
Epidem ic Diffus ion o f Data
in Opportunis tic Netw orks

Fran cesco Giu d ici, Elen a Pagan i,
Gian Paolo Ross i

RAPPORTO INTERNO No RT 20- 07

UNIVERSITÀ DEGLI STUDI DI MILANO
Dipartim ento di Inform atica e Com unicaz ione

Epidemic diffusion of data in opportunistic networks

Francesco Giudici, Elena Pagani, Gian Paolo Rossi
Information Science and Communication Department

Università degli Studi di Milano, Italy
Email: {fgiudici,pagani,rossi}@dico.unimi.it

Abstract—Opportunistic networks have interesting com-
munication behavior that could enable to bring ad hoc
networks to people’s everyday life. To allow this to happen,
several efforts are still required to provide routing strate-
gies capable to efficiently cope with the highly variable
network topology and the need to tolerate temporary
network partitions. This paper focuses on this argument
and proposes the use of epidemic algorithms to provide
best effort data delivery to all nodes in an opportunistic
scenario. The main contribution of the paper is to show
that the approach actually has the ability to deal with the
mentioned constraints and outperforms flooding to diffuse
packets over the network. The paper presents the first set
of simulation results and highlights the parameters that
influence the performances of the protocol. These results
represent a sort of worst case analysis of the approach
and are the starting point to design an adaptive diffusion
protocol which is capable to adapt to both the dynamics
of the network and the mobility conditions.

I. INTRODUCTION

Opportunistic networks, ONs, are delay tolerant net-
works in which the wireless connectivity for data diffu-
sion and gathering can be established by exploiting the
contact opportunity of another radio device in proximity.
If the proper contact is not available, data is cached
locally waiting for an opportunity of forwarding that
mobility will eventually create. In such a wireless infras-
tructure, each mobile node plays a threefold role: (i) end
system of one-to-one or one-to-many communications,
(ii) packet forwarder, when the proper contact is met,
(iii) packet transporter of cached packets, when the
network is partitioned. Although opportunistic networks
have several characteristics in common with ad-hoc
networks, their specific behavior hinder borrowing ad-
hoc protocols for the new needs. In particular, the
highly variable network topology and the need to tolerate
temporary network partitions (due to the fact that nodes
can be temporarily out of range) heavily influence the
design of routing protocols over opportunistic networks.
The network dynamics force to adopt totally stateless and
distributed approaches to routing, while the tolerance to

network partitions can only be achieved through a proper
combined exploitation of caching packets and node mo-
bility. This paper considers the routing over opportunistic
networks to support communication schemes of the form
one-to-all or one-to-many, where with the term many we
refer to a dense membership of a group G. The basic
idea of this work is the use of epidemic algorithms to
act as kernel of a routing protocol fulfilling the above
requirements and having more care than flooding of
network and node resources. Epidemic algorithms have
been extensively studied in the literature and possess in-
teresting networking capabilities that, for instance, have
been recently exploited to ensure reliability in MANETs
with low mobility [4] and data aggregation over a group
in networks with fixed nodes [10]. By relaxing the pro-
tocol requirements to meet basic best effort service, the
capability of epidemic algorithms to rapidly disseminate
data from a source through purely local interactions [7]
can be profitably utilized for communications in a mobile
and highly dynamic network. In this paper, we describe
epidemic algorithms as an alternative to flood packets to
provide best effort data diffusion over a dense group in
an opportunistic scenario. The main contribution of the
paper is to show that the approach actually has the ability
to cope with the mentioned constraints of ONs and
outperforms flooding to diffuse packets over the network.
The paper presents the first set of simulation results and
highlights the parameters that influence the performances
of the protocol. These results are the starting point to
design an adaptive diffusion protocol which is capable
to adapt to both the dynamics of the network and the
mobility conditions.

II. EPIDEMIC APPROACHES TO DATA DIFFUSION

This section proposes a simple classification of the
different types of epidemic algorithms that can be con-
sidered for data diffusion to all nodes in the system or to
all members of a densely populated group. In the sequel,
we use the term data to indicate the packet payload gen-
erated by the application running at a given source node.

Due to the delay tolerant nature of ONs, data diffusion
is assumed not to have real time requirements so that
the eventual and best effort delivery to destinations is
suitable to meet the application’s needs. To this class of
application belong, for instance, the diffusion of feeds,
advertisements and news (one-to-many scheme) or any
other type of asynchronous data, such as e-mail and data
from distributed sensors, that need to be collected from
server nodes (many-to-one scheme).

In the opportunistic scenario we consider, all nodes
are supposed to run the epidemic algorithm and a
few of them can act as source of the data to
broadcast. Sources are unaware of destination ad-
dresses and group cardinality. The communication
scheme is one-to-many. Each node p maintains two
data structures: the neighbors_listp and the
data_descriptor_listp. The former is the list of
p’s neighbors, i.e. the nodes within the radio range of
p. The neighborhood information is achievable either
from the MAC layer or through network-layer beacons,
such as those exchanged by many routing protocols (e.g.,
[11]). The data_descriptor_listp is the list of
the descriptors of the active data the node knows, either
because they are generated by the node itself or received
through epidemic contacts with other nodes. A data
descriptor is a tuple 〈source, seq#, data, data-lf〉, where
seq# helps to uniquely associate a data to its source and
data− lf represents the data lifetime and is specified by
the source;1 when it expires, all nodes with the data in
the data_descriptor_listp remove the entry in
the list.

Flooding can be considered a trivial example of
epidemic algorithm: as soon as a node knows a new
data, it immediately attempts to broadcasts the data to
all its neighbors, except (when possible) the one from
which the packet has been received. The time-to-live
(TTL) of the packet is set to∞. The pseudo-code for this
approach is shown by Algorithm 1. Flooding has known
drawbacks that become very critical when referred to op-
portunistic networks. The generation of O(N 2) packets,
with N the number of nodes in the system, negatively
affects the device batteries lifetime. This progressively
reduces the connectivity opportunity and favours the
generation of network partitions. Interestingly, the same
partitions it concurs to generate turn against the flooding
performances. In fact, as shown by simulations (sec.IV),

1As ONs are delay tolerant networks, the lifetime must be not
too short, that is, it must not be a parameter critical for the correct
operations of the algorithm.

Algorithm 1 Pseudo-code for the flooding approach
Initiator:
when data generated do

broadcast (data) to all one-hop neighbors;
add data to local data_descriptor_list;

end do

Node:
when data received do

if 1st time this data received then
add data to local data_descriptor_list;
broadcast (data) to all one-hop neighbors except the
one from which the data has been received;

end if
end do

network partitions become a barrage that flooding cannot
get through and, consequently, heavily reduce its capa-
bility to reach all the nodes in the system.

Unlikely flooding, a notable characteristic of many
epidemic algorithms is that data are cached by nodes,
and their diffusion takes place periodically. This mech-
anism fits well with the behavior of opportunistic net-
works; in fact, in the time interval between two consec-
utive rounds of the algorithm, nodes move, change their
neighborhood and get over partitions, thus allowing to
reach the entire population of nodes. For our purposes,
we introduce a simple classification of epidemic algo-
rithms based on which node, of a pair of communicating
nodes, is responsible for initiating the data exchange and
on whether the exchange is unidirectional or bidirec-
tional.

As far as the initiator is concerned, approaches can
be classified as receiver-based and source-based. In the
receiver-based case, a node periodically chooses one
(or more) of its neighbors and asks it for data. This
is also known as PULL approach, whose pseudo-code
is provided by Algorithm 2: the get_neighbors
procedure extracts one or more nodes from the
neighbors_list; the get_data procedure extracts
one or more data from the data_descriptor_list.
All nodes start executing both the Active and the Pas-
sive threads at the bootstrap; as the initialization of
the Active Thread, the timer for periodic execution is
set. In this and the following algorithms we assume
that, as soon as a data is generated, the node inserts
it in the local data_descriptor_list. The PULL

approaches may differ for the amount of exchanged
data: a node can send one or a subset of the data in
its list, chosen according to either a deterministic or

Algorithm 2 Pseudo-code for the PULL approach
Receiver p: //Active Thread
when timer expires do

contact← get_neighbors();
send (request for data) to contact;
receive (reply) from contact;
if reply includes unknown data then

add data in reply to local
data_descriptor_list;

end if
set timer;

end do

Node: //Passive Thread
when request received from p do

if any data in data_descriptor_list then
data← get_data();
send (data) to p;

else
send (empty reply) to p;

end if
end do

a probabilistic policy, or even all the data. In some
proposals, nodes initially exchange a digest of the owned
data to selectively decide the data to forward. The PULL

approach has been, for instance, proposed in [6] for
updating multiple copies in distributed databases.

This approach is not promising for the scenario we
are considering where very few sources are supposed
to diffuse to many receivers. However, the PULL based
approach could be considered in combination with a
PUSH based approach when the push process has likely
diffused the data to the most part of destinations. As
simulations will show in the sequel, at this point the
few receivers have many sources to query for data and a
PULL based approach can be helpful to selectively reach
the total population of nodes at a reduced cost in terms
of exchanged packets.

The aforementioned receiver-based approach differs
from the mechanisms proposed for warning dissemi-
nation in vehicular networks, such as IVG [1], where
the diffusion is initiated by the source and continued
by forwarders according to a PUSH scheme, but the
decision on which node should further forward the data
is left to the recipients in communication range with
the current forwarder. In this paper, the classification
puts the emphasis on the node that is in charge of data
forwarding, rather than on the nodes deciding the identity
of the next forwarder(s).

Source-based approaches can be further classified in

PUSH and PUSH/PULL. In both cases, a node p having
a data dp to diffuse periodically selects a neighbor q

and sends dp to it. In the PUSH/PULL approach, if q

has a data dq, then p and q exchange the missing data
at the contact opportunity. The pseudo-code of the two
approaches is shown by Algorithms 3 and 4. All nodes
start executing the Passive Thread at the bootstrap; the
Active Thread is started when the first data is inserted
into the local data_descriptor_list.2 As we

Algorithm 3 Pseudo-code for the PUSH approach
Active Thread:
when timer expires do

contact← get_neighbors();
data← get_data();
send (data) to contact;
set timer;

end do

Passive Thread:
when data received do

if notified data not in data_descriptor_list then
add data to data_descriptor_list;
if 1st data in data_descriptor_list then

start Active Thread;
end if

else
discard duplicate data;

end if
end do

mentioned before, in the PULL approach, a data can be
diffused only after the explicit request of an active node.
By contrast, in the source-based approaches, whenever
a node has a data it becomes an active forwarder of the
data. As a consequence, the number of active forwarders
increases with the time.

It is worth to notice that the PUSH/PULL approach
is suitable to accelerate the data diffusion in a multiple
source network condition or when multiple data from
the same source are concurrently active. The PUSH and
PUSH/PULL approaches have been, for instance, pro-
posed in [6] for the management of replicated databases
and in [10] for data aggregation in wireless sensor
networks.

The performances and functionalities of the three de-
scribed epidemic approaches is highly influenced by sev-
eral design issues and by their combined effects. Table I
reports the most relevant among them. The approaches

2If at a certain time all data are expired, the node halts the Active
Thread, to possibly re-start it later when a new data is either generated
or received.

Algorithm 4 Pseudo-code for the PUSH/PULL approach
Active Thread:
when timer expires do

contact← get_neighbors();
data← get_data();
send (data) to contact;
receive (data) from contact;
if data received not in data_descriptor_list
then

add data to data_descriptor_list;
else

discard duplicate data;
end if
set timer;

end do

Passive Thread:
when data received do

if notified data not in data_descriptor_list then
add data to data_descriptor_list;
if 1st data in data_descriptor_list then

start Active Thread;
end if

else
discard duplicate data;

end if
if other data in data_descriptor_list then

data← get_data();
send (data) to active node;

end if
end do

TABLE I
CHARACTERISTICS OF EPIDEMIC APPROACHES

aspect PULL PUSH PUSH/PULL

neighbor choice × × ×

epidemic round × × ×

data sent × ×

data choice × ×

neighbors × ×

broadcast usage × ×

stop condition × ×

may all adopt different policies (either probabilistic or
based on local information) to choose neighbor for data
forwarding (get_neighbors). Neighbor selection can
be performed by either sender or receivers. The epi-
demic round determines how often a node executes the
Active Thread. In both the PULL and the PUSH/PULL

approaches, a node may decide to reply with more
than one data to its querier or to the Active Thread
respectively, and may adopt different policies to extract
those data from the local data_descriptor_list.

When data are pushed, different strategies can be adopted
to decide the number of in-range neighbors that are
selected to act as data forwarder. A very conservative
approach will choose a single forwarder, while a more
aggressive policy will exploit the broadcast nature of
the radio channel to elect as forwarder all the in-
range nodes. The latter approach has obvious effects
on the data diffusion speed, but, conversely, requires to
randomize the forwarding operations in order to control
the collision rate and the duplicate generation. Finally,
the periodic diffusion of a data, adopted by both PUSH

and PUSH/PULL approaches, is useless when the data
has been delivered to all nodes. The optimal behavior
is, of course, to ensure that all nodes stop diffusing
a data when that data has been received at the last
node. This condition requires a global knowledge of the
nodes’ state and thus cannot be implemented, but can be
approximated by designing some proper stop conditions
[6]. When the stop condition is locally verified, the data
is no longer diffused.

III. MOBILITY MODELS

To evaluate the performance of epidemic approaches,
we focused on a campus scenario, where students, faculty
and staff are equipped with wireless portable devices
(palmtops, PDAs, 3G cellphones), and may either roam
through the campus area or group in interest points such
as classrooms, the student-services office or the library.

A great deal of research is currently ongoing in
order to characterize mobility models suitable for op-
portunistic networks. As observed in [2], choosing an
appropriate mobility model is fundamental to perform an
accurate analysis of protocols behavior. Mobility could
be extracted from traces of movements of nodes in
real settings; several traces are for instance provided
by the CRAWDAD community [5]. The use of traces
with simulators creates, however, some problems. Their
timescale are hardly scaled to the simulation time and
they generally model the specific behavior of a given
mobility scenario thus loosing the generality required
during the protocol design phase. Traces are more likely
useful during the validation process that during the
design and performance analysis phase. In [3], [12],
traces have been used to derive statistical distributions
describing mobility of nodes in opportunistic networks.
However, we believe that synthetic models can hardly
capture the characteristics of people mobility and, more
specifically, we envision three patterns for a campus
scenario:

• nodes could aggregate geographically in certain
sites. This model captures the high density of stu-
dents in a classroom, or of people in the library;

• functional aggregation may describe the behavior
of users who cooperate, and are thus likely to
meet often, but not necessarily in a fixed site and
not necessarily all together. E.g., a subset of the
members of a research group could meet in the
office of one of them, or in the cafeteria;

• nodes could move in a swarm, such as in the case
of a group of students visiting a site. Some models
describing this pattern are presented in [2].

Mobility of people in an opportunistic scenario is more
likely modeled by the combination of the above three
patterns with some random movements. At the best of
our knowledge, the research community has not yet
produced a synthetic model that addresses these issues
or adopts the statistical distributions inferred from traces.
For this reason, this is a high priority research topic
within our research activity plan. However, the main
purpose of the work described in this paper is the
analysis of epidemic algorithms in a very basic mobility
scenario where nodes move randomly without exploiting
any movement regularities. The aim of capturing its
native ability to provide hop-by-hop data diffusion in the
worst mobility and connectivity conditions. This would
represent the benchmark analysis of the protocol that
has to be adopted to compare the protocol behavior
when more realistic scenarios are adopted and to better
understand how the protocol may benefit of aggregation
points to improve the efficiency of the diffusion. To some
extent, this model represents a worst case condition for
epidemic algorithms. Indeed, if some regularity exists
in the movement pattern, or assumptions can be done
about the node spatial distribution, algorithms could
take advantage of this such as done by some two-hop
relay algorithms [8]. In [2] the authors notice that this
model is sufficiently realistic to represent the way people
move in, e.g., a conference setting or a museum. As a
consequence, in this work, a Random Waypoint mobility
model is adopted, with no pause time and speed variable
between minspeed = 1 m/s and maxspeed ∈ {1, 9}
m/s.

Whatever is the adopted mobility model, it should be
assumed that the following mobility assumption applies:
when a contact occurs, the reciprocal speed is such that
the two nodes can set up a communication channel and
a significant amount of data is exchanged before they
become disconnected. This assumption is reasonable

according to results achieved by observations reported
in [12], [9], but can be occasionally violated in our
simulations.

IV. PERFORMANCE EVALUATION

A. Simulated Conditions and Performance Indexes

We used simulations to analyze the behavior of a PUSH

based algorithm in a simple setting. A single source node
is assumed to generate a sequence of data; data d2 can
be generated when the lifetime of data d1 expired. A
node randomly selects a single forwarder among in-range
neighbors and, for a clearer interpretation of the results,
the broadcast nature of the radio channel is not exploited,
i.e. the sent data is only received at the chosen forwarder.
This choice, on one hand is due to the decision of
keeping to the original nature of the epidemic algorithms
proposed in the literature; on the other hand, it goes in
the direction of obtaining benchmark measures in a worst
case scenario, in order to understand how the forwarder
selection affects the performance. The rounds of the
protocol continue to diffuse data until the data lifetime
has been reached without adopting any stop condition to
limit the generation of duplicate data. The data lifetime
is set to 100 seconds and the epidemic round varies in
the range 2 to 8 sec.

A network layer beaconing is assumed to broadcast the
node’s identifier every beacon_period=1 sec. Once
received a beacon the node stores the sender’s identifier
in the neighbors_list for beacon_timeout=2
sec.; when a new beacon is received, the entry is re-
freshed. Up to 100 nodes move in an open space area of
100×100 mt. Nodes are equipped with low power 802.11
radio devices having a 10 mt. communication range.

The algorithm has been implemented in the Glo-
MoSim simulator [13] to obtain the results we present
in this section. All results are averaged over 100 simula-
tions performed with the same parameters and variable
random seed. Effectiveness of the epidemic algorithm
is measured in terms of average percentage of covered
nodes, i.e. the nodes receiving the data within its life-
time. Efficiency is measured in terms of average and
maximum latency between the data generation and its
reception, and in terms of average number of duplicate
notifications received by nodes. Of course, duplicate data
influence both the network bandwidth and node’s battery
consumption.

B. Simulation Results

The average number of reached nodes is shown in
Fig.1, for variable group cardinality, node’s speed and

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9
Speed (m/s)

N
o

d
es

Flooding
Gossip - epidemic round 2
Gossip - epidemic round 4
Gossip - epidemic round 6
Gossip - epidemic round 8

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9
Speed (m/s)

N
o

d
es

Flooding
Gossip - epidemic round 2
Gossip - epidemic round 4
Gossip - epidemic round 6
Gossip - epidemic round 8

(a) (b)

Fig. 1. Percentage of nodes reached by the data at the end of its lifetime with (a) 25 and (b) 75 nodes

epidemic round. Flooding obtains a very low coverage
because it performs a single run of data diffusion: unable
to exploit caching and periodic runs, flooding cannot
cope with partitions and consumes all its diffusion power
inside the partition of the source. This fact is more evi-
dent for low node density conditions, where partitions are
more likely to occur and “clouds” of nodes are smaller;
this hypothesis is confirmed by simulations with fixed
nodes that show how flooding coverage grows with node
density. When nodes move, flooding performs poorly
with respect to the epidemic algorithm although, with
high node density, flooding can take some advantage of
speed. This is due to the fact that GloMoSim models
the wireless channel in an on/off way: within 10 mt. of
range, the distance does not affect the channel quality;
right over 10 mt. no channel is available. Hence, in
high density conditions, partitions are larger and flooding
takes a few tens of milliseconds more to cover the
source’s partition. This time is enough to allow nodes on
the border of the partition to slightly move and merge a
new partition, thus obtaining a better coverage that, of
course, grows with the nodes speed.
By contrast, the PUSH based epidemic approach obtains
good performances in all conditions taking great benefit
of caching, repeated diffusions and mobility. In low
density conditions – where partitions have greater impact
– this effect is more evident for increasing speed. A
large epidemic round does not perform well for low
density, where a small round is more aggressive and
more successful in taking advantage of changes in the
neighborhood to “infect” new nodes. With a large round,
the number of diffusions attempted during the data
lifetime is lower. This also implies a higher impact of

the “vanishing neighbor” effect, consisting in a node
choosing as forwarder another node still included in its
neighbors_list but that actually is out of com-
munication range. In this case, the diffusion is wasted.
The impact of this effect depends on the accuracy of
the beaconing policy in determining current neighbors.
Large epidemic round is less sensitive to speed: as
diffusion is performed seldom, neighborhoods change
between two consecutive diffusions even at low speed.
For high density, speed has less impact and coverage
is better: each node has a higher number of neighbors;
hence, it more likely chooses as forwarder a node not yet
infected before. It is worth to notice that, at the maximum
speed, coverage gets worse. This is due to both a more
frequent occurrence of the vanishing neighbor effect, and
the violations of the mobility assumption. In fact, if two
nodes move in the opposite direction, their relative speed
is doubled and they are likely to go out of range before
exchanging data.

Figg.2 and 3 bring into evidence the impact of node
speed. The ideal behavior is reaching 100% nodes at
time 0; that is, the more vertical is the plot, the better the
algorithm performs. The plot behavior depends on a sort
of avalanche effect: initially only the source propagates
the data, and the number of infected nodes increases
slowly. Each node infected starts executing the Active
Thread (Algorithm 3) on its behalf, thus contributing
to the data diffusion. Hence, in a second stage the
number of infected nodes grows quickly. Finally, only
a few nodes remain to be infected, and they can be
reached only if and when an active node chooses them
as forwarders. In this last phase, the coverage is almost
stable, and the most part of the diffusions are addressed

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4 12

20

28

36

44

52

60

68

76

84

92

10
0

seconds

no
de

s

1 m/s
3 m/s
5 m/s
7 m/s
9 m/s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4 12

20

28

36

44

52

60

68

76

84

92

10
0

seconds

no
de

s

1 m/s
3 m/s
5 m/s
7 m/s
9 m/s

(a) (b)

Fig. 2. Cumulative data reception time by nodes with epidemic round set to 2 seconds and with (a) 25 and (b) 75 nodes

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4 12

20

28

36

44

52

60

68

76

84

92

10
0

seconds

n
o

d
es

1 m/s
3 m/s
5 m/s
7 m/s
9 m/s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4 12

20

28

36

44

52

60

68

76

84

92

10
0

seconds

n
o

d
es

1 m/s
3 m/s
5 m/s
7 m/s
9 m/s

(a) (b)

Fig. 3. Cumulative data reception time by nodes with epidemic round set to 6 seconds and with (a) 25 and (b) 75 nodes

to already infected nodes. Under all conditions, diffusion
is faster for higher speed, because the node neighborhood
changes frequently. As a consequence, the probability
of choosing as forwarder a node not yet infected –
that is, of performing useful diffusion – increases. Once
again, the higher the number of neighbors, the higher the
probability of randomly choosing a non infected node.
As a side effect, these results bring into evidence the
importance of an appropriate neighbor choice in order
to achieve good network coverage with low latency.
The difference between the plots for maximum and
minimum speed is lower in high density conditions.
With a long epidemic round (Fig.3), similar results are
achieved, although the coverage is worse because of a
less aggressive diffusion policy not advantaged by speed,
as observed before.

Fig.4 shows the latency in receiving the data, as
both the average over all nodes (black lines), and the
maximum to reach the last node (grey lines). Flooding

is almost independent of speed and density, as observed
before. According to the coverage measures, the latency
decreases for higher speed and higher density, and for
lower (more aggressive) epidemic round. If the epidemic
round is long, then high speed penalizes performance
because the vanishing neighbor effect and the violation
of the mobility assumption lead to a higher probability
of failing a diffusion. Moreover, a higher interval elapses
before attempting a new diffusion. The maximum latency
has a behavior comparable to the average.

In Fig.5, the average number of duplicate notifications
received at a node is reported. Flooding generates a
very low number of duplicates, only due to multiple
paths among nodes; the multiple paths probability and
the number of duplicates grow with density. For the
PUSH approach, the number of duplicates is higher for
high density because more nodes concurrently execute
diffusions. This is emphasized for short epidemic round.
The duplicate number is affected by speed. At moderate

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9
Speed (m/s)

S
ec

o
n

d
s

Flooding avg and max delay
Gossip - epidemic round 2 avg and max delay
Gossip - epidemic round 6 avg and max delay

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9
Speed (m/s)

S
ec

o
n

d
s

Flooding avg and max delay
Gossip - epidemic round 2 avg and max delay
Gossip - epidemic round 6 avg and max delay

(a) (b)

Fig. 4. Average and maximum delay of data reception with (a) 25 and (b) 75 nodes

speed, partitions can be merged and a higher number of
nodes is infected. Moreover, neighborhood still changes
slowly, and a node can choose the same neighbor many
times. At high speed, the vanishing neighbor effect
prevents a duplicate reception at an infected node that
moved out of range.
Duplicates waste both bandwidth and energy resources
and hinder node coverage, because the next diffusion
must be awaited to (hopefully) perform effective work.
It is worth to notice that the reduction of the number
of duplicates is the main feature to add to an effective
epidemic algorithm for an opportunistic scenario. This
can be achieved through both a careful forwarder se-
lection, that should consider neighborhood information,
and the implementation of stop condition, that should
use locally available information, such as the number of
received duplicates, to progressively reduce the infection
rate as the coverage approximates the group membership.
If we consider the dense scenario of Fig.2(b), the PUSH

algorithm with nodes moving at 9 m/s reaches all the
nodes within 60 seconds. Most part of the duplicates are
generated in the remaining 40 seconds. The number of
these duplicates can be easily computed as:

#nodes×#epidemic sessions remaining =

= #nodes×
time remaining

epidemic round
= 75 ×

40

2
= 1500

That means that, on average, each node receives
duplicates

nodesnumber
= 1500

75
= 20 duplicates. If we consider

Fig.5(b), we can observe that, being capable of stopping
the diffusion when the last node received the data, the
number of duplicates generated by the PUSH strategy
with epidemic round set to 2 would have been around

25 − 20 = 5. An epidemic round of 8 seconds obtains
similar values at a much higher latency cost.

V. DESIGN HINTS FOR EPIDEMIC ALGORITHMS IN

ONS

The simulation results discussed in this work provide
some useful guideline for the adaptation of existing
approaches to the ONs scenario. Results in Figg.1, 2
and 3 bring into evidence the impact of speed on the
achieved coverage, because a node is more likely to
observe neighborhood changes within an epidemic round
thus allowing a quicker infection of new nodes. An
adaptive algorithm should involve mechanisms able to
monitor neighborhood changes independently of speed,
thus overcoming possible erroneous interpretations of the
environment status in case nodes move at high speed but
in a swarm. The algorithm should also keep some sort
of a short term history of previous diffusions, in order
to avoid infecting the same nodes more than once and
to reduce the impact of duplicate notifications on both
bandwidth and battery lifetime. This policy should use
local observations of the system at the nodes to save
memory and computational resources. Another hint de-
rives from the observation of the effects of high density
on algorithm performance (Figg.1, 2, 4): the more dense
the nodes, the better both the coverage and the latency.
Hence, in an adaptive algorithm, nodes could monitor
the cardinality of their neighborhood to achieve aware-
ness of aggregation points and regulate the diffusion
round accordingly. As a consequence, in the adaptive
algorithm both the policy for choosing forwarders and
the epidemic round might dynamically vary according to
the system status as observed by nodes. Mechanisms for
duplicate suppression and de-synchronization of multiple

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9
Speed (m/s)

D
up

lic
at

ed
 e

ve
nt

s
pe

r n
od

e
Flooding
Gossip - epidemic round 2
Gossip - epidemic round 4
Gossip - epidemic round 6
Gossip - epidemic round 8

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9
Speed (m/s)

D
up

lic
at

ed
 e

ve
nt

s
pe

r n
od

e

Flooding
Gossip - epidemic round 2
Gossip - epidemic round 4
Gossip - epidemic round 6
Gossip - epidemic round 8

(a) (b)

Fig. 5. Average duplicated data received by each node with (a) 25 and (b) 75 nodes

forwarders activated concurrently must be included, for
the purpose of saving both bandwidth and batteries,
although possibly at the expenses of latency.

Another important aspect to consider is the beaconing
mechanism. Indeed, an accurate knowledge of the neigh-
bors is needed in order to make an appropriate choice
of the forwarders, avoiding the vanishing neighbor effect
that wastes bandwidth and time without performing any
useful work. Keeping a small beacon_period is
not necessarily a good policy, as it requires a lot of
bandwidth, and resulting collisions could hinder both
neighbor discovery and information diffusion. We have
adopted the classical beaconing procedure; yet, possible
changes to the beaconing policy should be studied.

The possibility of a hybrid approach should be also
considered: data could be diffused using a PUSH ap-
proach as long as a relevant number of nodes is covered.
When the cumulative coverage of Figg.2 and 3 stabilizes,
continuing active diffusion is no longer convenient: non
infected nodes should start a PULL algorithm to retrieve
the data. As at this point more than 90% of the nodes
is infected, only a few nodes on average should be
inquired before finding one able to reply. The decision
about when to switch from a PUSH to a PULL approach
should be taken independently by each node, basing on
local observations of the system. Such a hybrid policy
could reach a coverage comparable to that of the PUSH

approach, while decreasing duplicates.

VI. CONCLUSIONS AND FUTURE WORK

In this work, the suitability of epidemic algorithms for
diffusing information in opportunistic networks is ana-
lyzed. Epidemic algorithms take advantage of mobility
to overcome network partitions, thanks to the caching
of information and periodic diffusions. Because of these

characteristics, they achieve a better network coverage
than flooding, thus resulting promising.

However, research work in this field is just in a
seminal state and much effort has yet to be done to adapt
epidemic algorithms to opportunistic environments. In
sec.V, some suggestions are provided basing on the
simulation results achieved. Currently, we are studying
techniques for implementing stop conditions combined
with neighbor choice, with the goal of designing a
solution able to accelerate diffusions when a node re-
alizes it is in a neighborhood of nodes not yet infected,
and to slow down – or stop – when neighbors already
know the information. Epidemic algorithms have been
proposed for lazily diffusing data in environments less
dynamic than ONs, with a node periodically passing
data to another. We further plan to evaluate whether
the choice of forwarders is more convenient on behalf
of either the sender, or the receivers according to the
local system view each one of them owns. In parallel
with those activities, we are implementing a mobility
model including statistics obtained from traces of real
behavior in ONs and also reproducing aggregative be-
havior. The model will supply movement logs usable
as input to main simulators (GloMoSim and NS-2), for
further performance evaluation of both existing and novel
approaches.

ACKNOWLEDGMENT

This work has been partially funded by the Italian
Ministry of University and Research in the framework
of the “Context-Aware RouTing Over Opportunistic Net-
works (CARTOON)” PRIN Project.

REFERENCES

[1] A. Bachir and A. Benslimane, A Multicast Protocol in Ad-hoc
Networks:Geocast Inter-Vehicles. Proc. IEEE Vehicular Technol-
ogy Conference (VTC) 2003-spring, Apr. 2003.

[2] T. Camp, J. Boleng, and V. Davies, A Survey of Mobility Models
for Ad Hoc Network Research. Wireless Communications and
Mobile Computing (WCMC): Special issue on Mobile Ad Hoc
Networking: Research, Trends and Applications, 2(5), pp. 483–
502, 2002.

[3] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and
J. Scott, Pocket Switched Networks: Real-world mobility and
its consequences for opportunistic forwarding. Technical Report
UCAM-CL-TR-617, Computer Laboratory, University of Cam-
bridge, Feb. 2005.

[4] R. Chandra, V. Ramasubramanian, and K. Birman, Anonymous
Gossip: Improving Multicast Reliability in Mobile Ad-Hoc Net-
works. Proc. International Conference on Distributed Computing
Systems (ICDCS), pp. 275–283, Apr. 2001.

[5] Crawdad. A Community Resource for Archiving Wireless Data
At Dartmouth. http://crawdad.cs.dartmouth.edu/

[6] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, Epidemic algorithms
for replicated database maintenance. Proc. 6th annual ACM
Symposium on Principles of Distributed Computing (PODC), pp.
1–12, Aug. 1987.

[7] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin,
and S. Wicker, An Empirical Study of Epidemic Algorithms in
Large Scale Multihop Wireless Networks. Submitted for publi-
cation, Feb. 2002, http://citeseer.ist.psu.edu/ganesan02empirical.
html

[8] M. Grossglauser and D. Tse, Mobility increases the capacity of
ad hoc wireless networks. IEEE/ACM Transactions on Network-
ing, 10(4), pp. 477–486, 2002.

[9] P. Hui A., Chaintreau, J. Scott, R. Gass, J. Crowcroft, and C.
Diot, Pocket switched networks and human mobility in conference
environments. Proc. ACM SIGCOMM Workshop on Delay-
Tolerant Networking (WDTN), pp.244–251, 2005.

[10] A. Montresor, M. Jelasity, and O. Babaoglu, Gossip-based
Aggregation in Large Dynamic Networks. ACM Transactions on
Computer Systems, 23(3), pp.219–252, Aug. 2005.

[11] C.E. Perkins, E.M. Belding-Royer, and S. Das. Ad Hoc On
Demand Distance Vector (AODV) Routing. IETF RFC 3561, Jul.
2003. Work in Progress.

[12] J. Su, A. Chin, A. Popivanova, A. Goely, and E. de Lara,
User Mobility for Opportunistic Ad-Hoc Networking. Proc. 6th
IEEE Workshop on Mobile Computing Systems and Applications
(WMCSA), Dec.2004.

[13] UCLA Parallel Computing Laboratory, GloMoSim – Global
Mobile Information Systems Simulation Library. University
of California at Los Angeles. http://pcl.cs.ucla.edu/projects/
glomosim/

