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Abstract—Rank-based policies represent a promising approach
for designing message forwarding algorithms that meet the needs
of opportunistic networks. In fact, they combine low computation
and communication costs with good performance in terms of
both latency and delivery rates. Nonetheless, they highly depend
on the mobility scenario relevant to the user, and a forwarding
policy with good performances in heterogeneous settings has
yet to be designed. In this paper, we propose to provide each
mobile device with novel autonomic observation and reasoning
components according to the following objectives: enable the
device (i) to achieve awareness about the behavior of the mobility
scenario it is moving in, and (ii) to identify the role played by the
device within the set of other moving devices. These components
are combined into a self-configuring forwarding algorithm that
uses them to locally install both the utility function and the
relevant settings suitable for the sensed configuration.

Through of extensive simulations, this paper shows that by
properly discriminating between roles it is possible to derive a
self-configuring forwarding mechanism that constantly performs
well in different mobility settings.

I. INTRODUCTION

The design of message forwarding algorithms that meet the
needs of opportunistic networks (ONs) [18] has won great
attention in recent years. A number of proposals have been pre-
sented in the literature, which we can divide roughly into three
classes: (i) epidemic and gossip algorithms (e.g. [21]); (ii)
community-based algorithms (e.g. [11], [5]), and (iii) rank-
based algorithms (e.g. [6], [7], [14]). The first class contains
algorithms where message forwarding is performed blindly.
This helps to minimize the delivery latency and to maximize
the delivery likelihood, which we pay for with the generation
of a high number of message duplicates and consequent waste
of bandwidth. The second class lies in the observation that
users tend to form communities and to visit common places
of interest. The algorithms in this class may need community
detection algorithms, which are still expensive and difficult to
compute in a distributed way. Algorithms in the third class
analyze the contact dynamics in order to identify the nodes
that may act as good relays for message forwarding towards
a given destination.

Rank-based algorithms are quite interesting because they
combine low computation and communication costs with good
performance in terms of both latency and delivery rates.
Nonetheless, they highly depend on the mobility scenario rele-
vant to the user. As a consequence of the well-known fact that

in daily life people customarily move from location to location
according to varying mobility behavior, we advocate a for-
warding mechanism which is either independent of mobility or
aware of the context of mobility it is operating in so as to select
the proper parameter setting. It has been shown, e.g. [17], [7],
that each available proposal has been designed for a specific
mobility scenario and therefore none of them is able to perform
adequately with heterogeneous mobility settings. To overcome
the above drawback, in this paper we propose to provide each
mobile device with novel autonomic observation and reasoning
components according to the following objectives: enable a
device (i) to achieve awareness about the behavior of the
mobility scenario it is moving in, and (ii) to identify the role
played by the device within the set of other moving devices (or
nodes, in the sequel). Our knowledge about mobility context
and local role is then used to choose the rank-based policy
most appropriate for that scenario. In our proposed approach,
every node locally observes its contact dynamics by recording
number and timing of encounters; then it uses them to infer its
own role within the group. We distinguish between just two
possible roles: sedentary or traveler. This binary information
is exchanged at each contact, so enabling the inference of
the global mobility behavior. These components are combined
into a self-configuring forwarding algorithm that uses them
to locally install both the utility function and the relevant
settings suitable for the sensed configuration. In [17], we have
observed that the best performing path to a destination is
obtained by letting emerge the mobility attitudes of nodes that
are required in the particular mobility scenario. For instance,
if most nodes are sedentary, i.e. confined to their respective
communities, the proper mechanism is the one letting traveler
nodes (moving freely from community to community) emerge;
in fact, they are suitable relays for reaching the community to
which the destination belongs. By contrast, if all the nodes
have homogeneous attitudes, those with a stronger inclination
to encounter the message destination should be preferred. This
paper shows that by properly discriminating between roles it
is possible to derive a self-configuring forwarding mechanism
that constantly performs well in different mobility settings.

II. BACKGROUND WORK

In [17], we analyzed five rank-based forwarding algorithms
for Opportunistic Networks in five different mobility scenarios.
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Fig. 1. Map of ICTs for every pair of nodes, for (a) a closed community
setting, and (b) a mixed community setting.

The algorithms were chosen in order to test the appropriateness
of different mechanisms and thereby ensure good perfor-
mance of the forwarding process. The considered mobility
environments were selected to represent different real-life
mobility settings; their main differences concerned the type
of communities and the presence of travelers. Communities
are closed when their members tend to operate autonomously
without mixing with members of other communities. Under
this condition, intra-community communications are mainly
supported by a few traveler nodes, i.e. nodes used to contact
members of different communities. We can see these charac-
teristics for instance in the maps of the inter-contact time (ICT)
for every pair of nodes. With closed communities (fig.1(a)),
several nodes never experience an encounter during a window
of time of 156 hours (13 working days, from 8 a.m. to 8 p.m.).
By contrast, the nodes with identifiers 1 to 5 encounter almost
every other node. If this behavior is shown by all nodes, then
communities have less defined boundaries (they are mixed),
nodes are less sedentary and are more likely to visit other
communities (fig.1(b)).

The results in [17] show that a forwarding policy with
good performances in different mobility scenarios has yet to
be designed. In general, destination independency is unable
to characterize the relays appropriate for reaching a certain
destination. An algorithm performs well when it is able to
discriminate between nodes confined to a community different

from that of a message destination, nodes confined to the same
community as the message destination, and travelers able to
establish a link between the two sets. The best results are
achieved by Fresh [6] for scenarios with closed communities,
and by Greedy [7] for scenarios with mixed communities.
In Fresh, the utility of a node n for a destination d is the
time elapsed from its last encounter with d: the lower this
time, the greater the utility of n as a relay for messages
addressed to d. In Greedy, the utility of n is the number of
its encounters with d: the higher the counter, the more useful
the node. Hence, Fresh has no history – as it recalls only the
last encounter – while Greedy holds the whole history of past
encounters. In closed communities, a node n runs continually
into nodes belonging to its own community and updates their
last encounter times. By contrast, nodes belonging to other
communities and travelers are likely to have a much greater
associated last encounter time because their encounters with n
are sporadic. Thus, good discrimination is achieved by Fresh
among different sets.

In mixed communities, the patterns of encounter are very
similar for all pairs of nodes. So are the distributions of the
last encounter times. The habit (or lack of it) of encountering
a node is better revealed if the whole history is considered,
that is, if Greedy counters are used. As an example, in fig.2,
the ecdf is shown of the utility values computed by either (a)
a sedentary or (b) a traveler, using the Fresh algorithm in a
closed community model. In the former case, there is a set of
nodes that either have never been encountered (last encounter
time is 0), or have experienced very sporadic encounters and
in any case probably far less recently than the nodes in
the same community. The nodes in the same community, by
contrast, have been encountered very recently. In the latter
case, intermediate values are possible, and steps account for
visits of the traveler to different communities in the past.
With mixed communities, fig.2(b) is the profile common to
all nodes. But with Greedy (fig.2(c) and (d)), a sedentary
node has zero or a very low counter for all nodes outside
its community, and a high counter for the nodes in the same
community. A traveler, rather, shows more heterogeneous
counters, depending on the different frequency of visits to
distinct communities.

Sedentary nodes show a characteristic common to both
Fresh and Greedy utilities: there is a large step in the plot,
with a flat behavior, unlike what we see with travelers. This
characteristic is exploited by our algorithm to differentiate
between the two different node roles.

Usually, users are unaware of the characteristics of the
environment they currently find themselves in. On the basis
of the above results, in this paper we propose a novel rank-
based autonomic forwarding algorithm. The algorithm merges
Fresh and Greedy utility functions and, depending on the
environment, chooses either algorithm. The underlying idea
is to learn about the environment through the analysis of the
encounter pattern, and then use the ranking which (in that
environment) better discriminates between the two different
different node roles. This allows us to more precisely identify
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Fig. 2. Empirical cumulative distribution function of: Fresh utilities in a
closed community setting, for (a) a sedentary, and (b) a traveler; and of
Greedy utilities in a mixed community setting, for (c) a sedentary and (d) a
traveler.

effective relays that transport messages to their destinations.

III. AUTONOMIC ALGORITHM

The autonomic algorithm consists of three steps that each
node concurrently runs. The steps aim at (1) ascertaining
whether a node is either a sedentary or a traveler, through
the observation of its encounter dynamics; (2) determining
the characteristics of the environment through the exchange
of roles with the encountered nodes; and (3) using what is
learned in the other steps so as to adopt the appropriate policy
for message forwarding. The three steps are described in the
following subsections.

A. Sensing the Node Role

The first step is performed periodically. With a period of
size M , a node analyzes its utility distribution and – according
to the results reported in the previous section – it determines
whether its profile fits the sedentary or the traveler picture.

Algorithm 1 whoAmI Procedure
INIT: my_role ← ⊥; S/T bit ← 0; last_sampling
← 0;
when (current time - last_sampling) ≥ M do

compute ecdf of Greedy utilities;
∆U ← min{∀k, 1 ≤ k < S : ∆(ecdf) between
subintervals k and k + 1};
if ∆U < ∆th then
my_role ← sedentary; S/T bit ← 0;

else
my_role ← traveler; S/T bit ← 1;

end if
last_sampling ← current time;

end do

Let #values be the number of distinct utility values a node
observes; initially, #values = 0. The mechanism adopted
in this paper is as follows: a node estimates the ecdf over
its utility values. It partitions the interval that the utility
values span into S subintervals, with S = min{#values,K}
for some parameter K. The slope between two adjacent
subintervals is estimated as the difference between the ecdf
values in those intervals. Let ∆U be the minimum of the non-
null computed slopes. If the ∆U of the node is lower than a
threshold ∆th, i.e. it is in the most flat interval of the ecdf
over the utility values, the node has a low slope, then it is a
sedentary node. If the slope is always high, then the node is a
traveler. The procedure is summarized in Algorithm 1, where
we consider Greedy utilities since they have proven to yield
more accurate discrimination, as shown in section IV-A. The
value of the S/T bit records the node role, and is used to learn
the environment characteristics as described in section III-B. In
the Algorithm, the S/T bit is initially set to sedentary. In fact,
when a node boots, it detects its neighbors and assumes they
belong to its own community. The ecdf curve forms over time
and evolves towards its real physiognomy as the encounters
increase in number. Hence, travelers spend more time than
sedentary nodes in identifying their status. In section IV-A we
provide an analysis of the role learning phase.

The S/T bit aims at approximating community detection.
Yet what we care about here is not a precise determination
of community membership. Rather, we are interested in deter-
mining whether a certain node has no habit of encountering a
destination (it is a sedentary node in a different community)
or if it is a traveler that might run into either the destination
or a node belonging to the destination community. To some
extent, travelers take the role of popular nodes exploited by
other forwarding algorithms (e.g. [11]). Hence, although this
stage is the most computationally expensive, it is far less
expensive than community detection algorithms. Moreover,
it is performed only periodically. Exactly how often can be
decided in terms of the desired trade-off between accuracy
and cost.

B. Sensing the Environment

Nodes are assumed to periodically broadcast beacons to
notify their presence to one-hop neighbors. Beacons also
contain the S/T bit to indicate whether the node considers itself
a sedentary or a traveler. Each node n collects – and updates
upon each contact – the S/T bits of the encountered nodes.
Should node n encounter a majority of sedentary nodes, then
n infers that it is moving in a closed community. Otherwise,
n will infer that it lives in a mixed community. The procedure
is described by Algorithm 2.

It is worthwhile to notice that the procedure does not require
the estimation of the global number of nodes in the system.
On the other hand, nodes having few or rare encounters might
either incorrectly classify the environment, or take too long to
come up with an accurate classification. As an alternative, two
encountering nodes could exchange the whole set of received
S/T bits, and each node could merge the received set with its
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Algorithm 2 whereAmI Procedure
INIT: environment ← ⊥; roles ← ∅;
when contact with node n do

send (my S/T bit) to n;
receive S/T bit from n;
add/update n’s S/T bit in roles;
if majority of entries in roles is 0 then
environment ← closed;

else
environment ← mixed;

end if
end do

own. However, this strategy might be expensive, as sets might
prove excessively large in urban environments, for instance.
We have decided to adopt the described low-cost policy. In
section IV-B we present the length and accuracy measure of
this learning phase.

C. Message Forwarding

At every contact, the two encountering nodes update both
Fresh and Greedy utilities for each other and then exchange the
same. Each node n analyzes every message m in local buffer:

Algorithm 3 Rank&Forward Procedure
INIT: last ← [ ]; counter ← [ ]; buffer ← ∅;
when contact with node n do
last[n] ← current time; //Fresh utility
counter[n] ← counter[n] +1; //Greedy utility
send (last, counter) to n;
receive (lastn, countern) from n;

for all messages m in my buffer do
//(let destm be m’s destination)
if (n = destm) or (environment=closed and
(current time - last[destm]) > (current time -
lastn[destm])) or (environment=mixed and
counter[destm] < countern[destm]) then

send m to n;
end if

end for
receive messages from n and insert in buffer;

end do

if m is addressed to the encountered node, it is immediately
delivered to its destination. Otherwise, n evaluates whether
it is in either a closed or a mixed community environment.
In the former case – according to Fresh – every message
for destinations that the other node has encountered more
recently is forwarded to the other node. In the latter case –
according to Greedy – the messages are forwarded if addressed
to destinations that the other node has encountered a higher
number of times. The procedure is described by Algorithm 3.

Fig. 3. Map of ICTs for every pair of nodes, for PMTRs.

IV. PERFORMANCE EVALUATION

In our simulations, the sample period is M = 30 minutes.
The number of subintervals considered for role estimation is
K = 10. We considered two mobility patterns produced with
the HCMM synthetic model [1], where 44 nodes move in
a 1000×1000 m. area with speed in [0.5, 1.5] m/s for 156
hours. The transmission range is 10 m. As an initial interaction
matrix, we used weights derived from the number of contacts
between pairs of nodes in a real trace, namely, the PMTR trace
[8]. To the highest number of contacts we assigned weight
0.9. We adopted the weight associated to half of the average
number of contacts as a threshold to derive the connection
matrix. No reconfiguration is performed and the remaining
probability is set to 0.8. In the scenario named HCMM det5,
the next cell is chosen deterministically and the rewiring
probability is 0.1; we adopted 5 travelers. In the HCMM pro1
scenario, the probabilistic criterion is adopted, with rewiring
probability of 0.3 and 1 traveler. The two HCMM scenarios
yield, respectively, closed and mixed community environments
(fig.1). This helped us to evaluate operations of the approach
under well-defined mobility conditions.

Moreover, we analyzed the behavior of the autonomic
algorithm under real mobility conditions using for this purpose
the PMTR trace. The latter concerns 44 people on a campus
where each person is equipped with a wireless device called
a PMTR (Pocket Mobility Trace Recorder) having 10 m.
radio range [8]. In the real dataset, we eliminated nights and
weekends, thus producing a dataset covering 13 working days,
from 8:00 a.m. to 8:00 p.m. (for a total of 156 h.). The PMTR
scenario is a difficult environment: users stay in their offices
for lengthy periods, the environment is sparse, and contacts are
rare [19]; long latencies and low delivery rates are obtained
also when adopting an epidemic diffusion [17]. All pairs of
nodes show a quite homogeneous behavior. For the sake of
comparison, in fig.3 the ICT map for PMTR is reported.

With the considered data sets and M = 30 minutes, the node
role is recomputed after 38 encounters in PMTR, 147 encoun-
ters in HCMM pro1, and 477 encounters in HCMM det5,
on average. Although the last data might suggest a need
for a more frequent sampling to achieve better accuracy, it
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TABLE I
∆U VALUES FOR BOTH FRESH AND GREEDY.

Fresh Greedy
∆U (trav) ∆U (sed) ∆U (trav) ∆U (sed)

HCMM pro1 0.065 0.071 0.057 0.050
HCMM det5 0.058 0.047 0.066 0.037
PMTR 0.069 0.045 0.040 0.020

is worthwhile to notice that in HCMM det5 the encounters
occur more often because nodes in the same community keep
running into one another. This does not lead to a change of
the ecdf. Thus, low rate sampling seems suitable for all the
considered scenarios.

We must make another observation. All the nodes in our
simulations boot at the same time and are initially unaware
of the environment, according to the provided algorithms.
This results in a learning phase lasting several hours. Indeed,
in real settings, the learning should speed up because when
a node wakes up it might be surrounded by nodes whose
learning phases have ended. And this can promptly provide
the new node with an appropriate initial state. However, it is
worthwhile to observe that the amount of time a node spends
to learn both role and environment does not represent a critical
concern. In fact, in daily life people routinely move from
location to location while engaging in their social activities,
and the mobility within a single location will very likely be the
same over time. Upon the first role and environment detection,
the relevant setting and node’s awareness could be locally
recorded with associated geo-position data. When the device
moves to that position in the future the local setting can be
directly applied by skipping learning phase.

A. Evaluation of role sensing

In order to finetune the mechanism used to learn the node
role, we analyzed the behavior of both Fresh and Greedy in the
three scenarios in terms of their ability to discriminate seden-
tary nodes and travelers. In Table I we report the minimum
slope of the ecdf of the utilities. We analyzed the profiles
of the Greedy utilities (as in fig.2) and noticed that they
correctly detect a majority of travelers in HCMM pro1 and
a majority of sedentary nodes in HCMM det5. By contrast,
Fresh utilities provide incorrect indications in HCMM pro1
– in line with the arguments in section II – and all nodes
have a very homogeneous behavior w.r.t. PMTRs. Moreover, in
HCMM pro1 Fresh utilities have greater slope for nodes with
a sedentary type profile than for nodes with a traveler type one
(Table I). Thus, we decided to adopt Greedy for role learning.
Through experiments, we determined that a common threshold
∆th = 0.046 allows us to achieve the best performance with
all scenarios.
In Table II we report the accuracy in determining node
roles for the considered mobility models. For both ranking
policies, we report the number of travelers and sedentary
nodes as obtained by the ecdf’s appearance. Moreover, we
report the estimated number of travelers and sedentary nodes
by using ∆th = 0.046. We can observe that Fresh ecdf’s

(a)

(b)

Fig. 4. (a) ∆U and (b) node role over time, according to Greedy utilities
in HCMM det5.

apparently show a majority of nodes with a sedentary behavior
in HCMM pro1. This is incorrect as well as the estimated
role. In fig.4, the behavior of ∆U and the node’s estimated
role are shown over time, for both sedentary and traveler
nodes in HCMM det5. Similar behavior is observed with
HCMM pro1. For the sake of convenience, in fig.4(b), we
assumed the node’s role to be 6 when the node estimates it
is a sedentary one, 7 otherwise. The node’s role is computed
according to Algorithm 1. We can observe that – as mentioned
in section III-A – travelers need more time than sedentary
nodes to appropriately estimate their role. This is because the
ecdf curve changes slowly from a sedentary profile to a traveler
one and in the meantime its slope increases. We observed
that, for every node, role estimation in a new geo-positions
stabilizes after an average of 20-25 hours.

B. Evaluation of environment sensing

In fig.5, the estimation of the environment nature is shown
over time, for all scenarios. In all figures, the plots of all nodes
are reported. The estimation is performed according to Algo-
rithm 2. As before, we assumed that environment estimation is
6 for closed communities, 7 otherwise. In both HCMM pro1
and PMTR, the majority of nodes converges towards a correct
estimation of the environment nature, although in the former
case it takes a long time (nearly 30 hours on average). Yet, in
HCMM pro1, oscillations are possible also at the end of the
simulated time. In HCMM det5, a minority of nodes wrongly
tends incorrectly to interpret the surrounding environment as
a mixed community scenario. More precisely, through the
exchange of the S/T bit, in HCMM det5 there are 29 nodes
interpreting the scenario as a closed community and 15 as
a mixed community. In HCMM pro1, 31 nodes interpret the
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TABLE II
ACCURACY IN DETERMINING NODE ROLES.

Fresh Greedy
real estimated real estimated

traveler sedentary traveler sedentary traveler sedentary traveler sedentary
HCMM pro1 17 27 20 24 34 10 23 21
HCMM det5 9 35 16 28 13 31 15 29
PMTR 31 13 35 6 34 10 26 18

(a)

(b)

Fig. 5. Environment estimation in (a) HCMM det5, (b)HCMM pro1, and
(c) PMTR.

scenario as a mixed community and only 13 nodes as a closed
community. Finally, in PMTR 32 nodes converge toward a
mixed environment while 12 assume a closed community
environment. In terms of message forwarding, this means
that, along the message delivery path, some relay nodes
will forward packets by using Fresh utilities and some by
using Greedy utilities. Clearly, fast convergence towards the
appropriate interpretation (complete with general agreement
on the same) is desirable in order to avoid possible path
oscillation and to ensure good performance of the algorithm.
Anyway, the performance achieved with this policy is very
good and promising, as we show below.

C. Performance of the autonomic algorithm

We measured the autonomic algorithm’s performance in
comparison to those of the original Fresh and Greedy algo-
rithms, in the considered environments. Every M minutes each
node generates a message for every other node; messages are
forwarded according to the system view and to the utilities of
the nodes at generation time. Consequently, dynamic adap-
tation of the utilities while messages are forwarded is not
reproduced and so the shown results are likely worse than in a
real environment where forwarding and utility computation are
performed concurrently. Results are averaged over all source-
destination pairs. Mean performance over all the simulation
time is reported in Table III, where ∆E is the variation in
percentage of the number of hops needed to reach a destination
with respect to the optimal (Dijkstra) path, ∆L is the variation
in percentage of the latency with respect to the optimal path,
and ∆D is the variation in percentage of the number of
reached destinations with respect to the optimal path. We can
see from the Table that the autonomic algorithm uses more
hops, probably due to inconsistencies in the determination of
the environment nature which led the nodes to use different
rankings along the paths. Yet, with both synthetic models we
achieve a better coverage, with latency comparable or better
than the original algorithms. With PMTR a slight decrease in
coverage is observed – which might explain the decrease in
both latency and number of hops – but performance remains
comparable with those of the original algorithms.

In fig.6, the coverage – expressed as the percentage of
destinations lost on average with respect to optimal routing
– is reported over time for the two synthetic models. In
spite of inconsistencies in determining the scenario nature,
no loop forms along the paths. Indeed, for both scenarios a
greater coverage than with the original algorithms is achieved,
thus showing that messages are correctly delivered to their
destinations. The behavior of latency (fig.7) offers proof
of what we pointed out earlier about the learning times of
travelers. In the case of HCMM det5 right from the start
almost all nodes are convinced of being sedentary. They
disseminate this view to other nodes, thus forcing to estimate
closed communities. As a consequence, most nodes adopt the
Fresh ranking to select relays, and latency always converges
toward that of the best algorithm. For HCMM pro1, travelers
spend more time trying to understand their true nature and to
communicate it to other nodes. Therefore, the latency initially
approximates that of the Fresh algorithm – probably because
most nodes tend to use Fresh in line with their initial view of
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TABLE III
AVERAGE PERFORMANCE OF THE ALGORITHMS

Fresh Greedy autonomic
∆E ∆L ∆D ∆E ∆L ∆D ∆E ∆L ∆D

HCMM pro1 0.17 15.5 -0.001 0.13 8.6 -0.0007 0.53 13.21 0
HCMM det5 0.09 8.11 -0.009 0.06 9.5 -0.06 0.36 7.7 -0.005
PMTR 0.20 50.2 -0.27 0.16 53.3 -0.26 0.18 48.61 -0.29

(a)

(b)

Fig. 6. Coverage over time for (a) HCMM det5 and (b) HCMM pro1.

(a)

(b)

Fig. 7. Message delivery latency over time for (a) HCMM det5 and (b)
HCMM pro1.

(a)

(b)

Fig. 8. (a) Coverage, and (b) message delivery latency over time for PMTR.

the environment – and later decreases toward that of the best
algorithm.

Finally, we measured the performance of the autonomic
algorithm with the real traces. In this case, Fresh and Greedy
have very similar performances. The autonomic algorithm
tends toward the behavior of Fresh, thus achieving acceptable
coverage (fig.8(a)) and the best latency (fig.8(b)).

V. CONCLUSIONS

In this paper, we propose a novel autonomic forwarding
algorithm for ONs, where each node autonomously discovers
the characteristics of its basic everyday environment – in terms
of closeness of the communities and presence of travelers
– and decides in accordance what is the best rank-based
forwarding policy to adopt to maximize performance. The
results obtained through simulations show that the approach
is promising: with high probability, nodes correctly learn their
role and the nature of the scenario in slightly more than
a day. This information is used afterwards to appropriately
rank candidate message relays, so obtaining a very good
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performance in terms of both destination coverage and latency.
As a consequence, we plan to perform further measures with
real traces in order to further validate the approach and
gain better insight into the dimensioning of the parameter
∆th. We also intend to investigate alternative policies for
the determination of node roles, so as to achieve a quicker
and more accurate characterization of the current scenario and
also a better consistency among the views of different nodes.
Designing these policies in a successful way may lead in
the future to extending the proposed algorithm. The ultimate
aim of research along these lines is to allow the nodes to
dynamically adapt to changing scenarios while the users go
about their daily business, moving from location to location.
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