

From WSNs to VANETs: paradigms, technologies and open research issues for challenged networks

Elena Pagani Università degli Studi di Milano elena.pagani@unimi.it

Keynote Talk I WIDECOM 2019

Milano - Feb. 11, 2019

Elena Pagani

Keynote Talk I: Challenged networks

1 What are the "challenged networks"?

- 2 Applicative scenarios
- 3 Common aspects
- 4 State-of-the-art
- **5** Open research issues

- "Networks characterized by challenges, such as fragile connectivity, network heterogeneity, and large delays"¹
- networks that move away from the classic Internet paradigm
 - scarce resources
 - thin devices: bandwidth, memory, computation...
 - limited MTU
 - bounded energy supply (batteries)
 - frequently changing network topology
 - $\bullet \ \ \mathsf{battery} \ \mathsf{discharge} \to \mathsf{duty} \ \mathsf{cycle}$
 - unstable, lossy, noisy, low-power, broadcast links (wireless)
 - sparse and/or mobile nodes \rightarrow highly likely partitions
 - long latencies ... waiting for a route to form
- in spite of this, novel applications that call for novel strategies

Scenarios

- once upon a time there were... cell phones (*single-hop*)
- which led to research on MANETs (multi-hops)
 - $\bullet\,$ still not very mobile, however $\rightarrow\,$ not yet $\mathit{challenged}$
- environment monitoring, urban sensing (WSNs)
 - EuroDeer, ZebraNet, GoodFood... and many many others!
- Intelligent transport systems, but also robots/drones (VANETs)
- deep-space, maritime and underwater sensor networks (DTNs)
- mobile social networks, crowd computing (OppNets)
- Smart cities, ambient intelligence, pervasive health...
 - *IoT*, D2D and M2M communication
- Industry $4.0 \rightarrow \text{smart factory}$

...magnificent picture! But...

• data-centric communication

- publish/subscribe paradigm
- Content-centric / Information-centric / Named-data networking
- scalability to hundreds or thousands of devices
- security due to the wireless media (and in spite of poor computation resources)
- self-organization to minimize human intervention
- fault tolerance in spite of hostile environment (dust, humidity, temperature)
- heterogeneity of devices (and protocols?)
- localization

VANETs: state-of-the-art

(focused on Intelligent Transport Systems)

• ETSI big picture

• distinction between V2V and V2I

Elena Pagani

WIDECOM 2019

Sac

• some protocols have been already (almost) standardized:

- IEEE 802.11p for layers 1-2 (a.k.a. WAVE / DSRC)
- GPS for autonomous localization
- cellular networks for V2I communications
- proposals for higher layers:
 - Grid / Hierarchical Location Service, etc.
 - Greedy Perimeter Stateless Routing, Geographic Source Routing, etc.
- on one hand: market pushes for selling advanced solutions
 - sensors are now common for assisted driving: obstacle detection, driver attention monitor, park assist
- on the other hand: premature technology
 - automated driving cars already caused fatal accidents

things are a bit easier...

- Bundle Protocol already standardized back in 2007 (RFC 5050)
 - but still ongoing process: version 7 published as Internet Draft in Nov.30, $2018.^2$
- DTNs already are among us!
 - $\bullet\,$ underwater: prototype deployed in cooperation with NATO Undersea Research ${\sf Centre}^3$
 - underwater: LOON (Littoral Ocean Observatory Network) testbed by NATO STO Centre for Maritime Research and Experimentation⁴
 - Postellation: general-purpose DTN Cloud⁵
 - SourceForge projects: DTN2, ION (Interplanetary Overlay Network)

²S. Burleigh, K. Fall, E. Birrane, "Bundle Protocol Version 7". Delay-Tolerant Networking WG, draft-ietf-dtn-bpbis-12

³D. Merani, A. Berni, R. Martins, "DTN for Maritime and Underwater Sensor Networks", DTNRG session - IETF, 2012.

⁴J. Alves, J. Potter; P. Guerrini, G. Zappa, K. LePage, "The LOON in 2014: Test bed description". Proc. UComms 2014.

⁵M. Blanchet, S. Perreault, J.-P. Dionne, "Postellation: an Enhanced Delay-Tolerant Network (DTN) Implementation with Video Streaming and Automated Network Attachment". Proc. SpaceOps 2012.

- a huge amount of literature about message forwarding
 - novel paradigm: store-carry-and-forward
- \bullet several alternative models of mobility, sociality and encounters \leftarrow a lot of datasets
- a handful of prototypes, mainly for research purposes
 - opportunistic jukebox; Ateneo On Fly (mediated by infostations)
 - infrastructures for rural areas: DAKNET (India); SNC (Lapland)
 - a few apps: Twimight (social networking); FireChat (messaging)
- but... technologies for non-mediated device-to-device communications not yet mature⁶
 - not too high radio range: in order to save power
 - we performed experiments for the sake of comparison⁷

⁶M. Conti, C. Boldrini, S.S. Kanhere, E. Mingozzi, E. Pagani, P.M. Ruiz, M. Younis, "From MANET to people-centric networking: Milestones and open research challenges". Computer Communications 71 (2015).

⁷ M.P. Dazzi, "Wireless technologies for non-infrastructured networks", Master thesis, 2016. Supervisors: E. Pagani, A. Trentini.

WiFi Direct: throughput

- WiFi Direct to create ad hoc opportunistic networks
- NICs of different vendors compared (anonymized) on different devices
- subset of measures; results in Mbps

devices	25 MB	50 MB	100 MB	average
$PC \gets netbook$	12.0	11.2	10.4	11.2
$PC \to netbook$	7.8	8.8	9.6	8.7
$netbook \gets notebook \ 1$	8.8	8.8	8.8	8.8
$netbook o notebook \ 1$	13.6	15.2	17.6	15.5
$PC \to Raspberry Pi$	9.6	19.2	20.0	16.3
$PC \rightarrow notebook \ 2$	4.6	7.2	7.1	6.3
$PC \leftarrow notebook \ 2$	12.0	9.6	11.2	10.9
average	9.8	11.4	12.1	

- homogeneous buses produce better results: PC ↔ RaspberryPi and netbook ↔ notebook 1
- speed toward PC is higher than in other cases

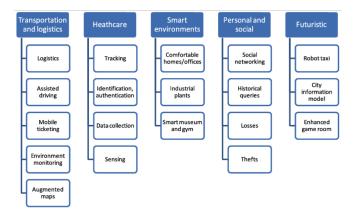
WiFi Direct: reliability and latency

- same devices as before
- subset of measures; times in ms.

devices	#pkts	min	avg	max	#loss
$PC \gets netbook$	815	0.77	2.44	71.84	0
PC ightarrow netbook	1891	0.72	23.00	768.58	1
$netbook \gets notebook \ 1$	5791	0.63	101.92	2601.90	112
$netbook o notebook \ 1$	1555	0.70	16.18	431.15	0
$PC \to Raspberry Pi$	844	1.09	2.88	129.12	0
$PC \rightarrow notebook \ 2$	668	0.73	2.37	129.20	0
$PC \leftarrow notebook \ 2$	595	0.79	2.10	116.81	0

- the NIC equipping both netbook and notebook 1 has the worst behavior
- PC and netbook differ in both NIC and bus

Lesson learnt: significative differences amongst devices of different vendors make performance highly variable


Elena Pagani

Keynote Talk I: Challenged networks

- Bluetooth is less power-consuming than WiFi but..
- so far, scatternet formation not yet standardized
- we implemented a simple solution which shows feasibility of the approach
 - synchronization amongst piconets impacts on latencies...
- $\bullet~{\sf BLE}$ devices need a central coordinator in order to communicate $\rightarrow~{\sf not}$ adequate for OppNets
- LTE Direct: a bit of chronology
 - 2013: LTE Direct for Device-to-Device communication included in 3GPP-Rel12 (*completed in March 2015*)
 - 2015: first trials of LTE Direct performed by Deutsche Telekom
 - \bullet > 2017: LTE Advanced Pro should also support V2V communications
- and 5G is about to arrive...

IoT: state-of-the-art

- *Definition:* "a world-wide network of interconnected objects uniquely addressable, based on standard communication protocols"
- pervasive, tiny, communicating devices in the environment

WIDECOM 2019

Sac

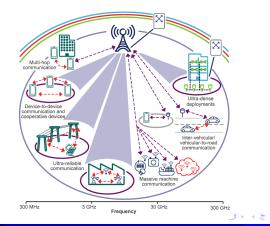
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

IoT: technologies

- commonly available platforms, such as Arduino, Raspberry etc.
- IPv6 + (very) low-range communication technologies.

technology	bwth	radio range	frequencies	licensed
RFID (default)	40 Kbps	10 cm 1 m.	13.56 MHz	No (ISM band)
NFC	106-424 Kbps	< 20 cm.	13.56 MHz	No (ISM band)
IEEE 802.15.4	250 Kbps	10 - 75 m.	2.4-2.5 GHz	No (ISM band)
BLE	1 Mbps	\leq 50 m.	2.4-2.5 GHz	No (ISM band)

• brand new protocols, already implemented in available OSs

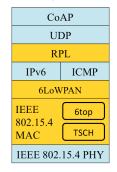


Industry 4.0: state-of-the-art (?)

- Industry 4.0 = IoT + cyber-physical systems + cloud + cognitive
- some concurrent standards proposed for communications
- ZigBee \neq 802.15.4 \neq 802.15.4e
 - 802.15.4e is the version for industrial applications of 802.15.4
 - ZigBee adds functionalities to 802.15.4, at layers 3-4
 - mesh network, using P2P communications supported by 802.15.4
- 802.15.4 uses DSSS modulation and CSMA-CA channel access
- TSCH designed for industrial environment, uses time-slotted operations over 802.15.4 (TDM/FDM scheduling)
- WirelessHART uses TDMA/CSMA channel access in 2.4-2.5 GHz range over 802.15.4 physical layer
 - mesh network
 - TDMA guarantees deterministic performance
 - scheduling is not yet standardized: constraints specified

5th Generation

- unifying technology that should serve for smartphones, wearable devices, M2M, vehicles...
 - high data rate, massive IoT, low latency for mission critical apps
- multi-Radio Access Technology: ZigBee, WiFi, Bluetooth, LTE...



Elena Pagani

Keynote Talk I: Challenged networks

things start mixing...

- sensors, vehicles and human-carried devices will all be part of the IoT
- slow adoption of both IPv6 and 5G (and LTE Direct?)
- openness and standardization are critical!
- 6TiSCH WG⁸
 - 6top at sublayer LLC hides scheduling details
- roll WG
- 6lo WG: extensions to BLE, NFC and others
- and WirelessHART and...

 $^{^{8}}$ P. Thubert, "An Architecture for IPv6 over the TSCH mode of IEEE 802.15.4". Internet Draft draft-ietf-6tisch-architecture-19. Dec. 17, 2018

Conclusions

- "challenged networks" defined around 2001
 - huge advancements since then. Yet...
- need to understand in what directions standardization efforts move
- the set of technologies that are going to be used at layers 1-2 must become clearer, as well as their characteristics and services provided at upper layers
- technologies shall reach an adequate standardization level, stability, diffusion on users devices, and guaranteed compatibility amongst versions implemented by different vendors
- probably, higher layers' protocols shall also be re-defined
 - the design of upper layers must be done keeping in mind what really exists at lower layers
- need to deploy prototypes and testbeds to validate concepts
- do not disconnect from reality and make research progress together with the progress in technology availability