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1 Introduction

Modern search engines are moving apart from current keyword-based mechanisms to
retrieve information and are embracing more powerful mechanisms that are capable
of reasoning on semantic attributes of contents in a distributed repository. On one
side, this is motivated by the growing needs to enable machine-based services of infor-
mation retrieval. On the other side, the huge of available information is demanding
for shared data models or common conceptualizations, also referred to as ontology,
to achieve the integration of semantically homogeneous data coming from Internet
communities and separate sub-fields. This evolution is directly affecting the compo-
nents of modern content retrieval and searching systems and is driving the innovation
of their underlying communication infrastructure, namely the Web and peer-to-peer
platforms, P2P. So far, most efforts have been addressed inside the W3C to define
mark-up languages capable to capture some content meaning and code it to obtain a
machine understandable description. A mark-up language enables defining a domain
ontology and the semantic browsing through this ontology can be performed with-
out substantial modification of the web by simply interposing a middleware between
the browser and the network layers. Purpose of the middleware is the extraction,
from the search keywords issued by the user, of a set of affine concepts that are then
sent as input to a traditional search engine. Similarly, responses are filtered by the
middleware using the ontology before to be displayed to the user. This approach
is possible because the web has maintained clean separation between search engine
and communication platform. By contrast, in traditional peer-to-peer systems, the
content sharing is achieved through an interwoven relation between the search policy
and the communication overlay. As the consequence, the adaptation of P2P systems
to provide semantic search requires radical changes and poses several challenging
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problems to the research. Among them, one of the most critical and, so far, less ex-
plored problem is the design of the communication infrastructure capable to support
the maintenance of and the retrieving in a distributed ontology, while continuing to
ensure efficient and scalable operations. It is worth to notice that the centralized ap-
proach, i.e. to adopt centralized ontology and search engine, is a dead-end approach
from this point of view. In common P2P application scenarios, in fact, each node,
or peer, maintains local capabilities of reasoning onto the local ontology and is able
to access the entire distributed knowledge, obtained as the aggregation of the set of
peers, by exploiting the features of the communication infrastructure. It is clear that
such a distributed approach has the twofold design advantage of limiting the node
processing load and granting the capability of reasoning on the entire distributed on-
tology (completeness) in a scalable and efficient way. To achieve this result, however,
local search engines need the aid of a distributed query processing whereby the con-
cepts and their semantic relations are stored and retrieved from hosting nodes within
the network and queries are routed over a connectivity infrastructure that mirrors
the semantic relations among the searched objects. From the architectural point of
view, the above arguments lead to the design of an overlay network, i.e. the mid-
dleware infrastructure on top of the TCP/IP protocol stack, that efficiently support
the required diffusion of queries to retrieve distributed concepts and related content.
Because the overlay network provides a connectivity that should derive from the se-
mantic relations among concept of the ontology, we use the term of ontology-based
routing and addressing to identify the basic functionalities it provides.

The performance and the functionality of the desired query processing system is
significantly influenced by the node to node communication mechanisms provided by
the overlay network. Despite its critical role in the entire architecture, the overlay
network has so far received a limited attention from the research community and the
available proposals mainly address this issue by adopting variation of flooding [14] or
placement mechanisms [10], that will be briefly described in the next section. The
main contribution of this paper is the co-design of a query processing and of an overlay
network to enable efficient and scalable self-organized content retrieval in a complete
way. To achieve this goal, the paper adopts the concept of Semantic Overlay Network
(or SON) which has been firstly introduced by [6]. SONs are here used to aggregate
sets of semantically homogeneous nodes in a community, i.e. nodes owning concepts
bound by some degree of affinity. The overlay is a hierarchical infrastructure of SONs
whose topology is self-organized and where all nodes have autonomous capability
of joining, leaving and navigating SONs in the overlay through totally distributed
operations. The adopted architecture represents the trade-off between completeness
and efficiency: queries are routed over an overlay describing only hierarchical affinity
while nodes can exploit the full power of local semantic engines to ensure completeness
in solving the queries.

The paper describes the orion (Ontology-based Routing of querIes in Overlay
Networks) system for the construction of the overlay infrastructure and the routing

2



of queries through its topology. In this section, related works in the literature are
reviewed in order to motivate the design choices of orion. In sec.2, the assumptions
on the ontology structure and the properties of the engine for semantic reasoning are
described, and the functional architecture of peers is presented. In sec.3, the principles
for the characterization of a hierarchical topology of the overlay are discussed, and
the protocols for hierarchy formation and for query processing are described in detail.
Sec.4 concludes the work.

1.1 Related works

In the literature, there are a lot of peer-to-peer systems proposed for content sharing.
One of the first attempts was to use a centralized system, such as Napster [8].
Besides of obvious drawbacks – such as, the central server is a bottleneck and a single
point of failure – this approach is unsuitable for semantic-based knowledge sharing
because it implicitly assumes that the central server is able to reason with every
semantic formalism possibly used to represent knowledge in the peers.

In [3], content sharing policies are divided into flooding-based policies (e.g. [14])
and policies adopting deterministic placement of contents (e.g. [10]). In the for-
mer case, peers do not know anything about content location, the overlay has a flat
topology, and search is performed by flooding queries, with very high cost in large
systems. If flooding is bounded with the aim of limiting costs, then the probability
of retrieving some responses – not to mention that of finding all existing responses –
is decreased. In the latter case, hashing is used to establish a relationship between
a content and its location: a content is placed in the peer whose identifier results
from hashing the content’s key. Deterministic placement has the drawback of forcing
peers to maintain information for contents not locally originated, which can be not
desirable or viable. As for the centralized approach, if adopted for knowledge sharing,
a node could not have the semantic tools to reason about knowledge represented with
a formalism different from that locally adopted. Moreover, in order to achieve good
performance, the hashing function is required not only to guarantee fair load distribu-
tion among the peers, but also to place semantically close concepts into geographically
close peers. This goal is achieved by pSearch [13], which merges the CAN [10] ap-
proach with semantics. The document’s semantic is generated by latent semantic

indexing. With this formalism, a document is represented by a vector containing, for
each term in a reference vocabulary, the degree of importance of that concept in the
document. A document thus represents a vector in a multi-dimensional space, and
is mapped into the peer responsible for managing the region of space including that
point, using a hash function. Semantically affine documents are close in the space,
and are mapped on the same or neighbor nodes. Relationships among documents
may be derived also from co-occurrence of terms.
A hybrid approach, adopted for instance by FreeNet [5], consists in dynamically
replicating either a content’s location or the content itself near the peers that most
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frequently access it; if no information is available in a peer’s neighborhood, flooding is
used. In the case of knowledge sharing, besides of the flaws related with deterministic
placement, caching also implies dynamically replicating ontologies, which can be both
bandwidth and memory consuming. It is worth to notice that in many real peer-to-
peer systems the high costs discourage users from participating for times longer than
the minimum needed to download the data they are interested in; this results in poor
content sharing and thus in very low rate of success in retrieving information.

The idea of using Semantic Overlay Networks (SONs) was first proposed in [6], to
implement an indexing approach. That work focused on policies for characterization
of SONs and their hierarchy, on policies the peers may adopt to choose what SONs to
join to, and on policies to characterize the most appropriate SONs to which a query
should be forwarded. The hierarchy of SONs is characterized a priori; it must then
include all concepts that may eventually appear at peers, as well as concepts that may
belong to peers not currently included in the system but that can join in the future.
Communication aspects are not considered. When a peer enters the system, it floods
a request to obtain the hierarchy description, basing on which it decides to what
SONs it should belong according to the locally owned contents. A query should be
forwarded to just the nodes belonging to the appropriate SON(s), without bothering
other peers. For both joining a SON and forwarding a query to the appropriate SON,
the lookup of nodes belonging to that SON is performed via flooding. A membership
should be maintained inside SONs, although [6] does not discuss this issue. Nor it is
clear whether “links” (i.e. mutual knowledge among peers) are maintained between
father/child pairs of SONs.

Edutella [20] uses the JXTA platform for communications, and the RDF [18]
language as semantic tool, to implement a semantic network for educational purposes.
Peers register with a query service the query schemes they are able to reply. A query
is sent to the peers registered as able to reply. As far as the communication aspects
are concerned, Edutella adopts a super-peer approach with super-peers connected in
a hierarchical hypercube structure, which is efficient for message broadcasting and
more resilient to failures than tree structures. Super-peers maintain routing indexes
containing metadata information, and the identifiers of peers using those metadata
schemes. The drawback of the hypercube topology is that, if no enough peers are
available to build a hypercube, then some peers must occupy several vertices in the
infrastructure. Each super-peer is connected to a group of peers, and knows the
schemes they use to reply to queries; each super-peer is responsible to forward a
query to the peers it controls that are able to process the metadata in the query.
Routing of queries among super-peers is either a broadcast, or routing indexes may
be maintained also at this level, which are summaries of the super-peer indexes. Peers
can connect either to arbitrary super-peers or to a super-peer controlling similar peers;
in the latter case, several similarity notions can be used. In both cases, if a peer join
provokes an update of its super-peer index, the super-peer broadcasts the update to
the other super-peers.

4



In [15], SONs are used to ease content search, and SON membership is main-
tained with a lightweight policy. Each peer p monitors what other peers have been
more useful in replying to its recent queries on a certain concept c. Those peers are
considered as belonging to the same SON as p as far as c is concerned. The SON
membership is implicit: if a peer p considers a peer q member of its same SON for
concept c, the reverse does not necessarily hold. This mechanism has been refined
in [16], where peers use gossiping to exchange information about their interests, in
order to supply each peer with knowledge about every other peer. A peer uses this
information to maintain a semantic list of affine peers. Interests are represented by
file names; no ontological reasoning is used. Queries are routed to peers in the se-
mantic list of the querier. However, the work assumes that a peer generates queries
only about contents/concepts affine to those it already owns. Otherwise, flooding is
used.

The Semantic Web initiative [19] aims at facilitating knowledge sharing through
the deployment of tools able to derive information from data, to integrate data, and
to automatically reason about this information, using semantic theory and ontolo-
gies. The RDF [18] and OWL [17] languages are currently recommended to represent
knowledge in the semantic web. Communication aspects involved with navigating
and querying the semantic web have yet to be dealt with. A possible solution lies
in the use of software agents: a retrieval engine discovers all contents containing the
searched terms; agents then reason about those documents to refine the results [12].

In contrast with the previous solutions, orion adopts a distributed approach.
Every peer only maintains knowledge extracted from local contents, and reasons with
the semantic formalism locally adopted; no deterministic placement or caching is
used. Peers belong to as many SONs as many their “areas of interest” are. SONs are
connected in a hierarchical overlay, such that the parent/children relationships mirror
a hierarchical relation between the concepts represented by the SONs. The hierarchy
is not pre-determined, but rather its structure depends on the concepts held by the
peers currently belonging to the system, and may dynamically vary according to
changes in the peer knowledge. Different subsets of peers may use different semantic
formalisms. As a consequence, the overlay structure is more likely a forest than a
tree. Peers do not know the global hierarchy structure; they know the membership
of the SONs they belong to, and have partial knowledge of the tree everyone of such
SONs is linked to, in terms of parent and children SONs.

2 System model

2.1 Assumptions on ontology structure

In this work, the focus is on the problem of distributed knowledge maintenance and
retrieval. Knowledge is represented through ontologies. Informally, an ontology is a
set of concepts linked by semantic relations. It can be represented as a graph, whose
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Figure 1: Example of ontology

nodes are concepts while links are affinity relationships between pairs of concepts.
Affinity relationships can be characterized in several ways. The Semantic Web ini-
tiative recommends the RDF and OWL languages to build ontologies. In RDF [18],
metadata used to represent data properties are in the form of a triple A(O, V ) mean-
ing that the object O has an attribute A with value V . Predefined types of objects
allow to define a hierarchy of classes of objects, and of classes of properties. OWL is a
language for ontology definition and management based on description logic; it is an
evolution of the DAML and DAML+OIL [7] languages. All these languages are based
on description logics, thus allowing richer expressive power and supporting automatic
reasoning. In [7], an ontology is defined as “a hierarchical description of important

concepts in a domain, along with descriptions of the properties of each concept.”

DAML+OIL has – amongst many others – predefined axioms to determine whether a
concept is subclass (more specific) than another (subClassOf), or whether two con-
cepts are equivalent (sameClassAs). In fact, these are fundamental axioms, as all the
others can be reduced to them. WordNet [9] is an English lexicon developed at the
Princeton University, composed by five syntactic categories: nouns, verbs, adjectives,
adverbs, and function words. Opencyc [11] is a large knowledge base whose terms are
axiomatized by assertions expressed with predicate calculus. It includes several algo-
rithms and theorem provers to derive inferences from the ontology. Opencyc includes
predicates for term mapping that allow to establish whether two terms are synonyms
(synonymousExternalConcept), or whether one of the two is a subclass of the other
(isa, genls). Both parts of WordNet and ontologies expressed in DAML have been
merged with OpenCyc. In Helios [4], four degrees of affinity can be detected between
two concepts, through different techniques of matching among concepts. Matching
can be based – in order of increasing semantic richness – (i) on names, that is, two
concepts are related if their names are synonyms; (ii) on attributes, that is, two con-
cepts are related if they are described by comparable structures; (iii) on relationships

that consider two concepts as affine if they either are used in the same context or are
related with the same concepts; and finally (iv) on instances, that is, two concepts
are affine if they have instances in common.
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In the simulations discussed in sec.??, WordNet is adopted as an example ontology.
In this work, a concept is represented by a name and a list of attributes describ-

ing the concept structure. Since the proposed system could be adopted to retrieve
contents using semantic reasoning, the description of a concept in the ontology may
also include a link to a content locally held; this point will be made clear in the next
subsection. An ontology is a directed weighted graph whose edges between two affine
concepts are represented by couples 〈type of edge, affinity degree〉. The former field
indicates the kind of affinity relationship between the two concepts; the latter field
has value between 0 and 1. A semantic engine is a set of tools able to extract con-
cepts from contents, and to supply affinity relationships amongst concepts through
reasoning with a certain semantic formalism. Full concept matching indicates the
operations the semantic engine performs to derive all possible relationships between
two concepts. A cluster is a part of ontology including a set of related concepts and
all their semantic relationships. A cluster for a concept c includes all concepts related
with c and their relationships, possibly within a certain degree of affinity. Hence,
a cluster is an ontology. We assume that the affinity relations satisfy a transitivity

property, such that if a concept A is affine to a concept B with weight wAB, and
B is affine to a concept C with weight wBC , then A and C are affine with a weight
wAB · wBC .

We do not make any assumption about how concept affinity is determined. For
the purposes of orion, we assume that, whatever are the principles on which the
semantic engine is based, it is able to derive hierarchical relations between concepts
according to a notion of semantic complexity. These relations are a subset of the
affinity relations the semantic engine can find out through full concept matching.
Let α be the affinity notion that characterizes hierarchical relations between pairs of
concepts; the dist function is defined as a measure of the minimum number of edges
composing a path of type α connecting two concepts A and B, and of the hierarchic
relationship between the two concepts, as follows:

• dist(A, B) = 0. In this case, the two concepts are comparable and equivalent
(A ≡ B). This can be the case of concepts that are synonyms if comparison
is performed with linguistic criteria, or that have the same structure and are
then recognized as representing the same object if comparison is performed with
structural criteria;

• dist(A, B) < 0. In this case, concept A is semantically less complex than B
(A ≺ B). For instance, A could be a hyperonym of B according to a linguistic
comparison, a more generic term according to reasoning with description logics,
a super-class in a RDF tree or a category of higher level than B according to a
hierarchy such as those considered by Yahoo! or Google.

• dist(A, B) > 0. In this case, B is semantically less complex than A (A � B).

7



• dist(A, B) = ⊥. In this case, the two concepts are not comparable, that is, no
relation between the two concepts exists according to the α affinity.1 Anyway,
other semantic relations may exist between A and B.

In the first case α(A, B) = 100%; in the second and third cases 0 < α(A, B) < 100%;
while in the last case α(A, B) = 0. As a consequence, the α affinity characterizes
hierarchies of concepts, which can be represented as a forest, where concepts that are
not comparable belong to different trees. As an example, let us consider the ontology
shown in fig.1: edges in solid lines are those produced by the α affinity, while dashed
edges are obtained from other semantic relationships. Hence: “books” is a concept
more complex than “publications”, while “Tweety” and “dogs” are not comparable
either with α or with other semantic relations; dist(“setter”, “animals”) = 3,
dist(“animals”, “canaries“) = −2, and dist(“birds”, “comics”) = ⊥.

The hierarchy of SONs is obtained applying the dist matching function to the
knowledge held by peers. It is worth to notice that using the dist function alone
for building the overlay topology does not make the ontologies held by peers poorer.
Rather: for the sake of building the overlay topology, orion considers only a subset
of the relations among concepts, so that the graph among concepts can be pruned to
a forest. But each peer maintains the whole – richest – graph that can be built with
the concepts it knows using all the affinity relations the semantic engine is able to
find.

2.2 Architecture of peers

The functional architecture of a peer participating in orion is composed of two plans,
each involving two logical layers (fig.2). The data plan is composed by the content

layer and the ontology layer. In the former, the databases and content repositories
are maintained, that is, the collection of all documents known by the peer. The latter
includes the ontology known by the peer. The control plan provides the mechanisms
to maintain both contents and ontology, and to build the overlay and provide the
communication primitives over it. At the communication layer, the suite of orion

protocols is executed, which performs overlay maintenance, and message transmission
for both knowledge and content retrieval from other peers in the system. At the
semantic layer, a semantic engine operates, able to perform semantic reasoning on both
the contents locally held and contents and knowledge learnt from other peers along
the system lifetime. The query manager takes in charge the processing of messages
received from the communication layer, to supply it with indications about further
message forwarding. The ontology manager maintains the local ontology according
to the results obtained by the semantic engine in processing concepts and contents
locally owned.

1This may also be the case of concepts described with different formalisms, such that the semantic

engine is not able to find any relation among them.
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Figure 2: Functional architecture of peers

In this work, the focus is on the communication layer, provided that the semantic

engine satisfies the assumptions discussed in sec.2.1. The communication layer in-
volves a P2P routing module that takes in charge the forwarding of messages using
the overlay links among peers, and interacts with underlying network protocols. The
topology manager maintains the information about the overlay topology, that is, the
identities of adjacent peers. The ontology-based addressing exploits the semantic en-

gine to discover whether a query is arrived at the destination, that is, a response can
be generated locally, or it must be further forwarded and to what neighbors.

As a preliminary operation at a peer bootstrap, the ontology manager uses the
semantic engine to extract concepts from the local contents and to produce the local
ontology. Concepts are linked to the local contents concerning them. The semantic

engine is used for two tasks:

1. maintenance of the local ontology: this is performed every time a concept is
either added to or removed from the local ontology. The former event happens
when new contents – describing concepts not included so far in the peer’s on-
tology – appear at the content layer, or when the peer learns new knowledge
from other peers. The latter event may happen when all contents related with a
certain concept are removed from the peer. Yet, a peer could also choose to not
loose knowledge also if no contents related with it are maintained locally. Upon
one of those events, the ontology manager uses the semantic engine to adapt the
ontology graph;

2. cooperation with the communication layer: for overlay adaptation upon join/leave
requests from peers, and for query processing.

As far as the latter point is concerned: each message received by a peer is handed
over by the P2P routing to the ontology-based addressing, which in turn exploits the
semantic engine through interaction with the query manager. The reply of the query
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manager is used by the ontology-based addressing to decide the next action. In case of
join/leave events of peers, the ontology-based addressing interacts with the topology

manager to maintain up-to-date neighborhood information: the position in which a
peer is connected to the overlay topology depends on the knowledge it owns. In
case of queries – to retrieve either knowledge or contents – the query manager tells
the ontology-based addressing whether a reply can be generated locally and how it
is, or whether to perform further routing. In the latter case, the response of the
query manager is interpreted by the ontology-based addressing module – also using the
information of the topology manager – to supply the P2P routing with the address of
the appropriate next hop peer. In this respect, the semantic layer operates as a sort
of routing protocol.

Through the synergy of the semantic and the communication layers, orion orga-
nizes the overlay topology in order to route queries – for both contents and concepts
– right to the peers able to satisfy it. This achieves a twofold goal: (i) bandwidth is
saved, by avoiding the routing of queries to all peers; (ii) load is reduced, as query
processing is performed only at peers having high probability of being able to reply.
Indeed, the processing required for query routing is more lightweight than full concept
matching. We describe in the next section how this is accomplished.

3 ORION

In this section, an overview of the hierarchical structure of the overlay topology is
provided. The protocol for overlay construction and the protocol for query routing
and processing are then described.

3.1 Overview of the hierarchical structure

The overlay network has a forest topology, with root nodes of trees connected to one
another. Nodes of the trees are SONs [6]. A SON root of a tree is denoted as first level

SON. A SON groups peers owning affine concepts, within a certain degree of affinity.
A SON is characterized by a manifesto, which is an ontology – possibly composed of a
unique concept – representing the “interests” the peers in the SON have in common.
A peer may belong to several SONs, as many as manyfold are its interests. Each
SON S has a root peer rpS , which usually is the SON’s founder. SONs are linked
together depending on the result of the dist function applied to their manifestos. For
instance, in the example ontology shown in fig.1, three trees could be characterized by
neglecting the dashed links among concepts. The SONs members of the forest are not

predetermined. The forest is built up dynamically from the concepts held by peers; a
SON exists only if at least one peer owns the concept(s) represented by its manifesto.
Changes in the knowledge held by peers may raise changes in either the membership of
peers to SONs, or to the forest topology. The former case happens when a peer either
acquires new concepts not related with any other concept known before, or deletes all
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Figure 3: Example of system and overlay topology

concepts that determine its membership in a certain SON. The latter case happens
when either a new SON must be created or a SON becomes empty of peers, as a
consequence of changes in peers’ ontologies. It is worth to notice that, although the
overlay network is built using a subset of the semantic relationships among concepts,2

each peer maintains a complete ontology. For instance, the ontology of peer p2 in fig.3
maintains edges richer than those produced by the hierarchical relation α alone.

SONs are exploited to ease information retrieval and to reduce the overhead in-
volved with query processing. Let us consider the peers in fig.3: peer p1 belongs to
four different SONs, while SON “Tweety” includes three peers. The overlay produced
by orion is that represented in fig.1 with solid lines, and with additional links con-
necting the first level SONs. If a query is generated by peer p3 about the concept
“books” and related contents, this query does not need to be processed by all peers in
the system. It is forwarded through the overlay till it reaches the appropriate SON.
There, the query is processed by every peer in the SON, using the whole ontology
each peer owns. Navigation in the overlay is performed following the links between
peers that are semantically significant with respect to the query. In the example, p3

belongs to the SON “publication”; by comparing the manifesto of the SON with the
searched concept, p3 discovers that the query must be forwarded to the downstream
SON “books”, where the query is processed by p4.

Peers do not know the overall overlay topology. Each peer only knows to what
SONs it belongs, and the identity of the root peers of these SONs. Root peers
additionally know the root peers of the upstream and downstream SONs, and the
membership of their SONs. This is a minimal requirement, adopted when orion

operates stateless. A stateful mode of operation is also possible, with root peers
knowing the manifestos of upstream and downstream SONs. The stateful mode is
more expensive in terms of memory usage at peers, but helps speeding up query
processing. A root peer of a first level SON knows the root peers of the other first
level SONs. In stateful mode, it also knows the manifestos of those SONs. In fig.4, an

2Namely, only the relations due to α affinity.
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Figure 4: Data structures maintained at peers

entry of the SON table maintained by peers is shown; the dashed fields are maintained
only for the stateful mode. The SON identifier is a couple 〈founder ID, SON tag〉,
where the latter field is a sequential number produced by the founder, in order to
differentiate SONs created by the same peer. The founder ID is a network address:
when a message must be forwarded to an upstream or downstream SON, the SON ID
supplies the address of its root peer, to be put into the message. An entry is recorded
for each SON to which the peer belongs; the SON table is maintained by the topology

manager. The policies for overlay construction, and query processing and routing, are
implemented by the ontology-based addressing module. In particular, as far as overlay
construction is concerned, the ontology-based addressing module takes in charge the
processing of control messages exchanged in order to characterize the SONs a peer
should join; this phase is discussed in sec.3.2. In sec.3.3, the procedures for contents
and knowledge lookup are described.

3.2 Construction phase

When a peer p wants to join the system, it subscribes to orion by sending a JoinReq

to a orion server responsible for managing the membership.3 The server provides p
with k addresses of peers, q1 . . . qk, already belonging to the system, which will help p
in finding the appropriate SONs to join to. The goal is to include p into the existing
SONs that best fit its interests; in case this fails, new SONs can be created. p sends
to q1 . . . qk a ManReq message, asking for the manifestos of the SONs they belong to.
For each concept c that p has in its own ontology and for each received manifesto, p
computes dist(c,manifesto), in order to find the manifesto nearest to the considered
concept, that is, the one producing the smallest result (in absolute value). Let q be
the peer that sent such a manifesto, and S the SON to which the manifesto (manS)
belongs. Then p sends an InterestQuery to q for the concept c.

The InterestQuery navigates through the overlay, driven by the semantic links

3The server address can be written in the orion executable. We do not address in this work

aspects related with server management.
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Figure 5: Structures of ManReq, InterestQuery, InterestReply, and
InterestQuery1st

among SONs, with the purpose of finding the most appropriate SON p should join as
an owner of concept c. SONs membership is decided according to a radius parameter:
if the absolute value of dist between a concept and the manifesto of a SON is < radius
then the peer owner of the concept can become a member of that SON.

The InterestQuery is firstly sent by q to the root peer of S. The InterestQuery
is received by the P2P routing that forwards it to the ontology-based addressing, which
in turns obtains from the topology manager the manifesto of the local SON with
which the concept in the InterestQuery must be compared, and passes it to the
query manager waiting for a reply. The semantic engine of the root peer applies the
dist function and performs the following actions:

• if 0 ≤ |dist(c, manS)| < radius then an InterestReply is sent back from the
root peer to p, saying that p should become a member of the SON;

• otherwise, if dist(c, manS) ≤ −radius then the InterestQuery is sent to the
upstream root peer;

• else (case dist(c, manS) ≥ radius) the InterestQuery must be sent down-
stream.

In the first case, when a peer p receives a positive InterestReply, the message
is handed over by the P2P routing to the ontology-based addressing module, which
checks whether InterestReply.result has value Yes. In this case, the ontology-

based addressing module extracts from the message the semantic information, which is
passed to the topology manager to create a new entry in the SON table, with the format
shown in fig.4, initialized with the data from the message. Each InterestQuery
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produces the connection to only one SON; a peer may belong to as many SONs as
the number of concepts it knows.

In the second case, no upstream root peer could exist if the current SON is a first
level SON. In stateful mode, the current root peer computes the matching between c
and the manifestos of all the other first level SONs; the interactions among modules
are the same as described above. The InterestQuery is forwarded to the root peer of
the SON whose manifesto minimizes the value of dist with c. In stateless mode, the
InterestQuery is encapsulated into a first level Interest Query, InterestQuery1st,
by pre-pending a header containing the list of IDs of first level SONs. The root peers
of these SONs are visited in order: each root peer computes dist(c, manS) with manS

its own manifesto; if the result is ≥ 0 then the InterestQuery must be processed
in the local tree and its processing is performed as before after dropping the added
header. Otherwise, the InterestQuery1st is forwarded to the next root peer in the
list, after deletion from the list of the current SON ID. It may occur that no tree is
appropriate for p. The InterestQuery arrives at a root peer such that its SON does
not match with the InterestQuery, the other trees in the forest have already been
explored and the root peer’s descendants do not match either. In this case, the root
peer sends back a negative InterestReply to the peer source of the InterestQuery,
which must create a new SON using the procedure described in sec.3.2.1.

In the third case above, InterestQuery processing is different basing on the mode
of operation. In stateless mode, the InterestQuery is sent to the root peers of all
descendant SONs. The current root peer waits for their replies, consisting in the
value of the dist function computed on c and their manifestos: the current root peer
delegates further InterestQuery processing to the best child – the one minimizing
dist – basing on the obtained results. If many children return the same value of dist,
one of them is chosen randomly. In stateful mode, the current root peer performs
the function computation on all of its children manifestos in order to choose the
appropriate child to which to forward the InterestQuery.

Two aspects must be highlighted. InterestQuery processing is performed only by
root peers, thus limiting load on other peers. Furthermore, processing at root peers
does not require to perform full concept matching – which could be very expensive in
terms of latency depending on the semantic formalisms adopted – but only the much
more lightweight computation of the dist function, thus speeding up the insertion of
a peer in the overlay.

3.2.1 Creation of a SON

A SON is created by a peer when a negative reply is obtained for an InterestQuery.
This happens for the first peer in the system, and when the knowledge held by the
peer is not affine to any existing SON. A new SON could be created in one out of
two positions. It could be a first level SON, or a leaf SON. The first case occurs
when the InterestQuery does not match with the manifesto of any first level SON.
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The second case occurs when a root peer discovers that an InterestQuery does not
match with the local manifesto and is semantically more complex, but either it has
not any child or none of its children has a better match.

In both cases, the procedure is as follows: the peer p that received a negative
InterestReply for a concept c computes the cluster for c of scope radius, that is,
the set of concepts c′ in its ontology such that |dist(c, c′)| < radius.4 The peer then
records in its data structures the existence of a SON S having such a cluster as
manifesto, and the couple 〈p’s address, p’s SON counter〉 as identifier.

S is inserted into the forest in different ways, depending on its position. If S is
a first level SON, then its ID is sent to all other first level SONs. The root peers of
those SONs update their list of first level SONs. If S is a leaf SON, p sends to the
root peer of the parent SON – that generated the negative InterestReply – a request
of becoming its child and its own ID. The data structures of the two root peers are
updated so as to record the parent/child relation. In both cases, when operating in
stateful mode, the manifesto manS is also sent.

When operating in stateful mode, the overlay can be re-organized. If S is a first
level SON, then the root peers of the other first level SONs – upon receiving manS

– compare their own manifestos with that of S. In case the root peer r of a SON
notices that S should be its parent, r asks the root peer of S to become its child,
deletes its data structures as a first level SON and notifies the remaining first level
SONs that it must be removed from their list. If S is a leaf SON and its parent SON
has other children, then the root peer of the parent SON Sp compares manS with
the manifestos of the other children. The children of Sp that should become children
of S – having a manifesto semantically more complex that manS – are notified of
the needed re-organization and pruned from their current position. Their root peers
must require a re-join to the root peer of S. Reorganization is not performed in
stateless mode, because the reduced state information available at peers makes it too
expensive.

With the aim of better understanding the search policy described in the next
section, a characteristic of the forest must be pointed out. Given a set of peers
having certain sets of concepts, the structure of the forest is not uniquely determined.
Indeed, it depends on the peer addresses initially supplied to the peer, and on the
navigation path through the forest, which changes along with its structure. As a
consequence, if two peers own the concept represented with a shadow circle in fig.6,
one of them can join the SON with manifesto M1 and the other peer can join the
SON with manifesto M2. The following property can be proved.

Property 1 The manifesto manS of a SON S is the center of the concepts repre-
sented in S. The minimum distance between the manifestos of two adjacent SONs is
radius. The intersection between two adjacent SONs might be not empty.

4Concepts related with c with other affinity notions may exist, but for them p must be included

in different SONs.
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Figure 6: (a) Example of forest structure. (b) Structures of SearchQuery and
SearchReply

Proof. The first claim immediately derives from the consideration that a positive
InterestReply is generated to a peer owner of a concept c such that |dist(c, manS)| <
radius, that is, −radius < dist(c, manS) < radius. Hence, concepts in a SON are
either semantically more complex or semantically less complex than manS . The
second claim is proved in fig.6. Let us suppose that a SON S1 with manifesto M1
is first formed, and that radius = 3. When an InterestQuery(M2) is generated by
a peer p, with dist(M1, M2) = 3, p must create a new SON S2 with manifesto M2
upstream. The third claim is proved by the arguments above. ♣

The nondeterminism evidenced by the property is the price to pay to allow peers
to not know anything about the system apart for their own local knowledge. If all the
knowledge that could ever appear in the system were known in advance, then clearly
separated SONs could be characterized a-priori, at the expenses of lower flexibility.

3.3 Lookup phase

Peers belonging to the system may look for concepts or contents held by other peers.
Content search is performed using semantics, that is, a user specifies the concept s/he
is interested in and the system provides him/her with a list of contents concerning
that concept.

In fig.6(b), the structures of both SearchQuery and SearchReply are shown. They
differ in a few fields from the query and reply to join the system. In a SearchQuery,
the source peer specifies the concept c it is looking for and the threshold thsh deter-
mining the search scope. A concept c′ satisfies the search if the affinity relationship
between c′ and c has a weight ≥ thsh.

Processing a SearchQuery is much the same as processing an InterestQuery. A
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peer p generating a SearchQuery(c, thsh), matches c against the manifestos of all
the SONs it belongs to, to find out the manifesto that minimizes dist. Let S0 be
such a SON, with root peer rp0. Then, p sends the query to rp0, that routes the
query according to the same policy adopted for routing an InterestQuery, up to the
most appropriate SON in the forest, let it be SX . However, processing a SearchQuery

differs from processing an InterestQuery in the scope of diffusion once arrived in SX .
Some properties can be derived about where to look for the replies to a SearchQuery,
depending on whether the searched concept is in the manifesto of a SON or not, and
on the value of thsh.

It is worth to notice that not all peers included in SX may be able to generate
replies to the query. The peers in SX having concepts such that their affinity degree
d with c is d < thsh do not reply. In the example of fig.6(a), an overlay with
radius = 3 is shown. Let us suppose that a SearchQuery(C1, 0.7) is processed.
The SearchQuery is forwarded up to the SON with manifesto M1 and there it is
broadcast to all peers. However, the peers owning concepts C1 and C2 generate
a SearchReply, but the peers owning concept C3 do not generate replies because,
although dist(C3, M1) = 2 < radius, the affinity degree between C1 and C3 is
0.144.5

Query processing differs from InterestQuery processing because in some cases
the replies can be located in different SONs. Because of the nondeterminism in the
forest construction discussed in sec.3.2.1, peers with the same concept may belong
to different SONs. In different peers a certain concept could be linked to different
contents. With the aim of finding all the contents related with a concept, a portion

of a tree suitable to find responses must be characterized. The following properties
can be easily proved.6

Property 2 If a SearchQuery(M, thsh) is generated, with M manifesto of a SON
S, and ∀c ∈ S such that |dist(c, M)| = radius − 1, affinity(c, M) < thsh, then all
possible replies can be found in S, in the parent SON and in the children SONs.

Proof. As shown in fig.6, and by Property 1, the intersection between two adjacent
SONs may be not empty. As a consequence, a concept affine to M within thsh, and
semantically less complex than M , can be either in S or in its parent SON. Peers with
such a concept could join anyone of the two SONs, that must thus be both visited.
On the other hand, the hypothesis about the concepts neighbors of M within radius
guarantees that the manifesto of the parent SON and its other descendants do not
satisfy the query; hence, the research must not be continued in ancestors of S farer
than its parent, nor in the other children of its parent, thanks to the transitivity
property. Similar symmetrical arguments apply for the children SONs of S. ♣

5If no other affinity relations between the two concepts exist besides of those depicted.
6For simple ontologies where edges are not weighted – such as RDF trees or WordNet – simplified

properties can be proved. They are reported in Appendix A.
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Property 3 If a SearchQuery(C, thsh) is generated, with C a concept included in
a SON S and dist(C, M) < 0, and ∀c ∈ S such that dist(M, c) = −radius + 1,
affinity(C, c) < thsh, and ∀c ∈ SP parent SON of S such that c is semantically
less complex than MP , affinity(C, c) < thsh, then all possible replies can be found
in S and SP . If dist(C, M) > 0, and ∀c ∈ S such that dist(M, c) = radius − 1,
affinity(C, c) < thsh, and ∀c ∈ SC child of S, such that c is semantically more
complex than MC , affinity(c, C) < thsh, then all possible replies can be found in S
and its children SONs.

Proof. The first claim is proved in fig.6. By hypothesis, all concepts descendant of
M1 do not satisfy a query on the shadowed concept; hence, by the transitivity prop-
erty, no reply can be found in downstream SONs. Similarly, no concept semantically
less complex than M2 satisfies the query; hence, no reply can be found upstream
by the transitivity property. Similar symmetrical arguments are used to prove the
second claim. ♣

Let us indicate with SU a generic upstream SON of S, and with SD a generic
downstream SON of S.

Property 4 If a SearchQuery(C, thsh) is generated, with C a concept included in a
SON S, then all possible replies can be found in S, and

• in the ancestor SONs up to SU satisfying ∀c ∈ SU : dist(c, manU ) = −radius +
1, affinity(c, C) < thsh and in the parent SON of such SU ,

• in the descendant SONs up to SD in each branch, satisfying ∀c ∈ SD : dist(c, manD) =
radius − 1, affinity(c, C) < thsh and in all children of all such SD.

Proof. The limitation on the set of ancestors to be visited derives from the extension
of the first claim of Property 3. The limitation on the set of descendants derives from
the extension of the second claim of Property 3. The additional levels to be visited
are a consequence of the non-empty intersection between adjacent SONs (Properties
1 and 2). ♣

As a consequence of the properties above, processing of a SearchQuery is per-
formed as follows: once the most appropriate SON SX has been found, the SearchQuery
is broadcast by the root peer rpX of SX to all the members of SX . If a peer in SX hav-
ing a concept c such that |dist(c, manX)| = radius− 1 can reply to the SearchQuery

and thus has affinity(c, C) ≥ thsh, such a peer sends a notification to rpX that the
SearchQuery must be furtherly forwarded to upstream/downstream SONs, depending
on whether c is semantically less complex or more complex than manX respectively.
Upon receiving such notifications, rpX forwards the SearchQuery to the parent and
children root peers as appropriate, marking it as re-directed. Marking is needed to
force processing of the SearchQuery in a SON such that the searched concept could
be too far from the manifesto, but sufficiently near to concepts held in the SON. This
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procedure is recursively repeated in upstream and/or downstream SONs till reach-
ing SONs where the equations in Property 4 hold. Each root peer receiving such a
re-directed SearchQuery, broadcasts it in its SONs waiting for possible notifications.

A peer generating a SearchReply includes in it the name of the contents locally
held, linked to the concepts that allow the SearchReply generation. Content name
and peer address allow the querier to download the contents it is interested in.

3.4 Discussion

In the orion description no assumption has been done with respect to the value of
radius, which affects the degree of aggregation of peers into SONs. The larger radius,
the more aggregate are peers, the lower is the overhead for overlay management, the
more probability a search with broad scope has of finding all the responses in a certain
SON, the more peers in the SON have to uselessly process a search with narrow scope
without being able of generating a reply. Hence, the value of radius should be chosen
also basing on the expected scope of user searches.

For the sake of simplicity, in the previous description we neglected the possibility
that a peer belong to multiple SONs. Indeed, this case can be exploited to opti-
mize query routing. A root peer belonging to multiple SONs can match the concept
contained in a query with the manifestos of all SONs it is a member of, and choose
the most appropriate SON. This policy allows a query to jump through the forest
structure, taking a sort of short cut to reach the appropriate SON. As a consequence,
the more manifold and heterogeneous are the interests of the peers, the better is the
system behavior.

So far, only the case of content lookup has been considered. The system could
be as well used for knowledge retrieval. In [3], ProbeQuery messages can be used
to discover concepts related with knowledge already held by a peer, and peers with
related knowledge. Using these messages in orion would allow to enrich peer on-
tologies with edges pointing to other peers possibly included in different SONs, thus
also enriching content search results. However, orion should be slightly modified in
order to allow the dissemination of a SearchQuery into remote SONs where affine
peers are connected.

To cope with leave requests from root peers, a solution could be that of recording
in each peer the same data structures maintained at the root (fig.4), as far as the
tree topology is concerned. By contrast, the SON membership can be transparent
to peers, in case a routing infrastructure is built within each SON to perform intra-
SON query broadcast. The topology of the infrastructures could be chosen in order
to optimize either network aspects or application aspects. In the former case, low
number of duplicates and robustness could be achieved by adopting for instance a
hypercube topology. In the latter case, the peers in a SON could be organized in a
tree structure with peers more similar to the manifesto, or more useful in terms of
replies generated in the past, nearer to the root peer.
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As an alternative, SONs could be unstructured and their membership unknown,
and epidemic techniques [1] could be used to diffuse InterestQuery messages. These
techniques allow to save bandwidth with respect to flooding, at the expenses of higher
latency in reaching all nodes.

4 Conclusions

In this work we describe the orion infrastructure for the construction of an over-
lay network in peer-to-peer systems in order to ease semantic retrieval of contents
and concepts. The overlay topology is based on affinity amongst the concepts held
by peers; peers are grouped in Semantic Overlay Networks according to their in-
terests. orion does not make any assumption about the concepts held by peers,
nor an a-priori knowledge of those concepts is needed. The procedures to build the
infrastructure and to route queries for concepts and content retrieval are described.
Properties are derived about the structure of the overlay, to provide guarantees about
the capability of satisfying queries. The implementation of orion is currently on-
going in the framework of a simulation environment, with the aim of measuring its
performance in comparison with other solutions proposed in the literature.
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A Properties for simple ontologies

In this appendix, we prove some properties about the overlay infrastructure built by
orion in case of ontologies with edges not weighted.

Property 5 If a SearchQuery(M, thsh) is generated, with M manifesto of a SON
S and thsh < radius the affinity threshold, then all possible replies can be found in
S.

Proof. Let us consider fig.6(a), where solid lines represent semantic relations ac-
cording to the α affinity within a SON, and dashed lines represent the same relation
between concepts in different SONs. The radius is 3, that is, concepts are included
in a SON such that their distance from the manifesto is at most 2. If a query is
generated for M1 with threshold 2, replies for it are all the concepts included in the
SON having M1 as manifesto. ♣

Property 6 If a SearchQuery(C, thsh) is generated, with C a concept included in a
SON S and thsh < radius the affinity threshold, then all possible replies can be found
in S, in the parent SON, and in the children SONs of S.

Proof. Let us consider fig.6(a), and let us suppose that a query is generated for a
concept C with threshold 2. If C = M1 then the same arguments as before apply. If c
is a concept more complex than the manifesto and at the maximum allowed distance
from the manifesto, such as C3 in the figure, then all replies to the query are found
in the SON, and in the child SON with manifesto M3, up to and including the peers
with concepts at distance 1 from M3. Similar arguments apply in case c is a concept
less complex than the manifesto and at distance radius − 1 from it, to prove that
responses can be found in the parent SON with manifesto M2. ♣

Property 7 If a SearchQuery(C, thsh) is generated, with C a concept included in a
SON S and thsh ≥ radius the affinity threshold, then all possible replies can be found
in S, and in the ancestor and descendant SONs of S such that the number of hops
between the root peer of S and their root peers is equal to dthsh/re.

Proof. The proof can be easily obtained by generalizing the previous case. ♣
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