type_);

type_ in { const sc_event&, sc_event_or_list
†
&,

sc_event_and_list
†
& }

void
wait(const sc_time&, type_);

type_ in { const sc_event&, sc_event_or_list
†
&,

sc_event_and_list
†
& }

Disabled Member Functions
sc_prim_channel(const sc_prim_channel&);

sc_prim_channel&
operator = (const sc_prim_channel&);

 Copyright 2003 Open SystemC Initiative. All rights reserved 288

SystemC 2.0.1 Language Reference Manual

11.56 sc_pvector
Synopsis
template< class T >
class sc_pvector
{
public:
 // typedefs
 typedef T* iterator;
 typedef const T* const_iterator;

 // constructors & destructor
 sc_pvector(int alloc = 10);
 sc_pvector(const sc_pvector<T>&);
 ~sc_pvector();

 // operators
 sc_pvector<T>& operator = (const sc_pvector<T>&);
 T& operator [] (int i);
 const T& operator [] (int i) const;

 // other methods
 int size() const;
 iterator begin();
 const_iterator begin() const;

 void decr_count(int k);

 iterator end();
 const_iterator end() const;
 T& fetch(int i);
 const T& fetch(int i) const;
 T* raw_data();
 const T* raw_data() const;
 void push_back(T item);
 void erase_all();
 void sort(CFT compar);
 void put(T item, int i);
 void decr_count();

};

Description

sc_pvector is a utility container class that acts like a smart array that
maintains size information and can grow dynamically. It provides random
access to its data through the C++ subscript operators.

Example
sc_pvector<sc_object *> top_objs =

sc_get_curr_simcontext()->get_child_objects();

for (int i = 0; i < top_objs.size(); i++)
 cout << top_objs[i]->name() << endl;

 Copyright 2003 Open SystemC Initiative. All rights reserved 289

SystemC 2.0.1 Language Reference Manual

Type Definitions
typedef T* iterator;
typedef const T* const_iterator;

Public Constructors and Destructor
 sc_pvector(int alloc = 10);

Create a new vector. The constructor parameter controls how much
memory is pre-allocated. The default value is 10.

sc_pvector(const sc_pvector<T>&);

Copy constructor.

~sc_pvector();
Destructor.

Public Member Functions
iterator
begin() ;

Returns an iterator pointing to the first element in the vector.

const_iterator *
begin() const;

Returns a const-iterator pointing to the first element in the vector.

void
decr_count() ;

Removes the last element from the vector, i.e. ,decreases the size by 1.

void
decr_count(int k) ;

Removes the last k elements from the vector, i.e. ,decreases the size by k.

iterator
end() ;

Returns an iterator pointing one beyond the last element in the vector.

const_iterator
end() const;

Returns a const-iterator pointing one beyond the last element in the vector.

void
erase_all() ;

Removes all elements from the vector, i.e., sets the size to 0.

T &
fetch(int i) ;

Returns a reference to the object at location i. No range checking is
performed.

 Copyright 2003 Open SystemC Initiative. All rights reserved 290

SystemC 2.0.1 Language Reference Manual

const T &
fetch(int i) const ;

Returns a constant reference to the object at location i. No range
checking is performed.

void
push_back(T item) ;

Adds the item to the end of the vector, increasing its size by 1.

T &
put(T new_item, int i) ;

Replaces the item at index i to new_item. No range checking is
performed.

T *
raw_data() ;

Returns a pointer to the first item in the vector.

const T *
raw_data() const ;

Returns a constant pointer to the first item in the vector.

int
size() const ;

Returns the number of items in the vector.

void
sort(CFT compar) ;

Sorts the elements in the vector according to the compare function compar.

The compare function is declared as:

extern “C” {
 int compare_func(const void *, const void *);
}

This function returns -1 if the first argument is less than the second, 0 if they
are equal, and 1 if the first argument is greater than the second.

Public Operators
T &
operator [](int i) ;

Returns a reference to the item at location i in the vector. If i > size of
vector, then the vector is resized to accomodate i.

const T &
operator [](int i) const ;

Returns a constant reference to the item at location i in the vector. If i > size
of vector, then the vector is resized to accomodate i.

 Copyright 2003 Open SystemC Initiative. All rights reserved 291

SystemC 2.0.1 Language Reference Manual

sc_pvector<T>&
operator = (const sc_pvector<T>& rhs) ;

Assignment operator.

 Copyright 2003 Open SystemC Initiative. All rights reserved 292

SystemC 2.0.1 Language Reference Manual

11.57 sc_semaphore
Synopsis
class sc_semaphore
: public sc_semaphore_if,

 public sc_prim_channel
{
public:
 // constructors
 explicit sc_semaphore(int init_value_);
 sc_semaphore(const char* name_, int init_value_);

 // methods
 virtual int wait();
 virtual int trywait();
 virtual int post();
 virtual int get_value() const;
 static const char* const kind_string;
 virtual const char* kind() const;
private:
 // disabled
 sc_semaphore(const sc_semaphore&);
 sc_semaphore& operator = (const sc_semaphore&);
};

Description
An sc_semaphore channel (semaphore) is similar to an sc_mutex channel
(see Chapter 11.47) except for it allows for limited concurrent access. It
implements the sc_semaphore_if interface.

An sc_semaphore instance is created with a mandatory integer value which
determines the initial number of concurrent accesses to the semaphore.

In the description of sc_semaphore the number of available concurrent
accesses is referred to as the semaphore_value. The semaphore is
considered available if the semaphore_value is greater than 0. Chapter 2.4.1
describes the scheduler steps referred to in the description of sc_semaphore.

When a process successfully locks (takes) the semaphore the
semaphore_value is decreased by 1. When a process unlocks (gives) the
semaphore the semaphore_value is increased by 1.

No checking is done to ensure that a process unlocking the semaphore is one
that locked it.

No checking is done to ensure that the current semaphore_value does not
exceed the initial semaphore_value.

 Copyright 2003 Open SystemC Initiative. All rights reserved 293

SystemC 2.0.1 Language Reference Manual

If multiple processes attempt to lock a semaphore when the semaphore_value
is 1 during the same delta-cycle, only one process will be successful. Since the
order of execution of processes in a delta-cycle is indeterminate, it is
indeterminate as to which process is successful. The unsuccessful processes
will be suspended as described in the next paragraph.

If a process attempts to lock the semaphore, when the semaphore_value is
zero or less, then the process is suspended. When the semaphore is unlocked
then the suspended process is triggered and continues the attempt to lock the
semaphore. The unsuspended process is not guaranteed to be successful in
locking the semaphore if there are other processes also attempting to lock the
semaphore.

Example
SC_MODULE(my_module) {

 sc_semaphore a, b;

 SC_CTOR(my_module):
 a(5), // init a semaphore_value to 5
 b(3) // init b semaphore_value to 3
 {
 }
 // rest of module not shown
};

Public Constructors
explicit
sc_semaphore(int val) ;

Create an sc_semaphore instance with the semaphore_value initialized to
val.

explicit
sc_mutex(const char*);

sc_semaphore(const char* name_, int val) ;

Create an sc_semaphore instance with the semaphore_value initialized to
val and the string name initialized to name_.

Public Member Functions
virtual int
get_value() const ;

Returns the semaphore_value of the semaphore.

virtual const char*
kind() const ;

Returns “sc_semaphore”.

virtual int

 Copyright 2003 Open SystemC Initiative. All rights reserved 294

SystemC 2.0.1 Language Reference Manual

post() ;
Returns 0. Unlocks semaphore and increases by 1 the semaphore_value.

virtual int
trywait() ;

If the semaphore is available then locks semaphore, decreases by 1 the
semaphore_value and returns 0, else returns -1.

virtual int
wait() ;

Returns 0. If the semaphore is available then locks semaphore decreasing
by 1 the number of concurrent accesses available else suspends the calling
process.

Disabled Member Functions
sc_semaphore(const sc_semaphore&) ;

sc_semaphore&
operator = (const sc_semaphore&) ;

 Copyright 2003 Open SystemC Initiative. All rights reserved 295

SystemC 2.0.1 Language Reference Manual

11.58 sc_semaphore_if
Synopsis
class sc_semaphore_if
: virtual public sc_interface
{
public:
 virtual int wait() = 0;
 virtual int trywait() = 0;
 virtual int post() = 0;
 virtual int get_value() const = 0;
protected:
 // constructor
 sc_semaphore_if();
private:
 // disabled

 sc_semaphore_if& operator = (const sc_semaphore_if&);
 sc_semaphore_if(const sc_semaphore_if&);

};

Description
The sc_semaphore_if class provides the signatures of the functions for the
sc_semaphore_if interface. See Chapter 8.1 for a description of interfaces.
Implemented by the sc_sempahore channel (Chapter 11.56)

Example
class sc_semaphore
: public sc_semaphore_if,
 public sc_prim_channel{ };

Protected Constructor
sc_semaphore_if();

Create a sc_semaphore_if instance.

Public Member Functions
virtual int
get_value() = 0;

virtual int
post() = 0;

virtual int
trywait() = 0;

virtual int
wait() = 0;

Disabled Member Functions
sc_semaphore_if(const sc_semaphore_if&);

 Copyright 2003 Open SystemC Initiative. All rights reserved 296

SystemC 2.0.1 Language Reference Manual

sc_semaphore_if&
operator = (const sc_semaphore_if&);

 Copyright 2003 Open SystemC Initiative. All rights reserved 297

SystemC 2.0.1 Language Reference Manual

11.59 sc_sensitive
Synopsis
class sc_sensitive
{
private:
 // constructor, destructor
 explicit sc_sensitive(sc_module*);
 ~sc_sensitive();
public:
 // specify static sensitivity for processes
 sc_sensitive& operator () (const sc_event&);
 sc_sensitive& operator () (const sc_interface&);

 sc_sensitive& operator << (const sc_event&);

Adds an event (that is returned by the default_event() method of the
channel) to the list of events that will trigger the last declared process when
static sensitivity is used.

 sc_sensitive& operator () (const sc_port_base&);
 sc_sensitive& operator () (sc_event_finder&);

 sc_sensitive& operator << (const sc_interface&);
 sc_sensitive& operator << (const sc_port_base&);
 sc_sensitive& operator << (sc_event_finder&);
private:
 // disabled
 sc_sensitive();
 sc_sensitive(const sc_sensitive&);
 sc_sensitive& operator = (const sc_sensitive&);
};

Description
sc_sensitive provides overloaded operators << and (), used in specifying
static sensitivity for processes. These operators can only be called before
simulation starts, and produce an error message if called after simulation starts.

Public Operators
sc_sensitive&
operator << (const sc_event&);

Adds an event to the list of events that will trigger the last declared process
when static sensitivity is used.

sc_sensitive&
operator << (const sc_interface&);

sc_sensitive&
operator << (const sc_port_base

†
&);

Adds an event (that is returned by the default_event() method of the
channel bound to the port) to the list of events that will trigger the last
declared process when static sensitivity is used.

 Copyright 2003 Open SystemC Initiative. All rights reserved 298

SystemC 2.0.1 Language Reference Manual

sc_sensitive&
operator << (sc_event_finder

†
&);

Adds an event (that is returned by the find_event() method of the event
finder) to the list of events that will trigger the last process that was
declared when static sensitivity is used.

sc_sensitive&
operator () (const sc_event&);

operator () (sc_event_finder &);

sc_sensitive(const sc_sensitive&);

Adds an event to the list of evenst that will trigger the last declared process
when static sensitivity is used.

sc_sensitive&
operator () (const sc_interface&);

Adds an event (that is returned by the default_event() method of the
channel) to the list of events that will trigger the last declared process when
static sensitivity is used.

sc_sensitive&
operator () (const sc_port_base

†
&);

Adds an event (that is returned by the default_event() method of the
channel bound to the port) to the list of events that will trigger the last
declared process when static sensitivity is used.

sc_sensitive&

†

Adds an event (that is returned by the find_event() method of the event
finder) to the list of events that will trigger the last process that was
declared when static sensitivity is used.

Disabled Member Functions
sc_sensitive& operator = (const sc_sensitive&);

 Copyright 2003 Open SystemC Initiative. All rights reserved 299

SystemC 2.0.1 Language Reference Manual

11.60 sc_signal
Synopsis
template <class T>
class sc_signal
: public sc_signal_inout_if<T>,
 public sc_prim_channel
{
public:
 // constructors, destructor
 sc_signal();
 explicit sc_signal(const char* name_);
 virtual ~sc_signal();

 // methods
 virtual void register_port(sc_port_base&, const

char*);
 virtual const sc_event& default_event() const;
 virtual const sc_event& value_changed_event() const;
 virtual const T& read() const;
 virtual const T& get_data_ref() const;
 virtual bool event() const;
 virtual void write(const T&);
 operator const T& () const;
 sc_signal<T>& operator = (const T& a);
 sc_signal<T>& operator = (const sc_signal<T>& a);
 const T& get_new_value() const;
 void trace(sc_trace_file* tf) const;
 virtual void print(ostream&) const;
 virtual void dump(ostream&) const;
 static const char* const kind_string;
 virtual const char* kind() const;
protected:
 virtual void update();
 void check_writer();
private:
 // disabled
 sc_signal(const sc_signal<T>&);
};

Description
sc_signal is a primitive channel that implements the sc_signal_inout_if
interface.

In the description of sc_signal, current_value refers to the value of the
sc_signal instance, new_value is the value to be written and old_value is
the previous value. Chapter 2.4.1 describes the scheduler steps referred to in
the description of sc_signal.

Initialization

 Copyright 2003 Open SystemC Initiative. All rights reserved 300

SystemC 2.0.1 Language Reference Manual

The initial current_value of an sc_signal instance is dependent upon type T
and is undefined. The current_value may be explicitly initialized in the sc_main
function or in the constructor of the module where it is created.

A sc_signal may be written by only one process, but may be read by
multiple processes.

sc_signal writes and reads follows evaluate-update semantics suitable for
describing hardware.

//THEN

Write
The write method is executed during the evaluate phase of a delta-cycle. If the
new_value is different than the current_value, an update is requested. During
the update phase the current_value is assigned the new_value and an event
occurs.
The evaluate-update is accomplished using the request_update() and
update() methods. request_update() is called during the execution of
the write method (in the evaluate phase) indicating to the kernel that an update
is required. During the update phase the kernel calls the update method
provided by the sc_signal channel.

Multiple writes in same delta-cycle
If multiple writes by a process to the same sc_signal occur during a
particular evaluate phase of a delta-cycle, the last write executed determines
the new_value the sc_signal will receive in the update phase of the same
delta-cycle.

Read
A read is executed during the evaluate phase of a delta-cycle and returns the
current_value. It does not consume the data.

Simultaneous reads and writes
If during the evaluate phase of a delta-cycle a read and write occur to the same
sc_signal, the read will return the current_value. The new_value from the
write will not be available to read until the next delta-cycle as described above.

Example
// GIVEN
sc_signal<int> m; // channel of type int
 // channel of type sc_uint<12>
sc_signal<sc_uint<12> > n;
sc_signal<bool> clk; // channel of type bool
int i;

m.write(i); //write m with value of i
n.write(8); //write n with value of 8
if(clk.posedge()) // was there a posedge?

 Copyright 2003 Open SystemC Initiative. All rights reserved 301

SystemC 2.0.1 Language Reference Manual

i = m.read(); // assign value of m to i
 // wait for posedge of clk
wait(clk.posedge_event()) ;

Public Constructors
sc_signal();

Create a sc_signal instance.

explicit
sc_signal(const char* name_);

Create a sc_signal instance with the string name initialized to name_.

Public Member Functions

virtual const sc_event&
default_event() const ;

Returns a reference to an event that occurs when new_value on a write is
different from current_value.

virtual void
dump(ostream&) const;

Prints the string name, current_value and new_value of the sc_signal
instance to an output stream.

virtual bool
event() const ;

Returns true if an event occurred in the previous delta-cycle.

virtual const T&
get_data_ref() const ;

Returns a reference to current_value.

virtual const char*
kind() const ;

Returns “sc_signal”.

const T&
get_new_value() const ;

Returns a reference to new_value.

virtual bool
negedge() const ;

Type bool and sc_logic only. Returns true if an event occurred in the
previous delta-cycle and current_value is false.

virtual const sc_event&
negedge_event() const ;

Type bool and sc_logic only. Returns a reference to an event that
occurs when new_value on a write is false and the current_value is not false.

virtual bool

 Copyright 2003 Open SystemC Initiative. All rights reserved 302

SystemC 2.0.1 Language Reference Manual

posedge () const ;
Type bool and sc_logic only. Returns true if an event occurred in the
previous delta-cycle and current_value is true.

virtual const sc_event&
posedge_event () const ;

Type bool and sc_logic only. Returns a reference to an event that
occurs when new_value on a write is true and the current_value is not true.

virtual const T&
read() const ;

Returns a reference to current_value.

virtual void
register_port(sc_port_base

†
&, const char*);

Checks to ensure at most only one out or inout port is connected to the
sc_signal instance.

virtual void
print(ostream&) const;

Prints current_value to an output stream.

void
trace(sc_trace_file

†
* tf) const ;

Adds a trace of current_value to the trace file tf.

virtual void
write(const T& val);

If val is not equal to current_value then schedules an update with val as
new_value.

virtual const sc_event&
value_changed_event() const ;

Returns a reference to an event that occurs when new_value on a write is
different from current_value.

Public Operators
operator const T& () const ;

Returns current_value.

sc_signal<T>&
operator = (const T& val);

If val is not equal to current_value of the left hand side, then an update is
scheduled with val as the new_value of the left hand side. Returns a
reference to the instance.

sc_signal<T>&

 Copyright 2003 Open SystemC Initiative. All rights reserved 303

SystemC 2.0.1 Language Reference Manual

operator = (const sc_signal<T>& val);
If the current_value of val is not equal to current_value of the left hand side,
then an update is scheduled with the current_value of val as the
new_value of the left hand side. Returns a reference to the instance.

Protected Member Functions
void
check_writer();

Checks to make sure only one process writes to the sc_signal instance.
Prints an error message if more than one process attempts to write the
sc_signal instance.

virtual void
update();

Assigns new_value to current_value and causes an event to occur. Called
by the kernel during the update phase in response to the execution of a
request_update method.

Disabled Member Function
sc_signal(const sc_signal<T>&);

Specialized ports
The classes sc_in, sc_out and sc_inout are specialized ports for use
with sc_signal channels.

 Copyright 2003 Open SystemC Initiative. All rights reserved 304

SystemC 2.0.1 Language Reference Manual

11.61 sc_signal_in_if
Synopsis
template <class T>
class sc_signal_in_if
: virtual public sc_interface
{
public:
 virtual const sc_event& value_changed_event() const = 0;
 virtual const T& read() const = 0;
 virtual const T& get_data_ref() const = 0;
 virtual bool event() const = 0;
protected:
 // constructor
 sc_signal_in_if();
private:
 // disabled
 sc_signal_in_if(const sc_signal_in_if<T>&);
 sc_signal_in_if<T>& operator = (const

sc_signal_in_if<T>&);
};

Description
The sc_signal_in_if class provides the signatures of the functions for the
sc_signal_in_if interface. See Chapter 8.1 for a description of interfaces.

Example
SC_MODULE(my_module) {
sc_port< sc_signal_in_if<int> > p1; //“read” signal port

template <class T>
class sc_in
: public sc_port<sc_signal_in_if<T>,1>
{ };

Protected Constructor
sc_signal_in_if();

Create a sc_signal_in_if instance.

Public Member Functions
virtual bool
event() const = 0;

virtual const T&
get_data_ref() const = 0;

virtual bool
negedge() const = 0;

Type bool and sc_logic only.

 Copyright 2003 Open SystemC Initiative. All rights reserved 305

SystemC 2.0.1 Language Reference Manual

Type bool and sc_logic only.

sc_signal_in_if(const sc_signal_in_if<T>&);

virtual const sc_event&
negedge_event() const = 0;

virtual const sc_event&
posedge_event() const = 0;

Type bool and sc_logic only.

virtual bool
posedge() const = 0;

Type bool and sc_logic only.

virtual const T&
read() const = 0;

virtual const sc_event&
value_changed_event() const = 0;

Disabled Member Functions

sc_signal_in_if<T>&
operator = (const sc_signal_in_if<T>&);

 Copyright 2003 Open SystemC Initiative. All rights reserved 306

SystemC 2.0.1 Language Reference Manual

11.62 sc_signal_inout_if
Synopsis
template <class T>
class sc_signal_inout_if
: public sc_signal_in_if<T>
{
public:
 virtual void write(const T&) = 0;
protected:
 // constructor
 sc_signal_inout_if();
private:
 // disabled
 sc_signal_inout_if(const sc_signal_inout_if<T>&);
 sc_signal_inout_if<T>& operator = (const

sc_signal_inout_if<T>&);
};

Description
The sc_signal_inout_if class provides the signatures of the functions for
the sc_signal_inout_if interface. See Chapter 8.1 for a description of
interfaces. Implemented by the sc_signal channel (Chapter 11.60)

template <class T>

Example
SC_MODULE(my_module) {
sc_port<sc_signal_inout_if<int> > p1; //“rw” signal port

class sc_inout
: public sc_port<sc_signal_inout_if<T>,1>
{ };

Protected Constructor
sc_signal_inout_if();

Create a sc_signal_inout_if instance.

Public Member Functions
virtual void
write(const T&) = 0;

Disabled Member Functions
sc_signal_inout_if(const sc_signal_inout_if<T>&);

sc_signal_inout_if<T>&
operator = (const sc_signal_inout_if<T>&)

 Copyright 2003 Open SystemC Initiative. All rights reserved 307

SystemC 2.0.1 Language Reference Manual

11.63 sc_signal_resolved
Inheritance
Synopsis
class sc_signal_resolved
: public sc_signal<sc_logic>
{
public:
 // typedefs
 typedef sc_signal_resolved this_type;
 typedef sc_signal<sc_logic> base_type;
 typedef sc_logic data_type;
public:
 // constructors, destructor
 sc_signal_resolved();
 explicit sc_signal_resolved(const char* name_);
 virtual ~sc_signal_resolved();

 // methods
 virtual void register_port(sc_port_base&, const

char*);
 virtual void write(const data_type&);
 this_type& operator = (const data_type& a);
 this_type& operator = (const this_type& a);
 static const char* const kind_string;
 virtual const char* kind() const;
protected:
 virtual void update();
private:
 // disabled
 sc_signal_resolved(const this_type&);
};

Description
sc_signal_resolved is a primitive channel that implements the
sc_signal_inout_if interface. It behaves like a sc_signal< sc_logic
> channel except it may be written by multiple processes. Refer to Chapter
11.60 for the behavior of an sc_signal and Chapter 11.43 for the description
of the sc_logic data type and its legal values.

In the description of sc_signal_resolved, current_value refers to the
value of the sc_signal_resolved instance, new_value is the value to be
written after resolution, and old_value is the previous value. For each process
that writes there is a separate pw_value, which is the value to be written by that
particular process. The multiple pw_values are resolved to generate
new_value. Chapter 2.4.1 describes the scheduler steps referred to.

Initialization

 Copyright 2003 Open SystemC Initiative. All rights reserved 308

SystemC 2.0.1 Language Reference Manual

The initial current_value of an sc_signal_resolved instance is Log_X.
The current_value may be explicitly initialized in the sc_main function or in the
constructor of the module where it is created.

The resultant value for writes by multiple processes during the same delta-cycle
is resolved per Table 29 - Resolution of multiple values.

Table 29 - Resolution of multiple values

Value 0 1 Z X
0 Log_0 Log_X Log_0 Log_X
1 Log_X Log_1 Log_1 Log_X
Z Log_0 Log_1 Log_Z Log_X
X Log_X Log_X Log_X Log_X

Example
// GIVEN
sc_signal_resolved m; // channel
sc_signal_resolved n; // channel
sc_logic i;

// THEN
m.write(n); //write m with value of n
m = n; // write m with value of n
i = 'Z';
n.write(i); //write n with value of i
if(m.posedge()) // was there a posedge?
 i = m.read(); // assign value of m to i
 // wait for posedge of n
wait(n.posedge_event()) ;

Public Constructors
sc_signal_resolved() ; ;

Create a sc_signal_resolved instance.

explicit
sc_signal_resolved(const char* name_) ;

Create a sc_signal_resolved instance with the string name initialized to
name_.

Public Member Functions
virtual const char*
kind() const ;

Returns “sc_signal_resolved”

virtual void
register_port(sc_port_base

†
&, const char*) ;

Does nothing.

 Copyright 2003 Open SystemC Initiative. All rights reserved 309

SystemC 2.0.1 Language Reference Manual

virtual void

If the current_value of val is not equal to current_value of the left hand side,
then an update is scheduled with the current_value of val as the
pw_new_value of the left hand side. Returns a reference to the instance.

write(const sc_logic& val) ;
If val is not equal to current_value then schedules an update with val as
pw_value for the writing process.

Public Operators
sc_signal_resolved&
operator = (const sc_logic& val) ;

If val is not equal to current_value of the left hand side, then an update is
scheduled with val as the pw_new_value. Returns a reference to the
instance.

sc_signal_resolved&
operator = (const sc_signal_resolved& val) ;

Protected Member Functions
virtual void
update();

Resolves pw_values per Table 29 - Resolution of multiple values to
new_value. Assigns new_value to current_value and causes an event to
occur. Called by the kernel during the update phase in response to the
execution of a request_update method.

Disabled Member Functions
sc_signal_resolved(const sc_signal_resolved&);

 Copyright 2003 Open SystemC Initiative. All rights reserved 310

SystemC 2.0.1 Language Reference Manual

11.64 sc_signal_rv
Synopsis
template <int W>
class sc_signal_rv
: public sc_signal<sc_lv<W> >
{
public:
 // typedefs
 typedef sc_signal_rv<W> this_type;
 typedef sc_signal<sc_lv<W> > base_type;
 typedef sc_lv<W> data_type;
public:
 // constructors, destructor
 sc_signal_rv();
 explicit sc_signal_rv(const char* name_);
 virtual ~sc_signal_rv();

 // methods
 virtual void register_port(sc_port_base&, const

char*);
 virtual void write(const data_type&);
 this_type& operator = (const data_type& a);
 this_type& operator = (const this_type& a);
 static const char* const kind_string;
 virtual const char* kind() const;
protected:
 virtual void update();
private:
 // disabled
 sc_signal_rv(const this_type&);
};

Description
sc_signal_rv is a primitive channel that implements the
sc_signal_inout_if interface. It behaves like an sc_signal<
sc_lv<W> > channel except it may be written by multiple processes. Refer to
Chapter 11.60 for the behavior of an sc_signal and Chapter 11.43 for the
description of the sc_logic data type and its legal values.

In the description of sc_signal_rv, current_value refers to the value of the
sc_signal_rv instance, new_value is the value to be written after
resolution, and old_value is the previous value. For each process that writes
there is a separate pw_value, which is the value to be written by that particular
process. The multiple pw_values are resolved to generate new_value.
Chapter 2.4.1 describes the scheduler steps referred to.

Initialization

 Copyright 2003 Open SystemC Initiative. All rights reserved 311

SystemC 2.0.1 Language Reference Manual

The initial current_value of an sc_signal_rv instance is Log_X. The
current_value may be explicitly initialized in the sc_main function or in the
constructor of the module where it is created.

The resultant value of each bit of an sc_signal_rv for writes by multiple
processes during the same delta-cycle is resolved per Table 30 - Resolution of
multiple values.

Table 30 - Resolution of multiple values

Value 0 1 Z X
0 Log_0 Log_X Log_0 Log_X
1 Log_X Log_1 Log_1 Log_X
Z Log_0 Log_1 Log_Z Log_X
X Log_X Log_X Log_X Log_X

Examples
// GIVEN
sc_signal_rv<4> m, p; // channels
sc_signal_rv<1> n; // channel
sc_lv<1> i = '0';

// THEN
i = 'Z';
n.write(i); //write n with value of i
m = "01XZ";
p = m; // write p with value of m

wait(m.default_event());

Create a sc_signal_rv instance with the string name initialized to name_.

register_port(sc_port_base &, const char*) ;

p.write(m.read()); // write p with value of m
 // wait for a change of value of m

Public Constructors
sc_signal_rv();

Create a sc_signal_rv instance.

explicit
sc_signal_rv(const char* name_) ;

Public Member Functions
virtual const char*
kind() const ;

Returns “sc_signal_rv”.

virtual void

†

Does nothing.

virtual void

 Copyright 2003 Open SystemC Initiative. All rights reserved 312

SystemC 2.0.1 Language Reference Manual

write(const sc_lv< W >& val) ;
If val is not equal to current_value then schedules an update with val as
pw_value for the writing process.

Public Operators
sc_signal_rv< W >&
operator = (const sc_lv< W >&) ;

If val is not equal to current_value of the left hand side, then an update is
scheduled with val as the pw_new_value. Returns a reference to the
instance.

sc_signal_rv< W >&
operator = (const sc_signal_rv< W >&) ;

If the current_value of val is not equal to current_value of the left hand side,
then an update is scheduled with the current_value of val as the
pw_new_value of the left hand side. Returns a reference to the instance.

Protected Member Functions
virtual void
update();

Resolves pw_values per Table 30 - Resolution of multiple values to
new_value. Assigns new_value to current_value and causes an event to
occur. Called by the kernel during the update phase in response to the
execution of a request_update method.

Disabled Member Function
sc_signal_rv(const sc_signal_rv< W >&);

 Copyright 2003 Open SystemC Initiative. All rights reserved 313

SystemC 2.0.1 Language Reference Manual

11.65 sc_signed

class sc_signed
{
public:
 // constructors & destructors
 explicit sc_signed(int nb = sc_length_param().len());
 sc_signed(const sc_signed& v);
 sc_signed(const sc_unsigned& v);
 ~sc_signed()

 // assignment operators
 sc_signed& operator = (const sc_signed& v);
 sc_signed& operator = (const sc_signed_subref_r& a);
 template <class T1, class T2>
 sc_signed& operator = (const

sc_signed_concref_r<T1,T2>& a)
 sc_signed& operator = (const sc_unsigned& v);
 sc_signed& operator = (const sc_unsigned_subref_r& a);
 template <class T1, class T2>
 sc_signed& operator = (const

sc_unsigned_concref_r<T1,T2>& a)
 sc_signed& operator = (const char* v);
 sc_signed& operator = (int64 v);
 sc_signed& operator = (uint64 v);
 sc_signed& operator = (long v);
 sc_signed& operator = (unsigned long v);
 sc_signed& operator = (int v)

 sc_signed& operator = (double v);

 sc_signed& operator = (const sc_fxval&);

 // Increment operators.

 // Decrement operators.

 sc_signed& operator = (unsigned int v)

 sc_signed& operator = (const sc_int_base& v);
 sc_signed& operator = (const sc_uint_base& v);
 sc_signed& operator = (const sc_bv_base&);
 sc_signed& operator = (const sc_lv_base&);

 sc_signed& operator = (const sc_fxval_fast&);
 sc_signed& operator = (const sc_fxnum&);
 sc_signed& operator = (const sc_fxnum_fast&);

 sc_signed& operator ++ ();
 const sc_signed operator ++ (int);

 sc_signed& operator -- ();
 const sc_signed operator -- (int);

 // bit selection
 sc_signed_bitref operator [] (int i)
 sc_signed_bitref_r operator [] (int i) const
 sc_signed_bitref bit(int i)
 sc_signed_bitref_r bit(int i) const

 Copyright 2003 Open SystemC Initiative. All rights reserved 314

SystemC 2.0.1 Language Reference Manual

 // part selection
 sc_signed_subref range(int i, int j)
 sc_signed_subref_r range(int i, int j) const
 sc_signed_subref operator () (int i, int j)
 sc_signed_subref_r operator () (int i, int j) const

 friend sc_signed operator + (const sc_unsigned& u,
const sc_signed& v);

 friend sc_signed operator + (const sc_signed&u, int64
 v);

 // explicit conversions
 int to_int() const;
 unsigned int to_uint() const;
 long to_long() const;
 unsigned long to_ulong() const;
 int64 to_int64() const;
 uint64 to_uint64() const;
 double to_double() const;
 const sc_string to_string(sc_numrep numrep = SC_DEC)

const;
 const sc_string to_string(sc_numrep numrep, bool

w_prefix) const;

 // methods
 void print(ostream& os = cout) const
 void scan(istream& is = cin);
 void dump(ostream& os = cout) const;
 int length() const { return nbits; } // Bit width.
 bool iszero() const; // Is the

number zero?
 bool sign() const; // Sign.

 void reverse();

 // ADDition operators:

 friend sc_signed operator + (const sc_signed&u, const
sc_unsigned& v);

 friend sc_signed operator + (const sc_unsigned& u,
int64 v);

 friend sc_signed operator + (const sc_unsigned& u,
long v);

 friend sc_signed operator + (const sc_unsigned& u,
int v)

 friend sc_signed operator + (int64 u,
const sc_unsigned& v);

 friend sc_signed operator + (long u,
const sc_unsigned& v);

 friend sc_signed operator + (int u,
const sc_unsigned& v)

 friend sc_signed operator + (const sc_signed&u, const
sc_signed&v);

 friend sc_signed operator + (const sc_signed&u, uint64
 v);

 Copyright 2003 Open SystemC Initiative. All rights reserved 315

SystemC 2.0.1 Language Reference Manual

 friend sc_signed operator + (const sc_signed&u, long
 v);

 friend sc_signed operator + (const sc_signed&u,
unsigned long v);

 friend sc_signed operator + (const sc_signed&u, int
 v)

 friend sc_signed operator + (const sc_signed&u,
unsigned int v)

 friend sc_signed operator + (int64 u, const sc_signed&
 v);

 friend sc_signed operator + (uint64 u, const sc_signed&
 v);

 friend sc_signed operator + (long u, const sc_signed&
 v);

 friend sc_signed operator + (unsigned long u, const
sc_signed&v);

 friend sc_signed operator + (int u, const sc_signed&
 v)

 friend sc_signed operator + (unsigned int u, const
sc_signed&v)

 sc_signed& operator += (const sc_signed&v);
 sc_signed& operator += (const sc_unsigned& v);
 sc_signed& operator += (int64 v);
 sc_signed& operator += (uint64 v);
 sc_signed& operator += (long v);
 sc_signed& operator += (unsigned long v);
 sc_signed& operator += (int v)

 sc_signed& operator += (const sc_int_base& v);

 sc_signed& operator += (unsigned int v)
 friend sc_signed operator + (const sc_unsigned& u,

const sc_int_base& v);
 friend sc_signed operator + (const sc_int_base& u,

const sc_unsigned& v);
 friend sc_signed operator + (const sc_signed&u, const

sc_int_base& v);
 friend sc_signed operator + (const sc_signed&u, const

sc_uint_base& v);
 friend sc_signed operator + (const sc_int_base& u,

const sc_signed& v);
 friend sc_signed operator + (const sc_uint_base& u,

const sc_signed& v);

 sc_signed& operator += (const sc_uint_base& v);

 // SUBtraction operators:
 friend sc_signed operator - (const sc_unsigned& u,

const sc_signed& v);
 friend sc_signed operator - (const sc_signed&u, const

sc_unsigned& v);
 friend sc_signed operator - (const sc_unsigned& u,

const sc_unsigned& v);
 friend sc_signed operator - (const sc_unsigned& u,

int64 v);
 friend sc_signed operator - (const sc_unsigned& u,

uint64 v);

 Copyright 2003 Open SystemC Initiative. All rights reserved 316

SystemC 2.0.1 Language Reference Manual

 friend sc_signed operator - (const sc_unsigned& u,
long v);

 friend sc_signed operator - (const sc_unsigned& u,
unsigned long v);

 friend sc_signed operator - (const sc_unsigned& u,
int v)

 friend sc_signed operator - (const sc_unsigned& u,
unsigned int v)

 friend sc_signed operator - (int64 u, const
sc_unsigned& v);

 friend sc_signed operator - (long u, const
sc_unsigned& v);

 friend sc_signed operator - (long u, const sc_signed&
 v);

 sc_signed& operator -= (uint64 v);

 sc_signed& operator -= (unsigned long v);

 sc_signed& operator -= (unsigned int v)

 friend sc_signed operator - (uint64 u, const
sc_unsigned& v);

 friend sc_signed operator - (unsigned long u, const
sc_unsigned& v);

 friend sc_signed operator - (int u, const
sc_unsigned& v)

 friend sc_signed operator - (unsigned int u, const
sc_unsigned& v)

 friend sc_signed operator - (const sc_signed&u, const
sc_signed&v);

 friend sc_signed operator - (const sc_signed&u, int64
 v);

 friend sc_signed operator - (const sc_signed&u, uint64
 v);

 friend sc_signed operator - (const sc_signed&u, long
 v);

 friend sc_signed operator - (const sc_signed&u,
unsigned long v);

 friend sc_signed operator - (const sc_signed&u, int
 v)

 friend sc_signed operator - (const sc_signed&u,
unsigned int v)

 friend sc_signed operator - (int64 u, const sc_signed&
 v);

 friend sc_signed operator - (uint64 u, const sc_signed&
 v);

 friend sc_signed operator - (unsigned long u, const
sc_signed&v);

 friend sc_signed operator - (int u, const sc_signed&
 v)

 friend sc_signed operator - (unsigned int u, const
sc_signed&v)

 sc_signed& operator -= (const sc_signed&v);
 sc_signed& operator -= (const sc_unsigned& v);
 sc_signed& operator -= (int64 v);

 sc_signed& operator -= (long v);

 sc_signed& operator -= (int v)

 Copyright 2003 Open SystemC Initiative. All rights reserved 317

SystemC 2.0.1 Language Reference Manual

 friend sc_signed operator - (const sc_unsigned& u,
const sc_int_base& v);

 friend sc_signed operator - (const sc_unsigned& u,
const sc_uint_base& v);

 friend sc_signed operator - (const sc_int_base& u,
const sc_unsigned& v);

 friend sc_signed operator - (const sc_uint_base& u,
const sc_unsigned& v);

 friend sc_signed operator - (const sc_signed&u, const
sc_int_base& v);

 // MULtiplication operators:

 friend sc_signed operator - (const sc_signed&u, const
sc_uint_base& v);

 friend sc_signed operator - (const sc_int_base& u,
const sc_signed& v);

 friend sc_signed operator - (const sc_uint_base& u,
const sc_signed& v);

 sc_signed& operator -= (const sc_int_base& v);
 sc_signed& operator -= (const sc_uint_base& v);

 friend sc_signed operator * (const sc_unsigned& u,
const sc_signed& v);

 friend sc_signed operator * (const sc_signed&u, const
sc_unsigned& v);

 friend sc_signed operator * (const sc_unsigned& u,
int64 v);

 friend sc_signed operator * (const sc_unsigned& u,
long v);

 friend sc_signed operator * (const sc_unsigned& u,
int v)

 friend sc_signed operator * (int64 u, const
sc_unsigned& v);

 friend sc_signed operator * (long u, const
sc_unsigned& v);

 friend sc_signed operator * (int u, const
sc_unsigned& v)

 friend sc_signed operator * (const sc_signed&u, const
sc_signed&v);

 friend sc_signed operator * (const sc_signed&u, int64
 v);

 friend sc_signed operator * (const sc_signed&u, uint64
 v);

 friend sc_signed operator * (const sc_signed&u, long
 v);

 friend sc_signed operator * (const sc_signed&u,
unsigned long v);

 friend sc_signed operator * (const sc_signed&u, int
 v)

 friend sc_signed operator * (const sc_signed&u,
unsigned int v)

 friend sc_signed operator * (int64 u, const sc_signed&
 v);

 friend sc_signed operator * (uint64 u, const
sc_signed&v);

 Copyright 2003 Open SystemC Initiative. All rights reserved 318

SystemC 2.0.1 Language Reference Manual

 friend sc_signed operator * (long u, const sc_signed&
 v);

 friend sc_signed operator * (unsigned long u, const
sc_signed&v);

 friend sc_signed operator * (int u, const sc_signed&
 v)

 friend sc_signed operator * (unsigned int u, const
sc_signed&v)

 sc_signed& operator *= (const sc_signed&v);
 sc_signed& operator *= (const sc_unsigned& v);
 sc_signed& operator *= (int64 v);
 sc_signed& operator *= (uint64 v);
 sc_signed& operator *= (long v);
 sc_signed& operator *= (unsigned long v);
 sc_signed& operator *= (int v)
 sc_signed& operator *= (unsigned int v)
 friend sc_signed operator * (const sc_unsigned& u,

const sc_int_base& v);
 friend sc_signed operator * (const sc_int_base& u,

const sc_unsigned& v);
 friend sc_signed operator * (const sc_signed&u, const

sc_int_base& v);
 friend sc_signed operator * (const sc_signed&u, const

sc_uint_base& v);
 friend sc_signed operator * (const sc_int_base& u,

const sc_signed& v);
 friend sc_signed operator * (const sc_uint_base& u,

const sc_signed& v);
 sc_signed& operator *= (const sc_int_base& v);
 sc_signed& operator *= (const sc_uint_base& v);

 // DIVision operators:
 friend sc_signed operator / (const sc_unsigned& u,

const sc_signed& v);
 friend sc_signed operator / (const sc_signed&u, const

sc_unsigned& v);
 friend sc_signed operator / (const sc_unsigned& u,

int64 v);
 friend sc_signed operator / (const sc_unsigned& u,

long v);
 friend sc_signed operator / (const sc_unsigned& u,

int v)
 friend sc_signed operator / (int64 u, const

sc_unsigned& v);
 friend sc_signed operator / (long u, const

sc_unsigned& v);
 friend sc_signed operator / (int u, const

sc_unsigned& v)
 friend sc_signed operator / (const sc_signed&u, const

sc_signed&v);
 friend sc_signed operator / (const sc_signed&u, int64

 v);
 friend sc_signed operator / (const sc_signed&u, uint64

 v);

 Copyright 2003 Open SystemC Initiative. All rights reserved 319

SystemC 2.0.1 Language Reference Manual

 friend sc_signed operator / (const sc_signed&u, long
 v);

 friend sc_signed operator / (const sc_signed&u,
unsigned long v);

 friend sc_signed operator / (const sc_signed&u, int
 v)

 friend sc_signed operator / (const sc_signed&u,
unsigned int v)

 friend sc_signed operator / (int64 u, const sc_signed&
 v);

 friend sc_signed operator / (uint64 u, const sc_signed&
 v);

 friend sc_signed operator / (long u, const sc_signed&
 v);

 friend sc_signed operator / (unsigned long u,
const sc_signed& v);

 friend sc_signed operator / (int u, const
sc_signed&v)

 friend sc_signed operator / (unsigned int u, const
sc_signed&v)

 sc_signed& operator /= (const sc_signed&v);
 sc_signed& operator /= (const sc_unsigned& v);
 sc_signed& operator /= (int64 v);
 sc_signed& operator /= (uint64 v);
 sc_signed& operator /= (long v);
 sc_signed& operator /= (unsigned long v);
 sc_signed& operator /= (int v)
 sc_signed& operator /= (unsigned int v)
 friend sc_signed operator / (const sc_unsigned& u,

const sc_int_base& v);
 friend sc_signed operator / (const sc_int_base& u,

const sc_unsigned& v);
 friend sc_signed operator / (const sc_signed&u, const

sc_int_base& v);
 friend sc_signed operator / (const sc_signed&u, const

sc_uint_base& v);
 friend sc_signed operator / (const sc_int_base& u,

const sc_signed& v);
 friend sc_signed operator / (const sc_uint_base& u,

const sc_signed& v);
 sc_signed& operator /= (const sc_int_base& v);
 sc_signed& operator /= (const sc_uint_base& v);

 // MODulo operators:
 friend sc_signed operator % (const sc_unsigned& u,

const sc_signed& v);
 friend sc_signed operator % (const sc_signed&u, const

sc_unsigned& v);
 friend sc_signed operator % (const sc_unsigned& u,

int64 v);
 friend sc_signed operator % (const sc_unsigned& u,

long v);
 friend sc_signed operator % (const sc_unsigned& u,

int v)

 Copyright 2003 Open SystemC Initiative. All rights reserved 320

SystemC 2.0.1 Language Reference Manual

 friend sc_signed operator % (int64 u, const
sc_unsigned& v);

 friend sc_signed operator % (long u, const
sc_unsigned& v);

 friend sc_signed operator % (int u, const
sc_unsigned& v)

 friend sc_signed operator % (const sc_signed&u, const
sc_signed&v);

 friend sc_signed operator % (const sc_signed&u, int64
 v);

 friend sc_signed operator % (const sc_signed&u, uint64
 v);

 friend sc_signed operator % (const sc_signed&u, long
 v);

 friend sc_signed operator % (const sc_signed&u,
unsigned long v);

 friend sc_signed operator % (const sc_signed&u, int
 v)

 friend sc_signed operator % (const sc_signed&u,
unsigned int v)

 friend sc_signed operator % (int64 u, const
sc_signed&v);

 friend sc_signed operator % (uint64 u,
const sc_signed& v);

 friend sc_signed operator % (long u,
const sc_signed& v);

 friend sc_signed operator % (unsigned long u,
const sc_signed& v);

 friend sc_signed operator % (int u,
const sc_signed& v)

 friend sc_signed operator % (unsigned int u,
const sc_signed& v)

 sc_signed& operator %= (const sc_signed&v);
 sc_signed& operator %= (const sc_unsigned& v);
 sc_signed& operator %= (int64 v);
 sc_signed& operator %= (uint64 v);
 sc_signed& operator %= (long v);
 sc_signed& operator %= (unsigned long v);
 sc_signed& operator %= (int v)
 sc_signed& operator %= (unsigned int v)
 friend sc_signed operator % (const sc_unsigned& u,

const sc_int_base& v);
 friend sc_signed operator % (const sc_int_base& u,

const sc_unsigned& v);
 friend sc_signed operator % (const sc_signed&u, const

sc_int_base& v);
 friend sc_signed operator % (const sc_signed&u, const

sc_uint_base& v);
 friend sc_signed operator % (const sc_int_base& u,

const sc_signed& v);
 friend sc_signed operator % (const sc_uint_base& u,

const sc_signed& v);
 sc_signed& operator %= (const sc_int_base& v);
 sc_signed& operator %= (const sc_uint_base& v);

 Copyright 2003 Open SystemC Initiative. All rights reserved 321

SystemC 2.0.1 Language Reference Manual

 // Bitwise AND operators:
 friend sc_signed operator & (const sc_unsigned& u,

const sc_signed& v);
 friend sc_signed operator & (const sc_signed&u, const

sc_unsigned& v);
 friend sc_signed operator & (const sc_unsigned& u,

int64 v);
 friend sc_signed operator & (const sc_unsigned& u,

long v);
 friend sc_signed operator & (const sc_unsigned& u,

int v)
 friend sc_signed operator & (int64 u,

const sc_unsigned& v);
 friend sc_signed operator & (long u,

const sc_unsigned& v);
 friend sc_signed operator & (int u,

const sc_unsigned& v)
 friend sc_signed operator & (const sc_signed&u, const

sc_signed&v);
 friend sc_signed operator & (const sc_signed&u, int64

 v);
 friend sc_signed operator & (const sc_signed&u, uint64

 v);
 friend sc_signed operator & (const sc_signed&u, long

 v);
 friend sc_signed operator & (const sc_signed&u,

unsigned long v);
 friend sc_signed operator & (const sc_signed&u, int

 v)
 friend sc_signed operator & (const sc_signed&u,

unsigned int v)
 friend sc_signed operator & (int64 u, const

sc_signed&v);
 friend sc_signed operator & (uint64 u, const

sc_signed&v);
 friend sc_signed operator & (long u,

const sc_signed& v);
 friend sc_signed operator & (unsigned long u, const

sc_signed&v);
 friend sc_signed operator & (int u,

const sc_signed& v)
 friend sc_signed operator & (unsigned int u,

const sc_signed& v)
 sc_signed& operator &= (const sc_signed&v);
 sc_signed& operator &= (const sc_unsigned& v);
 sc_signed& operator &= (int64 v);
 sc_signed& operator &= (uint64 v);
 sc_signed& operator &= (long v);
 sc_signed& operator &= (unsigned long v);
 sc_signed& operator &= (int v)
 sc_signed& operator &= (unsigned int v)
 friend sc_signed operator & (const sc_unsigned& u,

const sc_int_base& v);

 Copyright 2003 Open SystemC Initiative. All rights reserved 322

SystemC 2.0.1 Language Reference Manual

 friend sc_signed operator & (const sc_int_base& u,
const sc_unsigned& v);

 friend sc_signed operator & (const sc_signed&u, const
sc_int_base& v);

 friend sc_signed operator & (const sc_signed&u, const
sc_uint_base& v);

 friend sc_signed operator & (const sc_int_base& u,
const sc_signed& v);

 friend sc_signed operator & (const sc_uint_base& u,
const sc_signed& v);

 sc_signed& operator &= (const sc_int_base& v);
 sc_signed& operator &= (const sc_uint_base& v);

 // Bitwise OR operators:
 friend sc_signed operator | (const sc_unsigned& u,

const sc_signed& v);
 friend sc_signed operator | (const sc_signed&u, const

sc_unsigned& v);
 friend sc_signed operator | (const sc_unsigned& u,

int64 v);
 friend sc_signed operator | (const sc_unsigned& u,

long v);
 friend sc_signed operator | (const sc_unsigned& u,

int v)
 friend sc_signed operator | (int64 u,

const sc_unsigned& v);
 friend sc_signed operator | (long u,

const sc_unsigned& v);
 friend sc_signed operator | (int u,

const sc_unsigned& v)
 friend sc_signed operator | (const sc_signed&u, const

sc_signed&v);
 friend sc_signed operator | (const sc_signed&u, int64

 v);
 friend sc_signed operator | (const sc_signed&u, uint64

 v);
 friend sc_signed operator | (const sc_signed&u, long

 v);
 friend sc_signed operator | (const sc_signed&u,

unsigned long v);
 friend sc_signed operator | (const sc_signed&u, int

 v)

 friend sc_signed operator | (uint64 u, const
sc_signed&v);

 friend sc_signed operator | (const sc_signed&u,
unsigned int v)

 friend sc_signed operator | (int64 u, const
sc_signed&v);

 friend sc_signed operator | (long u,
const sc_signed& v);

 friend sc_signed operator | (unsigned long u, const
sc_signed&v);

 friend sc_signed operator | (int u,
const sc_signed& v)

 Copyright 2003 Open SystemC Initiative. All rights reserved 323

SystemC 2.0.1 Language Reference Manual

 friend sc_signed operator | (unsigned int u,
const sc_signed& v)

 sc_signed& operator |= (const sc_signed&v);
 sc_signed& operator |= (const sc_unsigned& v);
 sc_signed& operator |= (int64 v);
 sc_signed& operator |= (uint64 v);
 sc_signed& operator |= (long v);

 friend sc_signed operator ^ (const sc_signed&u, uint64
 v);

 friend sc_signed operator ^ (const sc_signed&u, int
 v)

 sc_signed& operator |= (unsigned long v);
 sc_signed& operator |= (int v)
 sc_signed& operator |= (unsigned int v)
 friend sc_signed operator | (const sc_unsigned& u,

const sc_int_base& v);
 friend sc_signed operator | (const sc_int_base& u,

const sc_unsigned& v);
 friend sc_signed operator | (const sc_signed&u, const

sc_int_base& v);
 friend sc_signed operator | (const sc_signed&u, const

sc_uint_base& v);
 friend sc_signed operator | (const sc_int_base& u,

const sc_signed& v);
 friend sc_signed operator | (const sc_uint_base& u,

const sc_signed& v);
 sc_signed& operator |= (const sc_int_base& v);
 sc_signed& operator |= (const sc_uint_base& v);

 // Bitwise XOR operators:
 friend sc_signed operator ^ (const sc_unsigned& u,

const sc_signed& v);
 friend sc_signed operator ^ (const sc_signed&u, const

sc_unsigned& v);
 friend sc_signed operator ^ (const sc_unsigned& u,

int64 v);
 friend sc_signed operator ^ (const sc_unsigned& u,

long v);
 friend sc_signed operator ^ (const sc_unsigned& u,

int v)
 friend sc_signed operator ^ (int64 u,

const sc_unsigned& v);
 friend sc_signed operator ^ (long u,

const sc_unsigned& v);
 friend sc_signed operator ^ (int u,

const sc_unsigned& v)
 friend sc_signed operator ^ (const sc_signed&u, const

sc_signed&v);
 friend sc_signed operator ^ (const sc_signed&u, int64

 v);

 friend sc_signed operator ^ (const sc_signed&u, long
 v);

 friend sc_signed operator ^ (const sc_signed&u,
unsigned long v);

 Copyright 2003 Open SystemC Initiative. All rights reserved 324

SystemC 2.0.1 Language Reference Manual

 friend sc_signed operator ^ (const sc_signed&u,
unsigned int v)

 friend sc_signed operator ^ (int64 u, const
sc_signed&v);

 friend sc_signed operator ^ (uint64 u, const
sc_signed&v);

 friend sc_signed operator ^ (long u,
const sc_signed& v);

 friend sc_signed operator ^ (unsigned long u, const
sc_signed&v);

 friend sc_signed operator ^ (int u,
const sc_signed& v)

 friend sc_signed operator ^ (unsigned int u,
const sc_signed& v)

 sc_signed& operator ^= (const sc_signed&v);
 sc_signed& operator ^= (const sc_unsigned& v);
 sc_signed& operator ^= (int64 v);
 sc_signed& operator ^= (uint64 v);
 sc_signed& operator ^= (long v);
 sc_signed& operator ^= (unsigned long v);
 sc_signed& operator ^= (int v)
 sc_signed& operator ^= (unsigned int v)
 friend sc_signed operator ^ (const sc_unsigned& u,

const sc_int_base& v);

 friend sc_signed operator << (const sc_signed& u,
const sc_signed& v);

 friend sc_signed operator << (const sc_signed& u,
unsigned long v);

 friend sc_signed operator ^ (const sc_int_base& u,
const sc_unsigned& v);

 friend sc_signed operator ^ (const sc_signed&u, const
sc_int_base& v);

 friend sc_signed operator ^ (const sc_signed&u, const
sc_uint_base& v);

 friend sc_signed operator ^ (const sc_int_base& u,
const sc_signed& v);

 friend sc_signed operator ^ (const sc_uint_base& u,
const sc_signed& v);

 sc_signed& operator ^= (const sc_int_base& v);
 sc_signed& operator ^= (const sc_uint_base& v);

 // LEFT SHIFT operators:
 friend sc_unsigned operator << (const sc_unsigned&u,

const sc_signed& v);
 friend sc_signed operator << (const sc_signed& u,

const sc_unsigned& v);

 friend sc_signed operator << (const sc_signed& u,
int64 v);

 friend sc_signed operator << (const sc_signed& u,
uint64 v);

 friend sc_signed operator << (const sc_signed& u,
long v);

 friend sc_signed operator << (const sc_signed& u,
int v)

 Copyright 2003 Open SystemC Initiative. All rights reserved 325

SystemC 2.0.1 Language Reference Manual

 friend sc_signed operator << (const sc_signed& u,
unsigned int v)

 sc_signed& operator <<= (const sc_signed& v);
 sc_signed& operator <<= (const sc_unsigned& v);
 sc_signed& operator <<= (int64 v);
 sc_signed& operator <<= (uint64 v);
 sc_signed& operator <<= (long v);
 sc_signed& operator <<= (unsigned long v);
 sc_signed& operator <<= (int v)
 sc_signed& operator <<= (unsigned int v)
 friend sc_signed operator << (const sc_signed& u,

const sc_int_base& v);
 friend sc_signed operator << (const sc_signed& u,

const sc_uint_base& v);
 sc_signed& operator <<= (const sc_int_base& v);
 sc_signed& operator <<= (const sc_uint_base& v);

 // RIGHT SHIFT operators:
 friend sc_unsigned operator >> (const sc_unsigned&u,

const sc_signed& v);
 friend sc_signed operator >> (const sc_signed& u,

const sc_unsigned& v);
 friend sc_signed operator >> (const sc_signed& u,

const sc_signed& v);
 friend sc_signed operator >> (const sc_signed& u,

int64 v);
 friend sc_signed operator >> (const sc_signed& u,

uint64 v);
 friend sc_signed operator >> (const sc_signed& u,

long v);

 sc_signed& operator >>= (int64 v);

 friend sc_signed operator >> (const sc_signed& u,
const sc_int_base& v);

 sc_signed& operator >>= (const sc_uint_base& v);

 friend sc_signed operator >> (const sc_signed& u,
unsigned long v);

 friend sc_signed operator >> (const sc_signed& u,
int v)

 friend sc_signed operator >> (const sc_signed& u,
unsigned int v)

 sc_signed& operator >>= (const sc_signed& v);
 sc_signed& operator >>= (const sc_unsigned& v);

 sc_signed& operator >>= (uint64 v);
 sc_signed& operator >>= (long v);
 sc_signed& operator >>= (unsigned long v);
 sc_signed& operator >>= (int v)
 sc_signed& operator >>= (unsigned int v)

 friend sc_signed operator >> (const sc_signed& u,
const sc_uint_base& v);

 sc_signed& operator >>= (const sc_int_base& v);

 // Unary arithmetic operators
 friend sc_signed operator + (const sc_signed& u);
 friend sc_signed operator - (const sc_signed& u);

 Copyright 2003 Open SystemC Initiative. All rights reserved 326

SystemC 2.0.1 Language Reference Manual

 friend sc_signed operator - (const sc_unsigned& u);

 // Logical EQUAL operators:

 friend bool operator == (const sc_signed& u, long
 v);

 friend bool operator == (long u, const
sc_signed&v);

 friend bool operator == (const sc_signed& u, const
sc_uint_base& v);

 friend bool operator == (const sc_unsigned& u, const
sc_signed&v);

 friend bool operator == (const sc_signed& u, const
sc_unsigned& v);

 friend bool operator == (const sc_signed& u, const
sc_signed&v);

 friend bool operator == (const sc_signed& u, int64
 v);

 friend bool operator == (const sc_signed& u, uint64
 v);

 friend bool operator == (const sc_signed& u,
unsigned long v);

 friend bool operator == (const sc_signed& u, int
 v)

 friend bool operator == (const sc_signed& u,
unsigned int v)

 friend bool operator == (int64 u, const
sc_signed&v);

 friend bool operator == (uint64 u,
const sc_signed& v);

 friend bool operator == (unsigned long u, const
sc_signed&v);

 friend bool operator == (int u, const
sc_signed&v)

 friend bool operator == (unsigned int u, const
sc_signed&v)

 friend bool operator == (const sc_signed& u, const
sc_int_base& v);

 friend bool operator == (const sc_int_base& u, const
sc_signed&v);

 friend bool operator == (const sc_uint_base& u, const
sc_signed&v);

 // Logical NOT_EQUAL operators:
 friend bool operator != (const sc_unsigned& u, const

sc_signed&v);
 friend bool operator != (const sc_signed& u, const

sc_unsigned& v);
 friend bool operator != (const sc_signed& u, const

sc_signed&v);
 friend bool operator != (const sc_signed& u, int64

 v);
 friend bool operator != (const sc_signed& u, uint64

 v);

 Copyright 2003 Open SystemC Initiative. All rights reserved 327

SystemC 2.0.1 Language Reference Manual

 friend bool operator != (const sc_signed& u, long
 v);

 friend bool operator != (const sc_signed& u,
unsigned long v);

 friend bool operator != (const sc_signed& u, int
 v)

 friend bool operator != (const sc_signed& u,
unsigned int v)

 friend bool operator != (int64 u, const
sc_signed&v);

 friend bool operator != (uint64 u,
const sc_signed& v);

 friend bool operator != (long u, const
sc_signed&v);

 friend bool operator != (unsigned long u, const
sc_signed&v);

 friend bool operator != (int u, const
sc_signed&v)

 friend bool operator != (unsigned int u, const
sc_signed&v)

 friend bool operator != (const sc_signed& u, const
sc_int_base& v);

 friend bool operator != (const sc_signed& u, const
sc_uint_base& v);

 friend bool operator != (const sc_int_base& u, const
sc_signed&v);

 friend bool operator != (const sc_uint_base& u, const
sc_signed&v);

 // Logical LESS_THAN operators:
 friend bool operator < (const sc_unsigned& u, const

sc_signed&v);
 friend bool operator < (const sc_signed&u, const

sc_unsigned& v);
 friend bool operator < (const sc_signed&u, const

sc_signed&v);
 friend bool operator < (const sc_signed&u, int64

 v);
 friend bool operator < (const sc_signed&u, uint64

 v);
 friend bool operator < (const sc_signed&u, long v);
 friend bool operator < (const sc_signed&u, unsigned

long v);
 friend bool operator < (const sc_signed&u, int

 v)
 friend bool operator < (const sc_signed&u, unsigned int

 v)
 friend bool operator < (int64 u, const

sc_signed&v);
 friend bool operator < (uint64 u, const

sc_signed&v);
 friend bool operator < (long u, const

sc_signed&v);

 Copyright 2003 Open SystemC Initiative. All rights reserved 328

SystemC 2.0.1 Language Reference Manual

 friend bool operator < (unsigned long u, const
sc_signed&v);

 friend bool operator < (int u, const
sc_signed&v)

 friend bool operator < (unsigned int u, const
sc_signed&v)

 friend bool operator < (const sc_signed&u, const
sc_int_base& v);

 friend bool operator < (const sc_signed&u, const
sc_uint_base& v);

 friend bool operator < (const sc_int_base& u, const
sc_signed&v);

 friend bool operator < (const sc_uint_base& u, const
sc_signed&v);

 // Logical LESS_THAN_AND_EQUAL operators:
 friend bool operator <= (const sc_unsigned& u, const

sc_signed&v);
 friend bool operator <= (const sc_signed& u, const

sc_unsigned& v);
 friend bool operator <= (const sc_signed& u, const

sc_signed&v);
 friend bool operator <= (const sc_signed& u, int64

 v);
 friend bool operator <= (const sc_signed& u, uint64

 v);
 friend bool operator <= (const sc_signed& u, long

 v);
 friend bool operator <= (const sc_signed& u,

unsigned long v);
 friend bool operator <= (const sc_signed& u, int

 v)
 friend bool operator <= (const sc_signed& u,

unsigned int v)
 friend bool operator <= (int64 u, const

sc_signed&v);
 friend bool operator <= (uint64 u,

const sc_signed& v);
 friend bool operator <= (long u, const

sc_signed&v);

 friend bool operator <= (unsigned int u, const
sc_signed&v)

 friend bool operator <= (unsigned long u, const
sc_signed&v);

 friend bool operator <= (int u, const
sc_signed&v)

 friend bool operator <= (const sc_signed& u, const
sc_int_base& v);

 friend bool operator <= (const sc_signed& u, const
sc_uint_base& v);

 friend bool operator <= (const sc_int_base& u, const
sc_signed&v);

 friend bool operator <= (const sc_uint_base& u, const
sc_signed&v);

 Copyright 2003 Open SystemC Initiative. All rights reserved 329

SystemC 2.0.1 Language Reference Manual

 // Logical GREATER_THAN operators:

 friend bool operator > (const sc_unsigned& u, const

sc_signed&v);
 friend bool operator > (const sc_signed&u, const

sc_unsigned& v);
 friend bool operator > (const sc_signed&u, const

sc_signed&v);
 friend bool operator > (const sc_signed&u, int64

 v);
 friend bool operator > (const sc_signed&u, uint64

 v);
 friend bool operator > (const sc_signed&u, long v);
 friend bool operator > (const sc_signed&u, unsigned

long v);
 friend bool operator > (const sc_signed&u, int

 v)
 friend bool operator > (const sc_signed&u, unsigned int

 v)
 friend bool operator > (int64 u, const

sc_signed&v);
 friend bool operator > (uint64 u, const

sc_signed&v);
 friend bool operator > (long u, const

sc_signed&v);
 friend bool operator > (unsigned long u, const

sc_signed&v);
 friend bool operator > (int u, const

sc_signed&v)
 friend bool operator > (unsigned int u, const

sc_signed&v)
 friend bool operator > (const sc_signed&u, const

sc_int_base& v);
 friend bool operator > (const sc_signed&u, const

sc_uint_base& v);
 friend bool operator > (const sc_int_base& u, const

sc_signed&v);
 friend bool operator > (const sc_uint_base& u, const

sc_signed&v);

 // Logical GREATER_THAN_AND_EQUAL operators:
 friend bool operator >= (const sc_unsigned& u, const

sc_signed&v);
 friend bool operator >= (const sc_signed& u, const

sc_unsigned& v);

 friend bool operator >= (const sc_signed& u, const

sc_signed&v);
 friend bool operator >= (const sc_signed& u, int64

 v);
 friend bool operator >= (const sc_signed& u, uint64

 v);

 Copyright 2003 Open SystemC Initiative. All rights reserved 330

SystemC 2.0.1 Language Reference Manual

 friend bool operator >= (const sc_signed& u, long
 v);

 friend bool operator >= (const sc_signed& u,
unsigned long v);

 friend bool operator >= (const sc_signed& u, int
 v)

 friend bool operator >= (const sc_signed& u,
unsigned int v)

 friend bool operator >= (int64 u, const
sc_signed&v);

 friend bool operator >= (uint64 u,
const sc_signed& v);

 friend bool operator >= (long u, const
sc_signed&v);

 friend bool operator >= (unsigned long u, const
sc_signed&v);

 friend bool operator >= (int u, const
sc_signed&v)

 friend bool operator >= (unsigned int u, const
sc_signed&v)

 friend bool operator >= (const sc_signed& u, const
sc_int_base& v);

 friend bool operator >= (const sc_signed& u, const
sc_uint_base& v);

 friend bool operator >= (const sc_int_base& u, const
sc_signed&v);

 friend bool operator >= (const sc_uint_base& u, const
sc_signed&v);

 // Bitwise NOT operator (unary).
 friend sc_signed operator ~ (const sc_signed& u);
};

Description
sc_signed is an integer with an arbitrary word length W. The word length is
specified at construction time and can never change..

Public Constructors
explicit
sc_signed(int nb);
Create an sc_signed instance with an initial value of 0 and word length nb.

sc_signed(const sc_signed& a);
Create an sc_signed instance with an initial value of a and word length of a.

Copy Constructor
sc_signed(const sc_signed&);

Methods
bool

 Copyright 2003 Open SystemC Initiative. All rights reserved 331

SystemC 2.0.1 Language Reference Manual

iszero() const;
 Return true if the value of the sc_signed instance is zero.

int

Print the sc_uint_base instance to an output stream.

sc_signed& operator ++ () ;

The operation is performed as done for type signed int . The result is sign
extended if needed.

sc_signed_bitref operator [] (int);

length() const ;
Return the word length.

void
print(ostream& os = cout) const ;

void
reverse();
Reverse the contents of the sc_signed instance. I.e. LSB becomes MSB and
vice versa.

bool
sign() const;
 Return false.

void
scan(istream& is = cin) ;

Read a sc_uint_base value from an input stream.

Assignment Operators
sc_signed& operator = (T) ;
T in { sc_[un]signed, sc_[un]signed_subref

†
,

sc_[un]signed_concref
†
, char*, [u]int64, [unsigned]

long, [unsigned] int, double, sc_[u]int_base,
sc_bv_base, sc_lv_base, sc_fxval, sc_fxval_fast,
sc_fxnum, sc_fxnum_fast }}

Assign the value of the right-hand side to the left-hand side. The value is
truncated, if its word length is greater than W. If not, the value is sign
extended.

Increment and Decrement Operators
const sc_signed operator ++ (int) ;

The operation is performed as done for type signed int . The result is sign
extended if needed.

sc_signed& operator -- () ;
const sc_signed operator -- (int) ;

Bit Selection
sc_signed_bitref_r operator [] (int) const;

 Copyright 2003 Open SystemC Initiative. All rights reserved 332

SystemC 2.0.1 Language Reference Manual

sc_signed_bitref bit(int);
sc_signed_bitref_r bit(int) const;

Return a reference to a single bit.

Part Selection
sc_signed_subref range(int high, int low);
sc_signed_subref_r range(int high, int low) const;
sc_signed_subref operator () (int high, int low);
sc_signed_subref_r operator () (int high, int low) const;

Return a reference to a range of bits. The MSB is set to the bit at position
high, the LSB is set to the bit at position low.

Arithmetic Assignment Operators

friend sc_signed operator OP (sc_unsigned , sc_signed);
friend sc_signed operator OP (sc_signed , sc_unsigned);
friend sc_signed operator OP (sc_signed , sc_signed);
friend sc_signed operator OP (sc_signed , T);
friend sc_signed operator OP (T , sc_signed);
T in { sc_[u]int_base, [u]int64, [unsigned] long,

[unsigned] int }
OP in { + - * / % & | ^ == != < <= > >= }

friend sc_signed operator OP (sc_unsigned , T);
friend sc_signed operator OP (T , sc_unsigned);
T in { sc_int_base, int64, long, int }
OP in { + - * / % & | ^ == != < <= > >= }

The operation OP is performed and the result is returned.

sc_signed& operator OP (T);

OP in { << >> }

T in { sc_[un]signed, sc_[u]int_base, [u]int64, [unsigned]
long, [unsigned] int }

OP in { += -= *= /= %= &= |= ^= }
The operation OP is performed and the result is assigned to the left-hand side.

Shift Operators
friend sc_unsigned
operator OP (sc_unsigned a , sc_signed b);
friend sc_signed
operator OP (sc_signed a , sc_unsigned b);
friend sc_signed operator OP (sc_signed a , T b);
T in { sc_[u]int_base, [u]int64, [unsigned] long,

[unsigned] int }

Shift a to the left/right by b bits and return the result.

sc_signed& operator OP (T);

 Copyright 2003 Open SystemC Initiative. All rights reserved 333

SystemC 2.0.1 Language Reference Manual

T in { sc_[un]signed, sc_[u]int_base, [u]int64, [unsigned]
long, [unsigned] int }

OP in { <<= >>= }
Shift the sc_signed instance to the left/right by i bits and assign the result to
the sc_signed instance.

Bitwise not
friend sc_signed operator ~ (sc_signed a);
Return the bitwise not of a;

Explicit Conversion
sc_string to_string(sc_numrep = SC_DEC) const
sc_string to_string(sc_numrep, bool) const

Convert the sc_signed instance into its string representation.

double to_double() const ;
int to_int() const ;
int64 to_int64() const ;
long to_long() const ;
uint64 to_uint64() const ;
unsigned int to_uint() const ;
unsigned long to_ulong() const ;

Converts the value of sc_signed instance into the corresponding data type.
If the requested type has less word length than the sc_signed instance, the
value gets truncated accordingly. If the requested type has greater word
length than the sc_signed instance, the value gets sign extended, if
necessary.

 Copyright 2003 Open SystemC Initiative. All rights reserved 334

SystemC 2.0.1 Language Reference Manual

11.66 sc_simcontext

Synopsis
class sc_simcontext
{
public:
 // constructors & destructor
 sc_simcontext();
 ~sc_simcontext();

 // other methods
 bool is_running() const;
 int sim_status() const;
 bool update_phase() const;
 uint64 delta_count() const;
 sc_object* first_object();
 sc_object* next_object();
 sc_object* find_object(const char* name);
 const sc_pvector<sc_object*>& get_child_objects()

 const;
 sc_curr_proc_handle get_curr_proc_info();

private:
 // disabled
 sc_simcontext(const sc_simcontext&);
 sc_simcontext& operator = (const sc_simcontext&);
};

Description
sc_simcontext is a class that is used by the simulation kernel to keep track of
the current state of simulation. It can provide information to modelers such as
the current delta-cycle count, and provides access to any structural element in
the design.

Public Constructors and Destructor
sc_simcontext();

Default constructor.

~sc_simcontext();
Destructor.

Public Member Functions
uint64
delta_count();

Returns the absolute delta-cycle count.

sc_object*
find_object(const char *pathname);

 Copyright 2003 Open SystemC Initiative. All rights reserved 335

SystemC 2.0.1 Language Reference Manual

Returns a pointer to an object in the design hierarchy, such as a module,
port, or channel. The pathname argument is the design hierarchy path to
the object.

sc_object*
first_object();

Returns a pointer to the first object in a collection of all known design
objects, such as modules, ports, and signals. Returns 0 if there are no
objects in the collection.

sc_curr_proc_handle
get_curr_proc_info();

Returns a handle to a current process info object.

const sc_pvector<sc_object *> &
get_child_objects();

Returns a collection of top-level design objects that are instantiated in
sc_main.

bool
is_running();

Returns true while the simulation is running, false otherwise.

sc_object *
next_object();

Returns a pointer to the next object in the collection of all known design
objects. Used after calling first_object() to iterate through the collection.
Returns 0 if there is no next object in the collection.

int
sim_status();

Returns the current status of the simulation. Return value is one of
SC_SIM_OK The simulation state is normal
SC_SIM_ERROR The simulation encountered an error
SC_SIM_USER_STOP The simulation was stopped by sc_stop()

bool
update_phase();

Returns true if the simulation is in the update phase, false otherwise.

Disabled Member Functions
sc_simcontext(const sc_simcontext&);

Copy constructor.

sc_simcontext& operator = (const sc_simcontext&);
Default assignment operator.

 Copyright 2003 Open SystemC Initiative. All rights reserved 336

SystemC 2.0.1 Language Reference Manual

11.67 sc_string
Synopsis
class sc_string
{
public:
 // constructor & destructor
 explicit sc_string(int size = 16);
 sc_string(const char* s);
 sc_string(const char* s, int n);
 sc_string(const sc_string& s);
 ~sc_string();

 // concatenation and assignment
 sc_string& operator = (const char* s);
 sc_string& operator = (const sc_string& s);
 sc_string& operator += (const char* s);
 sc_string& operator += (char c);
 sc_string& operator += (const sc_string& s);
 sc_string operator + (const char* s) const;
 sc_string operator + (char c) const;
 sc_string operator + (const sc_string& s) const;
 friend sc_string operator + (const char* s, const

sc_string& t);
 sc_string substr(int first, int last) const;

 // string comparison operators
 bool operator == (const char* s) const;
 bool operator != (const char* s) const;
 bool operator < (const char* s) const;
 bool operator <= (const char* s) const;
 bool operator > (const char* s) const;
 bool operator >= (const char* s) const;
 bool operator == (const sc_string& s) const;
 bool operator != (const sc_string& s) const;
 bool operator < (const sc_string& s) const;
 bool operator <= (const sc_string& s) const;
 bool operator > (const sc_string& s) const;
 bool operator >= (const sc_string& s) const;

 int length() const;
 const char* c_str() const;
 operator const char*() const;
 char operator[](int index) const;
 char& operator[](int index);
 static sc_string to_string(const char* format, ...);
 template<class T> sc_string& fmt(const T& t);
 sc_string& fmt(const sc_string& s);
 int pos(const sc_string& sub_string)const;
 sc_string& remove(unsigned index, unsigned length);
 sc_string& insert(const sc_string& sub_string, unsigned

index);

 Copyright 2003 Open SystemC Initiative. All rights reserved 337

SystemC 2.0.1 Language Reference Manual

 bool is_delimiter(const sc_string& str, unsigned index)
const;

 bool contains(char c) const;
 sc_string uppercase() const;
 sc_string lowercase() const;
 static sc_string make_str(long n);
 void set(int index, char c);
 int cmp(const char* s) const;
 int cmp(const sc_string& s) const;
 void print(ostream& os = cout) const;
};

Description

Public Constructors
explicit
sc_string(int size = 16);

Creates an empty string of the given size. Declared explicit to avoid implicit
type conversions (int->sc_string).

sc_string(const char* s);

Constructs a string with the same contents (copy) as the argument s.

sc_string(const char* s, int n);

Get first n chars from the string s.

sc_string(const sc_string& s);

Copy constructor.

Public Member Functions
const char*
c_str() const;

Conversion to C-style string.

bool
contains(char)const;

Returns true if string contains the character.

sc_string&
insert(const sc_string& sub_string, unsigned index);

insert substring before index. The value of index should be <=
length().

bool
is_delimiter(const sc_string& str, unsigned index)const;

Returns true if the character at byte index in this string matches any
character in the delimiters string. The value of index should be <
length().

int
length() const;

 Copyright 2003 Open SystemC Initiative. All rights reserved 338

SystemC 2.0.1 Language Reference Manual

Returns length of the string (excluding trailing \0).

sc_string
lowercase()const;

Conversion to lowercase.

int
pos(const sc_string& sub_string)const;

Find position of substring in this string. Returns -1 if not found. If
substring is empty then this function always returns 0.

void
print(ostream& os = cout) const;

Print the sc_string object to output stream os.

sc_string&
remove(unsigned index, unsigned length);

Remove length characters from string starting at index. The value of
index should be < length().

sc_string
substr(int first, int last) const;

Returns substring [first,last]. Returns empty string if:
(a) first < 0 or first >= length()
(b) last < 0 or last >= length()
(c) first > last.

static sc_string
to_string(const char* format, ...)

String formatting (see printf description).

sc_string
uppercase()const;

Conversion to uppercase.

Public Operators
char
operator[] (int index) const;

Returns character at position index.

char&
operator[] (int index);

Returns character at position index.

// concatenation and assignment operators
sc_string& operator = (const char* s);
sc_string& operator = (const sc_string& s);

sc_string& operator += (const char* s);
sc_string& operator += (char c);
sc_string& operator += (const sc_string& s);

 Copyright 2003 Open SystemC Initiative. All rights reserved 339

SystemC 2.0.1 Language Reference Manual

sc_string operator + (const char* s) const;
sc_string operator + (char c) const;
sc_string operator + (const sc_string& s) const;

friend sc_string operator + (const char* s, const

sc_string& t);

// string comparison operators
bool operator == (const char* s) const;
bool operator != (const char* s) const;
bool operator < (const char* s) const;
bool operator <= (const char* s) const;
bool operator > (const char* s) const;
bool operator >= (const char* s) const;
bool operator == (const sc_string& s) const;
bool operator != (const sc_string& s) const;
bool operator < (const sc_string& s) const;
bool operator <= (const sc_string& s) const;
bool operator > (const sc_string& s) const;
bool operator >= (const sc_string& s) const;

 Copyright 2003 Open SystemC Initiative. All rights reserved 340

SystemC 2.0.1 Language Reference Manual

11.68 sc_time
Synopsis
class sc_time
{
public:
 // constructors and default assignment operator
 sc_time();
 sc_time(double, sc_time_unit);
 sc_time(const sc_time&);

 sc_time& operator = (const sc_time&);

 // conversion functions
 uint64 value() const;
 double to_double() const;
 double to_default_time_units() const;
 double to_seconds() const;
 const sc_string to_string() const;

 // relational operators
 bool operator == (const sc_time&) const;
 bool operator != (const sc_time&) const;
 bool operator < (const sc_time&) const;
 bool operator <= (const sc_time&) const;
 bool operator > (const sc_time&) const;
 bool operator >= (const sc_time&) const;

 // arithmetic operators
 sc_time& operator += (const sc_time&);
 sc_time& operator -= (const sc_time&);
 friend const sc_time operator + (const sc_time&, const

sc_time&);
 friend const sc_time operator - (const sc_time&, const

sc_time&);
 sc_time& operator *= (double);
 sc_time& operator /= (double);
 friend const sc_time operator * (const sc_time&,

double);
 friend const sc_time operator * (double, const

sc_time&);
 friend const sc_time operator / (const sc_time&,

double);
 friend double operator / (const sc_time&, const

sc_time&);

 // other
 void print(ostream&) const;
 ostream& operator << (ostream&, const sc_time&);
};

Description

 Copyright 2003 Open SystemC Initiative. All rights reserved 341

SystemC 2.0.1 Language Reference Manual

The sc_time type is used to represent time values or time intervals, internally
stored in an unsigned integer of at least 64 bits. Instances are typically created
with a numeric value and a time unit sc_time_unit (Chapter 13.1.1). If no
value is given at the creation of the instance the default value is
SC_ZERO_TIME.

Example
sc_time t(123, SC_MS); // t = 123 milliseconds

Public Constructors and Default Assignment Operator
sc_time();

Default constructor. Creates an instance with an initial value of
SC_ZERO_TIME.

sc_time(double val, sc_time_unit tu);

Creates an instance with an initial value of val times tu time units.

sc_time(const sc_time&);

Copy constructor.

sc_time&
operator = (const sc_time&);

 Default assignment operator.

Conversion Functions
uint64
value() const;

Converts to type uint64 relative to the time resolution

double
to_double() const;

Converts to type double relative to the time resolution

double
to_default_time_units() const;

Converts to type double in the default time unit.

double
to_seconds() const;

Converts to type double in the seconds (SC_SEC) unit.

const sc_string
to_string() const;

The value is converted to a character string.

Arithmetic Assignment Operators
sc_time&
operator OP (const sc_time&) ;
OP in { += -= }

 Copyright 2003 Open SystemC Initiative. All rights reserved 342

SystemC 2.0.1 Language Reference Manual

sc_time&
operator OP (double);
OP in { *= /= }

Relational Operators
bool
operator op (const sc_time&) const;
OP in { == != < <= > >=}

Arithmetic Operators
friend const sc_time
operator OP (const sc_time&, const sc_time&);
OP in { + - }

friend const sc_time
operator * (const sc_time&, double);
OP in { * / }

friend const sc_time
operator * (double, const sc_time&);

friend double
operator / (const sc_time&, const sc_time&);

Public Member Functions
void
print(ostream&) const;

Prints the sc_time value to an output stream.

Global Functions
ostream&
operator << (ostream& os, const sc_time& a)

Prints the value of a to output stream os.

 Copyright 2003 Open SystemC Initiative. All rights reserved 343

SystemC 2.0.1 Language Reference Manual

11.69 sc_ufix
Inheritance
Synopsis
class sc_ufix : public sc_fxnum
{
public:
 // constructors
 explicit sc_ufix(sc_fxnum_observer* = 0);
 sc_ufix(int, int, sc_fxnum_observer* = 0);
 sc_ufix(sc_q_mode, sc_o_mode,
 sc_fxnum_observer* = 0);
 sc_ufix(sc_q_mode, sc_o_mode, int,
 sc_fxnum_observer* = 0);
 sc_ufix(int, int, sc_q_mode, sc_o_mode,
 sc_fxnum_observer* = 0);
 sc_ufix(int, int, sc_q_mode, sc_o_mode, int,
 sc_fxnum_observer* = 0);
 explicit sc_ufix(const sc_fxcast_switch&,
 sc_fxnum_observer* = 0);
 sc_ufix(int, int, const sc_fxcast_switch&,
 sc_fxnum_observer* = 0);
 sc_ufix(sc_q_mode, sc_o_mode,
 const sc_fxcast_switch&,
 sc_fxnum_observer* = 0);
 sc_ufix(sc_q_mode, sc_o_mode, int,
 const sc_fxcast_switch&,
 sc_fxnum_observer* = 0);
 sc_ufix(int, int, sc_q_mode, sc_o_mode,
 const sc_fxcast_switch&,
 sc_fxnum_observer* = 0);
 sc_ufix(int, int, sc_q_mode, sc_o_mode, int,
 const sc_fxcast_switch&,
 sc_fxnum_observer* = 0);
 explicit sc_ufix(const sc_fxtype_params&,
 sc_fxnum_observer* = 0);
 sc_ufix(const sc_fxtype_params&,
 const sc_fxcast_switch&,
 sc_fxnum_observer* = 0);

#define DECL_CTORS_T(tp) \
 sc_ufix(tp, int, int, sc_fxnum_observer* = 0); \
 sc_ufix(tp, sc_q_mode, sc_o_mode,\
 sc_fxnum_observer* = 0); \
 sc_ufix(tp, sc_q_mode, sc_o_mode, int, \
 sc_fxnum_observer* = 0); \
 sc_ufix(tp, int, int, sc_q_mode, sc_o_mode, \
 sc_fxnum_observer* = 0); \
 sc_ufix(tp, int, int, sc_q_mode, sc_o_mode, int,\
 sc_fxnum_observer* = 0); \
 sc_ufix(tp, const sc_fxcast_switch&, \
 sc_fxnum_observer* = 0); \

 Copyright 2003 Open SystemC Initiative. All rights reserved 344

SystemC 2.0.1 Language Reference Manual

 sc_ufix(tp, int, int, const sc_fxcast_switch&, \
 sc_fxnum_observer* = 0); \
 sc_ufix(tp, sc_q_mode, sc_o_mode,\
 const sc_fxcast_switch&, \
 sc_fxnum_observer* = 0); \
 sc_ufix(tp, sc_q_mode, sc_o_mode, int, \
 const sc_fxcast_switch&, \
 sc_fxnum_observer* = 0); \
 sc_ufix(tp, int, int, sc_q_mode, sc_o_mode, \
 const sc_fxcast_switch&, \
 sc_fxnum_observer* = 0); \
 sc_ufix(tp, \
 int, int, sc_q_mode, sc_o_mode, int, \
 const sc_fxcast_switch&, \
 sc_fxnum_observer* = 0); \
 sc_ufix(tp, const sc_fxtype_params&, \
 sc_fxnum_observer* = 0); \
 sc_ufix(tp, const sc_fxtype_params&, \
 const sc_fxcast_switch&, \
 sc_fxnum_observer* = 0);

#define DECL_CTORS_T_A(tp) \
 sc_ufix(tp,sc_fxnum_observer* = 0); \
 DECL_CTORS_T(tp)

#define DECL_CTORS_T_B(tp) \
 explicit sc_ufix(tp, \
 sc_fxnum_observer* = 0); \
 DECL_CTORS_T(tp)

 DECL_CTORS_T_A(int)
 DECL_CTORS_T_A(unsigned int)
 DECL_CTORS_T_A(long)
 DECL_CTORS_T_A(unsigned long)
 DECL_CTORS_T_A(double)
 DECL_CTORS_T_A(const char*)
 DECL_CTORS_T_A(const sc_fxval&)
 DECL_CTORS_T_A(const sc_fxval_fast&)
 DECL_CTORS_T_A(const sc_fxnum&)
 DECL_CTORS_T_A(const sc_fxnum_fast&)
 DECL_CTORS_T_B(int64)
 DECL_CTORS_T_B(uint64)
 DECL_CTORS_T_B(const sc_int_base&)
 DECL_CTORS_T_B(const sc_uint_base&)
 DECL_CTORS_T_B(const sc_signed&)
 DECL_CTORS_T_B(const sc_unsigned&)

#undef DECL_CTORS_T
#undef DECL_CTORS_T_A
#undef DECL_CTORS_T_B

 // copy constructor
 sc_ufix(const sc_ufix&);

 Copyright 2003 Open SystemC Initiative. All rights reserved 345

SystemC 2.0.1 Language Reference Manual

 // unary bitwise operators
 const sc_ufix operator ~ () const;

 // unary bitwise functions
 friend void b_not(sc_ufix&, const sc_ufix&);

 // binary bitwise operators
 friend const sc_ufix operator & (const sc_ufix&, const

sc_ufix&);
 friend const sc_ufix operator & (const sc_ufix&, const

sc_ufix_fast&);
 friend const sc_ufix operator & (const sc_ufix_fast&,

const sc_ufix&);
 friend const sc_ufix operator | (const sc_ufix&, const

sc_ufix&);
 friend const sc_ufix operator | (const sc_ufix&, const

sc_ufix_fast&);
 friend const sc_ufix operator | (const sc_ufix_fast&,

const sc_ufix&);
 friend const sc_ufix operator ^ (const sc_ufix&, const

sc_ufix&);
 friend const sc_ufix operator ^ (const sc_ufix&, const

sc_ufix_fast&);
 friend const sc_ufix operator ^ (const sc_ufix_fast&,

const sc_ufix&);

 // binary bitwise functions
 friend void b_and(sc_ufix&, const sc_ufix&, const

sc_ufix&);
 friend void b_and(sc_ufix&, const sc_ufix&, const

sc_ufix_fast&);
 friend void b_and(sc_ufix&, const sc_ufix_fast&, const

sc_ufix&);
 friend void b_or (sc_ufix&, const sc_ufix&, const

sc_ufix&);
 friend void b_or (sc_ufix&, const sc_ufix&, const

sc_ufix_fast&);
 friend void b_or (sc_ufix&, const sc_ufix_fast&, const

sc_ufix&);
 friend void b_xor(sc_ufix&, const sc_ufix&, const

sc_ufix&);
 friend void b_xor(sc_ufix&, const sc_ufix&, const

sc_ufix_fast&);
 friend void b_xor(sc_ufix&, const sc_ufix_fast&, const

sc_ufix&);

 // assignment operators
 sc_ufix& operator = (const sc_ufix&);

#define DECL_ASN_OP_T(op,tp) \
 sc_ufix& operator op (tp);

#ifndef SC_FX_EXCLUDE_OTHER

 Copyright 2003 Open SystemC Initiative. All rights reserved 346

SystemC 2.0.1 Language Reference Manual

#define DECL_ASN_OP_OTHER(op) \
 DECL_ASN_OP_T(op,int64) \
 DECL_ASN_OP_T(op,uint64) \
 DECL_ASN_OP_T(op,const sc_int_base&) \
 DECL_ASN_OP_T(op,const sc_uint_base&) \
 DECL_ASN_OP_T(op,const sc_signed&)\
 DECL_ASN_OP_T(op,const sc_unsigned&)
#else
#define DECL_ASN_OP_OTHER(op)
#endif

#define DECL_ASN_OP(op) \
 DECL_ASN_OP_T(op,int) \
 DECL_ASN_OP_T(op,unsigned int)\
 DECL_ASN_OP_T(op,long) \
 DECL_ASN_OP_T(op,unsigned long) \
 DECL_ASN_OP_T(op,double) \
 DECL_ASN_OP_T(op,const char*) \
 DECL_ASN_OP_T(op,const sc_fxval&) \
 DECL_ASN_OP_T(op,const sc_fxval_fast&) \
 DECL_ASN_OP_T(op,const sc_fxnum&) \
 DECL_ASN_OP_T(op,const sc_fxnum_fast&) \
 DECL_ASN_OP_OTHER(op)

 DECL_ASN_OP(=)
 DECL_ASN_OP(*=)
 DECL_ASN_OP(/=)
 DECL_ASN_OP(+=)
 DECL_ASN_OP(-=)
 DECL_ASN_OP_T(<<=,int)
 DECL_ASN_OP_T(>>=,int)
 DECL_ASN_OP_T(&=,const sc_ufix&)
 DECL_ASN_OP_T(&=,const sc_ufix_fast&)
 DECL_ASN_OP_T(|=,const sc_ufix&)
 DECL_ASN_OP_T(|=,const sc_ufix_fast&)
 DECL_ASN_OP_T(^=,const sc_ufix&)
 DECL_ASN_OP_T(^=,const sc_ufix_fast&)

#undef DECL_ASN_OP_T
#undef DECL_ASN_OP_OTHER
#undef DECL_ASN_OP

 // auto-increment and auto-decrement
 const sc_fxval operator ++ (int);
 const sc_fxval operator -- (int);
 sc_ufix& operator ++ ();
 sc_ufix& operator -- ();
};

Description
Unconstrained type sc_ufix is an unsigned type. sc_ufix allows specifying
the fixed-point type parameters wl, iwl, q_mode, o_mode, and n_bits as variables.
See Chapter 6.8.5.

 Copyright 2003 Open SystemC Initiative. All rights reserved 347

SystemC 2.0.1 Language Reference Manual

Declaration Syntax
sc_ufix var_name([init_val]
 [,wl,iwl]
 [,q_mode,o_mode[,n_bits]]
 [,cast_switch]
 [,observer]);

sc_ufix var_name([init_val]
 ,type_params
 [,cast_switch]
 [,observer]);

Examples
sc_ufix b(0,32,32);
sc_ufix d(a+b);
sc_ufix c = 0.1;

Public Constructors
sc_ufix (
 [type_ init_val]
 [,int wl,int iwl]
 [,sc_q_mode q_mode,sc_o_mode o_mode[,int n_bits]]
 [,const sc_fxcast_switch& cast_switch]
 , sc_fxnum_observer* observer) ;
type_ in {short, unsigned short, int, unsigned int, long,

unsigned long, float, double, const char*, int64,
uint64, const sc_int_base

†
&, const sc_uint_base

†
&,

const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

sc_ufix (
 [type_ init_val]
 ,const sc_fxtype_param& type_params
 [,sc_fxcast_switch cast_switch]
 , sc_fxnum_observer* observer) ;
type_ in {short, unsigned short, int, unsigned int, long,

unsigned long, float, double, const char*, int64,
uint64, const sc_int_base&, const sc_uint_base

†
&, const

sc_signed&, const sc_unsigned, const sc_fxval&, const
sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

Notes on type_
For all types in type_ , except sc_[u]fix and sc_[u]fix_fast, only the
value of the argument is taken, that is, any type information is discarded. This
ensures that initialization during declaration and initialization after declaration
behave identical.

 Copyright 2003 Open SystemC Initiative. All rights reserved 348

SystemC 2.0.1 Language Reference Manual

A fixed-point variable can be initialized with a C/C++ character string (type
const char*) either when the number will be expressed in binary form or when
the number is too large to be written as a C/C++ built-in type literal

init_val
The initial value of the variable. If the initial value is not specified, the instance
is uninitialized.
wl
The total number of bits in the fixed-point format. wl must be greater than zero,
otherwise, a runtime error is produced. The default value for wl is obtained
from the fixed-point context type sc_fxtype_context. See Chapter 11.26.
The total word length parameter cannot change after declaration.
iwl
The number of integer bits in the fixed-point format. iwl can be positive or
negative. The default value for iwl is obtained from the fixed-point context type
sc_fxtype_context. See See Chapter 11.26. The number of integer bits
parameter cannot change after declaration.
q_mode
The quantization mode to use. Valid values for q_mode are given in Chapter
6.8.12.7. The default value for q_mode is obtained from the fixed-point context
type sc_fxtype_context. See See Chapter 11.26. The quantization mode
parameter cannot change after declaration.
o_mode
The overflow mode to use. Valid values for o_mode are given in Chapter
6.8.12.1. The default value for o_mode is obtained from the fixed-point context
type sc_fxtype_context. See Chapter 11.26. The overflow mode
parameter cannot change after declaration.
n_bits
The number of saturated bits parameter for the selected overflow mode.
n_bits must be greater than or equal to zero, otherwise a runtime error is
produced. If the overflow mode is specified, the default value is zero. If the
overflow mode is not specified, the default value is obtained from the fixed-point
context type sc_fxtype_context. See Chapter 11.26. The number of
saturated bits parameter cannot change after declaration.
type_params
A fixed-point type parameters object.
cast_switch
The cast switch, which allows to switch fixed-point type casting on or off. Valid
values for cast_switch are:
SC_OFF for casting off
SC_ON for casting on
The default value for cast_switch is obtained from the fixed-point context
type sc_fxcast_context. The cast_switch parameter cannot change
after declaration.
observer

 Copyright 2003 Open SystemC Initiative. All rights reserved 349

SystemC 2.0.1 Language Reference Manual

A pointer to an observer object. The observer argument is of type
sc_fxnum_observer*. See Chapter 11.25. The default value for observer
is 0 (null pointer). The observer parameter cannot change after declaration.

Copy Constructor
sc_ufix(const sc_ufix&);

Operators
The operators defined for the sc_ufix are given in Table 31.

Table 31. Operators for sc_ufix
Operator
class

Operators in class

Bitwise ~ & ^ |

Arithmetic * / + - << >> ++ --

Equality == !=

Relational <<= >>=

Assignment = *= /= += -= <<= >>= &= ^= |=

Note:
Operator << and operator >> define arithmetic shifts, not bitwise shifts. The
difference is that no bits are lost and proper sign extension is done.

In expressions with the non-bitwise operators from Table 31, fixed-point types
can be mixed with all types given:
type_ in {short, unsigned short, int, unsigned int, long,

unsigned long, float, double, const char*, int64,
uint64, const sc_int_base

†
&, const sc_uint_base

†
&,

const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

The return type of any arithmetic operation is the fixed-point value type, which
guarantees that the operation is performed without overflow or quantization.

A floating-point variable or a fixed-point value variable can contain one of the
special values +Inf (plus infinity), -Inf (minus infinity), or Nan (not a number).
Assignment of one of these special values to a fixed-point variable will produce
a runtime error.

For the fixed-point types, a minimal set of bitwise operators is defined. These
bitwise operators are only defined on either the signed fixed-point types or the
unsigned fixed- point types. Mixing between signed and unsigned fixed-point
types is not allowed. Mixing with any other type is also not allowed.

 Copyright 2003 Open SystemC Initiative. All rights reserved 350

SystemC 2.0.1 Language Reference Manual

The semantics of the bitwise operators is as follows. For the unary ~ operator,
the type of the result is the type of the operand. The bits in the two’s
complement mantissa of the operand are inverted to get the mantissa of the
result. For the binary operators, the type of the result is the maximum aligned
type of the two operands, that is, the two operands are aligned by the binary
point and the maximum integer word length and the maximum fractional word
length is taken. The operands are temporarily extended to this type before
performing a bitwise and, bitwise exclusive-or, or bitwise or.

Member Functions
The functions defined for sc_ufix are given in Table 32.

Table 32. Functions for sc_ufix
Function
class

Functions in class

Bitwise b_not, b_and, b_xor, b_or

Arithmetic neg, mult, div, add, sub, lshift, rshift

The functions in Table 32 have return type void. The first argument of these
functions is a reference to the result object. The remaining arguments of these
functions are the operands.

For the bitwise functions, the result object and the operands are of the same
type, which is either sc_fix or sc_ufix.

The neg arithmetic function takes one operand, the other arithmetic functions
take two operands. At least one of the operands of the arithmetic functions
should have a fixed- point type, the other operand can have any of the types
given:
type_ in {short, unsigned short, int, unsigned int, long,

unsigned long, float, double, const char*, int64,
uint64, const sc_int_base

†
&, const sc_uint_base

†
&,

const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

The arithmetic functions are defined twice: once with the result object of type
sc_fxval, and once with the result object of type sc_ufix.

Bit Selection
const sc_fxnum_bitref

†
 operator [] (int i) const;

sc_fxnum_bitref
†
 operator [] (int i);

const sc_fxnum_bitref
†
 bit(int i) const;

sc_fxnum_bitref
†
 bit(int i);

 Copyright 2003 Open SystemC Initiative. All rights reserved 351

SystemC 2.0.1 Language Reference Manual

These functions take one argument of type int, which is the index into the fixed-
point mantissa. The index argument must be between wl-1 (MSB) and 0
(LSB). Otherwise, a runtime error is produced. The return type of the bit
selection functions is (const or non- const) sc_fxnum_bitref†, which is a
proxy class. The proxy class allows bit selection to be used both as rvalue
(for reading) and lvalue (for writing). For bit selection, the fixed-point binary
point is ignored.

Part Selection
const sc_fxnum_subref

†
 operator () (int, int) const;

sc_fxnum_subref
†
 operator () (int, int);

const sc_fxnum_subref
†
 range(int, int) const;

sc_fxnum_subref
†
 range(int, int);

These functions take two arguments of type int, which are the begin and end
indices into the fixed-point mantissa. The index arguments must be between
wl-1 (MSB) and 0 (LSB). Otherwise, a runtime error is produced. The return
type of the part selection functions is (const or non-const) sc_fxnum_subref†,
which is a proxy class that behaves like type sc_bv_base. The proxy class
allows part selection to be used both as rvalue (for reading) and lvalue (for
writing). All operators and methods that are available for type sc_bv_base are
also available for part selection. For part selection, the fixed-point binary point
is ignored.

const sc_fxnum_subref
†
 operator () () const;

sc_fxnum_subref
†
 operator () ();

const sc_fxnum_subref
†
 range() const;

sc_fxnum_subref
†
 range();

As a shortcut for part selection of the complete mantissa, operator () and the
range() method can be called without any arguments.

Query Parameters
const sc_fxcast_switch&
cast_switch() const;

Returns the cast switch parameter.

int
iwl() const;

Returns the integer word length parameter.

int

 Copyright 2003 Open SystemC Initiative. All rights reserved 352

SystemC 2.0.1 Language Reference Manual

n_bits() const;
Returns the number of saturated bits parameter.

sc_o_mode
o_mode() const;

Returns the overflow mode parameter.

operator double() const;

sc_q_mode
q_mode() const;

Return the quantization mode parameter.

const sc_fxtype_params&
type_params() const;

Returns the type parameters.

int
wl() const;

Returns the total word length parameter.

Query Value
bool
is_neg() const;

Always returns false.

bool
is_zero() const;

Returns true if the variable holds a zero value. Returns false otherwise.

bool
overflow_flag() const;

Returns true if the last write action on this variable caused overflow. Returns
false otherwise.

bool
quantization_flag() const;

Returns true if the last write action on this variable caused quantization.
Returns false otherwise.

const sc_fxval
value() const;

Returns the value.

Implicit Conversion

Implicit conversion to the implementation type double. The value does not
change.

Explicit Conversion

 Copyright 2003 Open SystemC Initiative. All rights reserved 353

SystemC 2.0.1 Language Reference Manual

short to_short() const;
unsigned short to_ushort() const;
int to_int() const;
unsigned int to_uint() const;
long to_long() const;
unsigned long to_ulong() const;
float to_float() const;
double to_double() const

const sc_string to_string(sc_numrep, bool, sc_fmt) const;

const sc_string to_bin() const;

const sc_string to_string() const;
const sc_string to_string(sc_numrep) const;
const sc_string to_string(sc_numrep, bool) const;
const sc_string to_string(sc_fmt) const;
const sc_string to_string(sc_numrep, sc_fmt) const;

The value of a fixed-point variable can be converted to a character string
with the to_string() method. This method takes different arguments for
formatting purposes. See Chapter 6.8.8 for more information on converting
fixed-point variables to/from character strings. Furthermore, writing to C++
output streams with operator << is supported, e.g. cout << a;, where a is a
fixed-point variable. The decimal number representation is used in this case.

const sc_string to_dec() const;

const sc_string to_oct() const;
const sc_string to_hex() const;

Shortcut methods for conversion to a character string. See Chapter 6.8.9.2.

Print or dump content
void
print(ostream& = cout) const;

Print the sc_ufix instance value to an output stream.

void
scan(istream& = cin);

Read an sc_ufix value from an input stream.

void
dump(ostream& = cout)
const;

Prints the sc_ufix instance value, parameters and flags to an output
stream.

ostream&
operator << (ostream& os, const sc_ufix& a)

Print the instance value of a to an output stream os.

 Copyright 2003 Open SystemC Initiative. All rights reserved 354

SystemC 2.0.1 Language Reference Manual

11.70 sc_ufix_fast
Synopsis
class sc_ufix_fast : public sc_fxnum_fast
{
public:
 // constructors
 explicit sc_ufix_fast(sc_fxnum_fast_observer* = 0);
 sc_ufix_fast(int, int,
 sc_fxnum_fast_observer* = 0);
 sc_ufix_fast(sc_q_mode, sc_o_mode,
 sc_fxnum_fast_observer* = 0);
 sc_ufix_fast(sc_q_mode, sc_o_mode, int,
 sc_fxnum_fast_observer* = 0);
 sc_ufix_fast(int, int, sc_q_mode, sc_o_mode,
 sc_fxnum_fast_observer* = 0);
 sc_ufix_fast(int, int, sc_q_mode, sc_o_mode, int,
 sc_fxnum_fast_observer* = 0);
 explicit sc_ufix_fast(const sc_fxcast_switch&,
 sc_fxnum_fast_observer* = 0);
 sc_ufix_fast(int, int, const sc_fxcast_switch&,
 sc_fxnum_fast_observer* = 0);
 sc_ufix_fast(sc_q_mode, sc_o_mode,
 const sc_fxcast_switch&,
 sc_fxnum_fast_observer* = 0);
 sc_ufix_fast(sc_q_mode, sc_o_mode, int,
 const sc_fxcast_switch&,
 sc_fxnum_fast_observer* = 0);
 sc_ufix_fast(int, int, sc_q_mode, sc_o_mode,
 const sc_fxcast_switch&,
 sc_fxnum_fast_observer* = 0);
 sc_ufix_fast(int, int, sc_q_mode, sc_o_mode, int,
 const sc_fxcast_switch&,
 sc_fxnum_fast_observer* = 0);
 explicit sc_ufix_fast(const sc_fxtype_params&,
 sc_fxnum_fast_observer* = 0);
 sc_ufix_fast(const sc_fxtype_params&,
 const sc_fxcast_switch&,
 sc_fxnum_fast_observer* = 0);

#define DECL_CTORS_T(tp) \
 sc_ufix_fast(tp, int, int, \
 sc_fxnum_fast_observer* = 0); \
 sc_ufix_fast(tp, sc_q_mode, sc_o_mode,\
 sc_fxnum_fast_observer* = 0); \
 sc_ufix_fast(tp, sc_q_mode, sc_o_mode, int, \
 sc_fxnum_fast_observer* = 0); \
 sc_ufix_fast(tp, int, int, sc_q_mode, sc_o_mode,\
 sc_fxnum_fast_observer* = 0); \
 sc_ufix_fast(tp, \
 int, int, sc_q_mode, sc_o_mode, int, \
 sc_fxnum_fast_observer* = 0); \
 sc_ufix_fast(tp, const sc_fxcast_switch&, \

 Copyright 2003 Open SystemC Initiative. All rights reserved 355

SystemC 2.0.1 Language Reference Manual

 sc_fxnum_fast_observer* = 0); \
 sc_ufix_fast(tp, int, int, \
 const sc_fxcast_switch&, \
 sc_fxnum_fast_observer* = 0); \
 sc_ufix_fast(tp, sc_q_mode, sc_o_mode,\
 const sc_fxcast_switch&, \
 sc_fxnum_fast_observer* = 0); \
 sc_ufix_fast(tp, sc_q_mode, sc_o_mode, int, \
 const sc_fxcast_switch&, \
 sc_fxnum_fast_observer* = 0); \
 sc_ufix_fast(tp, \
 int, int, sc_q_mode, sc_o_mode,\
 const sc_fxcast_switch&, \
 sc_fxnum_fast_observer* = 0); \
 sc_ufix_fast(tp, \
 int, int, sc_q_mode, sc_o_mode, int, \
 const sc_fxcast_switch&, \
 sc_fxnum_fast_observer* = 0); \
 sc_ufix_fast(tp, const sc_fxtype_params&, \
 sc_fxnum_fast_observer* = 0); \
 sc_ufix_fast(tp, const sc_fxtype_params&, \
 const sc_fxcast_switch&, \
 sc_fxnum_fast_observer* = 0);

#define DECL_CTORS_T_A(tp) \
 sc_ufix_fast(tp, \
 sc_fxnum_fast_observer* = 0); \
 DECL_CTORS_T(tp)

 DECL_CTORS_T_A(const sc_fxval&)

#define DECL_CTORS_T_B(tp) \
 explicit sc_ufix_fast(tp, \
 sc_fxnum_fast_observer* = 0); \
 DECL_CTORS_T(tp)

 DECL_CTORS_T_A(int)
 DECL_CTORS_T_A(unsigned int)
 DECL_CTORS_T_A(long)
 DECL_CTORS_T_A(unsigned long)
 DECL_CTORS_T_A(double)
 DECL_CTORS_T_A(const char*)

 DECL_CTORS_T_A(const sc_fxval_fast&)
 DECL_CTORS_T_A(const sc_fxnum&)
 DECL_CTORS_T_A(const sc_fxnum_fast&)
 DECL_CTORS_T_B(int64)
 DECL_CTORS_T_B(uint64)
 DECL_CTORS_T_B(const sc_int_base&)
 DECL_CTORS_T_B(const sc_uint_base&)
 DECL_CTORS_T_B(const sc_signed&)
 DECL_CTORS_T_B(const sc_unsigned&)

#undef DECL_CTORS_T
#undef DECL_CTORS_T_A
#undef DECL_CTORS_T_B

 Copyright 2003 Open SystemC Initiative. All rights reserved 356

SystemC 2.0.1 Language Reference Manual

 // copy constructor
 sc_ufix_fast(const sc_ufix_fast&);

 // unary bitwise operators
 const sc_ufix_fast operator ~ () const;

 // unary bitwise functions
 friend void b_not(sc_ufix_fast&, const sc_ufix_fast&);

 // binary bitwise operators
 friend const sc_ufix_fast operator & (const

sc_ufix_fast&, const sc_ufix_fast&);
 friend const sc_ufix_fast operator ^ (const

sc_ufix_fast&, const sc_ufix_fast&);
 friend const sc_ufix_fast operator | (const

sc_ufix_fast&, const sc_ufix_fast&);

 // binary bitwise functions
 friend void b_and(sc_ufix_fast&, const sc_ufix_fast&,

const sc_ufix_fast&);
 friend void b_or (sc_ufix_fast&, const sc_ufix_fast&,

const sc_ufix_fast&);
 friend void b_xor(sc_ufix_fast&, const sc_ufix_fast&,

const sc_ufix_fast&);

 // assignment operators
 sc_ufix_fast& operator = (const sc_ufix_fast&);
#define DECL_ASN_OP_T(op,tp) \
 sc_ufix_fast& operator op (tp);

#ifndef SC_FX_EXCLUDE_OTHER
#define DECL_ASN_OP_OTHER(op) \
 DECL_ASN_OP_T(op,int64) \
 DECL_ASN_OP_T(op,uint64)\
 DECL_ASN_OP_T(op,const sc_int_base&) \
 DECL_ASN_OP_T(op,const sc_uint_base&) \
 DECL_ASN_OP_T(op,const sc_signed&)\
 DECL_ASN_OP_T(op,const sc_unsigned&)
#else
#define DECL_ASN_OP_OTHER(op)
#endif

#define DECL_ASN_OP(op) \
 DECL_ASN_OP_T(op,int) \
 DECL_ASN_OP_T(op,unsigned int)\
 DECL_ASN_OP_T(op,long) \
 DECL_ASN_OP_T(op,unsigned long) \
 DECL_ASN_OP_T(op,double)\
 DECL_ASN_OP_T(op,const char*) \
 DECL_ASN_OP_T(op,const sc_fxval&) \
 DECL_ASN_OP_T(op,const sc_fxval_fast&) \
 DECL_ASN_OP_T(op,const sc_fxnum&) \
 DECL_ASN_OP_T(op,const sc_fxnum_fast&) \

 Copyright 2003 Open SystemC Initiative. All rights reserved 357

SystemC 2.0.1 Language Reference Manual

 DECL_ASN_OP_OTHER(op)

 DECL_ASN_OP(=)
 DECL_ASN_OP(*=)
 DECL_ASN_OP(/=)
 DECL_ASN_OP(+=)
 DECL_ASN_OP(-=)
 DECL_ASN_OP_T(<<=,int)
 DECL_ASN_OP_T(>>=,int)
 DECL_ASN_OP_T(&=,const sc_ufix&)
 DECL_ASN_OP_T(&=,const sc_ufix_fast&)
 DECL_ASN_OP_T(|=,const sc_ufix&)
 DECL_ASN_OP_T(|=,const sc_ufix_fast&)
 DECL_ASN_OP_T(^=,const sc_ufix&)
 DECL_ASN_OP_T(^=,const sc_ufix_fast&)

#undef DECL_ASN_OP_T
#undef DECL_ASN_OP_OTHER
#undef DECL_ASN_OP

 // auto-increment and auto-decrement
 const sc_fxval_fast operator ++ (int);
 const sc_fxval_fast operator -- (int);
 sc_ufix_fast& operator ++ ();
 sc_ufix_fast& operator -- ();
};

Description
sc_ufix_fast is an unsigned limited precision type. sc_ufix_fast allows
specifying the fixed-point type parameters wl, iwl, q_mode, o_mode, and n_bits
as variables. See Chapter 6.8.5.

sc_ufix_fast provides the same API as sc_ufix.

sc_ufix_fast uses double precision (floating-point) values. The mantissa of a
double precision value is limited to 53 bits. This means that bit-true behavior
cannot be guaranteed with the limited precision types. For bit-true behavior with
the limited precision types, the following guidelines should be followed:
Make sure that the word length of the result of any operation or expression does
not exceed 53 bits.
The result of an addition or subtraction requires a word length that is one bit
more than the maximum aligned word length of the two operands.
The result of a multiplication requires a word length that is the sum of the word
lengths of the two operands.

Declaration Syntax
sc_ufix_fast var_name([init_val]
 [,wl,iwl]
 [,q_mode,o_mode[,n_bits]]
 [,cast_switch]

 Copyright 2003 Open SystemC Initiative. All rights reserved 358

SystemC 2.0.1 Language Reference Manual

 [,observer]);

sc_ufix_fast var_name([init_val]
 ,type_params
 [,cast_switch]
 [,observer]);

init_val

Examples
 sc_ufix_fast b(0,32,32);
 sc_ufix_fast d(a+b);

Public Constructors
sc_ufix_fast (
 [type_ init_val]
 [,int wl,int iwl]
 [,sc_q_mode q_mode,sc_o_mode o_mode[,int n_bits]]
 [,const sc_fxcast_switch& cast_switch]
 , sc_fxnum_fast_observer* observer) ;
type_ in {short, unsigned short, int, unsigned int, long,

unsigned long, float, double, const char*, int64,
uint64, const sc_int_base

†
&, const sc_uint_base

†
&,

const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

sc_ufix_fast (
 [type_ init_val]
 ,const sc_fxtype_param& type_params
 [,sc_fxcast_switch cast_switch]
 , sc_fxnum_fast_observer* observer) ;
type_ in {short, unsigned short, int, unsigned int, long,

unsigned long, float, double, const char*, int64,
uint64, const sc_int_base

†
&, const sc_uint_base

†
&,

const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

Notes on type_
For all types in type_ , except sc_[u]fix and sc_[u]fix_fast, only the
value of the argument is taken, that is, any type information is discarded. This
ensures that initialization during declaration and initialization after declaration
behave identical.
A fixed-point variable can be initialized with a C/C++ character string (type
const char*) either when the number will be expressed in binary form or when
the number is too large to be written as a C/C++ built-in type literal

The initial value of the variable. If the initial value is not specified, the instance
is uninitialized.
wl

 Copyright 2003 Open SystemC Initiative. All rights reserved 359

SystemC 2.0.1 Language Reference Manual

The total number of bits in the fixed-point format. wl must be greater than zero,
otherwise, a runtime error is produced. The default value for wl is obtained
from the fixed-point context type sc_fxtype_context. See Chapter 11.26.
The total word length parameter cannot change after declaration.
iwl
The number of integer bits in the fixed-point format. iwl can be positive or
negative. The default value for iwl is obtained from the fixed-point context type
sc_fxtype_context. See See Chapter 11.26. The number of integer bits
parameter cannot change after declaration.
q_mode
The quantization mode to use. Valid values for q_mode are given in Chapter
6.8.12.7. The default value for q_mode is obtained from the fixed-point context
type sc_fxtype_context. See See Chapter 11.26. The quantization mode
parameter cannot change after declaration.
o_mode
The overflow mode to use. Valid values for o_mode are given in Chapter
6.8.12.1. The default value for o_mode is obtained from the fixed-point context
type sc_fxtype_context. See Chapter 11.26. The overflow mode
parameter cannot change after declaration.
n_bits
The number of saturated bits parameter for the selected overflow mode.
n_bits must be greater than or equal to zero, otherwise a runtime error is
produced. If the overflow mode is specified, the default value is zero. If the
overflow mode is not specified, the default value is obtained from the fixed-point
context type sc_fxtype_context. See Chapter 11.26. The number of
saturated bits parameter cannot change after declaration.
type_params
A fixed-point type parameters object.
cast_switch
The cast switch, which allows to switch fixed-point type casting on or off. Valid
values for cast_switch are:
SC_OFF for casting off
SC_ON for casting on
The default value for cast_switch is obtained from the fixed-point context
type sc_fxcast_context.. The cast_switch parameter cannot change
after declaration.
observer
A pointer to an observer object. The observer argument is of type
sc_fxnum_fast_observer*. See Chapter 11.24. The default value for
observer is 0 (null pointer). The observer parameter cannot change after
declaration.

Copy Constructor
sc_ufix_fast(const sc_ufix_fast&);

Operators

 Copyright 2003 Open SystemC Initiative. All rights reserved 360

SystemC 2.0.1 Language Reference Manual

The operators defined for the sc_ufix_fast are given in Table 33.
Table 33. Operators for sc_ufix_fast

Operator
class

Operators in class

Bitwise ~ & ^ |

Arithmetic * / + - << >> ++ --

Equality == !=

Relational <<= >>=

Assignment = *= /= += -= <<= >>= &= ^= |=

Note:
Operator << and operator >> define arithmetic shifts, not bitwise shifts. The
difference is that no bits are lost and proper sign extension is done.

In expressions with the non-bitwise operators from Table 33, fixed-point types
can be mixed with all types given:
type_ in {short, unsigned short, int, unsigned int, long,

unsigned long, float, double, const char*, int64,
uint64, const sc_int_base

†
&, const sc_uint_base

†
&,

const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

The return type of any arithmetic operation is the fixed-point value type, which
guarantees that the operation is performed without overflow or quantization.

A floating-point variable or a fixed-point value variable can contain one of the
special values +Inf (plus infinity), -Inf (minus infinity), or Nan (not a number).
Assignment of one of these special values to a fixed-point variable will produce
a runtime error.

For the fixed-point types, a minimal set of bitwise operators is defined. These
bitwise operators are only defined on either the signed fixed-point types or the
unsigned fixed- point types. Mixing between signed and unsigned fixed-point
types is not allowed. Mixing with any other type is also not allowed.

The semantics of the bitwise operators is as follows. For the unary ~ operator,
the type of the result is the type of the operand. The bits in the two’s
complement mantissa of the operand are inverted to get the mantissa of the
result. For the binary operators, the type of the result is the maximum aligned
type of the two operands, that is, the two operands are aligned by the binary
point and the maximum integer word length and the maximum fractional word
length is taken. The operands are temporarily extended to this type before
performing a bitwise and, bitwise exclusive-or, or bitwise or.

 Copyright 2003 Open SystemC Initiative. All rights reserved 361

SystemC 2.0.1 Language Reference Manual

Member Functions
The functions defined for sc_ufix_fast are given in Table 34.

Table 34. Functions for sc_ufix_fast
Function
class

Functions in class

Bitwise b_not, b_and, b_xor, b_or

Arithmetic neg, mult, div, add, sub, lshift, rshift

The functions in Table 34 have return type void. The first argument of these
functions is a reference to the result object. The remaining arguments of these
functions are the operands.

For the bitwise functions, the result object and the operands are of the same
type, which is either sc_fix or sc_ufix.

The neg arithmetic function takes one operand, the other arithmetic functions
take two operands. At least one of the operands of the arithmetic functions
should have a fixed- point type, the other operand can have any of the types
given:
type_ in {short, unsigned short, int, unsigned int, long,

unsigned long, float, double, const char*, int64,
uint64, const sc_int_base

†
&, const sc_uint_base

†
&,

const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

The arithmetic functions are defined twice: once with the result object of type
sc_fxval, and once with the result object of type sc_ufix_fast.

Bit Selection
const sc_fxnum_bitref

†
 operator [] (int i) const;

sc_fxnum_bitref
†
 operator [] (int i);

const sc_fxnum_bitref
†
 bit(int i) const;

sc_fxnum_bitref
†
 bit(int i);

These functions take one argument of type int, which is the index into the fixed-
point mantissa. The index argument must be between wl-1 (MSB) and 0
(LSB). Otherwise, a runtime error is produced. The return type of the bit
selection functions is (const or non- const) sc_fxnum_bitref†, which is a
proxy class. The proxy class allows bit selection to be used both as rvalue
(for reading) and lvalue (for writing). For bit selection, the fixed-point binary
point is ignored.

 Copyright 2003 Open SystemC Initiative. All rights reserved 362

SystemC 2.0.1 Language Reference Manual

Part Selection
const sc_fxnum_subref

†
 operator () (int, int) const;

sc_fxnum_subref
†
 operator () (int, int);

sc_fxnum_subref range();

Returns the overflow mode parameter.

const sc_fxnum_subref
†
 range(int, int) const;

sc_fxnum_subref
†
 range(int, int);

These functions take two arguments of type int, which are the begin and end
indices into the fixed-point mantissa. The index arguments must be between
wl-1 (MSB) and 0 (LSB). Otherwise, a runtime error is produced. The return
type of the part selection functions is (const or non-const) sc_fxnum_subref†,
which is a proxy class that behaves like type sc_bv_base. The proxy class
allows part selection to be used both as rvalue (for reading) and lvalue (for
writing). All operators and methods that are available for type sc_bv_base are
also available for part selection. For part selection, the fixed-point binary point
is ignored.

const sc_fxnum_subref
†
 operator () () const;

sc_fxnum_subref
†
 operator () ();

const sc_fxnum_subref
†
 range() const;

†

As a shortcut for part selection of the complete mantissa, operator () and the
range() method can be called without any arguments.

Query Parameters
const sc_fxcast_switch&
cast_switch() const;

Returns the cast switch parameter.

int
iwl() const;

Returns the integer word length parameter.

int
n_bits() const;

Returns the number of saturated bits parameter.

sc_o_mode
o_mode() const;

sc_q_mode

 Copyright 2003 Open SystemC Initiative. All rights reserved 363

SystemC 2.0.1 Language Reference Manual

q_mode() const;
Return the quantization mode parameter.

const sc_fxtype_params&
type_params() const;

Returns the type parameters.

int
wl() const;

Returns the total word length parameter.

bool

const sc_fxval

Query Value
is_neg() const;

Always returns false.

bool
is_zero() const;

Returns true if the variable holds a zero value. Returns false otherwise.

bool
overflow_flag() const;

Returns true if the last write action on this variable caused overflow. Returns
false otherwise.

bool
quantization_flag() const;

Returns true if the last write action on this variable caused quantization.
Returns false otherwise.

value() const;
Returns the value.

Implicit Conversion
operator double() const;

Implicit conversion to the implementation type double. The value does not
change.

Explicit Conversion

short to_short() const;
unsigned short to_ushort() const;
int to_int() const;
unsigned int to_uint() const;
long to_long() const;
unsigned long to_ulong() const;
float to_float() const;
double to_double() const

 Copyright 2003 Open SystemC Initiative. All rights reserved 364

SystemC 2.0.1 Language Reference Manual

const sc_string to_string() const;
const sc_string to_string(sc_numrep) const;
const sc_string to_string(sc_numrep, bool) const;
const sc_string to_string(sc_fmt) const;
const sc_string to_string(sc_numrep, sc_fmt) const;
const sc_string to_string(sc_numrep, bool, sc_fmt) const;

The value of a fixed-point variable can be converted to a character string
with the to_string() method. This method takes different arguments for
formatting purposes. See Chapter 6.8.8 for more information on converting
fixed-point variables to/from character strings. Furthermore, writing to C++
output streams with operator << is supported, e.g. cout << a;, where a is a
fixed-point variable. The decimal number representation is used in this case.

const sc_string to_dec() const;
const sc_string to_bin() const;
const sc_string to_oct() const;
const sc_string to_hex() const;

Shortcut methods for conversion to a character string. See Chapter 6.8.9.2.

Print or dump content
void
print(ostream& = cout) const;

Print the sc_ufix_fast instance value to an output stream.

void
scan(istream& = cin);

Read an sc_ufix_fast value from an input stream.

void
dump(ostream& = cout)
const;

Prints the sc_ufix_fast instance value, parameters and flags to an
output stream.

ostream&
operator << (ostream& os, const sc_ufix_fast& a)

Print the instance value of a to an output stream os.

 Copyright 2003 Open SystemC Initiative. All rights reserved 365

SystemC 2.0.1 Language Reference Manual

11.71 sc_ufixed

 DECL_CTORS_T_A(long)

#undef DECL_CTORS_T_B

Synopsis
template <int W, int I,
 sc_q_mode Q = SC_DEFAULT_Q_MODE_,
 sc_o_mode O = SC_DEFAULT_O_MODE_, int N =

SC_DEFAULT_N_BITS_>
class sc_ufixed : public sc_ufix
{
public:
 // constructors
 explicit sc_ufixed(sc_fxnum_observer* = 0);
 explicit sc_ufixed(const sc_fxcast_switch&,

sc_fxnum_observer* = 0);

#define DECL_CTORS_T_A(tp) \
 sc_ufixed(tp, sc_fxnum_observer* = 0); \
 sc_ufixed(tp, const sc_fxcast_switch&,

sc_fxnum_observer* = 0);

#define DECL_CTORS_T_B(tp) \
 explicit sc_ufixed(tp, sc_fxnum_observer* = 0); \
 sc_ufixed(tp, const sc_fxcast_switch&, \

sc_fxnum_observer* = 0);

 DECL_CTORS_T_A(int)
 DECL_CTORS_T_A(unsigned int)

 DECL_CTORS_T_A(unsigned long)
 DECL_CTORS_T_A(double)
 DECL_CTORS_T_A(const char*)
 DECL_CTORS_T_A(const sc_fxval&)
 DECL_CTORS_T_A(const sc_fxval_fast&)
 DECL_CTORS_T_A(const sc_fxnum&)
 DECL_CTORS_T_A(const sc_fxnum_fast&)
 DECL_CTORS_T_B(int64)
 DECL_CTORS_T_B(uint64)
 DECL_CTORS_T_B(const sc_int_base&)
 DECL_CTORS_T_B(const sc_uint_base&)
 DECL_CTORS_T_B(const sc_signed&)
 DECL_CTORS_T_B(const sc_unsigned&)

#undef DECL_CTORS_T_A

 // copy constructor
 sc_ufixed(const sc_ufixed<W,I,Q,O,N>&);

 // assignment operators
 sc_ufixed& operator = (const sc_ufixed<W,I,Q,O,N>&);
#define DECL_ASN_OP_T(op,tp)\
 sc_ufixed& operator op (tp);

 Copyright 2003 Open SystemC Initiative. All rights reserved 366

SystemC 2.0.1 Language Reference Manual

#ifndef SC_FX_EXCLUDE_OTHER
#define DECL_ASN_OP_OTHER(op) \
 DECL_ASN_OP_T(op,int64) \
 DECL_ASN_OP_T(op,uint64)\
 DECL_ASN_OP_T(op,const sc_int_base&) \
 DECL_ASN_OP_T(op,const sc_uint_base&) \
 DECL_ASN_OP_T(op,const sc_signed&)\
 DECL_ASN_OP_T(op,const sc_unsigned&)
#else
#define DECL_ASN_OP_OTHER(op)
#endif

#define DECL_ASN_OP(op) \
 DECL_ASN_OP_T(op,int) \
 DECL_ASN_OP_T(op,unsigned int)\

 DECL_ASN_OP_T(op,const char*) \

 DECL_ASN_OP_T(op,long) \
 DECL_ASN_OP_T(op,unsigned long) \
 DECL_ASN_OP_T(op,double)\

 DECL_ASN_OP_T(op,const sc_fxval&) \
 DECL_ASN_OP_T(op,const sc_fxval_fast&) \
 DECL_ASN_OP_T(op,const sc_fxnum&) \
 DECL_ASN_OP_T(op,const sc_fxnum_fast&) \
 DECL_ASN_OP_OTHER(op)

 DECL_ASN_OP(=)
 DECL_ASN_OP(*=)
 DECL_ASN_OP(/=)
 DECL_ASN_OP(+=)
 DECL_ASN_OP(-=)
 DECL_ASN_OP_T(<<=,int)
 DECL_ASN_OP_T(>>=,int)
 DECL_ASN_OP_T(&=,const sc_ufix&)
 DECL_ASN_OP_T(&=,const sc_ufix_fast&)
 DECL_ASN_OP_T(|=,const sc_ufix&)
 DECL_ASN_OP_T(|=,const sc_ufix_fast&)
 DECL_ASN_OP_T(^=,const sc_ufix&)
 DECL_ASN_OP_T(^=,const sc_ufix_fast&)

#undef DECL_ASN_OP_T
#undef DECL_ASN_OP_OTHER
#undef DECL_ASN_OP

 // auto-increment and auto-decrement
 const sc_fxval operator ++ (int);
 const sc_fxval operator -- (int);
 sc_ufixed& operator ++ ();
 sc_ufixed& operator -- ();
};

Description

 Copyright 2003 Open SystemC Initiative. All rights reserved 367

SystemC 2.0.1 Language Reference Manual

Templatized type sc_ufixed is an unsigned (two's complement) type. The
fixed-point type parameters wl, iwl, q_mode, o_mode, and n_bits are part of the
type in sc_ufixed. It is required that these parameters be constant
expressions. See Chapter 6.8.1.

Declaration syntax

sc_ufixed <wl,iwl[,q_mode[,o_mode[,n_bits]]]>

var_name([init_val][,cast_switch])
 [,observer]);

wl
The total number of bits in the fixed-point format. The wl argument is of type int
and must be greater than zero. Otherwise, a runtime error is produced. The wl
argument must be a constant expression. The total word length parameter
cannot change after declaration.
iwl
The number of integer bits in the fixed-point format. The iwl argument is of type
int and can be positive or negative. See Chapter 6.8.1. The iwl argument must
be a constant expression. The number of integer bits parameter cannot change
after declaration.
q_mode
The quantization mode to use. The q_mode argument is of type sc_q_mode.
Valid values for q_mode are given in Chapter 6.8.2.2 . The q_mode argument
must be a constant expression. The default value for q_mode is obtained from
the set of built-in default values. See Chapter 6.8.8. The quantization mode
parameter cannot change after declaration.
o_mode
The overflow mode to use. The o_mode argument is of type sc_o_mode. Valid
values for o_mode are given in Chapter 6.8.2.1 . The o_mode argument must
be a constant expression. The default value for o_mode is obtained from the
set of built-in default values. See Chapter 6.8.8. The overflow mode parameter
cannot change after declaration.
n_bits
The number of saturated bits parameter for the selected overflow mode. The
n_bits argument is of type int and must be greater than or equal to zero.
Otherwise, a runtime error is produced. The n_bits argument must be a
constant expression. If the overflow mode is specified, the default value is zero.
If the overflow mode is not specified, the default value is obtained from the set
of built-in default values. See Chapter 6.8.8. The number of saturated bits
parameter cannot change after declaration.

Examples

sc_ufixed<16,1,SC_RND_CONV,SC_SAT_SYM> b(0.75);
sc_ufixed<16,16> d(SC_OFF);

Public Constructor

 Copyright 2003 Open SystemC Initiative. All rights reserved 368

SystemC 2.0.1 Language Reference Manual

explicit sc_ufixed ([type_ init_val]
 [, const sc_fxcast_switch& cast_switch]
 [, sc_fxnum_observer* observer]);

Operator
class

type_ in {short, unsigned short, int, unsigned int, long,
unsigned long, float, double, const char*, int64,
uint64, const sc_int_base

†
&, const sc_uint_base

†
&,

const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

Notes on type_
For all types in type_ , except sc_[u]fix and sc_[u]fix_fast, only the
value of the argument is taken, that is, any type information is discarded. This
ensures that initialization during declaration and initialization after declaration
behave identical.
A fixed-point variable can be initialized with a C/C++ character string (type
const char*) either when the number will be expressed in binary form or when
the number is too large to be written as a C/C++ built-in type literal

init_val
The initial value of the variable. If the initial value is not specified, the instance
is uninitialized.
cast_switch
The cast switch, which allows to switch fixed-point type casting on or off. Valid
values for cast_switch are:
SC_OFF for casting off
SC_ON for casting on
The default value for cast_switch is obtained from the fixed-point context
type sc_fxcast_context. See Chapter 6.8.7. The cast_switch
parameter cannot change after declaration.
observer
A pointer to an observer object. The observer argument is of type
sc_fxnum_observer*. See Chapter 11.25. The default value for observer
is 0 (null pointer). The observer parameter cannot change after declaration.

Copy Constructor
sc_ufixed(const sc_ufixed<W,I,Q,O,N>&);

Operators
The operators defined for the sc_ufixed are given in Table 35.

Table 35. Operators for sc_ufixed
Operators in class

Bitwise ~ & ^ |

 Copyright 2003 Open SystemC Initiative. All rights reserved 369

SystemC 2.0.1 Language Reference Manual

Arithmetic * / + - << >> ++ --

Equality == !=

Relational <<= >>=

Assignment = *= /= += -= <<= >>= &= ^= |=

Note:
Operator << and operator >> define arithmetic shifts, not bitwise shifts. The
difference is that no bits are lost and proper sign extension is done.

In expressions with the non-bitwise operators from Table 35, fixed-point types
can be mixed with all types given:
type_ in {short, unsigned short, int, unsigned int, long,

unsigned long, float, double, const char*, int64,
uint64, const sc_int_base

†
&, const sc_uint_base

†
&,

const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

The return type of any arithmetic operation is the fixed-point value type, which
guarantees that the operation is performed without overflow or quantization.

A floating-point variable or a fixed-point value variable can contain one of the
special values +Inf (plus infinity), -Inf (minus infinity), or Nan (not a number).
Assignment of one of these special values to a fixed-point variable will produce
a runtime error.

For the fixed-point types, a minimal set of bitwise operators is defined. These
bitwise operators are only defined on either the signed fixed-point types or the
unsigned fixed- point types. Mixing between signed and unsigned fixed-point
types is not allowed. Mixing with any other type is also not allowed.

The semantics of the bitwise operators is as follows. For the unary ~ operator,
the type of the result is the type of the operand. The bits in the two’s
complement mantissa of the operand are inverted to get the mantissa of the
result. For the binary operators, the type of the result is the maximum aligned
type of the two operands, that is, the two operands are aligned by the binary
point and the maximum integer word length and the maximum fractional word
length is taken. The operands are temporarily extended to this type before
performing a bitwise and, bitwise exclusive-or, or bitwise or.

Member Functions
The functions defined for sc_ufixed are given in Table 36.

Table 36. Functions for sc_ufixed
Function
class

Functions in class

 Copyright 2003 Open SystemC Initiative. All rights reserved 370

SystemC 2.0.1 Language Reference Manual

Bitwise b_not, b_and, b_xor, b_or

Arithmetic neg, mult, div, add, sub, lshift, rshift

The functions in Table 36 have return type void. The first argument of these
functions is a reference to the result object. The remaining arguments of these
functions are the operands.

For the bitwise functions, the type of the result is sc_ufixed, and the type of the
operands are either both sc_ufixed or a mix of sc_ufixed and
sc_ufixed_fast

const sc_fxnum_subref operator () (int, int) const;

const sc_fxnum_subref range(int, int) const;

The neg arithmetic function takes one operand, the other arithmetic functions
take two operands. At least one of the operands of the arithmetic functions
should have a fixed- point type, the other operand can have any of the types
given:
type_ in {short, unsigned short, int, unsigned int, long,

unsigned long, float, double, const char*, int64,
uint64, const sc_int_base

†
&, const sc_uint_base

†
&,

const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

The arithmetic functions are defined twice: once with the result object of type
sc_fxval, and once with the result object of type sc_fixed or sc_ufixed.

Bit Selection
const sc_fxnum_bitref

†
 operator [] (int i) const;

sc_fxnum_bitref
†
 operator [] (int i);

const sc_fxnum_bitref
†
 bit(int i) const;

sc_fxnum_bitref
†
 bit(int i);

These functions take one argument of type int, which is the index into the fixed-
point mantissa. The index argument must be between wl-1 (MSB) and 0
(LSB). Otherwise, a runtime error is produced. The return type of the bit
selection functions is (const or non- const) sc_fxnum_bitref†, which is a
proxy class. The proxy class allows bit selection to be used both as rvalue
(for reading) and lvalue (for writing). For bit selection, the fixed-point binary
point is ignored.

Part Selection
†

sc_fxnum_subref
†
 operator () (int, int);

†

 Copyright 2003 Open SystemC Initiative. All rights reserved 371

SystemC 2.0.1 Language Reference Manual

sc_fxnum_subref
†
 range(int, int);

These functions take two arguments of type int, which are the begin and end
indices into the fixed-point mantissa. The index arguments must be between
wl-1 (MSB) and 0 (LSB). Otherwise, a runtime error is produced. The return
type of the part selection functions is (const or non-const) sc_fxnum_subref†,
which is a proxy class that behaves like type sc_bv_base. The proxy class
allows part selection to be used both as rvalue (for reading) and lvalue (for
writing). All operators and methods that are available for type sc_bv_base are
also available for part selection. For part selection, the fixed-point binary point
is ignored.

const sc_fxnum_subref
†
 operator () () const;

sc_fxnum_subref
†
 operator () ();

const sc_fxnum_subref
†
 range() const;

sc_fxnum_subref
†
 range();

As a shortcut for part selection of the complete mantissa, operator () and the
range() method can be called without any arguments.

Query Parameters
const sc_fxcast_switch&
cast_switch() const;

Returns the cast switch parameter.

int
iwl() const;

Returns the integer word length parameter.

int
n_bits() const;

Returns the number of saturated bits parameter.

sc_o_mode
o_mode() const;

Returns the overflow mode parameter.

sc_q_mode
q_mode() const;

Return the quantization mode parameter.

const sc_fxtype_params&
type_params() const;

Returns the type parameters.

 Copyright 2003 Open SystemC Initiative. All rights reserved 372

SystemC 2.0.1 Language Reference Manual

int
wl() const;

Returns the total word length parameter.

Query Value
bool
is_neg() const;

unsigned long to_ulong() const;

Returns true if the variable holds a negative value. Returns false otherwise.

bool
is_zero() const;

Returns true if the variable holds a zero value. Returns false otherwise.

bool
overflow_flag() const;

Returns true if the last write action on this variable caused overflow. Returns
false otherwise.

bool
quantization_flag() const;

Returns true if the last write action on this variable caused quantization.
Returns false otherwise.

const sc_fxval
value() const;

Returns the value.

Implicit Conversion
operator double() const;

Implicit conversion to the implementation type double. The value does not
change, if the wordlength of the sc_ufixed is less than or equal to 53 bits.

Explicit Conversion

short to_short() const;
unsigned short to_ushort() const;
int to_int() const;
unsigned int to_uint() const;
long to_long() const;

float to_float() const;
double to_double() const

const sc_string to_string() const;
const sc_string to_string(sc_numrep) const;
const sc_string to_string(sc_numrep, bool) const;
const sc_string to_string(sc_fmt) const;
const sc_string to_string(sc_numrep, sc_fmt) const;
const sc_string to_string(sc_numrep, bool, sc_fmt) const;

 Copyright 2003 Open SystemC Initiative. All rights reserved 373

SystemC 2.0.1 Language Reference Manual

The value of a fixed-point variable can be converted to a character string
with the to_string() method. This method takes different arguments for
formatting purposes. See Chapter 6.8.8 for more information on converting
fixed-point variables to/from character strings. Furthermore, writing to C++
output streams with operator << is supported, e.g. cout << a;, where a is a
fixed-point variable. The decimal number representation is used in this case.

const sc_string to_dec() const;
const sc_string to_bin() const;
const sc_string to_oct() const;
const sc_string to_hex() const;

Shortcut methods for conversion to a character string. See Chapter 6.8.9.2.

Print or dump content
void
print(ostream& = cout) const;

Print the sc_ufixed instance value to an output stream.

void
scan(istream& = cin);

Read an sc_ufixed value from an input stream.

void
dump(ostream& = cout)
const;

Prints the sc_ufixed instance value, parameters and flags to an output
stream.

ostream&
operator << (ostream& os, const sc_ufixed& a)

Print the instance value of a to an output stream os.

 Copyright 2003 Open SystemC Initiative. All rights reserved 374

SystemC 2.0.1 Language Reference Manual

11.72 sc_ufixed_fast
Synopsis
template <int W, int I,
 sc_q_mode Q = SC_DEFAULT_Q_MODE_,
 sc_o_mode O = SC_DEFAULT_O_MODE_, int N =

SC_DEFAULT_N_BITS_>
class sc_ufixed_fast : public sc_ufix_fast
{
public:

#define DECL_CTORS_T_B(tp) \

 DECL_CTORS_T_B(int64)

 // constructors
 explicit sc_ufixed_fast(sc_fxnum_fast_observer* = 0);
 explicit sc_ufixed_fast(const sc_fxcast_switch&,
 sc_fxnum_fast_observer* = 0);

#define DECL_CTORS_T_A(tp) \
 sc_ufixed_fast(tp, sc_fxnum_fast_observer* = 0); \
 sc_ufixed_fast(tp, const sc_fxcast_switch&, \
 sc_fxnum_fast_observer* = 0);

 explicit sc_ufixed_fast \
 (tp, sc_fxnum_fast_observer* = 0); \
 sc_ufixed_fast(tp, const sc_fxcast_switch&, \
 sc_fxnum_fast_observer* = 0);

 DECL_CTORS_T_A(int)
 DECL_CTORS_T_A(unsigned int)
 DECL_CTORS_T_A(long)
 DECL_CTORS_T_A(unsigned long)
 DECL_CTORS_T_A(double)
 DECL_CTORS_T_A(const char*)
 DECL_CTORS_T_A(const sc_fxval&)
 DECL_CTORS_T_A(const sc_fxval_fast&)
 DECL_CTORS_T_A(const sc_fxnum&)
 DECL_CTORS_T_A(const sc_fxnum_fast&)

 DECL_CTORS_T_B(uint64)
 DECL_CTORS_T_B(const sc_int_base&)
 DECL_CTORS_T_B(const sc_uint_base&)
 DECL_CTORS_T_B(const sc_signed&)
 DECL_CTORS_T_B(const sc_unsigned&)

#undef DECL_CTORS_T_A
#undef DECL_CTORS_T_B

 // copy constructor
 sc_ufixed_fast(const sc_ufixed_fast<W,I,Q,O,N>&);

 // assignment operators
 sc_ufixed_fast& operator = (const

sc_ufixed_fast<W,I,Q,O,N>&);

 Copyright 2003 Open SystemC Initiative. All rights reserved 375

SystemC 2.0.1 Language Reference Manual

#define DECL_ASN_OP_T(op,tp)\
 sc_ufixed_fast& operator op (tp);

#ifndef SC_FX_EXCLUDE_OTHER
#define DECL_ASN_OP_OTHER(op) \
 DECL_ASN_OP_T(op,int64) \
 DECL_ASN_OP_T(op,uint64)\
 DECL_ASN_OP_T(op,const sc_int_base&) \
 DECL_ASN_OP_T(op,const sc_uint_base&) \
 DECL_ASN_OP_T(op,const sc_signed&)\
 DECL_ASN_OP_T(op,const sc_unsigned&)
#else
#define DECL_ASN_OP_OTHER(op)
#endif

#define DECL_ASN_OP(op) \
 DECL_ASN_OP_T(op,int) \
 DECL_ASN_OP_T(op,unsigned int)\
 DECL_ASN_OP_T(op,long) \
 DECL_ASN_OP_T(op,unsigned long) \
 DECL_ASN_OP_T(op,double)\
 DECL_ASN_OP_T(op,const char*) \
 DECL_ASN_OP_T(op,const sc_fxval&) \
 DECL_ASN_OP_T(op,const sc_fxval_fast&) \
 DECL_ASN_OP_T(op,const sc_fxnum&) \
 DECL_ASN_OP_T(op,const sc_fxnum_fast& \
 DECL_ASN_OP_OTHER(op)

 DECL_ASN_OP(=)
 DECL_ASN_OP(*=)
 DECL_ASN_OP(/=)
 DECL_ASN_OP(+=)
 DECL_ASN_OP(-=)
 DECL_ASN_OP_T(<<=,int)
 DECL_ASN_OP_T(>>=,int)
 DECL_ASN_OP_T(&=,const sc_ufix&)
 DECL_ASN_OP_T(&=,const sc_ufix_fast&)
 DECL_ASN_OP_T(|=,const sc_ufix&)
 DECL_ASN_OP_T(|=,const sc_ufix_fast&)
 DECL_ASN_OP_T(^=,const sc_ufix&)
 DECL_ASN_OP_T(^=,const sc_ufix_fast&)

#undef DECL_ASN_OP_T
#undef DECL_ASN_OP_OTHER
#undef DECL_ASN_OP

 // auto-increment and auto-decrement
 const sc_fxval_fast operator ++ (int);
 const sc_fxval_fast operator -- (int);
 sc_ufixed_fast& operator ++ ();
 sc_ufixed_fast& operator -- ();
};

 Copyright 2003 Open SystemC Initiative. All rights reserved 376

SystemC 2.0.1 Language Reference Manual

Description

Templatized type sc_ufixed_fast is an unsigned type. The fixed-point type
parameters wl, iwl, q_mode, o_mode, and n_bits are part of the type in
sc_ufixed_fast. It is required that these parameters be constant expressions.
See Chapter 6.8.1.

sc_ufixed_fast provides the same API as sc_ufixed.

sc_ufixed_fast uses double precision (floating-point) values. The mantissa of
a double precision value is limited to 53 bits. This means that bit-true behavior
cannot be guaranteed with the limited precision types. For bit-true behavior with
the limited precision types, the following guidelines should be followed:
Make sure that the word length of the result of any operation or expression does
not exceed 53 bits.

q_mode

The result of an addition or subtraction requires a word length that is one bit
more than the maximum aligned word length of the two operands.
The result of a multiplication requires a word length that is the sum of the word
lengths of the two operands.

Declaration syntax

sc_ufixed_fast <wl,iwl[,q_mode[,o_mode[,n_bits]]]>

var_name([init_val][,cast_switch])
 [,observer]);

wl
The total number of bits in the fixed-point format. The wl argument is of type int
and must be greater than zero. Otherwise, a runtime error is produced. The wl
argument must be a constant expression. The total word length parameter
cannot change after declaration.
iwl
The number of integer bits in the fixed-point format. The iwl argument is of type
int and can be positive or negative. See Chapter 6.8.1. The iwl argument must
be a constant expression. The number of integer bits parameter cannot change
after declaration.

The quantization mode to use. The q_mode argument is of type sc_q_mode.
Valid values for q_mode are given in Chapter 6.8.2.2 . The q_mode argument
must be a constant expression. The default value for q_mode is obtained from
the set of built-in default values. See Chapter 6.8.8. The quantization mode
parameter cannot change after declaration.
o_mode
The overflow mode to use. The o_mode argument is of type sc_o_mode. Valid
values for o_mode are given in Chapter 6.8.2.1 . The o_mode argument must
be a constant expression. The default value for o_mode is obtained from the
set of built-in default values. See Chapter 6.8.8. The overflow mode parameter
cannot change after declaration.

 Copyright 2003 Open SystemC Initiative. All rights reserved 377

SystemC 2.0.1 Language Reference Manual

n_bits
The number of saturated bits parameter for the selected overflow mode. The
n_bits argument is of type int and must be greater than or equal to zero.
Otherwise, a runtime error is produced. The n_bits argument must be a
constant expression. If the overflow mode is specified, the default value is zero.
If the overflow mode is not specified, the default value is obtained from the set
of built-in default values. See Chapter 6.8.8. The number of saturated bits
parameter cannot change after declaration.

Examples

sc_ufixed_fast<32,32> a;
sc_ufixed_fast<8,1,SC_RND> c(b);
sc_ufixed_fast<8,8> c = “0.1”;
sc_ufixed_fast<8,8> d = 1;
sc_ufixed<16,8> e = 2;
sc_ufixed_fast<16,16> f = d + e;
d *= 2;

Public Constructor

explicit sc_ufixed_fast ([type_ init_val]
 [, const sc_fxcast_switch& cast_switch]
 [, sc_fxnum_fast_observer* observer]);

type_ in {short, unsigned short, int, unsigned int, long,
unsigned long, float, double, const char*, int64,
uint64, const sc_int_base

†
&, const sc_uint_base

†
&,

const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

Notes on type_
For all types in type_ , except sc_[u]fix and sc_[u]fix_fast, only the
value of the argument is taken, that is, any type information is discarded. This
ensures that initialization during declaration and initialization after declaration
behave identical.
A fixed-point variable can be initialized with a C/C++ character string (type
const char*) either when the number will be expressed in binary form or when
the number is too large to be written as a C/C++ built-in type literal

init_val
The initial value of the variable. If the initial value is not specified, the instance
is uninitialized.
cast_switch
The cast switch, which allows to switch fixed-point type casting on or off. Valid
values for cast_switch are:
SC_OFF for casting off

 Copyright 2003 Open SystemC Initiative. All rights reserved 378

SystemC 2.0.1 Language Reference Manual

SC_ON for casting on
The default value for cast_switch is obtained from the fixed-point context
type sc_fxcast_context. See Chapter 6.8.7. The cast_switch
parameter cannot change after declaration.
observer
A pointer to an observer object. The observer argument is of type
sc_fxnum_fast_observer*. See Chapter 11.24. The default value for
observer is 0 (null pointer). The observer parameter cannot change after
declaration.

Copy Constructor
sc_ufixed_fast(const sc_ufixed_fast<W,I,Q,O,N>&);

Operators
The operators defined for the sc_ufixed_fast are given in Table 37.

Table 37. Operators for sc_ufixed_fast
Operator
class

Operators in class

Bitwise ~ & ^ |

Arithmetic * / + - << >> ++ --

Equality

<<= >>=

Assignment = *= /= += -= <<= >>= &= ^= |=

== !=

Relational

Note:
Operator << and operator >> define arithmetic shifts, not bitwise shifts. The
difference is that no bits are lost and proper sign extension is done.

In expressions with the non-bitwise operators from Table 37, fixed-point types
can be mixed with all types given:
type_ in {short, unsigned short, int, unsigned int, long,

unsigned long, float, double, const char*, int64,
uint64, const sc_int_base &, const sc_uint_base &,
const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

The return type of any arithmetic operation is the fixed-point value type, which
guarantees that the operation is performed without overflow or quantization.

† †

A floating-point variable or a fixed-point value variable can contain one of the
special values +Inf (plus infinity), -Inf (minus infinity), or Nan (not a number).
Assignment of one of these special values to a fixed-point variable will produce
a runtime error.

 Copyright 2003 Open SystemC Initiative. All rights reserved 379

SystemC 2.0.1 Language Reference Manual

For the fixed-point types, a minimal set of bitwise operators is defined. These
bitwise operators are only defined on either the signed fixed-point types or the
unsigned fixed- point types. Mixing between signed and unsigned fixed-point
types is not allowed. Mixing with any other type is also not allowed.

The semantics of the bitwise operators is as follows. For the unary ~ operator,
the type of the result is the type of the operand. The bits in the two’s
complement mantissa of the operand are inverted to get the mantissa of the
result. For the binary operators, the type of the result is the maximum aligned
type of the two operands, that is, the two operands are aligned by the binary
point and the maximum integer word length and the maximum fractional word
length is taken. The operands are temporarily extended to this type before
performing a bitwise and, bitwise exclusive-or, or bitwise or.

Member Functions
The functions defined for sc_ufixed_fast are given in Table 38.

Table 38. Functions for sc_ufixed_fast
Function
class

Functions in class

b_not, b_and, b_xor, b_or

Arithmetic neg, mult, div, add, sub, lshift, rshift

Bitwise

The functions in Table 38 have return type void. The first argument of these
functions is a reference to the result object. The remaining arguments of these
functions are the operands.

For the bitwise functions, the type of the result is sc_ufixed_fast, and the type of
the operands are either both sc_ufixed_fast or a mix of
sc_fixed_fast and sc_ufixed_fast.

The neg arithmetic function takes one operand, the other arithmetic functions
take two operands. At least one of the operands of the arithmetic functions
should have a fixed- point type, the other operand can have any of the types
given:
type_ in {short, unsigned short, int, unsigned int, long,

unsigned long, float, double, const char*, int64,
uint64, const sc_int_base

†
&, const sc_uint_base

†
&,

const sc_signed&, const sc_unsigned, const sc_fxval&,
const sc_fxval_fast&, const sc_[u]fix&, const
sc_[u]fix_fast& }

The arithmetic functions are defined twice: once with the result object of type
sc_fxval, and once with the result object of type sc_fixed_fast or sc_ufixed_fast.

Bit Selection

 Copyright 2003 Open SystemC Initiative. All rights reserved 380

SystemC 2.0.1 Language Reference Manual

const sc_fxnum_bitref
†
 operator [] (int i) const;

sc_fxnum_bitref
†
 operator [] (int i);

const sc_fxnum_bitref bit(int i) const;

const sc_fxnum_subref operator () (int, int) const;

sc_fxnum_subref operator () ();

As a shortcut for part selection of the complete mantissa, operator () and the
range() method can be called without any arguments.

†

sc_fxnum_bitref
†
 bit(int i);

These functions take one argument of type int, which is the index into the fixed-
point mantissa. The index argument must be between wl-1 (MSB) and 0
(LSB). Otherwise, a runtime error is produced. The return type of the bit
selection functions is (const or non- const) sc_fxnum_bitref†, which is a
proxy class. The proxy class allows bit selection to be used both as rvalue
(for reading) and lvalue (for writing). For bit selection, the fixed-point binary
point is ignored.

Part Selection
†

sc_fxnum_subref
†
 operator () (int, int);

const sc_fxnum_subref
†
 range(int, int) const;

sc_fxnum_subref
†
 range(int, int);

These functions take two arguments of type int, which are the begin and end
indices into the fixed-point mantissa. The index arguments must be between
wl-1 (MSB) and 0 (LSB). Otherwise, a runtime error is produced. The return
type of the part selection functions is (const or non-const) sc_fxnum_subref†,
which is a proxy class that behaves like type sc_bv_base†. The proxy class
allows part selection to be used both as rvalue (for reading) and lvalue (for
writing). All operators and methods that are available for type sc_bv_base†
are also available for part selection. For part selection, the fixed-point binary
point is ignored.

const sc_fxnum_subref
†
 operator () () const;

†

const sc_fxnum_subref
†
 range() const;

sc_fxnum_subref
†
 range();

Query Parameters
const sc_fxcast_switch&

 Copyright 2003 Open SystemC Initiative. All rights reserved 381

SystemC 2.0.1 Language Reference Manual

cast_switch() const;
Returns the cast switch parameter.

int
iwl() const;

Returns the integer word length parameter.

int
n_bits() const;

int

Returns true if the variable holds a negative value. Returns false otherwise.

bool

Returns true if the variable holds a zero value. Returns false otherwise.

Returns the value.

Returns the number of saturated bits parameter.

sc_o_mode
o_mode() const;

Returns the overflow mode parameter.

sc_q_mode
q_mode() const;

Return the quantization mode parameter.

const sc_fxtype_params&
type_params() const;

Returns the type parameters.

wl() const;
Returns the total word length parameter.

Query Value
bool
is_neg() const;

is_zero() const;

bool
overflow_flag() const;

Returns true if the last write action on this variable caused overflow. Returns
false otherwise.

bool
quantization_flag() const;

Returns true if the last write action on this variable caused quantization.
Returns false otherwise.

const sc_fxval
value() const;

 Copyright 2003 Open SystemC Initiative. All rights reserved 382

SystemC 2.0.1 Language Reference Manual

Implicit Conversion
operator double() const;

Implicit conversion to the implementation type double. The value does not
change, if the wordlength of the sc_ufixed_fast is less than or equal to
53 bits.

Explicit Conversion

short to_short() const;
unsigned short to_ushort() const;
int to_int() const;
unsigned int to_uint() const;
long to_long() const;
unsigned long to_ulong() const;
float to_float() const;
double to_double() const

const sc_string to_string() const;
const sc_string to_string(sc_numrep) const;
const sc_string to_string(sc_numrep, bool) const;
const sc_string to_string(sc_fmt) const;
const sc_string to_string(sc_numrep, sc_fmt) const;
const sc_string to_string(sc_numrep, bool, sc_fmt) const;

The value of a fixed-point variable can be converted to a character string
with the to_string() method. This method takes different arguments for
formatting purposes. See Chapter 6.8.8 for more information on converting
fixed-point variables to/from character strings. Furthermore, writing to C++
output streams with operator << is supported, e.g. cout << a;, where a is a
fixed-point variable. The decimal number representation is used in this case.

const sc_string to_dec() const;
const sc_string to_bin() const;
const sc_string to_oct() const;
const sc_string to_hex() const;

Shortcut methods for conversion to a character string. See Chapter 6.8.9.2.

Print or dump content
void
print(ostream& = cout) const;

Print the sc_ufixed_fast instance value to an output stream.

void
scan(istream& = cin);

Read an sc_ufixed_fast value from an input stream.

void
dump(ostream& = cout)
const;

Prints the sc_ufixed_fast instance value, parameters and flags to an
output stream.

 Copyright 2003 Open SystemC Initiative. All rights reserved 383

SystemC 2.0.1 Language Reference Manual

ostream&
operator << (ostream& os, const sc_ufixed_fast& a)

Print the instance value of a to an output stream os.

 Copyright 2003 Open SystemC Initiative. All rights reserved 384

SystemC 2.0.1 Language Reference Manual

11.73 sc_uint
Synopsis
template <int W>
class sc_uint
 : public sc_uint_base
{
public:
 // constructors
 sc_uint();
 sc_uint(uint64 v);
 sc_uint(const sc_uint<W>& a);
 sc_uint(const sc_uint_base& a);
 sc_uint(const sc_uint_subref_r& a);
 template <class T1, class T2>
 sc_uint(const sc_uint_concref_r<T1,T2>& a);
 sc_uint(const sc_signed& a);
 sc_uint(const sc_unsigned& a);
 explicit sc_uint(const sc_fxval& a);
 explicit sc_uint(const sc_fxval_fast& a);
 explicit sc_uint(const sc_fxnum& a);
 explicit sc_uint(const sc_fxnum_fast& a);
 sc_uint(const sc_bv_base& a);
 sc_uint(const sc_lv_base& a);
 sc_uint(const char* a);
 sc_uint(unsigned long a);
 sc_uint(long a);
 sc_uint(unsigned int a);
 sc_uint(int a);
 sc_uint(int64 a);
 sc_uint(double a);

 // assignment operators
 sc_uint<W>& operator = (uint64 v);
 sc_uint<W>& operator = (const sc_uint_base& a);
 sc_uint<W>& operator = (const sc_uint_subref_r& a);
 sc_uint<W>& operator = (const sc_uint<W>& a);
 template <class T1, class T2>
 sc_uint<W>& operator = (const

sc_uint_concref_r<T1,T2>& a);
 sc_uint<W>& operator = (const sc_signed& a);
 sc_uint<W>& operator = (const sc_unsigned& a);
 sc_uint<W>& operator = (const sc_fxval& a);
 sc_uint<W>& operator = (const sc_fxval_fast& a);
 sc_uint<W>& operator = (const sc_fxnum& a);
 sc_uint<W>& operator = (const sc_fxnum_fast& a);
 sc_uint<W>& operator = (const sc_bv_base& a);
 sc_uint<W>& operator = (const sc_lv_base& a);
 sc_uint<W>& operator = (const char* a);
 sc_uint<W>& operator = (unsigned long a);
 sc_uint<W>& operator = (long a);
 sc_uint<W>& operator = (unsigned int a);
 sc_uint<W>& operator = (int a);

 Copyright 2003 Open SystemC Initiative. All rights reserved 385

SystemC 2.0.1 Language Reference Manual

 sc_uint<W>& operator = (int64 a);
 sc_uint<W>& operator = (double a);

 // arithmetic assignment operators
 sc_uint<W>& operator += (uint64 v);
 sc_uint<W>& operator -= (uint64 v);
 sc_uint<W>& operator *= (uint64 v);
 sc_uint<W>& operator /= (uint64 v);
 sc_uint<W>& operator %= (uint64 v);

 // bitwise assignment operators
 sc_uint<W>& operator &= (uint64 v);
 sc_uint<W>& operator |= (uint64 v);
 sc_uint<W>& operator ^= (uint64 v);
 sc_uint<W>& operator <<= (uint64 v);
 sc_uint<W>& operator >>= (uint64 v);

 // prefix and postfix increment and decrement operators
 sc_uint<W>& operator ++ (); // prefix
 const sc_uint<W> operator ++ (int); // postfix
 sc_uint<W>& operator -- (); // prefix
 const sc_uint<W> operator -- (int); // postfix
};

Description

sc_uint<W> is an unsigned integer with a fixed word length W between 1 and
64 bits. The word length is built into the type and can never change. If the
chosen word length exceeds 64 bits, an error is reported and simulation ends.
All operations are performed with 64 bits of precision with the result converted
to appropriate size through truncation.
Methods allow for addressing an individual bit or a sub range of bits.

Example
SC_MODULE(my_module) {
 // data types
 sc_uint<3> a;
 sc_uint<44> b;
 // process
 void my_proc();

 SC_CTOR(my_module) :
 a(0) // init
 {
 b = 33; // set value
 SC_THREAD(my_proc);
 }
};

void my_module::my_proc() {

 Copyright 2003 Open SystemC Initiative. All rights reserved 386

SystemC 2.0.1 Language Reference Manual

 a = 1;
 b[30] = a[0];
 cout << b.range(7,0) << endl;
 wait(300, SC_NS);
 sc_stop();
}

Public Constructors
sc_uint();

Create an sc_uint instance with an initial value of 0.

sc_uint(uint64 a) ;

Create an sc_uint with value a. If the word length of a is greater then W,
a gets truncated to W bits.

sc_uint(T a) ;
T in { sc_uint, sc_uint_base

†
, sc_uint_subref

†
,

sc_uint_concref
†
, sc_[un]signed

†
, sc_fxval,

sc_fxval_fast, sc_[u]fix[ed][_fast], sc_bv_base
†
,

sc_lv_base
†
, const char*, [unsigned] long, [unsigned]

int, int64, double }
Create an sc_uint with value a. If the word length of a is greater then W,
a gets truncated to W bits.

F in { and nand or nor xor xnor }

Copy Constructor
sc_uint(const sc_uint&)

Methods
int
length() const ;

Return the word length.

void
print(ostream& os = cout) const ;

Print the sc_uint instance to an output stream.

void
scan(istream& is = cin) ;

Read a sc_uint value from an input stream.

Reduction Methods
bool and_reduce() const;
bool nand_reduce() const ;
bool nor_reduce() const ;
bool or_reduce() const ;
bool xnor_reduce() const ;
bool xor_reduce() const;

 Copyright 2003 Open SystemC Initiative. All rights reserved 387

SystemC 2.0.1 Language Reference Manual

Return the result of function F with all bits of the sc_uint instance as input
arguments.

Assignment Operators
sc_uint<W>&
operator = (uint64) ;

sc_uint<W>&
operator = (T) ;
T in { sc_uint, sc_uint_base

†
, sc_uint_subref

†
,

sc_uint_concref
†
, sc_[un]signed

†
, sc_fxval,

sc_fxval_fast, sc_[u]fix[ed][_fast],
 sc_lv_base

†
, sc_lv_base

†
, char*, [unsigned] long,

[unsigned] int, int64, double }

Assign the value of the right-hand side to the left-hand side. The value is
truncated, if its word length is greater than W.

Arithmetic Assignment Operators

sc_uint<W>&
operator OP (uint64) ;
OP in { += -= *= /= %= }

The operation of OP is performed and the result is assigned to the lefthand
side. If necessary, the result gets truncated.

Bitwise Assignment Operators
sc_uint<W>&
operator OP (uint64) ;
OP in { &= |= ^= <<= >>= }

The operation of OP is performed and the result is assigned to the left hand
side. The result gets truncated.

OP in { == != < <= > >= }

Prefix and Postfix Increment and Decrement Operators
sc_uint<W>& operator ++ () ;
const sc_uint<W> operator ++ (int) ;

The operation of OP is performed as done for type unsigned int.

sc_uint<W>& operator -- () ;
const sc_uint<W> operator -- (int) ;

The operation is performed as done for type unsigned int.

Relational Operators
friend bool operator OP (sc_uint, sc_uint) ;

These functions return the boolean result of the corresponding equality/
inequality check.

 Copyright 2003 Open SystemC Initiative. All rights reserved 388

SystemC 2.0.1 Language Reference Manual

Bit Selection
sc_uint_bitref operator [] (int i) ;
sc_uint_bitref_r operator [] (int i) const ;
sc_uint_bitref bit(int i) ;
sc_uint_bitref_r bit(int i) const ;

Return a reference to a single bit at index i.

Implicit Conversion
operator uint64() const ;

Implicit conversion to the implementation type uint64. The value does not
change.

Explicit Conversion
double to_double() const ;
int to_int() const ;
int64 to_int64() const ;
long to_long() const ;
uint64 to_uint64() const ;
unsigned int to_uint() const ;
unsigned long to_ulong() const ;

Converts the value of sc_uint instance into the corresponding data type. If
the requested type has less word length than the sc_uint instance, the
value gets truncated accordingly. If the requested type has greater word
length than the sc_uint instance, the value gets sign extended, if necessary.

 Copyright 2003 Open SystemC Initiative. All rights reserved 389

SystemC 2.0.1 Language Reference Manual

11.74 sc_uint_base

 explicit sc_uint_base(int w =
sc_length_param().len()) ;

 explicit sc_uint_base(const sc_signed& a);

 sc_uint_base& operator = (const sc_signed& a);

 sc_uint_base& operator = (const sc_bv_base& a);

 sc_uint_base& operator = (int a);

 sc_uint_base& operator += (uint64 v);

Synopsis
class sc_uint_base
{
public:
// constructors & destructors

 sc_uint_base(uint64 v, int w) ;
 sc_uint_base(const sc_uint_base& a);
 explicit sc_uint_base(const sc_uint_subref_r& a);
 template <class T1, class T2>
 explicit sc_uint_base(const sc_uint_concref_r<T1,T2>&

a);

 explicit sc_uint_base(const sc_unsigned& a);
 ~sc_uint_base();

// assignment operators
 sc_uint_base& operator = (uint64 v);
 sc_uint_base& operator = (const sc_uint_base& a);
 sc_uint_base& operator = (const sc_uint_subref_r& a);
 template <class T1, class T2>
 sc_uint_base& operator = (const

sc_uint_concref_r<T1,T2>& a);

 sc_uint_base& operator = (const sc_unsigned& a);
 sc_uint_base& operator = (const sc_fxval& a);
 sc_uint_base& operator = (const sc_fxval_fast& a);
 sc_uint_base& operator = (const sc_fxnum& a);
 sc_uint_base& operator = (const sc_fxnum_fast& a);

 sc_uint_base& operator = (const sc_lv_base& a);
 sc_uint_base& operator = (const char* a);
 sc_uint_base& operator = (unsigned long a);
 sc_uint_base& operator = (long a);
 sc_uint_base& operator = (unsigned int a);

 sc_uint_base& operator = (int64 a);
 sc_uint_base& operator = (double a);

// arithmetic assignment operators

 sc_uint_base& operator -= (uint64 v);
 sc_uint_base& operator *= (uint64 v);
 sc_uint_base& operator /= (uint64 v);
 sc_uint_base& operator %= (uint64 v);

// bitwise assignment operators
 sc_uint_base& operator &= (uint64 v);
 sc_uint_base& operator |= (uint64 v);
 sc_uint_base& operator ^= (uint64 v);

 Copyright 2003 Open SystemC Initiative. All rights reserved 390

SystemC 2.0.1 Language Reference Manual

 sc_uint_base& operator <<= (uint64 v);
 sc_uint_base& operator >>= (uint64 v);

// prefix and postfix increment and decrement operators
 sc_uint_base& operator ++ ();
 const sc_uint_base operator ++ (int);
 sc_uint_base& operator -- ();
 const sc_uint_base operator -- (int);
 extend_sign(); return tmp; };

// relational operators
 friend bool operator == (const sc_uint_base& a, const

sc_uint_base& b);
 friend bool operator != (const sc_uint_base& a, const

sc_uint_base& b);
 friend bool operator < (const sc_uint_base& a, const

sc_uint_base& b);
 friend bool operator <= (const sc_uint_base& a, const

sc_uint_base& b);
 friend bool operator > (const sc_uint_base& a, const

sc_uint_base& b);
 friend bool operator >= (const sc_uint_base& a, const

sc_uint_base& b);

// bit selection
 sc_uint_bitref operator [] (int i);
 sc_uint_bitref_r operator [] (int i) const;
 sc_uint_bitref bit(int i);
 sc_uint_bitref_r bit(int i) const;

// part selection
 sc_uint_subref operator () (int left, int right);
 sc_uint_subref_r operator () (int left, int right)

const;
 sc_uint_subref range(int left, int right);
 sc_uint_subref_r range(int left, int right) const;

// Methods
 int length() const;
 bool and_reduce() const;
 bool nand_reduce() const;
 bool or_reduce() const;
 bool nor_reduce() const
 bool xor_reduce() const;
 bool xnor_reduce() const;
 operator uint64() const;
 uint64 value() const;
 int to_int() const;
 unsigned int to_uint() const;
 long to_long() const;
 unsigned long to_ulong() const;
 int64 to_int64() const;
 uint64 to_uint64() const;
 double to_double() const;

 Copyright 2003 Open SystemC Initiative. All rights reserved 391

SystemC 2.0.1 Language Reference Manual

 const sc_string to_string(sc_numrep numrep = SC_DEC)
const;

 const sc_string to_string(sc_numrep numrep, bool
w_prefix) const;

};

 void print(ostream& os = cout) const;
 void scan(istream& is = cin);

Description
sc_uint_base is an unsigned integer with a fixed word length between 1 and
64 bits. The word length is set when construction takes place and cannot be
changed later.

Public Constructors
explicit
sc_uint_base(int = sc_length_param().len());
Create an sc_uint_base instance with specified word length. Its initial value
is 0.

sc_uint_base(uint64 a, int b);
Create an sc_uint_base instance with value a and word length b.

sc_uint_base(T a) ;
T in { sc_uint_subref

†
, sc_uint_concref

†
, sc_[un]signed }

Create an sc_uint_base with value a. The word length of a must not exceed
64 bits. If it does, an error is reported and simulation ends.

Copy Constructor
sc_uint_base(const sc_uint_base&) ;

Methods
int
length() const ;

Return the word length.

void
print(ostream& os = cout) const ;

Print the sc_uint_base instance to an output stream.

void
scan(istream& is = cin) ;

Read a sc_uint_base value from an input stream.

Reduction Methods
bool and_reduce() const;
bool nand_reduce() const ;
bool nor_reduce() const ;
bool or_reduce() const ;
bool xnor_reduce() const ;
bool xor_reduce() const;

 Copyright 2003 Open SystemC Initiative. All rights reserved 392

SystemC 2.0.1 Language Reference Manual

F in { and nand or nor xor xnor }
Return the result of function F with all bits of the sc_uint_base instance
as input arguments.

Assignment Operators
sc_uint_base& operator = (uint64) ;
sc_uint_base& operator = (T) ;
T in { sc_uint_base, sc_uint_subref

†
, sc_uint_concref

†
,

sc_[un]signed, sc_fxval, sc_fxval_fast, sc_fxnum,
sc_fxnum_fast, sc_bv_base, sc_lv_base, char*, [unsigned]
long, [unsigned] int, int64, double }

Assign the value of the right-hand side to the left-hand side. The value is
truncated, if its word length does not fit into the sc_uint_base instance on the
left hand side.

Arithmetic Assignment Operators

sc_uint_base&
operator OP (uint64) ;
OP in { += -= *= /= %= }

The operation of OP is performed and the result is assigned to the lefthand
side. If necessary, the result gets truncated.

Bitwise Assignment Operators
sc_uint_base&

The operation is performed as done for type unsigned int.

operator OP (uint64) ;
OP in { &= |= ^= <<= >>= }

The operation of OP is performed and the result is assigned to the left hand
side.

Prefix and Postfix Increment and Decrement Operators
sc_uint_base<W>& operator ++ () ;
const sc_uint_base<W> operator ++ (int) ;

The operation is performed as done for type unsigned int.

sc_uint_base<W>& operator -- () ;
const sc_uint<W> operator -- (int) ;

Relational Operators
friend bool operator OP (sc_uint_base, sc_uint_base) ;
OP in { == != < <= > >= }

These functions return the boolean result of the corresponding equality/
inequality check.

Bit Selection
sc_uint_bitref operator [] (int i) ;
sc_uint_bitref_r operator [] (int i) const ;

 Copyright 2003 Open SystemC Initiative. All rights reserved 393

SystemC 2.0.1 Language Reference Manual

sc_uint_bitref bit(int i) ;
sc_uint_bitref_r bit(int i) const ;

Return a reference to a single bit at index i.

Implicit Conversion
operator uint64() const ;

Implicit conversion to the implementation type uint64. The value does not
change.

Explicit Conversion

long to_long() const ;

double to_double() const ;
int to_int() const ;
int64 to_int64() const ;

uint64 to_uint64() const ;
unsigned int to_uint() const ;
unsigned long to_ulong() const ;

Converts the value of sc_uint_base instance into the corresponding data
type. If the requested type has less word length than the sc_uint_base
instance, the value gets truncated accordingly.

 Copyright 2003 Open SystemC Initiative. All rights reserved 394

SystemC 2.0.1 Language Reference Manual

11.75 sc_unsigned

{

 explicit sc_unsigned(int nb =
sc_length_param().len());

 ~sc_unsigned()

 // Decrement operators.

Synopsis
class sc_unsigned

public:
 // constructors & destructors

 sc_unsigned(const sc_unsigned& v);
 sc_unsigned(const sc_signed& v);

 // assignment operators
 sc_unsigned& operator =(const sc_unsigned& v);
 sc_unsigned& operator =(const sc_unsigned_subref_r& a);
 template <class T1, class T2>
 sc_unsigned& operator = (const

sc_unsigned_concref_r<T1,T2>& a)
 sc_unsigned& operator =(const sc_signed& v);
 sc_unsigned& operator = (const sc_signed_subref_r& a);
 template <class T1, class T2>
 sc_unsigned& operator = (const
 sc_signed_concref_r<T1,T2>& a)
 sc_unsigned& operator = (const char* v);
 sc_unsigned& operator = (int64 v);
 sc_unsigned& operator = (uint64 v);
 sc_unsigned& operator = (long v);
 sc_unsigned& operator = (unsigned long v);
 sc_unsigned& operator = (int v)
 sc_unsigned& operator = (unsigned int v)
 sc_unsigned& operator = (double v);
 sc_unsigned& operator = (const sc_int_base& v);
 sc_unsigned& operator = (const sc_uint_base& v);
 sc_unsigned& operator = (const sc_bv_base&);
 sc_unsigned& operator = (const sc_lv_base&);
 sc_unsigned& operator = (const sc_fxval&);
 sc_unsigned& operator = (const sc_fxval_fast&);
 sc_unsigned& operator = (const sc_fxnum&);
 sc_unsigned& operator = (const sc_fxnum_fast&);

 // Increment operators.
 sc_unsigned& operator ++ ();
 const sc_unsigned operator ++ (int);

 sc_unsigned& operator -- ();
 const sc_unsigned operator -- (int);

 // bit selection
 sc_unsigned_bitref operator [] (int i)
 sc_unsigned_bitref_r operator [] (int i) const
 sc_unsigned_bitref bit(int i)

 Copyright 2003 Open SystemC Initiative. All rights reserved 395

SystemC 2.0.1 Language Reference Manual

 sc_unsigned_bitref_r bit(int i) const

 // part selection
 sc_unsigned_subref range(int i, int j)
 sc_unsigned_subref_r range(int i, int j) const

 friend sc_signed operator + (const sc_signed& u,
const sc_unsigned& v);

 sc_unsigned_subref operator () (int i, int j)
 sc_unsigned_subref_r operator () (int i, int j) const

 // explicit conversions

 int to_int() const;
 unsigned int to_uint() const;
 long to_long() const;
 unsigned long to_ulong() const;
 int64 to_int64() const;
 uint64 to_uint64() const;
 double to_double() const;
 const sc_string to_string(sc_numrep numrep = SC_DEC)

const;
 const sc_string to_string(sc_numrep numrep, bool

w_prefix) const;

 // methods
 void print(ostream& os = cout) const
 void scan(istream& is = cin);
 void dump(ostream& os = cout) const;
 int length() const { return nbits - 1; }
 bool iszero() const;
 bool sign() const { return 0; }
 void reverse();

 // ADDition operators:

 friend sc_signed operator + (const sc_unsigned& u,

const sc_signed& v);

 friend sc_unsigned operator + (const sc_unsigned& u,
const sc_unsigned& v);

 friend sc_signed operator + (const sc_unsigned& u,
int64 v);

 friend sc_unsigned operator + (const sc_unsigned& u,
uint64 v);

 friend sc_signed operator + (const sc_unsigned& u,
long v);

 friend sc_unsigned operator + (const sc_unsigned& u,
unsigned long v);

 friend sc_signed operator + (const sc_unsigned& u,
int v);

 friend sc_unsigned operator + (const sc_unsigned& u,
unsigned int v)

 friend sc_signed operator + (int64
u, const sc_unsigned& v);

 Copyright 2003 Open SystemC Initiative. All rights reserved 396

SystemC 2.0.1 Language Reference Manual

 friend sc_unsigned operator + (uint64
 u, const sc_unsigned& v);

 friend sc_signed operator + (long u,
const sc_unsigned& v);

 friend sc_unsigned operator + (unsigned long u,
const sc_unsigned& v);

 friend sc_signed operator + (int u,
const sc_unsigned& v);

 friend sc_unsigned operator + (unsigned int u,
const sc_unsigned& v)

 sc_unsigned& operator += (const sc_signed& v);
 sc_unsigned& operator += (const sc_unsigned& v);
 sc_unsigned& operator += (int64 v);
 sc_unsigned& operator += (uint64 v);
 sc_unsigned& operator += (long v);
 sc_unsigned& operator += (unsigned long v);
 sc_unsigned& operator += (int v)
 sc_unsigned& operator += (unsigned int v)
 friend sc_unsigned operator + (const sc_unsigned& u,

const sc_uint_base& v);
 friend sc_signed operator + (const sc_unsigned& u,

const sc_int_base& v);
 friend sc_unsigned operator + (const sc_uint_base& u,

const sc_unsigned& v);
 friend sc_signed operator + (const sc_int_base& u,

const sc_unsigned& v);
 sc_unsigned& operator += (const sc_int_base& v);
 sc_unsigned& operator += (const sc_uint_base& v);

 // SUBtraction operators:

 friend sc_signed operator - (const sc_unsigned& u,

const sc_signed& v);
 friend sc_signed operator - (const sc_signed& u,

const sc_unsigned& v);
 friend sc_signed operator - (const sc_unsigned& u,

const sc_unsigned& v);
 friend sc_signed operator - (const sc_unsigned& u,

int64 v);
 friend sc_signed operator - (const sc_unsigned& u,

uint64 v);
 friend sc_signed operator - (const sc_unsigned& u,

long v);
 friend sc_signed operator - (const sc_unsigned& u,

unsigned long v);
 friend sc_signed operator - (const sc_unsigned& u,

int v);
 friend sc_signed operator - (const sc_unsigned& u,

unsigned int v);
 friend sc_signed operator - (int64

u, const sc_unsigned& v);
 friend sc_signed operator - (uint64

 u, const sc_unsigned& v);

 Copyright 2003 Open SystemC Initiative. All rights reserved 397

SystemC 2.0.1 Language Reference Manual

 friend sc_signed operator - (long u,
const sc_unsigned& v);

 friend sc_signed operator - (unsigned long u,
const sc_unsigned& v);

 friend sc_signed operator - (int u,
const sc_unsigned& v);

 friend sc_signed operator - (unsigned int u,
const sc_unsigned& v);

 sc_unsigned& operator -= (const sc_signed& v);
 sc_unsigned& operator -= (const sc_unsigned& v);
 sc_unsigned& operator -= (int64 v);
 sc_unsigned& operator -= (uint64 v);
 sc_unsigned& operator -= (long v);
 sc_unsigned& operator -= (unsigned long v);
 sc_unsigned& operator -= (int v)
 sc_unsigned& operator -= (unsigned int v)
 friend sc_signed operator - (const sc_unsigned& u,

const sc_uint_base& v);
 friend sc_signed operator - (const sc_unsigned& u,

const sc_int_base& v);
 friend sc_signed operator - (const sc_uint_base& u,

const sc_unsigned& v);
 friend sc_signed operator - (const sc_int_base& u,

const sc_unsigned& v);
 sc_unsigned& operator -= (const sc_int_base& v);
 sc_unsigned& operator -= (const sc_uint_base& v);

 // MULtiplication operators:

 friend sc_signed operator * (const sc_unsigned& u,

const sc_signed& v);
 friend sc_signed operator * (const sc_signed& u,

const sc_unsigned& v);

 friend sc_unsigned operator * (const sc_unsigned& u,

const sc_unsigned& v);
 friend sc_signed operator * (const sc_unsigned& u,

int64 v);
 friend sc_unsigned operator * (const sc_unsigned& u,

uint64 v);
 friend sc_signed operator * (const sc_unsigned& u,

long v);
 friend sc_unsigned operator * (const sc_unsigned& u,

unsigned long v);
 friend sc_signed operator * (const sc_unsigned& u,

int v);
 friend sc_unsigned operator * (const sc_unsigned& u,

unsigned int v)
 friend sc_signed operator * (int64

u, const sc_unsigned& v);
 friend sc_unsigned operator * (uint64

 u, const sc_unsigned& v);
 friend sc_signed operator * (long u,

const sc_unsigned& v);

 Copyright 2003 Open SystemC Initiative. All rights reserved 398

SystemC 2.0.1 Language Reference Manual

 friend sc_unsigned operator * (unsigned long u,
const sc_unsigned& v);

 friend sc_signed operator * (int u,
const sc_unsigned& v);

 friend sc_unsigned operator * (unsigned int u,
const sc_unsigned& v)

 sc_unsigned& operator *= (const sc_signed& v);
 sc_unsigned& operator *= (const sc_unsigned& v);
 sc_unsigned& operator *= (int64 v);
 sc_unsigned& operator *= (uint64 v);
 sc_unsigned& operator *= (long v);
 sc_unsigned& operator *= (unsigned long v);
 sc_unsigned& operator *= (int v)
 sc_unsigned& operator *= (unsigned int v)
 friend sc_unsigned operator * (const sc_unsigned& u,

const sc_uint_base& v);
 friend sc_signed operator * (const sc_unsigned& u,

const sc_int_base& v);
 friend sc_unsigned operator * (const sc_uint_base& u,

const sc_unsigned& v);
 friend sc_signed operator * (const sc_int_base& u,

const sc_unsigned& v);
 sc_unsigned& operator *= (const sc_int_base& v);
 sc_unsigned& operator *= (const sc_uint_base& v);

 // DIVision operators:
 friend sc_signed operator / (const sc_unsigned& u,

const sc_signed& v);
 friend sc_signed operator / (const sc_signed& u,

const sc_unsigned& v);
 friend sc_unsigned operator / (const sc_unsigned& u,

const sc_unsigned& v);
 friend sc_signed operator / (const sc_unsigned& u,

int64 v);
 friend sc_unsigned operator / (const sc_unsigned& u,

uint64 v);
 friend sc_signed operator / (const sc_unsigned& u,

long v);
 friend sc_unsigned operator / (const sc_unsigned& u,

unsigned long v);
 friend sc_signed operator / (const sc_unsigned& u,

int v);
 friend sc_unsigned operator / (const sc_unsigned& u,

unsigned int v)
 friend sc_signed operator / (int64

u, const sc_unsigned& v);
 friend sc_unsigned operator / (uint64

 u, const sc_unsigned& v);
 friend sc_signed operator / (long u,

const sc_unsigned& v);
 friend sc_unsigned operator / (unsigned long u,

const sc_unsigned& v);
 friend sc_signed operator / (int u,

const sc_unsigned& v);

 Copyright 2003 Open SystemC Initiative. All rights reserved 399

SystemC 2.0.1 Language Reference Manual

 friend sc_unsigned operator / (unsigned int u,
const sc_unsigned& v)

 sc_unsigned& operator /= (const sc_signed& v);
 sc_unsigned& operator /= (const sc_unsigned& v);
 sc_unsigned& operator /= (int64 v);
 sc_unsigned& operator /= (uint64 v);
 sc_unsigned& operator /= (long v);
 sc_unsigned& operator /= (unsigned long v);
 sc_unsigned& operator /= (int v)
 sc_unsigned& operator /= (unsigned int v)
 friend sc_unsigned operator / (const sc_unsigned& u,

const sc_uint_base& v);
 friend sc_signed operator / (const sc_unsigned& u,

const sc_int_base& v);
 friend sc_unsigned operator / (const sc_uint_base& u,

const sc_unsigned& v);
 friend sc_signed operator / (const sc_int_base& u,

const sc_unsigned& v);
 sc_unsigned& operator /= (const sc_int_base& v);
 sc_unsigned& operator /= (const sc_uint_base& v);

 // MODulo operators:
 friend sc_signed operator % (const sc_unsigned& u,

const sc_signed& v);
 friend sc_signed operator % (const sc_signed& u,

const sc_unsigned& v);
 friend sc_unsigned operator % (const sc_unsigned& u,

const sc_unsigned& v);
 friend sc_signed operator % (const sc_unsigned& u,

int64 v);
 friend sc_unsigned operator % (const sc_unsigned& u,

uint64 v);
 friend sc_signed operator % (const sc_unsigned& u,

long v);
 friend sc_unsigned operator % (const sc_unsigned& u,

unsigned long v);
 friend sc_signed operator % (const sc_unsigned& u,

int v);
 friend sc_unsigned operator % (const sc_unsigned& u,

unsigned int v)
 friend sc_signed operator % (int64

u, const sc_unsigned& v);
 friend sc_unsigned operator % (uint64

 u, const sc_unsigned& v);
 friend sc_signed operator % (long u,

const sc_unsigned& v);
 friend sc_unsigned operator % (unsigned long u,

const sc_unsigned& v);
 friend sc_signed operator % (int u,

const sc_unsigned& v);
 friend sc_unsigned operator % (unsigned int u,

const sc_unsigned& v)
 sc_unsigned& operator %= (const sc_signed& v);
 sc_unsigned& operator %= (const sc_unsigned& v);

 Copyright 2003 Open SystemC Initiative. All rights reserved 400

SystemC 2.0.1 Language Reference Manual

 sc_unsigned& operator %= (int64 v);
 sc_unsigned& operator %= (uint64 v);
 sc_unsigned& operator %= (long v);
 sc_unsigned& operator %= (unsigned long v);
 sc_unsigned& operator %= (int v)
 sc_unsigned& operator %= (unsigned int v)
 friend sc_unsigned operator % (const sc_unsigned& u,

const sc_uint_base& v);
 friend sc_signed operator % (const sc_unsigned& u,

const sc_int_base& v);
 friend sc_unsigned operator % (const sc_uint_base& u,

const sc_unsigned& v);
 friend sc_signed operator % (const sc_int_base& u,

const sc_unsigned& v);
 sc_unsigned& operator %= (const sc_int_base& v);
 sc_unsigned& operator %= (const sc_uint_base& v);

 // Bitwise AND operators:
 friend sc_signed operator & (const sc_unsigned& u,

const sc_signed& v);
 friend sc_signed operator & (const sc_signed& u,

const sc_unsigned& v);
 friend sc_unsigned operator & (const sc_unsigned& u,

const sc_unsigned& v);
 friend sc_signed operator & (const sc_unsigned& u,

int64 v);
 friend sc_unsigned operator & (const sc_unsigned& u,

uint64 v);
 friend sc_signed operator & (const sc_unsigned& u,

long v);
 friend sc_unsigned operator & (const sc_unsigned& u,

unsigned long v);
 friend sc_signed operator & (const sc_unsigned& u,

int v);
 friend sc_unsigned operator & (const sc_unsigned& u,

unsigned int v)
 friend sc_signed operator & (int64

u, const sc_unsigned& v);
 friend sc_unsigned operator & (uint64

 u, const sc_unsigned& v);
 friend sc_signed operator & (long u,

const sc_unsigned& v);
 friend sc_unsigned operator & (unsigned long u,

const sc_unsigned& v);
 friend sc_signed operator & (int u,

const sc_unsigned& v);
 friend sc_unsigned operator & (unsigned int u,

const sc_unsigned& v)
 sc_unsigned& operator &= (const sc_signed& v);
 sc_unsigned& operator &= (const sc_unsigned& v);
 sc_unsigned& operator &= (int64 v);
 sc_unsigned& operator &= (uint64 v);
 sc_unsigned& operator &= (long v);
 sc_unsigned& operator &= (unsigned long v);

 Copyright 2003 Open SystemC Initiative. All rights reserved 401

SystemC 2.0.1 Language Reference Manual

 sc_unsigned& operator &= (int v)
 sc_unsigned& operator &= (unsigned int v)
 friend sc_unsigned operator & (const sc_unsigned& u,

const sc_uint_base& v);
 friend sc_signed operator & (const sc_unsigned& u,

const sc_int_base& v);
 friend sc_unsigned operator & (const sc_uint_base& u,

const sc_unsigned& v);
 friend sc_signed operator & (const sc_int_base& u,

const sc_unsigned& v);
 sc_unsigned& operator &= (const sc_int_base& v);
 sc_unsigned& operator &= (const sc_uint_base& v);

 // Bitwise OR operators:
 friend sc_signed operator | (const sc_unsigned& u,

const sc_signed& v);
 friend sc_signed operator | (const sc_signed& u,

const sc_unsigned& v);
 friend sc_unsigned operator | (const sc_unsigned& u,

const sc_unsigned& v);
 friend sc_signed operator | (const sc_unsigned& u,

int64 v);
 friend sc_unsigned operator | (const sc_unsigned& u,

uint64 v);
 friend sc_signed operator | (const sc_unsigned& u,

long v);
 friend sc_unsigned operator | (const sc_unsigned& u,

unsigned long v);
 friend sc_signed operator | (const sc_unsigned& u,

int v);
 friend sc_unsigned operator | (const sc_unsigned& u,

unsigned int v)
 friend sc_signed operator | (int64

u, const sc_unsigned& v);
 friend sc_unsigned operator | (uint64

 u, const sc_unsigned& v);
 friend sc_signed operator | (long u,

const sc_unsigned& v);
 friend sc_unsigned operator | (unsigned long u,

const sc_unsigned& v);
 friend sc_signed operator | (int u,

const sc_unsigned& v);
 friend sc_unsigned operator | (unsigned int u,

const sc_unsigned& v)
 sc_unsigned& operator |= (const sc_signed& v);
 sc_unsigned& operator |= (const sc_unsigned& v);
 sc_unsigned& operator |= (int64 v);
 sc_unsigned& operator |= (uint64 v);
 sc_unsigned& operator |= (long v);
 sc_unsigned& operator |= (unsigned long v);
 sc_unsigned& operator |= (int v)
 sc_unsigned& operator |= (unsigned int v)
 friend sc_unsigned operator | (const sc_unsigned& u,

const sc_uint_base& v);

 Copyright 2003 Open SystemC Initiative. All rights reserved 402

SystemC 2.0.1 Language Reference Manual

 friend sc_signed operator | (const sc_unsigned& u,
const sc_int_base& v);

 friend sc_unsigned operator | (const sc_uint_base& u,
const sc_unsigned& v);

 friend sc_signed operator | (const sc_int_base& u,
const sc_unsigned& v);

 sc_unsigned& operator |= (const sc_int_base& v);
 sc_unsigned& operator |= (const sc_uint_base& v);

 // Bitwise XOR operators:
 friend sc_signed operator ^ (const sc_unsigned& u,

const sc_signed& v);
 friend sc_signed operator ^ (const sc_signed& u,

const sc_unsigned& v);
 friend sc_unsigned operator ^ (const sc_unsigned& u,

const sc_unsigned& v);
 friend sc_signed operator ^ (const sc_unsigned& u,

int64 v);
 friend sc_unsigned operator ^ (const sc_unsigned& u,

uint64 v);
 friend sc_signed operator ^ (const sc_unsigned& u,

long v);
 friend sc_unsigned operator ^ (const sc_unsigned& u,

unsigned long v);
 friend sc_signed operator ^ (const sc_unsigned& u,

int v);
 friend sc_unsigned operator ^ (const sc_unsigned& u,

unsigned int v)
 friend sc_signed operator ^ (int64

u, const sc_unsigned& v);
 friend sc_unsigned operator ^ (uint64

 u, const sc_unsigned& v);
 friend sc_signed operator ^ (long u,

const sc_unsigned& v);
 friend sc_unsigned operator ^ (unsigned long u,

const sc_unsigned& v);
 friend sc_signed operator ^ (int u,

const sc_unsigned& v);
 friend sc_unsigned operator ^ (unsigned int u,

const sc_unsigned& v)
 sc_unsigned& operator ^= (const sc_signed& v);
 sc_unsigned& operator ^= (const sc_unsigned& v);
 sc_unsigned& operator ^= (int64 v);
 sc_unsigned& operator ^= (uint64 v);
 sc_unsigned& operator ^= (long v);
 sc_unsigned& operator ^= (unsigned long v);
 sc_unsigned& operator ^= (int v)
 sc_unsigned& operator ^= (unsigned int v)
 friend sc_unsigned operator ^ (const sc_unsigned& u,

const sc_uint_base& v);
 friend sc_signed operator ^ (const sc_unsigned& u,

const sc_int_base& v);
 friend sc_unsigned operator ^ (const sc_uint_base& u,

const sc_unsigned& v);

 Copyright 2003 Open SystemC Initiative. All rights reserved 403

SystemC 2.0.1 Language Reference Manual

 friend sc_signed operator ^ (const sc_int_base& u,
const sc_unsigned& v);

 sc_unsigned& operator ^= (const sc_int_base& v);
 sc_unsigned& operator ^= (const sc_uint_base& v);

 // LEFT SHIFT operators:
 friend sc_unsigned operator << (const sc_unsigned&u,

const sc_signed& v);
 friend sc_signed operator << (const sc_signed& u,

const sc_unsigned& v);
 friend sc_unsigned operator << (const sc_unsigned&u,

const sc_unsigned& v);
 friend sc_unsigned operator << (const sc_unsigned&u,

int64 v);
 friend sc_unsigned operator << (const sc_unsigned&u,

uint64 v);
 friend sc_unsigned operator << (const sc_unsigned&u,

long v);
 friend sc_unsigned operator << (const sc_unsigned&u,

unsigned long v);
 friend sc_unsigned operator << (const sc_unsigned&u,

int v)
 friend sc_unsigned operator << (const sc_unsigned&u,

unsigned int v)
 sc_unsigned& operator <<= (const sc_signed& v);
 sc_unsigned& operator <<= (const sc_unsigned&v);
 sc_unsigned& operator <<= (int64 v);
 sc_unsigned& operator <<= (uint64 v);
 sc_unsigned& operator <<= (long v);
 sc_unsigned& operator <<= (unsigned long v);
 sc_unsigned& operator <<= (int v)
 sc_unsigned& operator <<= (unsigned int v)
 friend sc_unsigned operator << (const sc_unsigned&u,

const sc_uint_base& v);
 friend sc_unsigned operator << (const sc_unsigned&u,

const sc_int_base& v);
 sc_unsigned& operator <<= (const sc_int_base&v);
 sc_unsigned& operator <<= (const sc_uint_base& v);

 // RIGHT SHIFT operators:
 friend sc_unsigned operator >> (const sc_unsigned&u,

const sc_signed& v);
 friend sc_signed operator >> (const sc_signed& u,

const sc_unsigned& v);
 friend sc_unsigned operator >> (const sc_unsigned&u,

const sc_unsigned& v);
 friend sc_unsigned operator >> (const sc_unsigned&u,

int64 v);
 friend sc_unsigned operator >> (const sc_unsigned&u,

uint64 v);
 friend sc_unsigned operator >> (const sc_unsigned&u,

long v);
 friend sc_unsigned operator >> (const sc_unsigned&u,

unsigned long v);

 Copyright 2003 Open SystemC Initiative. All rights reserved 404

SystemC 2.0.1 Language Reference Manual

 friend sc_unsigned operator >> (const sc_unsigned&u,
int v)

 friend sc_unsigned operator >> (const sc_unsigned&u,
unsigned int v)

 sc_unsigned& operator >>= (const sc_signed& v);
 sc_unsigned& operator >>= (const sc_unsigned&v);
 sc_unsigned& operator >>= (int64 v);
 sc_unsigned& operator >>= (uint64 v);
 sc_unsigned& operator >>= (long v);
 sc_unsigned& operator >>= (unsigned long v);
 sc_unsigned& operator >>= (int v)
 sc_unsigned& operator >>= (unsigned int v)
 friend sc_unsigned operator >> (const sc_unsigned& ,

const sc_uint_base&);
 friend sc_unsigned operator >> (const sc_unsigned&,

const sc_int_base&);
 sc_unsigned& operator >>= (const sc_int_base&v);
 sc_unsigned& operator >>= (const sc_uint_base& v);

 // Unary arithmetic operators
 friend sc_unsigned operator + (const sc_unsigned& u);
 friend sc_signed operator - (const sc_unsigned& u);

 // Logical EQUAL operators:
 friend bool operator == (const sc_unsigned& u, const

sc_signed&v);
 friend bool operator == (const sc_signed& u, const

sc_unsigned& v);
 friend bool operator == (const sc_unsigned& u, const

sc_unsigned& v);
 friend bool operator == (const sc_unsigned& u, int64

 v);
 friend bool operator == (const sc_unsigned& u, uint64

 v);
 friend bool operator == (const sc_unsigned& u, long

 v);
 friend bool operator == (const sc_unsigned& u,

unsigned long v);
 friend bool operator == (const sc_unsigned& u, int

 v)
 friend bool operator == (const sc_unsigned& u,

unsigned int v)
 friend bool operator == (int64 u, const

sc_unsigned& v);
 friend bool operator == (uint64 u,

const sc_unsigned& v);
 friend bool operator == (long u, const

sc_unsigned& v);
 friend bool operator == (unsigned long u, const

sc_unsigned& v);
 friend bool operator == (int u, const

sc_unsigned& v)
 friend bool operator == (unsigned int u, const

sc_unsigned& v)

 Copyright 2003 Open SystemC Initiative. All rights reserved 405

SystemC 2.0.1 Language Reference Manual

 friend bool operator == (const sc_unsigned& u, const
sc_uint_base& v);

 friend bool operator == (const sc_unsigned& u, const
sc_int_base& v);

 friend bool operator == (const sc_uint_base& u, const
sc_unsigned& v);

 friend bool operator == (const sc_int_base& u, const
sc_unsigned& v);

 // Logical NOT_EQUAL operators:
 friend bool operator != (const sc_unsigned& u, const

sc_signed&v);
 friend bool operator != (const sc_signed& u, const

sc_unsigned& v);
 friend bool operator != (const sc_unsigned& u, const

sc_unsigned& v);
 friend bool operator != (const sc_unsigned& u, int64

 v);
 friend bool operator != (const sc_unsigned& u, uint64

 v);
 friend bool operator != (const sc_unsigned& u, long

 v);
 friend bool operator != (const sc_unsigned& u,

unsigned long v);
 friend bool operator != (const sc_unsigned& u, int

 v)
 friend bool operator != (const sc_unsigned& u,

unsigned int v)
 friend bool operator != (int64 u, const

sc_unsigned& v);
 friend bool operator != (uint64 u,

const sc_unsigned& v);
 friend bool operator != (long u, const

sc_unsigned& v);
 friend bool operator != (unsigned long u, const

sc_unsigned& v);
 friend bool operator != (int u, const

sc_unsigned& v)
 friend bool operator != (unsigned int u, const

sc_unsigned& v)
 friend bool operator != (const sc_unsigned& u, const

sc_uint_base& v);
 friend bool operator != (const sc_unsigned& u, const

sc_int_base& v);
 friend bool operator != (const sc_uint_base& u, const

sc_unsigned& v);
 friend bool operator != (const sc_int_base& u, const

sc_unsigned& v);

 // Logical LESS_THAN operators:
 friend bool operator < (const sc_unsigned& u, const

sc_signed&v);
 friend bool operator < (const sc_signed&u, const

sc_unsigned& v);

 Copyright 2003 Open SystemC Initiative. All rights reserved 406

SystemC 2.0.1 Language Reference Manual

 friend bool operator < (const sc_unsigned& u, const
sc_unsigned& v);

 friend bool operator < (const sc_unsigned& u, int64
 v);

 friend bool operator < (const sc_unsigned& u, uint64
 v);

 friend bool operator < (const sc_unsigned& u, long
 v);

 friend bool operator < (const sc_unsigned& u,
unsigned long v);

 friend bool operator < (const sc_unsigned& u, int
 v)

 friend bool operator < (const sc_unsigned& u,
unsigned int v)

 friend bool operator < (int64 u, const
sc_unsigned& v);

 friend bool operator < (uint64 u, const
sc_unsigned& v);

 friend bool operator < (long u, const
sc_unsigned& v);

 friend bool operator < (unsigned long u, const
sc_unsigned& v);

 friend bool operator < (int u, const
sc_unsigned& v)

 { return operator<((long) u, v); }
 friend bool operator < (unsigned int u, const

sc_unsigned& v)
 { return operator<((unsigned long) u, v); }
 friend bool operator < (const sc_unsigned& u, const

sc_uint_base& v);
 friend bool operator < (const sc_unsigned& u, const

sc_int_base& v);
 friend bool operator < (const sc_uint_base& u, const

sc_unsigned& v);
 friend bool operator < (const sc_int_base& u, const

sc_unsigned& v);

 // Logical LESS_THAN_AND_EQUAL operators:
 friend bool operator <= (const sc_unsigned& u, const

sc_signed&v);
 friend bool operator <= (const sc_signed& u, const

sc_unsigned& v);
 friend bool operator <= (const sc_unsigned& u, const

sc_unsigned& v);
 friend bool operator <= (const sc_unsigned& u, int64

 v);
 friend bool operator <= (const sc_unsigned& u, uint64

 v);
 friend bool operator <= (const sc_unsigned& u, long

 v);
 friend bool operator <= (const sc_unsigned& u,

unsigned long v);
 friend bool operator <= (const sc_unsigned& u, int

 v)

 Copyright 2003 Open SystemC Initiative. All rights reserved 407

SystemC 2.0.1 Language Reference Manual

 friend bool operator <= (const sc_unsigned& u,
unsigned int v)

 friend bool operator <= (int64 u, const
sc_unsigned& v);

 friend bool operator <= (uint64 u,
const sc_unsigned& v);

 friend bool operator <= (long u, const
sc_unsigned& v);

 friend bool operator <= (unsigned long u, const
sc_unsigned& v);

 friend bool operator <= (int u, const
sc_unsigned& v)

 friend bool operator <= (unsigned int u, const
sc_unsigned& v)

 friend bool operator <= (const sc_unsigned& u, const
sc_uint_base& v);

 friend bool operator <= (const sc_unsigned& u, const
sc_int_base& v);

 friend bool operator <= (const sc_uint_base& u, const
sc_unsigned& v);

 friend bool operator <= (const sc_int_base& u, const
sc_unsigned& v);

 // Logical GREATER_THAN operators:
 friend bool operator > (const sc_unsigned& u, const

sc_signed&v);
 friend bool operator > (const sc_signed&u, const

sc_unsigned& v);
 friend bool operator > (const sc_unsigned& u, const

sc_unsigned& v);
 friend bool operator > (const sc_unsigned& u, int64

 v);
 friend bool operator > (const sc_unsigned& u, uint64

 v);
 friend bool operator > (const sc_unsigned& u, long

 v);
 friend bool operator > (const sc_unsigned& u,

unsigned long v);
 friend bool operator > (const sc_unsigned& u, int

 v)
 friend bool operator > (const sc_unsigned& u,

unsigned int v)
 friend bool operator > (int64 u, const

sc_unsigned& v);
 friend bool operator > (uint64 u, const

sc_unsigned& v);
 friend bool operator > (long u, const

sc_unsigned& v);
 friend bool operator > (unsigned long u, const

sc_unsigned& v);
 friend bool operator > (int u, const

sc_unsigned& v)
 friend bool operator > (unsigned int u, const

sc_unsigned& v)

 Copyright 2003 Open SystemC Initiative. All rights reserved 408

SystemC 2.0.1 Language Reference Manual

 friend bool operator > (const sc_unsigned& u, const
sc_uint_base& v);

 friend bool operator > (const sc_unsigned& u, const
sc_int_base& v);

 friend bool operator > (const sc_uint_base& u, const
sc_unsigned& v);

 friend bool operator > (const sc_int_base& u, const
sc_unsigned& v);

 // Logical GREATER_THAN_AND_EQUAL operators:

 friend bool operator >= (const sc_unsigned& u, const

sc_signed&v);
 friend bool operator >= (const sc_signed& u, const

sc_unsigned& v);
 friend bool operator >= (const sc_unsigned& u, const

sc_unsigned& v);
 friend bool operator >= (const sc_unsigned& u, int64

 v);
 friend bool operator >= (const sc_unsigned& u, uint64

 v);
 friend bool operator >= (const sc_unsigned& u, long

 v);
 friend bool operator >= (const sc_unsigned& u,

unsigned long v);
 friend bool operator >= (const sc_unsigned& u, int

 v)
 friend bool operator >= (const sc_unsigned& u,

unsigned int v)
 friend bool operator >= (int64 u, const

sc_unsigned& v);
 friend bool operator >= (uint64 u,

const sc_unsigned& v);
 friend bool operator >= (long u, const

sc_unsigned& v);
 friend bool operator >= (unsigned long u, const

sc_unsigned& v);
 friend bool operator >= (int u, const

sc_unsigned& v)
 friend bool operator >= (unsigned int u, const

sc_unsigned& v)
 friend bool operator >= (const sc_unsigned& u, const

sc_uint_base& v);
 friend bool operator >= (const sc_unsigned& u, const

sc_int_base& v);
 friend bool operator >= (const sc_uint_base& u, const

sc_unsigned& v);
 friend bool operator >= (const sc_int_base& u, const

sc_unsigned& v);

 // Bitwise NOT operator (unary).
 friend sc_unsigned operator ~ (const sc_unsigned& u);
};

 Copyright 2003 Open SystemC Initiative. All rights reserved 409

SystemC 2.0.1 Language Reference Manual

Description
sc_unsigned is an integer with an arbitrary word length W. The word length
is specified at construction and can never change.

Public Constructors
explicit
sc_unsigned(int nb);
Create an sc_unsigned instance with an initial value of 0 and word length nb.

sc_unsigned(const sc_unsigned& a);
Create an sc_unsigned instance with an initial value of a and word length of a.

Copy Constructor
sc_unsigned(const sc_unsigned&);

Methods
bool
iszero() const;
 Return true if the value of the sc_unsigned instance is zero.

int
length() const ;

Return the word length.

void
print(ostream& os = cout) const ;

Print the sc_uint_base instance to an output stream.

void
reverse();
Reverse the contents of the sc_unsigned instance. I.e. LSB becomes MSB and
vice versa.

bool
sign() const;
 Return false.

void
scan(istream& is = cin) ;

Read a sc_uint_base value from an input stream.

Assignment Operators
sc_ unsigned& operator = (T) ;
T in { sc_[un]signed, sc_[un]signed_subref

†
,

sc_[un]signed_concref
†
, char*, [u]int64, [unsigned]

long, [unsigned] int, double, sc_[u]int_base,
sc_bv_base, sc_lv_base, sc_fxval, sc_fxval_fast,
sc_fxnum, sc_fxnum_fast }}

 Copyright 2003 Open SystemC Initiative. All rights reserved 410

SystemC 2.0.1 Language Reference Manual

Assign the value of the right-hand side to the left-hand side. The value is
truncated, if its word length is greater than W. If not, the value is sign extended.

Increment and Decrement Operators
sc_unsigned& operator ++ () ;
const sc_unsigned operator ++ (int) ;

The operation is performed as done for type unsigned int.

sc_unsigned& operator -- () ;
const sc_unsigned operator -- (int) ;

The operation is performed as done for type unsigned int.

Bit Selection
sc_unsigned_bitref operator [] (int);
sc_unsigned_bitref_r operator [] (int) const;
sc_unsigned_bitref bit(int);
sc_unsigned_bitref_r bit(int) const;

Return a reference to a single bit.

Part Selection
sc_unsigned_subref range(int high, int low);
sc_unsigned_subref_r range(int high, int low) const;
sc_unsigned_subref operator () (int high, int low);
sc_unsigned_subref_r operator () (int high, int low)

const;
Return a reference to a range of bits. The MSB is set to the bit at position
high, the LSB is set to the bit at position low.

Arithmetic Assignment Operators

friend sc_unsigned operator OP (sc_unsigned , sc_signed);
friend sc_unsigned operator OP (sc_signed , sc_unsigned);
friend sc_unsigned operator OP (sc_signed , sc_signed);
friend sc_unsigned operator OP (sc_signed , T);
friend sc_unsigned operator OP (T , sc_signed);
T in { sc_[u]int_base, [u]int64, [unsigned] long,

[unsigned] int }
OP in { + - * / % & | ^ == != < <= > >= }

friend sc_unsigned operator OP (sc_unsigned , T);
friend sc_unsigned operator OP (T , sc_unsigned);
T in { sc_int_base, int64, long, int }
OP in { + - * / % & | ^ == != < <= > >= }

The operation OP is performed and the result is returned.

 Copyright 2003 Open SystemC Initiative. All rights reserved 411

SystemC 2.0.1 Language Reference Manual

sc_unsigned& operator OP (T);
T in { sc_[un]signed, sc_[u]int_base, [u]int64, [unsigned]

long, [unsigned] int }
OP in { += -= *= /= %= &= |= ^= }
The operation OP is performed and the result is assigned to the left-hand side.

Shift Operators
friend sc_unsigned operator OP (sc_unsigned a , sc_signed

b);
friend sc_unsigned operator OP (sc_signed a , sc_unsigned

b);
friend sc_unsigned operator OP (sc_signed a , T b);
T in { sc_[u]int_base, [u]int64, [unsigned] long,

[unsigned] int }
OP in { << >> }
Shift a to the left/right by b bits and return the result.

sc_unsigned& operator OP (T);
T in { sc_[un]signed, sc_[u]int_base, [u]int64, [unsigned]

long, [unsigned] int }
OP in { <<= >>= }
Shift the sc_unsigned instance to the left/right by i bits and assign the result to
the sc_unsigned instance.

Bitwise not
friend sc_unsigned operator ~ (sc_unsigned a);
Return the bitwise not of a;

Explicit Conversion
sc_string to_string(sc_numrep = SC_DEC) const
sc_string to_string(sc_numrep, bool) const

Convert the sc_unsigned instance into its string representation.

double to_double() const ;
int to_int() const ;
int64 to_int64() const ;
long to_long() const ;
uint64 to_uint64() const ;
unsigned int to_uint() const ;
unsigned long to_ulong() const ;

Converts the value of sc_unsigned instance into the corresponding data
type. If the requested type has less word length than the sc_unsigned
instance, the value gets truncated accordingly. If the requested type has
greater word length than the sc_unsigned instance, the value gets sign
extended, if necessary.

 Copyright 2003 Open SystemC Initiative. All rights reserved 412

SystemC 2.0.1 Language Reference Manual

12 Global Function Reference
This section contains a summary of the SystemC global functions. The functions
are presented in alphabetical order. The function prototype consists of the return
type, the function name, and the argument type or types. A brief description and
summary of each function follows its prototype. Several of the function
descriptions include examples.

12.1 notify
Prototype
void
notify(sc_event& e);

Description
Causes immediate notification of event e.

Prototype
void
notify(const sc_time& t, sc_event& e);

Description
If t = SC_ZERO_TIME then causes notification of event e in the next delta-
cycle else schedules notification at current time + t.

Prototype
void
notify(double v, sc_time_unit tu, sc_event& e);

Description
If sc_time(v, tu) = SC_ZERO_TIME then causes notification of event
e in the next delta-cycle else schedules notification at current time +
sc_time(v, tu).

12.2 sc_abs
Prototype
template <class T>
T
sc_abs(const T& val_);

Description
Returns the absolute value of val_.

 Copyright 2003 Open SystemC Initiative. All rights reserved 413

SystemC 2.0.1 Language Reference Manual

12.3 sc_close_vcd_trace_file
Prototype
void
sc_close_vcd_trace_file(sc_trace_file

†
* tf);

Description

Closes the trace file tf, which was opened with
sc_create_vcd_trace_file().

12.4 sc_close_wif_trace_file
Prototype
void
sc_close_wif_trace_file(sc_trace_file

†
* tf);

Description

Closes the trace file tf, which was opened with
sc_create_wif_trace_file().

12.5 sc_copyright
Prototype
const char*
sc_copyright()

Description
Returns a character string that contains the copyright notice e. g.:
 Copyright (c) 1996-2002 by all Contributors
 ALL RIGHTS RESERVED

12.6 sc_create_vcd_trace_file
Prototype
sc_trace_file

†
*

sc_create_vcd_trace_file(const char* file_name);

Description

Creates a new sc_vcd_trace_file object and opens a VCD trace file
named file_name. Returns a pointer to the sc_vcd_trace_file object.
Used for tracing.

12.7 sc_create_wif_trace_file
Prototype
sc_trace_file

†
*

sc_create_wif_trace_file(const char* file_name);

 Copyright 2003 Open SystemC Initiative. All rights reserved 414

SystemC 2.0.1 Language Reference Manual

Description

Creates a new sc_wif_trace_file object and opens a VCD trace file
named file_name. Returns a pointer to the sc_wif_trace_file object.
Used for tracing.

12.8 sc_gen_unique_name
Prototype
const char*
sc_gen_unique_name(const char* basename_);

Description
Using basename_ as a base, returns a character string that is unique within
the current module (instance) or simulation context.

12.9 sc_get_curr_simcontext
Prototype
sc_simcontext*
sc_get_curr_simcontext();

Description
Returns a pointer to the sc_simcontext object that the simulation kernel
maintains.

12.10 sc_get_default_time_unit
Prototype
sc_time
sc_get_default_time_unit();

Description
Returns the default time unit.

12.11 sc_get_time_resolution
Prototype
sc_time
sc_get_time_resolution();

Description
Returns the time resolution.

12.12 sc_max
Prototype
template <class T>

 Copyright 2003 Open SystemC Initiative. All rights reserved 415

SystemC 2.0.1 Language Reference Manual

T
sc_max(const T& a_val, const T& b_val);

Description
Returns the value of which is greater, a_val or b_val. If a_val equals
b_val then a_val is returned.

12.13 sc_min
Prototype
template <class T>
T
sc_min(const T& a_val, const T& b_val);

Description
Returns the value of which is lesser, a_val or b_val. If a_val equals b_val
then a_val is returned.

12.14 sc_set_default_time_unit
Prototype
void
sc_set_default_time_unit(double val, sc_time_unit tu);

Description
Sets the default time unit with a value of sc_time(val, tu). Value val
must be positive and a power of ten. The default time unit value specified must
be greater than or equal to the current time resolution. This function may only
be called once and only during elaboration (Chapter 2.2), and only before any
sc_time objects unequal SC_ZERO_TIME are created.

12.15 sc_set_time_resolution
Prototype
void
sc_set_time_resolution(double val, sc_time_unit tu);

Description
Sets the time resolution with a value of sc_time(val, tu). Value must be
positive and a power of ten. The time resolution value specified must be
greater than or equal to 1 femtosecond. This function may only be called once
and only during elaboration (Chapter 2.2) , and only before any sc_time
objects unequal SC_ZERO_TIME are created.

12.16 sc_simulation_time
Prototype
double

 Copyright 2003 Open SystemC Initiative. All rights reserved 416

SystemC 2.0.1 Language Reference Manual

sc_simulation_time();

Description
Returns a value of type double. The value is the current simulation time in
default time units.

12.17 sc_start
Prototype
void
sc_start(const sc_time& duration)

Description

Causes simulation to start and run for the specified amount of time, duration.
If this is the first call to sc_start() the simulation is first initialized, which
includes running one delta-cycle sequence before time 0. If duration is
equal to SC_ZERO_TIME, and this is not the first call to sc_start() then the
simulation runs one delta-cycle sequence at the current time.

Prototype
void
sc_start(double d_val, sc_time_unit d_tu);

Description

Causes simulation to start and run for the specified amount of time,
sc_time(d_val, d_tu). If this is the first call to sc_start() the simulation
is first initialized, which includes running one delta-cycle sequence before time
0. If the specified amount of time is equal to SC_ZERO_TIME and this is not
the first call to sc_start() then the simulation runs one delta-cycle sequence
at the current time.

Prototype
void
sc_start(double d_val = -1);

Description
Causes simulation to start and run for the specified amount of time,
sc_time(d_val, sc_get_default_time_unit()), i.e., d_val
is specified in terms of the current default time unit. If this is the first
call to sc_start() the simulation is first initialized, which includes
running one delta-cycle sequence before time 0. If the value of d_val
is not specified or the value of d_val is –1 then the simulation runs
“forever”. If the specified amount of time is SC_ZERO_TIME and this is
not the first call to sc_start(), then the simulation runs one delta-
cycle sequence at the current time.

Examples
//Given

 Copyright 2003 Open SystemC Initiative. All rights reserved 417

SystemC 2.0.1 Language Reference Manual

sc_time r_time(1000, SC_NS);

// Then
sc_start(r_time); // run 1000 nSec
sc_start(1000, SC_NS); // run 1000 nSec
sc_start(1000); // run 1000 default time units
sc_start(); // run forever
sc_start(-1); // run forever

12.18 sc_stop
Prototype
void
sc_stop();

Description
Halts simulation at the end of the current delta-cycle. Causes sc_start() to
return control to sc_main().

12.19 sc_stop_here
Prototype
void
sc_stop_here(const char* id, sc_severity severity);

Description
Called by the simulator after an error or warning situation occurs. The id and
severity of the error or warning are passed to sc_stop_here(). This function
is provided as a debugging aid.

12.20 sc_time_stamp
Prototype
const sc_time&
sc_time_stamp();

Description
Returns the current simulation time.

12.21 sc_trace
Prototype
// for SystemC types
void sc_trace(sc_trace_file* tf, const tp& object_, const

sc_string& name_)
void sc_trace(sc_trace_file* tf, const tp* object_, const

sc_string& name_);
tp in {sc_logic, sc_[u]int_base, sc_[un]signed, sc_bv_base,

sc_lv_base}

// for C++ types

 Copyright 2003 Open SystemC Initiative. All rights reserved 418

SystemC 2.0.1 Language Reference Manual

void sc_trace(sc_trace_file* tf, const tp& object_, const
sc_string& name_, int width = 8 * sizeof(tp))

void sc_trace(sc_trace_file* tf, const tp* object_, const
sc_string& name_, int width = 8 * sizeof(tp))

tp in {bool, float, double, unsigned char, unsigned short,
unsigned int, unsigned long, char, short, int, long}

// for sc_signal channels
template <class T>
void sc_trace(sc_trace_file* tf, const

sc_signal_in_if<T>& object_, const sc_string& name_)
template <class T>
void sc_trace(sc_trace_file* tf, const

sc_signal_in_if<T>& object_, const char* name_)
void sc_trace(sc_trace_file* tf, const

sc_signal_in_if<char>& object_, const sc_string& name_,
int width);

void sc_trace(sc_trace_file* tf, const
sc_signal_in_if<short>& object_, const sc_string& name_,
int width);

void sc_trace(sc_trace_file* tf, const
sc_signal_in_if<int>& object_, const sc_string& name_,
int width);

void sc_trace(sc_trace_file* tf, const
sc_signal_in_if<long>& object_, const sc_string& name_,
int width);

// for enumerated object
void sc_trace(sc_trace_file* tf, const unsigned int&

object_, const sc_string& name_, const char**
enum_literals);

// for sc_signal specialized ports
template <class T>

void sc_trace(sc_trace_file* tf, const sc_in<T>& object_,
const sc_string& name_)

template <class T>
void sc_trace(sc_trace_file* tf, const sc_inout<T>&

object_, const sc_string& name_)
template <>
void sc_trace<sc_logic>(sc_trace_file* tf, const

sc_in<sc_logic>& object_, const sc_string& name_)
template <>
void sc_trace<sc_logic>(sc_trace_file* tf, const

sc_inout<sc_logic>& object_, const sc_string& name_)
template <>
void sc_trace<bool>(sc_trace_file* tf, const sc_in<bool>&

object_, const sc_string& name_)
template <>
void sc_trace<bool>(sc_trace_file* tf, const

sc_inout<bool>& object_, const sc_string& name_)

Description

 Copyright 2003 Open SystemC Initiative. All rights reserved 419

SystemC 2.0.1 Language Reference Manual

Adds trace of object_ along with the string name_ to the trace file tf.

12.22 sc_version
Prototype
const char*
sc_version();

Description

13 Global Enumerations, Typedefs and Constants

Returns a character string with the version of the SystemC class library, e g:
SystemC 2.0.1 --- Jan 8 2003 16:42:30

13.1 Enumerations

13.1.1 sc_time_unit
enum sc_time_unit
{
 SC_FS = 0, // femtosecond
 SC_PS, // picosecond
 SC_NS, // nanosecond
 SC_US, // microsecond
 SC_MS, // millisecond
 SC_SEC // second
};

13.1.2 sc_logic_value_t
enum sc_logic_value_t
{
 Log_0 = 0,
 Log_1,
 Log_Z,
 Log_X
};

13.2 Typedefs

13.2.1 sc_behavior
typedef sc_module sc_behavior ;

13.2.2 sc_channel
typedef sc_module sc_channel ;

13.2.3 clk ports
typedef sc_in<bool> sc_in_clk ;

 Copyright 2003 Open SystemC Initiative. All rights reserved 420

SystemC 2.0.1 Language Reference Manual

typedef sc_inout<bool> sc_inout_clk ;
typedef sc_out<bool> sc_out_clk ;

13.2.4 Data Types
int64

A signed 64 bit integer type
uint64

An unsigned 64 bit integer type

13.3 Constants

13.3.1 SC_DEFAULT_STACK_SIZE
const int SC_DEFAULT_STACK_SIZE; // value = 0x10000

Sets maximum stack size for thread processes.

13.3.2 SC_LOGIC_
const sc_logic SC_LOGIC_0(Log_0);
const sc_logic SC_LOGIC_1(Log_1);
const sc_logic SC_LOGIC_Z(Log_Z);
const sc_logic SC_LOGIC_X(Log_X);

13.3.3 SC_MAX_NUM_DELTA_CYCLES
const int SC_MAX_NUM_DELTA_CYCLES; // value = 10000

Sets maximum number of delta-cycles per time step before issuing an error.

13.3.4 SC_ZERO_TIME
const sc_time SC_ZERO_TIME ; // value = 0

13.3.5 SYSTEMC_DEBUG
Preprocessor macro, not defined by default. If defined when building the
SystemC library, it will activate more internal checks and diagnostic
messages.

13.3.6 SYSTEMC_VERSION
Preprocessor macro specifying the version of the SystemC library. For
version 2.0.1, the value is 20020405

 Copyright 2003 Open SystemC Initiative. All rights reserved 421

SystemC 2.0.1 Language Reference Manual

 Copyright 2003 Open SystemC Initiative. All rights reserved 422

14 Deprecated items

The following list of items in the reference implementation are deprecated and
are not included in this document:

• sensitive_pos()
• sensitive_neg()
• sensitive_pos
• sensitive_neg
• sc_create_isdb_file()
• sc_close_isdb_file()
• sc_cycle()
• sc_initialize()
• notify_delayed()
• end_module()

The following list of items in the reference implementation are under
consideration to be deprecated and are not included in this document:

• SC_CTHREAD
• Watching
• Local watching
• wait_until()
• delayed() and associated forms

	Introduction
	Intent and scope
	Overview of SystemC
	Using the SystemC library

	Execution Semantics
	main() & sc_main()
	Elaboration
	Initialization
	Simulation semantics
	Scheduler Steps

	Simulation functions
	Starting the simulation
	Stopping the simulation
	Obtaining Current Simulation time

	Time
	sc_time
	Time Resolution
	Default Time Unit

	Events
	Event Occurrence
	Event Notification
	Multiple event notifications
	Canceling event notifications

	sc_main() Function
	Module instantiation
	Port binding
	Named Port Binding
	Positional Port Binding

	Simulation function usage
	Function Return

	Data types
	Operators
	Unified String Representation
	Fixed-Precision Integer Types
	Arbitrary Precision Integer Types
	Arbitrary Width Bit Vectors
	Logic Type
	Arbitrary Width Logic Vectors
	Fixed-point Types
	Fixed-Point Format
	Fixed-Point Type Casting
	Overflow Modes
	Quantization Modes

	Fixed-Point Data Types
	Limited Precision Fixed-Point Types

	Fixed-Point Value Type
	Parameter Types
	Parameter Type sc_fxtype_param
	Parameter Type sc_fxcast_switch

	Contexts (informative)
	Fixed-Point Context Types
	Built-in Default Values
	Conversion to/from Character String
	Conversions to Character String
	Shortcut Methods
	Conversion from Character String
	Conversion to/from bit vector Character String

	Fixed-Point Array Declaration
	Observation
	Finite Word length Effects
	Overflow Modes
	Overflow for Signed Fixed-Point Numbers
	Overflow for Unsigned Fixed-Point Numbers

	SC_SAT
	SC_SAT_ZERO
	SC_SAT_SYM
	SC_WRAP
	SC_WRAP_SM
	Quantization Modes
	Quantization for Signed Fixed-Point Numbers
	Quantization for Unsigned Fixed-Point Numbers
	SC_RND
	SC_RND_ZERO
	SC_RND_MIN_INF
	SC_RND_INF
	SC_RND_CONV
	SC_TRN
	SC_TRN_ZERO

	User-defined types

	Modules
	Module structure
	SC_MODULE
	Module Constructors
	SC_CTOR

	SC_HAS_PROCESS
	Module instantiation
	Module Instantiation Not Using Pointers
	Declaration
	Initialization

	Module Instantiation Using Pointers
	Declaration
	Allocation and Initialization

	Port Binding
	Named Port Binding
	Positional Port Binding

	Interfaces, Ports & Channels
	Interfaces
	Channels
	Primitive Channels
	Hierarchical Channels

	Ports
	Specialized ports

	Processes
	Member Function Declaration
	Process Declaration and Registration
	Process Static Sensitivity
	Functional Notation Syntax
	Streaming Style Notation Syntax
	Multiple Processes in a Module

	Method Process
	Method Process Dynamic Sensitivity
	Trigger on Static Sensitivity List
	Trigger On A Single Event
	Trigger After A Specific Amount Of Time
	Trigger On One Event In A List Of Events
	Trigger On All Events In A List Of Events
	Trigger On An Event In A List Of Events With Timeout
	Trigger On All Events In A List Of Events With Timeout

	Thread Process
	Thread Process Dynamic Sensitivity
	Resume On Static Sensitivity List
	Resume On A Single Event
	Resume After A Specific Amount Of Time
	Resume On An Event In A List Of Events
	Resume On All Events In A List Of Events
	Resume On An Event In A List Of Events With Timeout
	Resume On All Events In A List Of Events With Timeout

	Utilities
	Mathematical functions
	Utility functions
	Debugging support
	Tracing

	Class reference
	sc_attr_base
	sc_attribute
	sc_attr_cltn
	sc_bigint
	sc_biguint
	sc_bit
	sc_buffer
	sc_bv
	sc_bv_base
	sc_clock
	sc_event
	sc_event_finder_t
	sc_fifo
	sc_fifo_in
	sc_fifo_in_if
	sc_fifo_out
	sc_fifo_out_if
	sc_fix
	sc_fix_fast
	sc_fixed
	sc_fixed_fast
	sc_fxcast_context
	sc_fxcast_switch
	sc_fxnum_fast_observer
	sc_fxnum_observer
	sc_fxtype_context
	sc_fxtype_params
	sc_fxval
	sc_fxval_fast
	sc_fxval_fast_observer
	sc_fxval_observer
	sc_in
	sc_in_resolved
	sc_in_rv
	sc_inout
	sc_inout_resolved
	sc_inout_rv
	sc_int
	sc_int_base
	sc_interface
	sc_length_context
	sc_length_param
	sc_logic
	sc_lv
	sc_lv_base
	sc_module
	sc_module_name
	sc_mutex
	sc_mutex_if
	sc_object
	sc_out
	sc_out_resolved
	sc_out_rv
	sc_port
	sc_prim_channel
	sc_pvector
	sc_semaphore
	sc_semaphore_if
	sc_sensitive
	sc_signal
	sc_signal_in_if
	sc_signal_inout_if
	sc_signal_resolved
	sc_signal_rv
	sc_signed
	sc_simcontext
	sc_string
	sc_time
	sc_ufix
	sc_ufix_fast
	sc_ufixed
	sc_ufixed_fast
	sc_uint
	sc_uint_base
	sc_unsigned

	Global Function Reference
	notify
	sc_abs
	sc_close_vcd_trace_file
	sc_close_wif_trace_file
	sc_copyright
	sc_create_vcd_trace_file
	sc_create_wif_trace_file
	sc_gen_unique_name
	sc_get_curr_simcontext
	sc_get_default_time_unit
	sc_get_time_resolution
	sc_max
	sc_min
	sc_set_default_time_unit
	sc_set_time_resolution
	sc_simulation_time
	sc_start
	sc_stop
	sc_stop_here
	sc_time_stamp
	sc_trace
	sc_version

	Global Enumerations, Typedefs and Constants
	Enumerations
	sc_time_unit
	sc_logic_value_t

	Typedefs
	sc_behavior
	sc_channel
	clk ports
	Data Types

	Constants
	SC_DEFAULT_STACK_SIZE
	SC_LOGIC_
	SC_MAX_NUM_DELTA_CYCLES
	SC_ZERO_TIME
	SYSTEMC_DEBUG
	SYSTEMC_VERSION

	Deprecated items

