
Formal Verification of ARP (Address Resolution
Protocol) Through SMT-Based Model Checking

- A Case Study -

Danilo Bruschi1, Andrea Di Pasquale1, Silvio Ghilardi2, Andrea Lanzi1,
and Elena Pagani1(B)

1 Università degli Studi di Milano, via Comelico 39, 20135 Milano, Italy
{danilo.bruschi,andrea.lanzi,elena.pagani}@unimi.it, spikey.it@gmail.com

2 Università degli Studi di Milano, via Saldini 50, 20133 Milano, Italy
silvio.ghilardi@unimi.it

Abstract. Internet protocols are intrinsically complex to understand
and validate, due both to the potentially unbounded number of entities
involved, and to the complexity of interactions amongst them. Yet, their
safety is indispensable to guarantee the proper behavior of a number of
critical applications.

In this work, we apply formal methods to verify the safety of the Address
Resolution Protocol (ARP), a standard protocol of the TCP/IP stack
i.e. the communication protocols used by any Internet Host, and we are
able to formally prove that the ARP protocol, as defined by the standard
Request for Comments, exhibits various vulnerabilities which have been
exploited since many years and still are the main ingredient of many attack
vectors. As a complementary result we also show the feasibility of formal
verification methods when applied to real network protocols.

Keywords: ARP · Man-in-the-Middle attack · Denial-of-Service
attack · Formal verification · Model evaluation · Satisfiability Modulo
Theories

1 Introduction

Core of this work is the Address Resolution Protocol (ARP), a standard protocol
of the TCP/IP stack i.e. the set of communication protocols used by any Internet
Host. More precisely, we apply a formal method to verify the safety property of
ARP, where by safety we mean that no “bad things” happen during any protocol
execution [18]. As far as we know, this is the first time that a formal method
is successfully applied to the analysis of ARP. The work has been conducted by
using the Model Checker Modulo Theories (MCMT) tool [15], which is a fully
declarative and deductive symbolic model checker for safety properties of infinite
state systems.

The ARP protocol plays a very critical role in the transmission phase of
Internet messages as it converts the network (IP) address of a host into its
c© Springer International Publishing AG 2017
N. Polikarpova and S. Schneider (Eds.): IFM 2017, LNCS 10510, pp. 391–406, 2017.
DOI: 10.1007/978-3-319-66845-1 26



392 D. Bruschi et al.

corresponding hardware (MAC or Ethernet) address, which is the address we
need to specify for communicating directly with a host. We briefly recall that IP
addresses identify hosts in Internet and they are used “only” to route messages
across the Internet. By contrast, MAC addresses identify hosts inside a Local
Area Network (LAN) where they are physically connected. When a message has
to be delivered to a host h, both its network and hardware addresses have to
be known. Contrarily to network addresses which are usually publicly available
(in particular in their symbolic form www.yyy.zzz), hardware addresses are not.
Thus, ARP has been introduced for translating network addresses into hard-
ware addresses. The protocol has been initially defined by Request for Comment
(RFC) 826 [19], and subsequently redefined by RFC 3927 [11] and RFC 5227
[10], which have tried to settle some problems arising in the original formulation.

As many protocols of the TCP/IP stack, during the last twenty years ARP
has been subverted in order to perform various forms of computer attacks
[4,6,20]. The most prominent attack performed via ARP is the Man-in-the-
Middle attack (MitM), in which an attacker can impersonate a victim’s host
and intercept/modify all the traffic directed to the victim’s host. ARP hosts can
also be victim of a Denial-of-Service attack (DoS). In this case, a malicious host
m can continuously induce a victim host v to dismiss its current network address
and to select a new one. While v does not own a stable address, it is not able to
communicate.

In this paper, by using Satisfiability Modulo Theories (SMT), we will formally
prove that the ARP protocol – as specified by the RFC documents – lacks safety
properties, more precisely there exist protocol executions in which a MitM attack
can be successfully perpetrated against some host. The same turns out to be true
for a DoS attack.

2 Preliminaries on Formal Verification

The considered family of protocols belongs to the infinite-state reactive para-
meterized systems: although the behavior of a single host can be described by
a finite state automaton, the number of components which constitute a system
(i.e. a LAN), and whose behavior is determined by messages received by other
system’s components, is potentially infinite.

Various techniques have been introduced in the literature to handle safety
verification for such parameterized systems (see [1–3,5,8,9], to name but a few
entries). We chose the declarative approach of the array-based systems [12,14,16],
because it offers a great flexibility and relies (at deductive engine level) on the
mature technology offered by state-of-the-art SMT-solvers, which is gaining rele-
vance. In array-based systems (see [13,15] for tool implementations), the state is
represented by both global variables, and by array variables such that each array
corresponds to a component of the state of the hosts, and the k-th element of an
array a contains the value of component a for the host k. This representation is
very natural, and eases the modeling process. A system is specified via a pair of
formulæ ι(p) and τ(p, p′), and a safety problem via a further formula υ(p), where



Formal Verification of ARP Protocols 393

p is the set of parameters and array-ids, ι(p) is the state of possible initial states
of the system, τ(p, p′) :=

∨n
i=1 τi(p, p′) symbolizes the possible state transitions

of the system – according to the considered algorithm – modifying p into p′, and
υ(p) is the set Bad of states verifying the unsafe condition. Each transition τi ∈ τ
is composed by a guard and a set of updates: if the current values of parameters
and arrays satisfy the guard, then the transition may fire and the updates are
applied. More guards may be verified at the same instant; in this case, one of
the corresponding transitions fires nondeterministically. A safety model checking
problem is the problem of checking whether the formula

(�)n ι(p
0
) ∧ τ(p

0
, p

1
) ∧ · · · ∧ τ(p

n
, p

n+1
) ∧ υ(p

n+1
)

is satisfiable for some n, that is, whether a state in Bad can be reached from
an initial state by applying the possible transitions. In order to verify whether
a protocol is safe with respect to Bad, the tool we use in this work adopts a
backward reachability policy. The search starts from Bad and, using the state
transitions, for any element of Bad computes the pre-image, i.e. the set of states
which can lead to Bad. For any set of obtained pre-images the same procedure
is repeatedly applied, until one of the following two events occurs: either (i) a
fixed point is reached (not intersecting initial states), meaning that the pre-image
computation cannot reach other states different from the current ones, or (ii) an
initial state is reached. In the former case, no formulæ of type (�)n describing
the reachability of Bad can be satisfied and the system is safe with respect to
the property described by Bad. In the latter case, some formula of type (�)n is
satisfiable and the system is unsafe.

We used the Model Checker Modulo Theories (MCMT) tool [15]. MCMT is
a fully declarative and deductive symbolic model checker for safety properties
of infinite state systems whose state variables include arrays. Sets of states and
transitions of a system are described by quantified first-order formulae of special
kinds. The tool exploits decision procedures (as implemented in state of the art
SMT solvers) to cope with satisfiability problems involving various datatypes like
arrays, integers, Booleans, etc. Checks for safety and fix-points are performed
by solving SMT problems (due to the special shape of the formulæ used to
describe sets of states and transitions, such checks can be effectively discharged).
Besides standard SMT techniques, efficient heuristics for quantifier instantiation,
specifically tailored to model checking, are the heart of the system. Termination
of the backward search is guaranteed only under specific assumptions, but it
commonly arises in practice (for a full account of the underlying theoretical
framework, the reader is referred to [16]). MCMT guarantees the safety of a
protocol for any number N of system components.

The process of converting an algorithm into a MCMT model is performed
manually: it requires deep comprehension of the algorithm, which must be broken
down into its fundamental mechanisms and all possible cases, that are then
translated into model transitions.



394 D. Bruschi et al.

3 Address Resolution Protocol (ARP)

The main task of ARP is to enable a host h of a local network to discover,
given the (32-bits) IP address of a host k (usually a well known data), the
corresponding (48-bits) MAC address associated to k.1 For efficiency reasons
any host h maintains in a private data structure, known as ARP cache, all
mappings 〈MAC, IP〉 it has so far discovered. Whenever h has to get in touch
with host k, it will first look for k’s MAC address in its own ARP cache. In case
of failure it will initiate the ARP protocol, and it will proceed in the following
way: h sends to all hosts in the LAN an ARP request message, asking for the
MAC address of the owner of the address IPk. Once k receives such a message
it sends an ARP reply message, unicast to h, providing its own MAC address
MACk. Once h receives the ARP reply it updates its own cache with the entry
〈MACk, IPk〉. Similarly, k updates its own cache with the mapping 〈MACh, IPh〉
provided by the ARP request from h. The same action is performed by other
hosts already knowing h, so as to maintain their information updated. These
operations are more precisely described in the following Algorithm 1. RFC 826
requires that ARP messages have a predefined format. The Ethernet header
includes, among others, both the source and destination MAC address, eth src
and eth dest respectively. The ARP message payload includes among others:
the opcode identifying whether the message is a Request or a Reply, the source
hardware (sha) and network (spa) addresses, and the target hardware (tha)
and network (tpa) addresses, where target is the host destination of the ARP
message.

3.1 ARP Formal Verification

In our verification, we assume that either (i) all hosts are honest, or (ii) one
malicious host pm exists, trying to perform a MitM attack against a victim pv.
Case (ii) is able to capture all the behaviors possible in real LANs. Indeed, real
attackers focus on a specific victim, usually chosen after a preliminary analysis
of the target LAN aiming at individuating the most vulnerable device in it. On
the other hand, in case safety against MitM should be proved, any number of
both attackers and victims should be checked. By contrast, we want to verify
unsafety; hence, finding counterexamples with just one attacker is sufficient.

Honest hosts send Requests when they need to know the identity of a message
destination; they manage ARP messages according to Algorithm 1. pm may send
either Requests or Replies at any time, containing fake information; it may also
send unicast Requests to a specific host, not processed by other hosts. According
to RFC 826 [19], we do not model cache entry expiration: at any time a host
may generate a request even if the target information is already in its cache, as if
its cache has expired in the past. We model the processing of one ARP message
at a time. We take both the MAC address and the IP address of a host px to be

1 We briefly recall that the MAC address of any device is hardwired into the device
by its manufacturer, and is not publicly available.



Formal Verification of ARP Protocols 395

Algorithm 1. Classical ARP (RFC 826 [19])
1: RequestGeneration()
2: when MAC address for some target IP needed do
3: new ARP pkt: ARP pkt.opcode ← Request; ARP pkt.spa ← myIP;
4: ARP pkt.sha ← myMAC; ARP pkt.tpa ← targetIP; ARP pkt.tha ← ⊥;
5: broadcast ARP pkt;
6: end do
7:
8: PacketReception()
9: when ARP pkt received do

10: Merge flag ← false;
11: if ARP pkt.spa �= 0.0.0.0 ∧ ARP pkt.spa ε ARP cache then
12: corresponding ARP cache.sha ← ARP pkt.sha;
13: Merge flag ← true;
14: end if
15: if ARP pkt.tpa = myIP then
16: if ARP pkt.spa �= 0.0.0.0 ∧ not Merge flag then
17: ARP cache ← ARP cache ∪ 〈 ARP pkt.spa, ARP pkt.sha 〉;
18: end if
19: if ARP pkt.opcode = Request then
20: new ARP pkt’: ARP pkt’.opcode ← Reply; ARP pkt’.spa ← myIP; ARP pkt’.sha ←

myMAC;
21: ARP pkt’.tpa ← ARP pkt.spa; ARP pkt’.tha ← ARP pkt.sha;
22: send ARP pkt to ARP pkt.tha;
23: end if
24: end if

25: end do

equal to x. For the sake of space, in this section we just discuss the modeling of
the unsafe case; the safe model is equal to the unsafe one without the transitions
describing the pm’s behavior.2 In the following, let N be the number of hosts.

In our models, the following global variables are used: ϕ indicates the cur-
rent step of the computation, I counts the number of processes having processed
the message in the current step; sh, sp and tp correspond to the sha, spa and
tpa message fields respectively. The state of each process px is represented by
the following array variables: sm[x] indicates whether px must send a message;
cu[x] indicates whether px has processed the received message and possibly has
updated its own cache. Both sm[x] and cu[x] are boolean variables. A MitM
attack succeeds when in the ARP cache of some host h �= pv the entry corre-
sponding to pv does not contain pv’s MAC address; such a situation is modeled
by introducing the variables CM [x] and CP [x] which contain respectively the
MAC address and IP address of pv as contained in px ARP cache. For the sake
of conciseness, in the transitions below we do not display the variables whose
value stays unchanged.

The initial state satisfies:

ι1 := ϕ = 0 ∧ I = 0 ∧ sh = 0 ∧ sp = 0 ∧ tp = 0 ∧
(∀x. sm[x] = 0 ∧ cu[x] = 0 ∧ CM [x] = 0 ∧ CP [x] = 0) (1)

that is, no message is around, no process has executed the current step, all caches
do not contain any information about pv, and no process has a message to send.
2 Both source codes and results of all the models described in this work are available

at http://homes.di.unimi.it/∼pagae/ARPmodel/index.html.

http://homes.di.unimi.it/~pagae/ARPmodel/index.html


396 D. Bruschi et al.

The unsafe state capturing MitM attacks is described by the following formula:

υM := ∃z. CM [z] = m ∧ CP [z] = v (2)

that is, a process z exists whose cache entry for pv was poisoned with the value
of pm.

The first three transitions model the RequestGeneration() procedure in
Algorithm 1: we non-deterministically choose both the sender and the target of
the new message. This is written as:

τ1 := ϕ = 0 ∧ ∃x, y. x �= y ∧ ϕ′ = 1 ∧ I ′ = 1 ∧ sm′[x] = 1 ∧ cu′[x] = 1 ∧ tp′ = y

The sender parameters in the message are set in the next two transitions; in the
former the host behaves honestly, in the latter the sender is pm and generates a
poisoned Request:

τ2 := ϕ = 1 ∧ ∃x. sm[x] = 1 ∧ ϕ′ = 2 ∧ sp′ = x ∧ sh′ = x

τ3 := ϕ = 1 ∧ ∃x. sm[x] = 1 ∧ x = m ∧ ϕ′ = 2 ∧ sp′ = v ∧ sh′ = m

If the source IP is different from that of pv, a transition allows all processes to
fire – one at a time – without changes to the cache entry concerning the victim:

τ4 := ϕ = 2 ∧ sp �= v ∧ I < N ∧ ∃x. cu[x] = 0 ∧ ϕ′ = 2 ∧ I ′ = I + 1 ∧ cu′[x] = 1

The same actions are performed (τ6) when sp = v but the host is not the target
(x �= tp) and it has nothing in its cache about pv (CP [x] = 0). Otherwise, two
cases must be considered. First, the receiving process is not the target but it has
information about pv in its cache, so it updates the cache entry:

τ5 := ϕ = 2 ∧ sp = v ∧ I < N ∧ ∃x. cu[x] = 0 ∧ CP [x] > 0 ∧ x �= tp ∧
ϕ′ = 2 ∧ I ′ = I + 1 ∧ cu′[x] = 1 ∧ CP ′[x] = sp ∧ CM ′[x] = sh

Transitions τ4-τ6 model lines 10–14 of Algorithm1. By contrast, if the host is
the target (lines 15–18 of Algorithm 1), it must also generate a Reply, which is
recorded by appropriately setting its sm[x]:

τ7 := ϕ = 2 ∧ sp = v ∧ I < N ∧ ∃x. cu[x] = 0 ∧ x = tp ∧ ϕ′ = 2 ∧
I ′ = I + 1 ∧ sm′[x] = 1 ∧ cu′[x] = 1 ∧ CP ′[x] = sp ∧ CM ′[x] = sh

When all hosts processed the Request, the Reply is sent (lines 19–23 of
Algorithm 1). Two transitions describe this event: either the target generates
a honest Reply (τ8) or, if the target is pm, it may generate a poisoned Reply.
We report here just the latter; the former can be easily derived:

τ9 := ϕ = 2 ∧ I ≥ N ∧ ∃x. cu[x] = 1 ∧ sm[x] = 1 ∧ x = m ∧
ϕ′ = 3 ∧ I ′ = 0 ∧ tp′ = sp ∧ sp′ = v ∧ sh′ = m



Formal Verification of ARP Protocols 397

Table 1. Results for the formal verification of ARP (RFC 826)

MitM

Outcome Time (s) Max. depth # nodes SMT calls # literals

No malicious Safe 0.222 2 3 249 7

Broadcast pm Unsafe 0.211 5 12 395 10

Unicast pm Unsafe 0.150 5 12 457 10

According to [19], Replies are sent unicast (line 22 of Algorithm1); hence, the
message is processed just by the target (lines 15–18 of Algorithm 1), and after-
wards a re-initialization – leaving caches unchanged – is performed before repeat-
ing all over again:

τ10 := ϕ = 3 ∧ ∃x. x = tp ∧ ϕ′ = 4 ∧ CP ′[x] = sp ∧ CM ′[x] = sh

τ11 := ϕ = 4 ∧ ϕ′ = 0 ∧ I ′ = 0 ∧ tp′ = 0 ∧ sp′ = 0 ∧ sh′ = 0 ∧
(∀x. sm′[x] = 0 ∧ cu′[x] = 0)

Verification results. Table 1 shows the results obtained by running the described
models on an Intel Core i7 running Linux Ubuntu 14.04 64 bits. We report the
running time, the depth of the status tree, the number of tree nodes explored,
the number of calls to the SMT solver, and the maximum number of literals in
the constraint describing a node.

4 Link-Local Addresses

RFC 3927 [11] adds new functionalities to ARP for enabling the protocol to
work in local networks where hosts may automatically configure their own
network address interface, without human intervention. Address configuration
is performed by randomly choosing an IP address in the range 169.254.1.0–
169.254.254.255 and then verifying that the chosen address is not already in use
by some other host.

Algorithm 2 describes RFC 3927. All messages – both Requests and Replies –
are broadcast. A host h wishing to adopt a certain IP address ip probes it by
broadcasting a Request with spa = 0.0.0.0 – which is an invalid address so as
to avoid polluting caches if ip is already in use by another host – and tpa = ip.
If h receives an ARP message with either spa = ip, or null spa and tpa = ip, it
deduces that another host is using or probing ip and selects a different address.
Otherwise, h announces that it will use ip by broadcasting a Request with both
spa and tpa equal to ip, so as to overwrite previous ARP cache entries related
to ip. From now on, for any received packet, h compares ip against the spa
contained in the packet; if the two are equals, the address conflict detection
(ACD) procedure is executed.3 According to ACD, a host may try to defend its
3 It is worth to notice that the lack of this check allowed the MitM attack in RFC 826

against the victim itself.



398 D. Bruschi et al.

Algorithm 2. Dynamic configuration of Link-Local addresses (RFC 3927 [11])
1: Select()
2: when network interface becomes active do
3: myIP ← rand(seed(MAC, previous IP), 169.254.1.0, 169.254.254.255); Probing();
4: end do
5:
6: Probing()
7: new ARP pkt: ARP pkt.opcode ← Request; ARP pkt.spa ← 0.0.0.0;
8: ARP pkt.sha ← myMAC; ARP pkt.tpa ← myIP; ARP pkt.tha ← 0;
9: timer ← rand(0, PROBE WAIT); count ← 0;

10: repeat
11: when timeout do
12: broadcast ARP pkt; count++;
13: if count < PROBE NUM then
14: timer ← rand(PROBE MIN, PROBE MAX);
15: end if
16: end do
17: until count < PROBE NUM;
18: timer ← ANNOUNCE WAIT;
19: when (ARP pkt received s.t. (ARP pkt.spa = myIP) ∨ (ARP pkt.opcode = Request ∧

ARP pkt.spa = 0.0.0.0 ∧ ARP pkt.tpa = myIP ∧ ARP pkt.sha �= myMAC) do
20: give myIP up; LimitConflicts(); //failure!
21: end do
22: when timeout do
23: conflict num ← 0; Announce(ANNOUNCE NUM); //success!
24: end do
25:
26: Announce(limit)
27: count ← 0;
28: new ARP pkt: ARP pkt.opcode ← Request; ARP pkt.spa ← myIP;
29: ARP pkt.sha ← myMAC; ARP pkt.tpa ← myIP; ARP pkt.tha ← 0;
30: repeat
31: broadcast ARP pkt; count++; wait(ANNOUNCE INTERVAL);
32: until count < limit;
33: ConflictDetection();
34:
35: ConflictDetection()
36: while true do
37: when ARP pkt received do
38: if ARP pkt.spa = myIP ∧ ARP pkt.sha �= myMAC then
39: ACD(); //conflict!
40: else
41: ARP.PacketReception(ARP pkt); //processing according to RFC 826
42: end if
43: end do
44: end while
45:
46: LimitConflicts()
47: conflict num ++;
48: if conflict num ≥ MAX CONFLICTS then
49: timer ← RATE LIMIT INTERVAL;
50: else
51: timer ← 0;
52: end if
53: when timeout do
54: Select();
55: end do
56:
57: ACD()
58: if want to defend ∧ current time - start defend > DEFEND INTERVAL then
59: start defend ← current time; Announce(1);
60: else
61: give myIP up; start defend ← 0; LimitConflicts();

62: end if



Formal Verification of ARP Protocols 399

address at most once by sending a new Announce. If another conflict is detected,
the host dismisses its own network address and selects a new one. In case of no
conflict, the original ARP (Algorithm1) is executed.

4.1 Verification of ARP as in RFC 3927

In order to analyze this protocol, three models have been developed:

M1: Probe and Announcement messages have been added to the ARP model,
but not the address conflict detection mechanism

M2: the ACD mechanism has been modeled, with address give up in case of a
detected conflict

M3: the ACD mechanism has been modeled, by introducing the defense proce-
dure above mentioned in case a conflict is detected. When a second conflict
is detected, the host – who already defended – dismisses the used address.

For all the three models the safety with respect to MitM attacks has been ana-
lyzed; for M2 and M3 we also investigated the safety property with respect to
DoS attacks. No cache expiration is considered.

For the sake of space, we describe here just the more complex model, i.e. M3,
and we focus on the new features introduced with respect to the ARP model
as described in Sect. 3.1. This new model includes an additional global variable
GA whose value indicates the type of message considered: Probe (1), Announce
(2), Request (3), or unsolicited Reply (4) – not corresponding to any Request
– from pm. Additional local variables are: st[x] which indicates the state of a
host, that is, if it has to send the Probe (0), or the Announce (1), or its IP
address is configured and it may send Requests (2). pm may send any message
independently of its own state. The variable cd[x] indicates whether this is the
first time that the host has detected a conflict and must thus defend. The variable
gu[x] indicates how many times a host gives up its current address. The new
initial state is defined as:

ι2 := ι1 ∧ GA = 0 ∧ (∀x. gu[x] = 0 ∧ cd[x] = 0 ∧ st[x] ≥ 0 ∧ st[x] ≤ 2)

where ι1 is defined in Eq. (1). This formula provides the maximum generality
as it does not force any initial state to the network hosts. The unsafe state for
MitM, υM , is defined as in Eq. (2).

DoS attacks can be modeled by an host that dismisses its address an indef-
inite number of times. Yet, this is actually a liveness property that cannot be
verified with the adopted technique. Hence, we shall re-write it as a weaker safety
property, whose negation is:

υD := ∃z. gu[z] ≥ threshold (3)

for some finite value of threshold. This is weaker than a DoS attack, as it says
that a host dismisses its address a finite number of times. We discuss this aspect
in more detail at the end of this section, when analyzing the verification results.



400 D. Bruschi et al.

A description of the model now follows. In the first six transitions, we describe
the event to be reproduced, amongst either generation of Probe, Announce or
Request issued by a host,4 or generation of an Announce, Request or unsolicited
Reply from pm. For the sake of space, we report here just the more complex
case, that is, the generation of a Request:

τ3 := ϕ = 0 ∧ ∃x. st[x] = 2 ∧ ϕ′ = 1 ∧ I ′ = 1 ∧ GA′ = 3 ∧ sm′[x] = 1 ∧
cu′[x] = 1 ∧ sh′ = x ∧ sp′ = x

τ7 := ϕ = 1 ∧ ∃x, y. x �= y ∧ sm[x] = 1 ∧ ϕ′ = 2 ∧ I ′ = 1 ∧ sm′[x] = 0 ∧
cu′[x] = 1 ∧ tp′ = y ∧ sp′ = x ∧ sh′ = x

The former transition selects the source while the latter selects the target. All
other cases are modeled in one step, as just the source identifier must be indicated
in the message, and lead to transitions guarded by ϕ = 2. Similarly for pm’s
messages, where always sp′ = v ∧ sh′ = m.

Subsequently, there are eight transitions modeling the processing of the mes-
sage generated by one of the first six transitions. The following cases are mod-
eled as in the case of ARP (Sect. 3.1): (τ8) Request processing when sp �= v; (τ9)
sp = v and the host is not the target but can update the cache; (τ10) sp = v
and the host is not the target and cannot update the cache; (τ11) sp = v and
the host is the target (but not the victim) that generates a Reply. Other four
cases involve the victim in case the message is poisoned: pv is the target of the
message and detects the conflict; if this is the first conflict then it defends its
address (τ13), otherwise it discards the address (τ12). Or, pv detects the conflict
but it is not the target. We analyze in more detail these latter cases, as they are
more complex since two messages have to be modeled: both the target Reply
and the victim defense.

The two messages cause different cache updates: if the target is different from
pv, its reply does not change the cache entries concerning the victim. Hence, they
can be processed in whatever order, and we decided to model the processing of
the Reply first. In case pv renounces, the following transition applies:

τ15 := ϕ = 2 ∧ I < N ∧ sp = v ∧ ∃x. cu[x] = 0 ∧ x �= tp ∧ x = v ∧ cd[x] > 0
∧I ′ = I + 1 ∧ sm′[x] = 3 ∧ cu′[x] = 1 ∧ gu′[x] = gu[x] + 1 ∧ cd′[x] = 0

The value of sm[x] is not changed afterwards and allows to remember – once
all hosts have processed the Reply – that the victim has changed its address;
cd′[x] is reset because the victim is dismissing its current address, and it has
not observed any conflict on the new address it is going to adopt. By contrast,
in case pv defends (cd[x] = 0), the transition τ14 is applied; such a transition is
conceptually equal to τ15 apart for the assignments sm′[x] = 5 and cd′[x] = 1.

As for ARP, once all hosts processed the Request, the Reply is sent in broad-
cast, and consequently processed by all hosts. Four transitions (τ23-τ26) replicate
for the Reply the same cases as for the Request modeled by transitions τ8-τ11
4 Also pm, who may nondeterministically behave honestly.



Formal Verification of ARP Protocols 401

above described. Transitions τ27-τ28 describe the cases in which pv observes a
poisoned Reply – generated by the malicious – and it either renounces or defends.

In the case pv is the target of the Request and defends, no Reply is generated
and the system goes to the defense modeling (fired by sm′[x] = 4). The defense
is modeled by the following transitions:

τ18 := ϕ = 2 ∧ I ≥ N ∧ ∃x. cu[x] = 1 ∧ sm[x] = 4 ∧ ϕ′ = 4 ∧ I ′ = 1 ∧ sm′[x] = 0
∧cu′[x] = 1 ∧ tp′ = v ∧ sp′ = v ∧ sh′ = v ∧ (∀y.y �= x ∧ cu′[y] = 0)

τ19 := ϕ = 4 ∧ I < N ∧ ∃x. cu[x] = 0 ∧ CP [x] > 0 ∧ I ′ = I + 1 ∧
cu′[x] = 1 ∧ CM ′[x] = sh ∧ CP ′[x] = sp

The former describes the generation of the Announce after all hosts processed
the Request. The latter describes the processing of the Announce on behalf of
the receiving hosts having information for pv. A transition τ20 describes the case
of a host receiving an Announce but not having a cache entry for pv, and thus
skipping any processing. When all hosts processed the Announce, the system
can restart:

τ31 := ϕ = 4 ∧ I ≥ N ∧ ∃x. cu[x] = 1 ∧ (∀y.sm[y] = 0) ∧ ϕ′ = 0 ∧ I ′ = 0 ∧
GA′ = 0 ∧ sm′[x] = 0 ∧ cu′[x] = 0 ∧ tp′ = 0 ∧ sp′ = 0 ∧ sh′ = 0

The untouched variables are the cache, the state, the record of giveups and
defenses occurred so far. A similar re-initialization is performed every time noth-
ing harmful occurred. Transitions similar to τ18-τ20 above apply when the target
is different from pv and all hosts already processed the Reply, and are fired by
guards containing sm[x] = 5.

By contrast, if pv renounces, this is modeled by a transition like this (triggered
after all hosts processed a possible Reply):

τ29 := ϕ = 3 ∧ I ≥ N ∧ ∃x. cu[x] = 1 ∧ sm[x] = 3 ∧ ϕ′ = 0 ∧ I ′ = 0 ∧
GA′ = 0 ∧ sm′[x] = 0 ∧ cu′[x] = 0 ∧ sp′ = 0 ∧ sh′ = 0 ∧ tp′ = 0 ∧
(∀y. CM ′[y] = 0 ∧ CP ′[y] = 0)

which records that no host has information concerning the new address pv is
going to adopt.

Verification results. The first three lines in Table 2 show the outcome (Safe or
Unsafe) obtained by running the described models for RFC 3927, and the running
time; for DoS attack, a threshold = 5 was used. If no malicious host exists, the
protocol is safe with respect to the MitM attack. By contrast, one malicious host
sending either broadcast or unicast messages is able to pollute other processes
caches. The three models reveal the impact of the different mechanisms adopted
for ACD.

In M1, no ACD mechanism is implemented, that is, hosts do not check the
spa field in incoming ARP messages. Hosts never dismiss their address and the



402 D. Bruschi et al.

Table 2. Results of the verification of RFC 3927 (M1, M2, M3) and RFC 5227 (M4)

MitM DoS

no pm bcast pm ucast pm no pm bcast pm ucast pm

M1 [S] 0.392 s [U] 0.260 s [U] 0.379 s – – –

M2 [S] 0.268 s [U] 0.439 s [U] 0.311 s [S] 0.330 s [U] 44.85 s [U] 104.93 s

M3 [S] 0.380 s [U] 0.417 s [U] 0.409 s [S] 0.419 s [U] 843.2 s [U] 1716.8 s

M4 [S] 0.306 s [U] 0.401 s [U] 0.415 s – – –

DoS attack cannot occur. By contrast, MitM may happen, and a counterexample
provided by the prover – with pm sending broadcast messages – consists in the
following sequence of events: pm generates an Announce with sp = v, sh = m
and tp = v. Any host h receiving it (the victim included) updates its cache
with CM [h] ← m and CP [h] ← v. When pm sends unicast messages, the MitM
attack is achieved with pm sending a poisoned Request to a target that records
the fake information in its own cache.

In M2, the protocol is proved unsafe with respect to MitM, and the following
counterexample is supplied by the prover for pm sending broadcast messages: pm

generates a poisoned Request to a random target h �= pv, containing sp = v and
sh = m; the target records in its cache CM [h] ← m and CP [h] ← v. It is worth
notice that the models do not capture the temporal duration of the attack, that
is, the unsafe outcome of the model for MitM in M2 lasts for the time needed by
pv to configure a new IP address. Afterwards, entries still existing in some caches
and coupling the MAC of pm with the dismissed IP of pv are refreshed as soon
as pv sends its own first Announce with its new address, and starts using it. By
contrast, with ARP [19] the attack may last indefinitely. Similarly, if pm sends
unicast messages, the unsafe sequence of events is the same as for M1 above, the
victim is unaware of the problem and never raises a conflict detection event.

In M2, the verification of the possibility of a DoS attack has been conducted
with different values of threshold (see Eq. (3)). With threshold 20 and no con-
straints on the number of hosts, a sequence of 78 events is produced as counterex-
ample, which clearly shows loops (Fig. 1): pm sends an unsolicited (broadcast)
poisoned Reply to a random target; pv receives it and gives up. Afterwards, pv

takes another address but pm sends a poisoned Announce with tp = v, sp = v,
sh = m; pv (which owns the target IP address) detects the conflicts and gives
up again. The existence of loops shows that a sequence of events exists such that
the host may indefinitely dismiss its address, thus implying that the DoS attack
holds. With threshold = 20, running times were of 434.9 s. and 1171.6 s. for the
broadcast and unicast case respectively.

In M3, MitM may arise and the counterexample supplied by the prover,
when pm generates broadcast messages, is the following: pm generates a poi-
soned base Request to a random target h, with sh = m and sp = v; the target
receives such a Request and sets in its cache CM [h] ← m and CP [h] ← v. The
cache poisoning lasts until the victim defends by announcing its new IP address.



Formal Verification of ARP Protocols 403

Fig. 1. M2 - Event loop in the verification of DoS attack for RFC 3927.

The unsafe sequence of events for pm sending unicast messages is the same as
for M1 and M2 above, and the same considerations apply. The verification of the
DoS possibility is harder than before, due to the fact that a renounce may occur
just after a previous conflict detection which the host coped with by defending.
Hence, the sequences of events are longer and the prover has to explore a larger
tree of possible sequences of events with more nodes of higher depth. Yet, with
no constraints on the number of processes, we were able to achieve an unsafe
outcome for υD with threshold = 5; the prover supplied a sequence of events of
length 49 involving a loop (Fig. 2). As for M2, the loop implicitly shows that the
DoS attack may verify.

Fig. 2. M3 - Event loop in the verification of DoS attack for RFC 3927.

The highest computation complexity is reached by the M3 model verifying
DoS, with pm generating unicast messages: the maximum depth of the status
tree is 49, the number of explored tree nodes is 8180, and 1355491 calls to the
SMT solver are performed; the longest formula involves 26 literals. For the sake
of space, all the results are reported in our website for interested readers.

5 Extended ARP: Address Conflict Detection

In order to deal with misconfigurations, RFC 826 [19] was further updated by
RFC 5227 [10] which, with respect to RFC 3927, introduced a more aggres-
sive Address Conflict Detection (ACD) mechanism. For the sake of brevity, in
this section we just describe the differences with the latter, taking as reference
Algorithm 2. According to RFC 5227, in the Select() procedure an address is
assigned to a host in one out of three ways, namely: a static address is config-
ured by a network administrator, or a dynamic address is supplied by either a



404 D. Bruschi et al.

DHCP server or the Link-Local mechanism. Then, the Probing() procedure is
run every time an interface is configured or booted. In RFC 5227, in case of
conflict detection a host may (i) cease to use its IP address, or (ii) defend its
address once, or (iii) defend its address indefinitely. In cases (i)-(ii), the behavior
is exactly as in RFC 3927. Case (iii) is adopted e.g. when the host is a server
needing to maintain its well-known stable address, and is not included in RFC
3927. In this case, the Announce procedure is called with limit = 1, and then
the host continues using its IP address ignoring further conflicts. The ACD()
procedure is modified accordingly, while the other procedures are equal in the
two standards.

As a consequence of the above, cases (i)−(ii) are modeled by the M2 and
M3 described in Sect. 4.1, while case (iii) is modeled by an additional model M4
obtained from M3 by modifying the transitions where the victim dismisses its
IP address so that the victim just fires without performing further actions.

Verification results. The last line of Table 2 reports the results obtained by run-
ning M4. The DoS attack cannot occur as hosts never dismiss their IP addresses.
The sequence of events describing a MitM attack is the same whether pm sends
broadcast or unicast messages: pm sends a poisoned Request to a target that pol-
lutes its cache by recording the fake information. In the former case, the victim
detects the conflict the first time and sends an Announce. Afterwards, it ignores
the conflicts, and the malicious host may continue sending poisoned messages
while the victim does not take any action.

6 Conclusions

In this paper, the modeling and formal verification of the three standard proto-
cols for address resolution in Internet is described. The relevance of our work lies
in two main achievements: first, under a practical point of view, our experiments
formally show the weaknesses of currently adopted technologies with respect to
security aspects, thus providing formal foundation to well known phenomena dis-
covered and exploited by the underground community since many years. Second,
the work highlights the maturity of existing formal approaches and tools in ver-
ifying the safety and correctness of real distributed systems. These approaches
have been so far validated with several problems, included other network pro-
tocols (e.g. [7,17]). Yet, to the best of our knowledge, this is the first time that
these techniques are applied to the analysis of ARP, with excellent results: the
verification was possible for all deployed models, for any number N of system
components, and within acceptable computation time.

In the future, we plan to apply these techniques to the verification of algo-
rithms proposed in the literature but not yet standardized aiming at securing
ARP – thus contributing to the development of safer networks – as well as pos-
sibly to other Internet protocols.



Formal Verification of ARP Protocols 405

References

1. Abdulla, P.A., Delzanno, G., Henda, N.B., Rezine, A.: Regular model check-
ing without transducers (on efficient verification of parameterized systems). In:
Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 721–736.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-71209-1 56

2. Abdulla, P.A., Haziza, F., Hoĺık, L.: All for the price of few. In: Giacobazzi, R.,
Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 476–495.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-35873-9 28

3. Abdulla, P.A., Jonsson, B., Nilsson, M., Saksena, M.: A survey of regular model
checking. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
35–48. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28644-8 3

4. Alqahtani, A.H., Iftikhar, M.: TCP/IP attacks, defenses and security tools. Int. J.
Sci. Mod. Eng. (IJISME) 1(10) (2013)

5. Bardin, S., Finkel, A., Leroux, J., Schnoebelen, P.: Flat acceleration in symbolic
model checking. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707,
pp. 474–488. Springer, Heidelberg (2005). doi:10.1007/11562948 35

6. Bellovin, S.M.: Security problems in the TCP/IP protocol suite. ACM SIGCOMM
Comput. Commun. Rev. 19(2), 32–48 (1989)

7. Bhargavan, K., Obradovic, D., Gunter, C.A.: Formal verification of standards for
distance vector routing protocols. J. ACM 49(4), 538–576 (2002)

8. Bloem, R., Jacobs, S., Khalimov, A., Konnov, I., Rubin, S., Veith, H., Widder,
J.: Decidability of Parameterized Verification. Synthesis Lectures on Distributed
Computing Theory. Morgan & Claypool Publishers, San Rafael (2015)

9. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. In:
Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-27813-9 29

10. Cheshire, S.: IPv4 Address Conflict Detection. RFC 5227, July 2008
11. Cheshire, S., Aboba, B., Guttman, E.: Dynamic Configuration of IPv4 Link-Local

Addresses. RFC 3927, May 2005
12. Conchon, S., Goel, A., Krstic, S., Mebsout, A., Zäıdi, F.: Invariants for finite

instances and beyond. In: Proceedings of FMCAD (2013)
13. Conchon, S., Goel, A., Krstić, S., Mebsout, A., Zäıdi, F.: Cubicle: a parallel SMT-

based model checker for parameterized systems. In: Madhusudan, P., Seshia, S.A.
(eds.) CAV 2012. LNCS, vol. 7358, pp. 718–724. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31424-7 55

14. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Towards SMT model checking of
array-based systems. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 67–82. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-71070-7 6

15. Ghilardi, S., Ranise, S.: MCMT: a model checker modulo theories. In: Giesl, J.,
Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 22–29. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-14203-1 3

16. Ghilardi, S., Ranise, S.: Backward reachability of array-based systems by SMT
solving: termination and invariant synthesis. J. Log. Methods Comput. Sci. 6(4)
(2010)

17. Islam, S.M.S., Sqalli, M.S., Khan, S.: Modeling and formal verification of DHCP
using SPIN. Int. J. Comput. Sci. Appl. 3(6), 145–159 (2006)

http://dx.doi.org/10.1007/978-3-540-71209-1_56
http://dx.doi.org/10.1007/978-3-642-35873-9_28
http://dx.doi.org/10.1007/978-3-540-28644-8_3
http://dx.doi.org/10.1007/11562948_35
http://dx.doi.org/10.1007/978-3-540-27813-9_29
http://dx.doi.org/10.1007/978-3-642-31424-7_55
http://dx.doi.org/10.1007/978-3-540-71070-7_6
http://dx.doi.org/10.1007/978-3-540-71070-7_6
http://dx.doi.org/10.1007/978-3-642-14203-1_3


406 D. Bruschi et al.

18. Alford, M.W., Ansart, J.P., Hommel, G., Lamport, L., Liskov, B., Mullery, G.P.,
Schneider, F.B.: Formal foundation for specification and verification. In: Paul, M.,
et al. (eds.) Distributed Systems. LNCS, vol. 190, pp. 203–285. Springer, Heidelberg
(1985). doi:10.1007/3-540-15216-4 15

19. Plummer, D.C.: An Ethernet Address Resolution Protocol - or - Converting Net-
work Protocol Addresses to 48.bit Ethernet Address for Transmission on Ethernet
Hardware. RFC 826, November 1982

20. Wagner, R.: Address Resolution Protocol Spoofing and Man-in-the-Middle
Attacks. The SANS Institute, Reston (2001)

http://dx.doi.org/10.1007/3-540-15216-4_15

	Formal Verification of ARP (Address Resolution Protocol) Through SMT-Based Model Checking - A Case Study -
	1 Introduction
	2 Preliminaries on Formal Verification
	3 Address Resolution Protocol (ARP)
	3.1 ARP Formal Verification

	4 Link-Local Addresses
	4.1 Verification of ARP as in RFC 3927

	5 Extended ARP: Address Conflict Detection
	6 Conclusions
	References




