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a b s t r a c t

The Future Internet scenario will be characterised by a very large amount of information
circulating in large scale content-centric networks. One primary concern is clearly to
replicate anddisseminate content efficiently, such that – ideally – it is replicated and spread
only in those portions of the network where there are interested users. As centralised data
dissemination solutions are unlikely to be feasible due to the sheer amount of content
expected to circulate, nodes themselves must locally take data dissemination decisions,
taking into account contextual information about users interests. In this paper, we consider
a mobile opportunistic networking environment where mobile nodes exploit contacts
among each other to replicate and disseminate content without central control. In this
environment, we see nodes as proxies of their human users in the cyber world made up
by mobile devices. Accordingly, we want nodes to act as much as possible as their users
would do if they had to disseminate information among each other. We thus propose a
new solution based on cognitive heuristics. Cognitive heuristics are functional models of
the human mental processes, studied in the cognitive psychology field. They describe the
judgement process the brain performs when subject to temporal constraints or partial
information. We illustrate how these cognitive processes can be fruitfully implemented
into a feasible and working ICT solution, in which decisions about the dissemination
process are based on aggregated information built up fromobservations of the encountered
nodes and successively exploited through a stochastic mechanism to decide what content
to replicate. These two features allow the proposed solution to drastically limit the state
kept by each node, and to dynamically adapt to the dynamics of content diffusion, the
dynamically changing node interests and the presence of churning of nodes participation
to the data dissemination process. The performance of our solution is evaluated through
simulations and compared with reference solutions in the literature.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Among other features, mobility and content-based approaches are two key characteristics of reference Future Internet
scenarios [1]. This means that people equipped with mobile devices will play a central role in the whole information
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environment [2]. Indeed, people’s activities – through their mobile devices – will strongly contribute to the process of data
and content creation, by generating huge information flows that, together with the already existing complex information
environment, needs to be properlymanaged and diffused. This is likely to push to the limit existing solutions or conventional
approaches—for example, it is foreseen that even 4G cellular networks will not be able to cope with the huge data traffic
demand of the users in the coming years [3]. Therefore, approaches based on exploiting direct contacts between user devices
in the dissemination of content become very interesting. On the other hand, it is reasonable to assume that a very significant
part of this content will be very contextualised, i.e. relevant only at specific times and/or geographic areas, often interesting
for specific groups of users only. Therefore, exploiting information like human behaviour, mobility patterns, social habits
and other similar information, users’ mobile devices can contribute to the distribution of content in an efficient way, i.e.
without flooding the network with information that is irrelevant for a large fraction of the users.

In this scenario, Opportunistic Networking [4] schemes represent a viable and natural way to efficiently disseminate
contents among interested users. Opportunistic networks (OppNets) are self-organising mobile networks where the
existence of simultaneous end-to-end paths between nodes is not taken for granted, while disconnections and network
partitions are the rule. Opportunistic networks support multi-hop communication by temporarily storing messages at
intermediate nodes, until the network reconfigures and better relays (towards the final destinations) become available.
However, the management of the huge amount of information circulating in the environment can easily become a problem
when resources available atmobile nodes (e.g., battery andmemory) are taken into consideration [5,6]. Thus,mobile devices
must adopt schemes able to cope with this complex environment, allowing them to discern what information is really
important and interesting to be disseminated. This scenario motivates the research of lightweight distributed solutions
that allow mobile devices to take autonomous decisions about what information they should disseminate, among the vast
amount of data possibly available on the other encountered devices.

Here, we present a data dissemination approach based on a class of cognitive models called cognitive heuristics. Briefly,
cognitive heuristics are algorithmic descriptions of the mental processes the brain uses to quickly take decisions in
conditions of partial or incomplete knowledge. The capability of heuristics to work in a fast and frugal way makes them
an interesting approach to be adopted in OppNets. Among the various cognitive heuristics, in this paper we consider in
particular the recognition heuristic [7,8]. Briefly, it states that, when confronted between two possible alternatives, the
brain selects the one that it ‘‘recognises’’. The behaviour of this heuristic can be explained through the following example:
a person asked to indicate which university is more endowed without having any direct information about the real entity
of endowments, will make his selection according to other indirect information like how often a university name comes to
his attention. The more often he hears a university name the more likely he will indicate the recognised university name as
more endowed.

In this work, we exploit the recognition heuristic for data dissemination in opportunistic networks. We assume a sce-
nario characterised by the presence of content – hereafter referred to as data items – organised in specific topics – hereafter
referred to as channels of interest – and nodes interested in some of those topics. Moreover, nodes act as both contents
generators and data carriers, indeed, contacts between nodes are the only way to disseminate data items in the system. A
key problem every node part of a data dissemination system for opportunistic network has to face is dynamically deciding
when specific data items must be diffused more or less aggressively. In this paper we exploit the recognition heuristic to
address both these aspects: (i) in order to decide whether diffusion has to be boosted for a certain item, nodes in our sys-
tem recognise what items are of interest for several nodes; (ii) in order to decide whether an item is already sufficiently
diffused, nodes in our system are able to recognise that it is already carried by (most of) the interested nodes. It is worth
noting that this approach is not ‘‘yet another bio-inspired protocol’’. In our scenario, nodes are actual proxies of their human
users in the cyber world. By using the same cognitive processes of their users, nodes behave very similar to how human
counterparts would behave if facing the same problem in the physical world. The work presented in [9,6] is a preliminary
attempt at investigating this approach (see Section 2 for more details). The main focus of [9,6] was to highlight that using
the recognition heuristic is a viable option. In this paper, we turn this idea in the definition of a concrete system for op-
portunistic networks, by investigating how cognitive heuristics can be applied taking into consideration key restrictions of
opportunistic networks, i.e. resource limitations and dynamic conditions.

In this paper (and in our previous work [10]), we exploit aggregate information for driving the behaviour of the recogni-
tion heuristic, that is, we investigate how the cognitive heuristics could be applied by starting from aggregate information
about the dissemination state of data items only. This can be seen as the application of another cognitivemechanismaimed at
maintaining only few essential information about the state of the surrounding environment and permits to limit thememory
used by nodes tomaintain the state information needed for the data dissemination policies. Moreover, our results show that
this reduction comeswithout sacrificing (w.r.t. state of the art solutions) the performance in terms of delivering data items to
interested users. Another key feature is represented by the introduction of a stochastic mechanism that drives the recogni-
tion process. This stochastic mechanismmakes the system adaptive to dynamical conditions. In cognitive psychology these
cognitive heuristics represent an algorithmic alternative w.r.t. another class of cognitive models mostly based on Bayesian
probabilities. Aswewill explain in Section 4, our data dissemination solution, although based on cognitive heuristic, extends
the classical heuristic model by introducing some parameters that we estimate exploiting the Bayesian framework. With
respect to [10], in this paper we show that the recognition heuristic applied to data dissemination in opportunistic network
can be seen as an instance of a Bayesian problem. In addition, we provide a muchmore extended set of performance results,
showing that the proposed algorithm efficiently reacts to dynamic scenarios where at a certain time (i) nodes may change
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their interests about channels, or (ii) completely new channels/items are injected in the running system and, finally, (iii)
churning nodes are present in the network. Moreover, we supply performance results obtained with real contact traces.

2. Background and related work

2.1. Cognitive models

Cognitive psychology studies the way the human brain works and reacts to external stimuli. Here we consider models
addressing two different but complementary points of view: on the one side there are Bayesian cognitive models and on
the other side heuristic approaches [11]. Briefly, Bayesian cognitive models support the idea that the decision making
process carried out by the human brain in condition of uncertainty or partial information can be well described through
the classical Bayesian probabilistic framework. The basic idea is that people behave as intuitive statisticians [12], that is,
their judgements closely correspond to the classical Bayesian statistical norms that explain how prior beliefs or hypothesis
may be updated rationally in light of new information. Specifically, as will be described formally in Section 4, observations of
a phenomenon are used to estimate the probabilities of future event occurrences. Whenever a new observation is available,
these probabilities are updated (according to the Bayes rule) to incorporate this additional knowledge. Alternative models
try to describe the decision making process as an heuristic process. Gigerenzer et al. [13] suggest that the information people
perceive and use to take decision can be simply expressed as frequencies, i.e. howmany events are favourable (according to
some criterion) over the total number of events observed. The algorithmic procedures withwhich the brain elaborates these
frequencies so as to come up with a final decision or judgement are called cognitive heuristics. Precisely, cognitive heuristics
are functional models of the mental processes [7,8] on which the human brain relies to quickly take appropriate actions also
in presence of incomplete knowledge of the situation. They do not aim at reproducing the detailed physiology of the brain’s
processes (as neural networks), butmodel their functionality. Therefore, heuristics can be seen as simple algorithmicmodels
of the complex process used by the brain to quickly find a solution to a problem, when the exhaustive search of the optimal
solution is impractical or infeasible due to the lack of complete information or temporal constraints. Cognitive heuristics
have been applied in various fields, such as financial decision making [14], forecasting purchases [15], results of sport
events [16], outcomes of political elections [17]. Usually, the solution supplied by heuristicswell approximates the optimum.

Although they could appear almost opposite approaches, the Bayesian and heuristic points of view are compatible and
very closely connected.While the probabilisticmodels andmethods specify the nature of the cognitive problem to be solved
and the information needed for solving it, heuristic models represent the set of algorithms and tricks through which human
cognitive processes operate in order to solve a cognitive problem [18]. Thus, we can say that the heuristic modelling is an
operational approximation of themore complex and complete Bayesian description of such cognitive processes. In this work
we include both approaches in the definition of the algorithms used by nodes to take data dissemination decisions.

2.2. Content distribution in OppNets

Several solutions for data dissemination in opportunistic networks have been proposed in the literature. A survey can
be found in [19]. Some papers consider the problem of content diffusion in mixed fixed/mobile networks. In [20], a hybrid
infrastructure is considered where throwboxes – i.e. devices with both wired and wireless interfaces – communicate with
one another and with the wireless nodes. Nodes upload held items when in communication range with a throwbox, and
possibly download items that satisfy local interests. A similar hybrid infrastructure is considered in [21]. In both proposals,
caches are maintained in the nodes belonging to the wired infrastructure with usual cache replacement algorithms.

Several papers deal with the problem of content distribution in pure OppNets. The PodNet project [22] considers a
scenario similar to the one in this paper. Nodesmay subscribe to channels of interest. Upon each encounter, nodes exchange
items in order to retrieve those belonging to the subscribed channels. Then, other items may be exchanged and loaded in a
public cache in order to facilitate their dissemination to interested nodes. The items to be maintained in the public cache are
chosen depending on the channel popularity, but blindly to social aspects. With respect to our mechanisms, PodNet uses
much simpler policies, such as replicating according to the popularity of the channels.

By contrast, some other works exploit social information associated to nodes in order to disseminate data in the network.
In ContentPlace [23–25], nodes aim at filling their caches in order to maximise both the local utility (i.e. the interests of the
local user) and the community utility. The latter forces nodes to carry items that the local user is not interested in, but that
are of interest for the users belonging to the same social communities of the local user. For the aim of item selection, two
opposite indexes are considered: the access probability, i.e. the number of users interested in the item and belonging to the
same communities as the local user, and the availability, i.e. the number of users in the communities already owning the item.
In [26] authors propose a social-aware solution to find the optimal placement of a given piece of content in an opportunistic
network. The idea is to iteratively migrate contents to nodes that are increasingly ‘‘central’’ to the overall network, i.e. nodes
such that the average cost of accessing the content from any other interested node is increasingly lower. To this end they
defined a metric that captures the node’s social significance to establish paths between nodes. Finally, they used this metric
as the basis for creating a small scale network sub-graph over which the small-scale content placement problem is solved
sequentially until the optimal or near-optimal location is identified.
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Other works consider a publish/subscribe framework. According to this, in [27] some nodes are identified as brokers, and
are in charge to coordinate item distribution and to convey items to interested nodes. The brokers are the most popular
nodes in terms of social ties and encounters with the other nodes. In SocialCast [28], nodes distribute information about the
channels they are interested in. Each node uses this information and its pattern of encounters to compute its own utility for
each interest. When two nodes n1 and n2 encounter, an item is sent from n1 to n2 if n2 has greater utility than n1 for the
item channel. This approach uses routing – more than caching – in order to deliver content to interested nodes. Moreover,
it relies on the assumption that nodes belonging to the same social community share the same interests.

Completely different approaches for data dissemination leave the definition of heuristic policies used to make local
caching decisions in favour of solutions based on global utility functions to be solved as a global optimisation problem.
Nodes single caches are viewed as a big, cumulative caching space. Reich and Chaintreau [29] for example, focus on the
problem of finding a global optimal allocation for a set of content items assuming that users are impatient, i.e., users’ in-
terest for items monotonically decreases with the time they have to wait before their request is fulfilled. The problem of
what items to fetch upon contact is defined as a global optimisation problem in a similar way as in ContentPlace. Differences
are in the fact that the resources to be considered are not the single node cache, but the global cache is used instead, and
the utility function is not computed from a node individual point of view, but it is defined globally. Although such global
optimisation approach can find the optimum, it requires global knowledge of the network and a priori information on how
users behave, that in practice is very unlikely to be available in an opportunistic scenario.

We point out that none of the abovementioned approaches exploit models coming from the cognitive sciences as we do.
We are exploring a completely novel direction with the aim at investigating the suitability of human brain models to devise
concrete and effective ICT solutions able to cope with the typical Opportunistic Networking problems.

2.3. Recognition heuristics in data dissemination for opportunistic networks

In [9,6], a preliminary version of the approach presented in thiswork is proposed. Themechanism is based on two concur-
rent algorithms: Recognition andModified-Take-The-Best (in the following, for short, MT2B). The former aims at determining
what channels and items are popular. A channel is popular when many nodes are subscribed to it. An item is popular when
it is held by many nodes. Upon an encounter between two nodes, the nodes exchange the set of channels they are sub-
scribed to, and the list of items they hold. For every channel to which the other node is subscribed, and every item it holds,
a counter is incremented. When, a channel/item counter is greater than a threshold θ , then the corresponding channel or
item is deemed as popular. Two different thresholds, θC and θI can be used for channels and items respectively.

MT2B aims at determining what items are useful and should then be kept in the local cache. Specifically, it is assumed
that nodes contributed a limited size local cache to the dissemination process, and therefore a selectionmust bemade about
what data items to store in this cache, among those that are available on the encountered nodes. The utility of an item grows
with the popularity of the channel it belongs to, and decreases as it becomesmore diffused. According to the status informa-
tion maintained by Recognition, MT2B ranks the items owned by an encountered node for decreasing utility. In particular,
the following rules are used: (i) items belonging to unpopular channels are considered useless; (ii) already diffused items
are considered useless. Then, subject to the local memory availability, a node selects the most useful items and uploads
them in its own local cache. In this sense, channel popularity boosts the caching of (currently) unpopular items, while item
popularity stops replication in further nodes.

This approach has two main drawbacks. On the one side it relies on fixed thresholds to be tuned according to the envi-
ronment, the node mobility and their encounter pattern. Moreover, in presence of highly dynamical scenarios where new
items are continuously created, this staticity of parameters becomes even more limiting. On the other side, the amount of
punctual state information every node has to keep in order to take decisions about the diffusion state of data items can
become intractable w.r.t. the memory constraints nodes are subject to (we provide a quantitative analysis of this point
in Section 4). These characteristics harm the actual suitability of this approach for its successful application in real world
scenarios.

In this paper we go beyond these limitations reducing the state maintained at nodes by compressing the knowledge
about items diffusion into an aggregate measure that let us identify, in terms of probability, if the items belonging to a
given channel of interest are spread enough, so as to stop their diffusion in favour of other less diffused items. Then, we
exploit the aggregate measure to drive the dissemination process through a stochastic mechanism. The stochastic mecha-
nism permits to remove from our approach the dependency on the fixed threshold used to recognise the data items’ de-
gree of diffusion, thus making it scenario-independent. Given that in real world scenarios the number of channel is far less
than the number of data items, in terms of scalability, keeping detailed state information about channel popularity is not
a critical aspect. Hence, in order to recognise when a channel becomes popular we keep the mechanism presented in [9,6]
unchanged.

The work presented in the following sections is an extension of the one we presented in [10]. The main extensions that
we add in this paper regards a detailed mathematical description of the model we used to define the aggregate measure of
items diffusion and an extensive set of experimental results, including a comparison with another state-of-the-art solution
and tests under various, different scenarios.
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3. Problem statement and system assumptions

We consider a system composed by N nodes. Nodes can subscribe to one or more channels of interest. We assume that
there areK channels available. Every node can generate content items. Each item i is labelledwith the identifier of the channel
of interest it belongs to, i.ch. A node can generate items also for channels it is not subscribed to. There is no global knowledge
of the channel subscriptions, nor of the pattern of encounters among nodes. Nodes have finite memory availability, thus
being unable to store an unlimited number of items. Items have an infinite lifetime, i.e. there is not any maximum lifetime
after which they become irrelevant to nodes subscribed to their channel. New channels may be created dynamically, nodes
can subscribe to them. New items belonging to existing channels may appear dynamically in the system. Finally, we assume
also that, due to energy saving policies, nodesmay activate their network interfaces for limited time slots only and disappear
from the network (and the dissemination process) for the remaining time.

Due to the lack of global knowledge, nodes have to discover the system status, and take decisions about what items to
cache accordingly. Caching permits to carry items around the network till encountering nodes interested in them. As the
primary goal, for each item i belonging to a channel ch, the diffusion procedure must maximise coverage, i.e., maximise the
probability that all nodes subscribed to ch will eventually receive i. Taking into account the characteristics of the OppNets,
a secondary goal is to also consider energy saving and (more in general) resource consumption, by limiting communication
when this does not jeopardise the coverage.

4. Data dissemination based on probabilistic recognition

As it will be further explained in Section 4.2, our dissemination algorithm strongly depends on the estimation of a param-
eter we will denote as π ch. The parameter π ch is defined as the probability with which a generic node can find already known
data items belonging to the channel of interest ch, during encounters with other peers. Specifically, a data item is already known
if it has been seen already on other previously encountered nodes. It is worth noting that π ch is a local parameter, therefore
its value differs among nodes. Hereafter we present howwe estimate theπ ch value following a Bayesian approach. Precisely,
we are facing the problem of the online estimation of the time-varying probability distribution π ch given the information a
tagged node receives by other peers during contacts. Note that themodel we describe refers to a tagged node n and a specific
channel of interest ch.

4.1. Bayesian roots of probabilistic recognition

Let us consider a tagged node, and let Scht be the set of items belonging to a certain channel ch, received during an en-
counter e at time t with another node. Let us denotewith S ′cht ⊆ Scht the set of items that are definitely neww.r.t. the node ex-
perience, i.e. items that a node has never seen before. Note that, as explained in detail in Section 4.2, Scht and S ′cht can be com-
puted by keeping the state informationmaintained at nodes constant, irrespective of the number of data items in the system.

The information about which data items in Scht are already known (or completely new) w.r.t. the node experience can be
encoded through the indicator function (1) into a binary string bch

t of length |Scht | where: 1s correspond to data items that
are already known by the node and 0s to new ones.

H(s) =

1 if s ∉ S ′cht
0 otherwise

, ∀s ∈ Scht . (1)

We consider each element bi ∈ bch
t as a realisation of a random variable Bi belonging to the random vector Bch

t of the same
size of bch

t . Moreover, we assume that all the Bi ∈ Bch
t are i.i.d. and follow a Bernoulli distribution of parameter π ch

t :

Bi ∼ Bernoulli(b;π ch
t ).

Thus, by ideally concatenating all the randomvectorsBch
k with 0 ≤ k ≤ t , we obtain a sequence of Bernoulli randomvariables

where at any point in time

E[Bit ] = π ch
t .

We remark that the value of π ch
t is the number of already known data items and it can change between subsequent

observations due to the dynamics of the their spreading in the system.
Let us now consider a new random variable Y ch

t = f (Bch
t ) =


∀Bi∈Bcht

Bi. Y is thus the number of already seen data items
at time t , and follows a binomial distribution with parameters nch

t = |S
ch
t | and π ch

t

p(yt : nt , πt) =


nt

yt


π

yt
t (1− πt)

nt−yt , yt = 0, . . . , nt (2)

where, for simplicity, we omitted the superscript ch. From now on we turn our attention on the resulting process {Yk}0≤k≤t
composed by a sequence of Binomial random variables.
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Now we briefly introduce the theoretical framework, extensively presented in [30], through which nodes can estimate
the parameter π ch

t based on locally available information only. In order to improve the readability, from now on we will
omit the superscript ch but let us recall that every node keeps a separate πt value for each channel of interest.

Let us consider the distribution of πt−1 given all the past information expressed through the Bayes formula:

p(πt−1|Y1, . . . , Yt−1) =
p(Y1, . . . , Yt−1|πt−1)p(πt−1) 1

0 p(Y1, . . . , Yt−1|πt−1)p(πt−1)dπt−1

∝ p(Y1, . . . , Yt−1|πt−1)p(πt−1) (3)

where, according to Bayesian statistics, the first term of (3) is the Likelihood function and the second one is the prior
distribution of πt−1. Let us remember that the prior distribution at time t − 1 is conditioned to all the past observations
up to time t − 2 : p(πt−1) = p(πt−1|Y1, . . . , Yt−2). That is, the prior belief we are considering at every time step takes into
account all the information observed until the last encounter. In the Bayesian framework it is well known that a common
prior distribution for πt−1 is the Beta distribution with parameters at−1, bt−1 [31]:

p(πt−1 : at−1, bt−1) =
Γ (at−1 + bt−1)
Γ (at−1)Γ (bt−1)

π
at−1−1
t−1 (1− πt−1)

bt−1−1. (4)

In this case, Beta’s parameters at−1, bt−1 count respectively the number of known and not known data items seen up to time
t − 1. Given that the distribution of items in the network evolves over time, our problem of estimating the current value
of πt passes through the updating of the Beta parameters by means of an Exponential Weighted Moving Average (EWMA)
Filter, as described in [30]. Firstly we apply a discount factor α ∈ (0, 1] to their value at time t − 1:

at|t−1 = αat−1 (5)

bt|t−1 = αbt−1 (6)

then, when the tth observation becomes available the distribution of πt is properly updated. In this specific case, the
prior and the posterior distributions belong to the same distribution family, i.e. they are conjugate distribution, hence the
parameter πt follows again a Beta distribution with parameters:

at = at|t−1 + yt (7)

bt = bt|t−1 + nt − yt . (8)

Summarising, we are counting, on average through an EWMA Filter, how many known (yt ) and not known (nt − yt ) items
are received by a node during contacts. We need a filtered mean other than a normal one because of the non-stationarity of
the parameter distribution π that evolves together with the item diffusion process in the system.

Finally, starting from the updated status of the beta parameters we obtain the current distribution of πt for which we
calculate its conditional expectation

E[πt |Yk, k = 1, . . . , t] = π̃t =
at

at + bt
. (9)

Aswe can notice, for every time step the value of π̃t only depends on π̃t−1 and the new observation. This suggests that we
can approximate the conditional expectation (9) by filtering the samplemean of the binary vectors received during contacts,
as described in the following.

Let us consider again the two sets Scht and S ′cht previously defined. We define a measure of the ratio of unknown data
items a node observes upon the encounter e in terms of the sample mean on the current observation:

Nt =
|S ′cht |
|Scht |

. (10)

Eq. (10) measures the ratio of novel information received from an encountered node w.r.t. a given channel. We use its
complement as an instantaneous indicator of the diffusion of the items in ch. Let π̂ ch

t be the estimated degree of diffusion
of the items in ch, at the time t . Finally, we can estimate π̂ ch

t using a standard exponential smoothed average technique, as
follows:

π̂ ch
t = απ̂ ch

t−1 + (1− α)(1− Nt) (11)

where 0 ≤ α ≤ 1 regulates the balancing between the past experience and new information. As demonstrated in Appendix
the estimations in (11) and (9) are equivalent within a scale factor, thus in our algorithm we decided to use the one in (11).
Fig. 1 shows the typical trend of both π̂ ch and π̃ ch we have observed in our simulations (details on the simulation settings are
provided in Section 5). It shows that as time passes, items become more and more spread, and the probability of observing
new items goes to zero bringing the diffusion probability close to 1.
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Fig. 1. Increasing trend of the diffusion probabilities π ch and π̂ ch during the system evolution.

4.2. Data dissemination algorithms

In this section, we present how the model described in Section 4.1 can be practically implemented in order to merge
the recognition heuristic with the probabilistic approach and exploit them in an opportunistic networking scenario. Before
doing so, let us briefly recall the structure we assume about each node’s memory space. This is the same used in [9,6], and
is reported here for reader’s convenience:
Data caches.

• Local Items cache (LI): contains the items generated by the node itself;
• Subscribed Channel cache (SC): contains the items belonging to the channel the node is subscribed to and obtained by

encounters with other nodes;
• Opportunistic Cache (OC): contains themost ‘‘useful’’ items froma collaborative information dissemination point of view.

These items are obtained by exchanges with other nodes and belong to channels the node is not subscribed to.

Recognition cache.

• Channel Cache (CC): whenever a node meets another peer subscribed to a given channel, the channel ID is put in this
cache, along with a counter.
• Items’ Channel Cache (ICC): contains the channel IDs and the aggregate information about the diffusion probability of

items.
• Item Hash (IH): a Bloom filter, used to remember which items a node sees along encounters.
• Channel Hash (CH): a Bloom filter, used to remember recognised channels no longer present in CC.

The main logical steps of the data dissemination algorithm based on probabilistic recognition are as follows (upon
encountering with another node):

1. recognise which channels are popular;
2. recognise if the items of a channel are spread;
3. fill up the shared memory with the less spread items of popular channels for redistribution.

Step 1. Nowwe will refer to Algorithm 1, the same proposed in [9] and here reported for reader’s convenience. For every
contact between two nodes, each of them increments the counters associated to the other node’s subscribed channels (line
6) until a given threshold θC is reached, after that the channel is marked as recognised (line 8). If the number of entries in
CC exceeds the maximum capacity, then the oldest entry is dropped (line 18). In this case, if it was marked as , recognised,
the channel ID is recorded in a Bloom Filter (CH). In this way, the nodes can distinguish between channels that are not in
CC because they have never been seen (in this case they are not in the CH), and channels that have been replaced. Once
concluded the recognition phase for channel popularities, the second step begins.

Step 2. As discussed in Section 4.1 we minimise the state information maintained about item diffusion into an aggregate
measure. We will now refer to Algorithm 2. Upon an encounter, two nodes exchange the content summary of their caches
(LI+ SC+ OC). Let us consider the set of item IDs received and belonging to a given channel (line 9). By querying the Bloom
Filter IH containing the information about all the items received during past encounters, we count how many of them are
definitely new (lines 11–14) and update the diffusion probability (line 19) corresponding to that channel according to Eq.
(11). It is worth noting that the decision of counting the new items instead of the replicas is driven by the intrinsic charac-
teristics of the Bloom Filter. Due to the probabilistic nature of a Bloom Filter, there is a non-null probability of obtaining a
false positive when querying if an item is present in the data structure. By contrast, the negative answer is always true, thus
we rely only on definitely negative answers, whichmay lead, in principle, to a slight under-estimation of the number of new
items, and thus to stopping the diffusion process too early. Our simulation results show that this has, in practice, no impact
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Algorithm 1 Channel Recognition
1: Let ch be an observed channel.
2: Let θC be the recognition threshold for channels
3: Let B be the CC max size
4: if CC.contains(ch) then
5: if ch is not recognised then
6: Rch ← Rch + 1
7: if Rch = θC then
8: mark ch as recognised
9: end if

10: reset ch.TTL
11: end if
12: else
13: if CC.size = B then
14: select the channel ch′ with oldest TTL
15: if ch′ is recognised then
16: CH ← CH ∪ ch′
17: end if
18: CC ← CC\ch′
19: end if
20: CC ← CC ∪ ch
21: ch.counter = 1
22: Set ch.TTL
23: end if

on the effectiveness of the dissemination process. Once updated the diffusion probability, we use it to decide whether the
data items of that channel are recognised or not according to a Bernoulli trial with probability π̂ ch (lines 20–25):

B(π̂ ch) =


1⇒ Items are considered as diffused
0⇒ Items are considered as not diffused. (12)

In this way, as long as a node does not receive any new information about a channel ch, the corresponding value of π ch (one
for each channel and different for each node) gets increasingly close to 1, strengthening over time the belief that the items
of ch are diffused. The drawback of using in the recognition process an aggregate measure together with the stochastic ap-
proach is that this results in a loss of granularity w.r.t. the information about the single items diffusion. However, the benefit
is twofold: (i) the nodes can autonomically adapt to the local scenario, and do not need to rely on a predefined threshold to
be tuned, and (ii) the randomness of the decision process permits to sporadically restart the diffusion of almost spread items
thus increasing the probability of reaching those few nodes that for some reason are not aligned with the mean condition
of the system.

In principle, from a technical point of view the size of the Bloom filter (IH) should be defined a priori based on the
number of elements to be stored and the desired false positive probability, being impossible to store extra elements without
increasing the false positive probability. In this work, we explore two possibilities. On the one hand, we use a Scalable Bloom
filter, a variant of Bloom Filters that can adapt dynamically to the number of elements stored, while assuring a maximum
false positive probability [32]. This solution guarantees a fixed false positive rate, at the cost of a modest linear increase
of the state size with the number of items. On the other hand, we also consider fixed size Bloom filters, dimensioned as a
fraction of the theoretical optimal size (computedwith complete information about the number of data items in the system).
This guarantees a constant state size, irrespective of the number of data items, at the possible cost of an increase of the false
positive rate. Simulation results presented in Section 5.2.7 show that using fixed size Bloom filters has no significant effect
on the performance of the data dissemination process.

Step 3. The results of the probabilistic recognition process are then exploited by the MT2B algorithm to select the less
spread items – of the recognised channels – to be stored for redistribution. We will now refer to Algorithm 3. Although
it only partially differs from the one presented in [9,6], we will completely describe it for the reader’s convenience. Upon
meeting, nodes exchange summaries of the items they are carrying in their caches. Items belonging to the node’s subscribed
channel are fetched and stored in the node’s SC (lines 2–6). Then, each node selects which of the remaining items owned
by the other peer should be fetched in order to be redistributed. Firstly, each node selects those items whose channel is
recognised (lines 11–14). If the number of these items is greater than the OC maximum capacity, each node selects those
items whose channel is recognised but currently marked as not diffused (lines 16–21). Finally, if the selected items are still
too many w.r.t. the OC maximum capacity, the MT2B sorts the items by their ascending π̂ ch value and fills up the OC with
the first n items according to its capacity (lines 22–24).

Thanks to this approach nodes have to maintain less state information than that maintained in [9,6]. Let us assume the
Bloom filter size as fixed, and let us denote with K the number of channels and I the number of items per channel. In the
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Algorithm 2 Probabilistic Recognition
1: LetM be the set of items received from another node.
2: Let Ich be the counter for the items inM that belongs to the channel ch and are not present in IH
3: Let Cch be the counter for the items inM that belongs to the channel ch
4: Let π̂ ch be the diffusion probability of the items that belongs to the channel ch
5: Let B(π̂ ch) be a Bernoulli random number generator
6: Let 0 ≤ α ≤ 1
7: Ich ← 0
8: Cch ← 0
9: for all i ∈ M do

10: if ICC.contains(i.ch) then
11: if (¬ IH.contains(i)) then
12: IH ← IH ∪ i
13: Ii.ch ← Ii.ch + 1
14: end if
15: Ci.ch ← Ci.ch + 1
16: end if
17: end for
18: for all ch ∈ ICC do
19: π̂ ch

← α ∗ π̂ ch
+ (1− α) ∗ (1− Ich

Cch
)

20: if B(π̂ ch) = 1 then
21: Mark items of ch as diffused
22: else
23: Mark items of ch as not diffused
24: end if
25: end for

Algorithm 3Modified Take-The-Best
1: LesM be the set of items received from another node
2: for all i ∈ M do
3: if i.ch = subscribedChannel then
4: SC ∪ = i
5: end if
6: end for
7: LetM ′ = M− SC
8: Let B the OC storage capacity limit
9: Let I = M ′∪ OC

10: Let recChItems= ∅
11: for all i ∈ I do
12: if i.ch is recognised then recChItems ∪ = i
13: end if
14: end for
15: Let notSpreadItems= ∅
16: if recChItems.size> B then
17: for all r ∈ recChItems do
18: if r.ch is marked as not diffused then
19: notSpreadItems ∪ = r
20: end if
21: end for
22: if notSpreadItems.size > B then
23: Rank notSpreadItems in ascending order according to their π̂ ch value
24: Select and keep in OC the first B objects of notSpreadItems
25: else
26: OC ∪ = notSpreadItems
27: end if
28: else
29: OC ∪ = recChItems
30: end if
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Table 1
Detailed scenario configuration.

Parameter Value

Node speed Uniform in (1, 1.86 m/s)
Transmission range 20 m
Simulation area 1000 m× 1000 m
Number of cells 6× 6
Number of nodes 200, 600
Number of channels 8
Number of items 200 (25 per channel)
Number of groups 8
Number of travellers 56 (7 per group)
Simulation time 25000 s

probabilistic approach, every node has to keep a Bloom Filter, a counter and an items’ diffusion probability value for every
channel only, thus the memory requirement has an order of magnitude of O(K) because it grows linearly with the number
of channels. By contrast in [9,6] every node has to maintain a counter for each channel and a counter for each data item,
which means that the order of magnitude in terms of memory is O(K ∗ I). The improvement is very significant, as in real
scenarios I ≫ K .

5. Performance evaluation

In this section, we evaluate the performance of the Probabilistic Recognition Algorithm (hereafter denoted as PR) through
a set of experiments by which we show that the proposed solution converges to or outperforms the results of the best
fine-tuned configuration of the algorithm proposed in [9] with a significant reduction of resource consumption.

5.1. Experimental setup

In our experiments, nodes mobility is both simulated according to HCMM [33] and drawn from real traces. A detailed
description of the real traces will be provided in Section 5.3. HCMM is a mobility model that integrates temporal, social and
spatial notions in order to obtain an accurate representation of real usermovements.We used it to generate synthetic traces
with these parameters: nodes move in a 6× 6 grid corresponding to a 1000 m2 square area, and are grouped in very closed
communities placed far from each other so as to avoid any ‘‘border effect’’ e.g. involuntary communication between groups.
Nodesmobility is limited inside the groups they belong to, except for few of them called travellers, which are allowed to visit
other groups. With this configuration we want to simulate different social communities where usually people stay, apart
for few of them that due to their social relationships can meet people from different social communities. In this context,
the only way to exchange data is through nodes mobility, and travellers play an important role because they are the unique
bridge among communities.

In our scenarios there are as many channels of interest as groups and every node subscribes to one channel. For each
group, all the channels are present with different popularity degrees and are assigned to the nodes according to a Zipf dis-
tribution [34] with parameter α = 1. Specifically, at the beginning of the simulation, each node selects the channel to be
subscribed to. The probability to select channel i is Pi = 1

iα where i denotes the ith most popular channel in the node’s
community. For symmetry, popularity of the channels is rotated, such that (i.e., considering all groups together) all channels
have the same average number of subscribers. Moreover, for each community there is a different most popular channel.
This makes the scenario uniform as far as channel popularity is concerned, since the same number of nodes is subscribed to
each channel, while the popularity of channels within individual groups is skewed according to a conventional model (Zipf
law). Every channel has the same number of items which are initially univocally assigned to nodes according to a uniform
random distribution. The detailed scenario configurations are supplied in Table 1. Note that in this scenario the hypothesis
that for any tagged node the probability of seeing each data item of a given channel on other encountered nodes with the
same probability does not hold true (at least at the beginning of the simulation). However, simulation results show that the
effectiveness of the PR algorithm does not suffer from this simplifying assumption.

5.2. Simulation results

We compare PR with the policy proposed in [9,6] that we indicate as Static Recognition (SR). In [6] SR was compared
with non-heuristic based data dissemination policies. Namely, in comparison with ContentPlace [25] – one of the reference
solutions in the literature – SR shows its effectiveness in terms of hit rate and its better efficiency in terms of network
overhead. Thus, we compare PR with SR only. SR represents an ‘‘optimal’’ distributed policy, since it maintains the whole
knowledge about observed items. In the simulations, we tune the SR parameters to their optimal values based on the specific
scenario considered. This is done by exploiting the sensitiveness analysis presented in [6]. Note that, in practice, it would not
be possible to do such fine tuning, and the optimal parameters for SR would need to be estimated. Therefore, we compare
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(a) 200 nodes, OC size= 10, (SR: θI = 10, θC = 10). (b) 600 nodes, OC size= 10, (SR: θI = 25, θC = 25).

(c) 200 nodes, OC size= 50, (SR: θI = 10, θC = 10). (d) 600 nodes, OC size= 50, (SR: θI = 25, θC = 25).

Fig. 2. Hit rate curves of PR (black curve) and SR (grey curve) with different network size 200 (a)–(c) and 600 (b)–(d).

PR against the optimal ideal performance of SR. We performed several measures with PR and different values of θC in the
range [1, 20] in the considered scenarios. The obtained results show negligible differences—not reported here for the sake
of space. Hence, we set the θC parameter to 10 and kept unchanged for all experiments.

Simulations aim at analysing to what extent PR is able to approximate the performance of SR, in spite of maintaining
reduced information and having to autonomically adapt to different environments. We evaluate the performance of both
approaches in terms of hit rate, convergence time and network overhead. The hit rate at a given time is defined as the mean
value over nodes of the ratio between the number of items currently present in the SC of each node w.r.t. the total number
of data items of the channel to which the node is subscribed. Convergence time is defined as the time instant when the hit
rate exceeds 99%. The instantaneous network overhead is measured as themean number of items exchanged at a given time
instant. All the results presented in this paper are averaged on 10 runs where the initial configuration of items and channels
were randomly initialised. Confidence intervals at a level of 95% have been computed for hit-rate curves, but not reported
in figures for the sake of readability, as they are very close to the hit-rate curves.

5.2.1. Opportunistic cache size sensitivity analysis
The capability of inferring system state from partial knowledge reveals particularly useful when memory for the OC is

limited. Indeed Fig. 2(a) shows that in a network composed by 200 nodes with an OC size of 10 items, PR reaches a hit rate
greater than 99% more quickly than SR; the gain in terms of convergence time is ≥24% (see Table 2). The same behaviour
holds for a more dense network as well: Fig. 2(b) highlights the distribution ability of PR in a scenario configured with a
network of 600 nodes, an OC size of 10 items, and a number of items significantly smaller than the network size (200). In
this configuration, at the beginning of the simulation, just one third of nodes are aware about the contents actually present
in the scenario. However, also in this case PR is able to quickly adapt to the situation reaching complete coverage faster
than SR. By contrast, the two approaches become almost equivalent when the OC size is sufficiently large (OC size 50) so as
to make the item selection a less critical task, as shown in Fig. 2(c) and (d). In order to have a quantitative understanding
about convergence velocity, we measure the converge times of the two approaches, shown in Table 2. As we can see, PR
outperforms SR without relying on any parameters’ fine tuning.

5.2.2. Network overhead
Compared to SR the probabilistic approach is less demanding in terms of resource consumption. Fig. 3(a)–(c) show, at

different scales, themean number of items exchanged by nodes during the simulation on a network of 200 nodes. As we can
see, there are two separated phases in content distribution, the first one (Fig. 3(b)) refers to the dissemination process inside
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(a) Mean number of items exchanged by PR. (b) Detailed view of the first dissemination phase.

(c) Detailed view of the second dissemination phase. (d) Comparison between SR and PR network overheads. .

Fig. 3. Mean number of items exchanged on a network of size 200.

Table 2
Convergence time for a coverage≥99%.

Experiment PR (s) SR (s) Gain PR vs. SR

Net. size 200, OC size 10 2100 3800 44%
Net. size 600, OC size 10 4400 5800 24%
Net. size 200, OC size 50 1200 1200 –
Net. size 600, OC size 50 1920 2000 4%

groups before the arrival of travellers in the communities. After the 65-th second of simulated time, the dissemination pro-
cess restarts due to the arrival of travellers inside the communities as depicted by the second phase of the process in Fig. 3(c).
Interestingly, after some time both phases show a decrease in the number of exchanged items – which is an indicator of the
convergence of the diffusion – and, even more important, it demonstrates that PR does not waste resources to retransmit
useless contents. By contrast, as can be derived by the analysis of the algorithm presented in [6], in order to maximise the
convergence velocity in SR, the data exchange never stops even when all the items are deemed as recognised (in that case,
according to SR nodes exchange data items selected according to a uniform sampling process). Thus, it becomes clear the
advantage coming from the probabilistic approachwhen compared to the network load induced by SR, as shown in Fig. 3(d).

In order to further investigate the differences between PR and SR, we made more comparable the two approaches by
limiting the network overhead of SR. To this end, we modified the latter by simply removing the constraint according to
which every node must keep its OC always full. This modification directly affects the network overhead due to the fact that
only unrecognised items become eligible to enter in OC, allowing it to be in some occasion only partially filled. For simplicity,
fromnowonwewill denote themodified version of SRwith the acronym SR∗. In order to obtain a direct and fair comparison,
we run an experiment with the same configuration setup of the former one: 200 nodes, θI = 10, θC = 10, OC size= 10. As
we can notice from Fig. 4(a), by limiting message exchanges, SR∗ shows a strong decrease in performance: the convergence
time goes from 3800 s to∞, i.e. the hit rate never reaches 99%. Even defining the convergence time at a lower hit rate, it is
clear from Fig. 4(a) that PR always outperforms SR∗. Moreover, as depicted in Fig. 4(b) the number of items exchanged along
time by SR∗, although lower than the number of exchanges triggered by SR, is still significantly higher than that of PR and,
moreover, message exchange never stops. This behaviour is caused by the replacement policy of the information present in
the Recognition Item Cache in SR∗, i.e. the cache used by SR in order to recognise data items. More precisely, when only few
items remain to be disseminated but their number is greater than the size of the Recognition Item Cache the information
contained in it is refreshed too frequently and the items cannot reach the recognised status, thus leading to the unlimited
message exchange that is evident in Fig. 4(b).
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a b

Fig. 4. Comparison between PR and SR∗ in terms of hit rate (a) and network overhead (b).

a b

Fig. 5. Hit rate curve of PR (black curve), SR (grey curve) and SR∗ (dashed grey curve) after a channel injection at 3000 s.

5.2.3. Dynamic scenario: channel injection
In this section we study how PR behaves in a more challenging scenario. At a certain time during the simulation, a set of

new items belonging to a new channel are injected in the environment. The number of nodes changing their subscription
in favour of the new channel is randomly extracted, and the nodes are randomly chosen with a uniform distribution across
groups. Due to this change, these nodes clear their SC just after having run the MT2B algorithm to load in OC possible useful
items. At this point the usual Probabilistic Recognition algorithm starts to be applied also to the new channel.

In Fig. 5(a) we can notice that, in a scenario of 200 nodes, after the channel injection at 3000 s both PR, SR and SR∗ react
to the new stimulus, though with different intensity. SR seems to be more responsive, but let us remember that it has been
fine tuned to obtain this result and, even more important, it never stops the dissemination process. Indeed, observing the
behaviour of SR∗, we notice that it is less demanding in terms of networks overhead, but it does not reach convergence. By
contrast PR autonomically responds to the channel injection restoring the hit rate trend just after 1000 s. This indicates that
PR well approximates the behaviour of SR that, due to its fine tuning, is an upper bound for this scenario. Fig. 5(b) shows
in more detail this behaviour. Moreover, in Fig. 6 we can see what happens to the network load when the dissemination
process restarts due to the injection of a new channel for both PR, SR and SR∗. Again, note the huge difference in overheads
between the three approaches.

5.2.4. Dynamic scenario: items injection
In this section, we analyse the behaviour of PR when increasing the scenario’s dynamicity. Differently from the previous

experiment, at a certain time during the simulation a large number of new data items belonging to an already existing chan-
nel are injected in the system. Newly generated items are randomly assigned to nodes belonging to the same randomly cho-
sen community. In thisway,we are trying to put our approach in anunfavourable condition, according towhich all new items
must traverse the entire system in order to reach all the interested nodes.Moreover, this kind of experiment is away to simu-
latewhat canhappen in real scenarioswhere users are allowed to generate newcontents belonging to already existing topics.
Here nodes are not requested tomodify theirmemory status (as for the previous experiment) but they are expected to simply
react to the injection. In Fig. 7 we see how PR and SR react to the injection of 1500 new data items belonging to the channel
0 in a network of size 200. Apparently, it seems that both PR and SR have almost the same performance but if we consider
Table 3, which reports the time instants – averaged over all channels –when PR and SR reach a specified hit rate level, we can
notice that PR proves to bemore effective than the best SR’s parametrisation (θI = 25, θC = 10) for this scenario. Moreover,
looking at the last row in the table we observe how a good parametrisation for a given scenario (θI = 10, θC = 10 in the ex-
periment of Section 5.2.3) can be awrong parametrisation for another scenario. This highlights the advantagewe obtain from
PRwhich self-tunes to the optimal operating condition. In order to have a deeper understanding on the behaviour of both the
approaches in presence of amassive injection of newdata items, let us consider Fig. 8wherewe show the difference between
the hit rate curves for the channel subjected to the new items injection and one of the other channels not affected by it.



128 L. Valerio et al. / Pervasive and Mobile Computing 16 (2015) 115–135

(a) PR. (b) SR.

(c) SR∗ . (d) Comparison among SR, gSR∗ and PR.

Fig. 6. Mean number of items exchanged in a network of 200 nodes. Channel injection at 3000 s.

Fig. 7. Hit rate curves of PR and SR with different parametrisation. Injection of 1500 items at 1000 s.

Table 3
Time instants in which PR or SR reach a specified hit rate level.

Hit rate PR SR θI = 2 SR θI = 10 SR θI = 25

50% 462 467 503 474
60% 581 575 611 604
70% 794 801 837 836
80% 1267 1260 1276 1299
90% 1616 1590 1705 1590
93% 1893 1945 2073 1827
96% 2287 2940 2664 2235
97% 2725 5504 4972 2586
98% 3312 11000 13449 5046
99% 6163 ∞ ∞ 12943

Aswe can see in Fig. 8(b), hit rate curves are quite similar to the one presented in Fig. 2. Instead, in Fig. 8(a) we see how PR
and SR react to the injection of 1500 items. Here SR is apparently more responsive than PR, but this higher responsiveness
is justified by the policy adopted by SR according to which it never stops the message exchange in order to maintain the OC
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a b

Fig. 8. Hit rate curves of PR and SR of each separate channel of interest. At 1000 s, 1500 items belonging to channel 0 are injected into the system.

Fig. 9. Network overhead when 1500 new data items of channel 0 are injected at 1000 s.

a b

Fig. 10. Hit rate curves of PR and SR∗ (a) and comparison between the corresponding network overhead (b).

cache always full, as shown in Fig. 9. Conversely, when we compare PR and SR∗ – which limits the message exchange – we
notice that SR∗ becomes less responsive than PR, as shown in Fig. 10(a). Moreover, as before we notice that SR∗ never really
stops the dissemination (Fig. 10(b)) due to the fact that some items never reach the recognised status and are continuously
exchanged.

5.2.5. Dynamic scenario: repeated items injection
In order to analyse our solution in evenmore realistic conditions where new data items belonging to an existing channel

appear in the system along time, we devised a second experiment of items injection. In this case, newly generated data items
are repeatedly injected in a network of 200 nodes at different time steps. More precisely, in this experiment every 1000 s
from time 1000 s to time 6000 s, 200 new data items belonging to channel 0 are injected in a randomly chosen community.
Fig. 11(a) shows the comparison between the hit rate curves of PR and SR. As we can see every 1000 s the hit rate level
decreases due to the injection of 200 new data items in the system. As shown in Table 4 PR reaches convergence slightly
faster than the standard SR in a more efficient way w.r.t. the network overhead, as shown in Fig. 12(a).



130 L. Valerio et al. / Pervasive and Mobile Computing 16 (2015) 115–135

a b

Fig. 11. Hit rate curve for (a) PR and SR, and (b) PR and SR∗ .

a b

Fig. 12. Network overhead comparison of PR vs. (a) SR and (b) SR∗ during repeated item injection.

Table 4
Convergence time comparison between PR, SR and SR∗ during repeated item
injection.

PR SR SR∗

6450 s
6815 s 8316 θI = 2, θC = 10
19153 s ∞ θI = 10, θC = 10
∞ ∞ θI = 25, θC = 10

For the sake of completeness, we performed the same experiment also with SR∗. As reported in Fig. 11(b) the hit rate
curve behaviour is almost the same as in the previous results, but looking at Table 4 we notice that even though SR∗ is
more efficient in terms of network overhead w.r.t. its standard version, as shown in Fig. 12(b), the time needed to reach
convergence is still larger than that of PR.

These experiments strongly highlight the unfeasibility of SR (and SR∗) for a real world deployment. As we can notice, its
good performance is subject to many factors: the scenario, the OC occupation policy, the rate at which new items appear in
the system, the number of new contents tomanage and so on. For each of the abovementioned factors wemust find a differ-
ent ‘‘best’’ parametrisation of SR (and SR∗) and this strongly limits its real usability. Conversely, PR proves to bemore flexible
across a range of different scenarios, it always reaches the coverage with limited network overhead and in reasonable time.

5.2.6. Churning nodes
We now explore how PR behaves under other, more challenging conditions where every 1000 s, each node has a prob-

ability to become inactive. Although inactive, a node continues to move in the environment but it neither participates to
the dissemination process nor collects information it is interested in. Anyway, it does not delete the information and ex-
perience collected so far. Once every 1000 s, nodes can become active again and restart the dissemination process. We
consider a network of 200 nodes. In the following we show results in which every node, since time 1000 to time 5000, has
a deactivation (and re-activation) probability of 0.5 so as, on average, only half of the nodes are active. Fig. 13(a) shows a
comparison between the typical hit rate trend obtained in a scenario with (black curve) and without churning nodes (grey
curve). After the first probabilistic deactivation at 1000 s we can notice a drastic decrease in the slope of the churning curve.
This is quite expected if we think that almost 50% of nodes stops exchanging information. Interestingly, between every two
activation/deactivation time steps we can notice two separated phases as shown in Fig. 13(b): a strong increase in the hit
rate curve followed by another slowdown just before the next activation/deactivation point. We justify this behaviour by
the fact that all the sleeping nodes, after being active, re-join the information dissemination process and start to collect
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a b

Fig. 13. (a) Hit rate curves of PR with churning nodes (black curve) and without churning nodes (grey curve). (b) Detailed view of the hit rate curves.
Activations and deactivations occur every 1000 s from time 1000 to time 5000.

Fig. 14. Hit rate comparison between PR and SR with churning nodes.

Table 5
Convergence times with churning nodes with OC size 10.

Algorithm Conv. time

PR Churn 5300 s
SR θI = 2, θC = 10 5100 s
SR θI = 10, θC = 10 8900 s
SR θI = 25, θC = 10 ∞

Table 6
Sensitivity analysis with reduced Bloom Filter size.

B.F. size reduction 100% 80% 60% 40%

Hit rate ≥99% 97% 98% 98%
Conv. time (s) 2100 4000 10400 16300

and redistribute information with other peers. However, at the same time other nodes become inactive, which triggers the
‘‘slowdown’’ phase: when the active nodes have collected and distributed all the temporarily available information, the en-
tire dissemination process reaches another plateau until the next re-activation. After time 5000 all nodes return to be active
and the dissemination process reaches convergence very quickly. When compared to a usual scenario where nodes are not
allowed to become inactive (see Table 2), we notice that the convergence time is more than doubled, as shown in Table 5,
yet our approach still yields quite good performance as shown in Fig. 14.

5.2.7. Bloom filter sensitivity analysis
Finally, as anticipated in Section 4.2, we present the results of a sensitiveness analysis to evaluate the robustness of our

approach in the presence of an even less reliable diffusion information about channels. To this end we performed a series
of experiments where the IH size was reduced up to 40% of its initial size, that, in normal conditions is set to the number
of items present in the scenario (200). Results can be found in Table 6 where we reported both the maximum coverage
obtained and the corresponding convergence time.

These experiments show that finely dimensioning the size of IH is not of primary importance. Evenwhen IH is drastically
under dimensioned, PR still archives almost 100% hit rate (even though through a slower dissemination process). This shows
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Table 7
Real world experimental setup.

Experimental dataset Rollernet Infocom06 SigComm09

N . nodes 62 78 76
Trace length (s) 9976 322149 334537
Mean n. contact per pair per hour 11.67 0.2194 0.3712
Mean contact length (s) 5.65 111.2 4.71
Mean inter-contact time (s) 366.4 8128 5708

N . channels 8 8 8
N . items per channel 100 100 100

that PR basically does not need tuning of parameters and can be used without prior knowledge in a range of situations, as
its performance is mostly unaffected by the size of the IH, which is the only parameter that in principle needs to be tuned.

5.3. Real world scenarios

We evaluated the performance of the algorithms with three real traces, namely, Rollernet [35], Infocom06 [36], and
SigComm09 [37]. Rollernet and SigComm09 are available in the crawdad repository, while Infocom06 has been supplied
by the researchers performing the experiment. As it will emerge from the datasets’ description, such real traces, although
similar in terms of number of involved nodes, present very different characteristics. Hence, they represent an interesting
test bed for our cognitive solution and its competitors.

The Rollernet trace involves 62 iMote devices equipped with a Bluetooth interface, and recording contacts among both
themselves and other Bluetooth devices in the surrounding environments, with a scanning period of roughly 15 s. The
trace was collected distributing the devices to rollerbladers moving across Paris over 3 h. The Rollernet trace comes with
symmetrised contacts: a contact between two nodes A and B lasts the time that A sees B or B sees A.

The Infocom06 trace involves 78 iMotes equipped with Bluetooth interface and distributed amongst the participants to
the IEEE INFOCOM2006 Conference, plus other 20 iMotes placed in fixed sites. The scanning granularity in this case is around
2 min. The authors of [36] decided to take the contact duration so that two consecutive contacts are merged into one if they
are separated by no more than an enquiry period (that is, contact loss is likely due to a message loss). For our experiments,
we considered only contacts amongst the mobile devices.

The SigComm09 trace involves 76 participants to the ACM SIGCOMM2009 Conference. Contacts are detected through the
Bluetooth interface of the participants’ smartphones with a granularity of about 2 min. In this case, the available traces are
unprocessed; we performed a symmetrisation consisting in both (i) taking a contact interval between two nodes A and B
equal to the maximum time one of the two sees the other, and (ii) merging multiple subsequent contacts of, let us say, A
with B into one if there exists just one overlapped contact of Bwith A.

In all cases, we dropped the contacts with devices external to the experiment. Table 7 shows the main characteristics of
the traces. In spite of involving almost the same number of nodes, the three traces strongly differ. In SigComm09, 13.5% of the
pairs of nodes do not observe any contact along the whole trace. As far as the other pairs are concerned, 6.28% of them just
had one contact, so we computed the inter-contact time for the remaining pairs. In Rollernet, only 0.82% of the pairs never
meet throughout the experiment, and 1.96% had just one contact. It is definitely the most dense trace and describes a very
dynamic environment. In Infocom06, 0.65% of the pairs have no contact and 0.93% have just one contact. Both Infocom06 and
SigComm09 have a low number of contacts per pair. Yet, contacts in Infocom06 are longer; this is revealed not only by the
mean, but also by the maximum intra-contact time, which is of the order of one minute for both Rollernet and SigComm09,
but amounts to roughly 45 min for Infocom06. The last two rows of Table 7 show the experimental setup. Wemeasured the
three algorithms with 8 channels, and generated 100 items per channel. Nodes choose the channel to subscribe according
to a Zipf distribution (with parameter 1). As it is impossible to determine people relationships, we assumed that all nodes
belong to the same community.

In order to have a fair comparison between the approaches, we carefully tuned the parameters of SR and SR∗ for each
scenario. Presented results are mean values averaged on 10 runs. Moreover, confidence intervals at level 95% have been
computed but not reported in graphs for the sake of readability.

Obtained results confirm what emerged in synthetic environments, that is, PR proves its adaptation abilities to different
scenarios reaching the same dissemination performance of the best fine tuned competitors. Indeed, looking at Fig. 15(a–c)
and Table 8 we notice that, beyond having almost the same hit rate trend, all the approaches reach the same dissemination
level. In fact, with Infocom06 andRollernet traces themaximum level of diffusion is achieved by all the cognitive approaches,
while with the Sigcomm09 trace they reach a diffusion level in the range of 94%. However, we recall that in the Sigcomm09
scenario the 13.5% of pairs of nodes experience only one contact in the whole trace at most. Moreover, convergence times
are in line with what presented in synthetic scenarios’ results, PR is always faster or equal than the competitor approaches.
We precise that, although in the Sigcomm09 scenario none of the approaches reaches the maximum coverage due to the
underlying contact patterns, we decided to report convergence times for the sake of comparison. In this case they refer to
the time instant when each algorithm reaches the 94% of coverage.



L. Valerio et al. / Pervasive and Mobile Computing 16 (2015) 115–135 133

(a) Infocom06. (b) Rollernet. (c) Sigcomm09.

(d) Infocom06. (e) Rollernet. (f) Sigcomm09.

Fig. 15. First row: Hit rate curves for PR (solid black), SR (dashed grey) and SR∗ (solid grey). Second row: Network overhead comparison between PR (solid
black), SR (dashed grey) and SR∗ (solid grey). Plots in the second row are in Log–Log scale for better readability. Parameter settings θC = 10, θI = 25, OC
size= 10.

Table 8
Hit rates and convergence time of PR,SR and SR∗ for the three real world scenarios.

Sigcomm09 Rollernet Infocom06
Hit rate Conv. time (s) Hit rate Conv. time (s) Hit rate Conv. time (s)

PR 94% 131656 100% 3170 100% 50670
SR 94% 163048 100% 3390 100% 50720
SR∗ 94% 199147 100% 3410 100% 51520

Efficiency properties of our solution are shown in Fig. 15(d–f) where, for each scenario PR proves to be more efficient
than SR and SR∗ in terms of network overhead. Here also, previously obtained results in synthetic scenarios are confirmed.
Indeed, PR obtains the same dissemination level of SR and SR∗ limiting the number of items exchanged and, most important,
recognising when the item dissemination should be stopped. We point out that in the Sigcomm09 scenario nodes running
PR do not stop the message exchange because the content diffusion process is not yet concluded at the end of the trace.
Nevertheless, PR exploits contacts more efficiently than SR and SR∗, as reported in Fig. 15(f). In conclusion, presented results
on real traces confirm that with PR is possible to autonomously control the dissemination process limiting both the status
information stored by mobile nodes and the network overhead without sacrificing neither efficiency nor latency.

6. Conclusion

In this paper, we investigated how the functional models of the human brain can be exploited to drive data dissemina-
tion in opportunistic networks.We started from the algorithm presented in [9,6] which for the first time proposes to use the
recognition heuristic to develop an ICT solution for data dissemination. This solution has twomain weaknesses. First, nodes
maintain punctual status information about the diffusion of all data items leading to critical scalability problems, i.e. status
information maintained by nodes linearly grows with the number of items in the system. Second, the strong dependence
from fixed parameters to be fine tuned beforehand in every different scenario limits the real usability of this solution. In
this paper we, solve the above problems by proposing for the first time a solution suitable for concrete implementation in
opportunistic networks. Firstly, the use of an aggregate information about diffusion state of data items permits to limit the
state maintained by nodes, without affecting the effectiveness of the data dissemination process. This feature makes the
system much more scalable, and suitable for adoption in large scale environments. In particular, the state maintained with
the algorithm proposed in this paper is constant with respect to the number of data items to be disseminated. Importantly,
such an improvement in scalability is not paid with a significant reduction of the performance, as nodes are still able to
receive what they are interested in within a similar amount of time. Second, the proposed approach uses a probabilistic
approach (again derived from cognitive models through a Bayesian framework) to determine the relevance and usefulness
of data items to be replicated. The probabilisticmechanism has the advantage of being completely autonomous and scenario
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independent. It does not need a priori tuning of its parameters, which are automatically and continuously updated as long
as nodes discover new information about the specific scenario. This feature gives to our solution a great flexibility and lets
it easily adapt to very different scenario configurations irrespective of the large number of factors – e.g. cache size, network
size, amount and frequency of appearance of new information in the system – affecting the behaviour of more static solu-
tions. Third, despite the fact of relying on compressed state information and probabilistically taken decisions, our solution
is able to generate very low network overhead with the remarkable advantage of being more energy efficient.

Appendix. Equivalence between π̃t and π̂t diffusion indexes

As stated in Section 4, under a reasonable (for our context) assumption further specified, the Eqs. (9) and (11) are
equivalent within a scale factor. Hereafter we present the passages to prove this claim expressed through the following
relation:

π̃ ch
t ≡ π̂ ch. (A.1)

Let us begin by expanding the left hand side of (A.1):

π̃ ch
t =

at
at + bt

(A.2)

=
αat−1 + yt

αat−1 + yt + αbt−1 + nt − yt
(A.3)

=
αat−1 + yt

αat−1 + αbt−1 + nt
(A.4)

=
αat−1 + yt

α(at−1 + bt−1)+ nt
. (A.5)

From now on we will assume the number of items belonging to the channel ch that a node can see during contacts as con-
stant; let us denote it with n. Although it represents a simplification, our simulation results prove that our system is robust
w.r.t. this assumption. Thus, Eq. (A.5) becomes

π̃ ch
t =

αat−1 + yt
(α + 1)n

. (A.6)

We can rewrite (A.6) as a series of the following form:

π̃ ch
t =

1
n(1+ α)

t
j=0

αt−jyj. (A.7)

Let us now consider the expansion of π̂t , where we make the same assumption as before according to which a node sees a
fixed number n of data items for a channel during each contact:

π̂t = απ̂ ch
t−1 + (1− α)

yt
n

(A.8)

= αt(1− α)
y0
n
+ αt−1(1− α)

y1
n
+ · · · + α0(1− α)

yt
n

(A.9)

=

t
j=0

αt−j(1− α)
yj
n

. (A.10)

Now, by applying a scale factor to Eq. (A.10) we obtain Eq. (A.7):

1
(1− α)(1+ α)

t
j=0

αt−j(1− α)
yj
n
=

1
n(1+ α)

t
j=0

αt−jyt = π̃ ch
t . (A.11)

Concluding, from Eq. (A.11) we see that the two indexes are equivalent within a scale factor
1− α2.

An empirical example about the convergence of π̂ ch and π̃ ch is reported in Fig. 1.

References

[1] M. Conti, S. Chong, S. Fdida, W. Jia, H. Karl, Y.-D. Lin, P. Mähönen, M. Maier, R. Molva, S. Uhlig, M. Zukerman, Research challenges towards the future
Internet, Comput. Commun. 34 (18) (2011) 2115–2134. http://dx.doi.org/10.1016/j.comcom.2011.09.001. URL: http://www.sciencedirect.com/
science/article/pii/S0140366411002714.

[2] M. Conti, S.K. Das, C. Bisdikian, M. Kumar, L.M. Ni, A. Passarella, G. Roussos, G. Tröster, G. Tsudik, F. Zambonelli, Looking ahead in pervasive computing:
challenges and opportunities in the era of cyber-physical convergence, Pervasive Mob. Comput. 8 (1) (2012) 2–21. http://dx.doi.org/10.1016/j.pmcj.
2011.10.001. URL: http://www.sciencedirect.com/science/article/pii/S1574119211001271.

http://dx.doi.org/10.1016/j.comcom.2011.09.001
http://dx.doi.org/10.1016/j.comcom.2011.09.001
http://dx.doi.org/10.1016/j.comcom.2011.09.001
http://dx.doi.org/10.1016/j.comcom.2011.09.001
http://dx.doi.org/10.1016/j.comcom.2011.09.001
http://dx.doi.org/10.1016/j.comcom.2011.09.001
http://dx.doi.org/10.1016/j.comcom.2011.09.001
http://dx.doi.org/10.1016/j.comcom.2011.09.001
http://dx.doi.org/10.1016/j.comcom.2011.09.001
http://dx.doi.org/10.1016/j.comcom.2011.09.001
http://dx.doi.org/10.1016/j.comcom.2011.09.001
http://www.sciencedirect.com/science/article/pii/S0140366411002714
http://www.sciencedirect.com/science/article/pii/S0140366411002714
http://www.sciencedirect.com/science/article/pii/S0140366411002714
http://www.sciencedirect.com/science/article/pii/S0140366411002714
http://www.sciencedirect.com/science/article/pii/S0140366411002714
http://www.sciencedirect.com/science/article/pii/S0140366411002714
http://www.sciencedirect.com/science/article/pii/S0140366411002714
http://www.sciencedirect.com/science/article/pii/S0140366411002714
http://dx.doi.org/10.1016/j.pmcj.2011.10.001
http://dx.doi.org/10.1016/j.pmcj.2011.10.001
http://dx.doi.org/10.1016/j.pmcj.2011.10.001
http://dx.doi.org/10.1016/j.pmcj.2011.10.001
http://dx.doi.org/10.1016/j.pmcj.2011.10.001
http://dx.doi.org/10.1016/j.pmcj.2011.10.001
http://dx.doi.org/10.1016/j.pmcj.2011.10.001
http://dx.doi.org/10.1016/j.pmcj.2011.10.001
http://dx.doi.org/10.1016/j.pmcj.2011.10.001
http://dx.doi.org/10.1016/j.pmcj.2011.10.001
http://dx.doi.org/10.1016/j.pmcj.2011.10.001
http://www.sciencedirect.com/science/article/pii/S1574119211001271
http://www.sciencedirect.com/science/article/pii/S1574119211001271
http://www.sciencedirect.com/science/article/pii/S1574119211001271
http://www.sciencedirect.com/science/article/pii/S1574119211001271
http://www.sciencedirect.com/science/article/pii/S1574119211001271
http://www.sciencedirect.com/science/article/pii/S1574119211001271
http://www.sciencedirect.com/science/article/pii/S1574119211001271
http://www.sciencedirect.com/science/article/pii/S1574119211001271


L. Valerio et al. / Pervasive and Mobile Computing 16 (2015) 115–135 135

[3] Cisco, Cisco visual networking index: global mobile data traffic forecast update, 2012–2017. http://www.cisco.com/en/US/solutions/collateral/ns341/
ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf (2012).

[4] L. Pelusi, A. Passarella, M. Conti, Opportunistic networking: data forwarding in disconnected mobile ad hoc networks, IEEE Commun. Mag. 44 (11)
(2006) 134–141. http://dx.doi.org/10.1109/MCOM.2006.248176.

[5] A. Balasubramanian, B. Levine, A. Venkataramani, DTN routing as a resource allocation problem, SIGCOMM Comput. Commun. Rev. 37 (4) (2007)
373–384. http://dx.doi.org/10.1145/1282427.1282422.

[6] M. Conti, M. Mordacchini, A. Passarella, Design and performance evaluation of data dissemination systems for opportunistic networks based on
cognitive heuristics, ACM Trans. Auton. Adapt. Syst. 8 (3) (2013) 12:1–12:32. http://dx.doi.org/10.1145/2518017.2518018.

[7] D. Goldstein, G. Gigerenzer, Models of ecological rationality: the recognition heuristic, Psychol. Rev. 109 (1) (2002) 75–90.
[8] G. Gigerenzer, D. Goldstein, Reasoning the fast and frugal way: models of bounded rationality, Psychol. Rev. 103 (9) (1996) 650–669.
[9] M. Conti, M. Mordacchini, A. Passarella, Data dissemination in opportunistic networks using cognitive heuristics, in: IEEE International Symposium

on a World of Wireless, Mobile and Multimedia Networks, WoWMoM, 2011, pp. 1–6. http://dx.doi.org/10.1109/WoWMoM.2011.5986145.
[10] L. Valerio, M. Conti, E. Pagani, A. Passarella, Autonomic cognitive-based data dissemination in opportunistic networks, in: 14th International

Symposium on ‘‘A World of Wireless, Mobile and Multimedia Networks’’, IEEE, 2013, pp. 1–9.
[11] T.R. Krynski, J.B. Tenenbaum, The role of causality in judgments under uncertainty, J. Exp. Psychol. Gen. 136 (3) (2007) 430–450.
[12] C. Peterson, L. Beach, Man as an intuitive statistician, Psychol. Bull. 68 (1967) 29–47.
[13] G. Gigerenzer, U. Hoffrage, How to improve Bayesian reasoning without instruction: frequency formats, Psychol. Rev. 102 (1995) 684–704.
[14] J. Marewski, W. Gaissmaier, G. Gigerenzer, Good judgments do not require complex cognition, Cogn. Process. 11 (2) (2010) 103–121.

http://dx.doi.org/10.1007/s10339-009-0337-0.
[15] M. Monti, L. Martignon, G. Gigerenzer, N. Berg, The impact of simplicity on financial decision-making, in: Proceedings of CogSci, 2009, pp. 1846–1851.
[16] D. Goldstein, G. Gigerenzer, Fast and frugal forecasting, Int. J. Forecast. 25 (2009) 760–772.
[17] J. Marewski, W. Gaissmaier, L. Schooler, D. Goldstein, G. Gigerenzer, From recognition to decisions: extending and testing recognition-based models

for multialternative inference, Psychon. Bull. Rev. 17 (3) (2010) 287–309. http://dx.doi.org/10.3758/PBR.17.3.287.
[18] N. Chater, M. Oaksford, The Probabilistic Mind: Prospects for a Bayesian Cognitive Science No. 1, in: The Probabilistic Mind: Prospects for a Bayesian

Cognitive Science, Oxford University Press, 2008.
[19] C. Boldrini, A. Passarella, Data Dissemination in Opportunistic Networks, John Wiley & Sons, Inc., 2013, pp. 453–490. http://dx.doi.org/10.1002/

9781118511305.ch12.
[20] F. De Pellegrini, I. Carreras, D. Miorandi, I. Chlamtac, C. Moiso, R-P2P: a data centric DTN middleware with interconnected throwboxes,

in: Proceedings of the 2nd International Conference on Autonomic Computing and Communication Systems, Autonomics’08, ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels, Belgium, Belgium, 2008, pp. 2:1–2:10. URL:
http://dl.acm.org/citation.cfm?id=1487652.1487654.

[21] J. Whitbeck, M. Amorim, Y. Lopez, J. Leguay, V. Conan, Relieving the wireless infrastructure: when opportunistic networks meet guaranteed delays,
in: 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, WoWMoM, 2011, pp. 1–10. http://dx.doi.org/10.
1109/WoWMoM.2011.5986466.

[22] V. Lenders, M. May, G. Karlsson, C. Wacha, Wireless ad hoc podcasting, SIGMOBILE Mob. Comput. Commun. Rev. 12 (1) (2008) 65–67. http://dx.doi.
org/10.1145/1374512.1374535.

[23] C. Boldrini, M. Conti, A. Passarella, Context and resource awareness in opportunistic network data dissemination, in: Proceedings of the 2008
International Symposium on a World of Wireless, Mobile and Multimedia Networks, WOWMOM’08, IEEE Computer Society, Washington, DC, USA,
2008, pp. 1–6. http://dx.doi.org/10.1109/WOWMOM.2008.4594890.

[24] C. Boldrini, M. Conti, A. Passarella, Design and performance evaluation of contentplace, a social-aware data dissemination system for opportunistic
networks, Comput. Netw. 54 (4) (2010) 589–604. http://dx.doi.org/10.1016/j.comnet.2009.09.001. URL: http://www.sciencedirect.com/science/
article/pii/S1389128609002783.

[25] C. Boldrini, M. Conti, A. Passarella, Contentplace: social-aware data dissemination in opportunistic networks, in: Proceedings of the 11th International
Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems, MSWiM’08, ACM, New York, NY, USA, 2008, pp. 203–210.
http://dx.doi.org/10.1145/1454503.1454541.

[26] P. Pantazopoulos, I. Stavrakakis, A. Passarella, M. Conti, Efficient social-aware content placement in opportunistic networks, in: 2010 Seventh Interna-
tional Conference on Wireless On-Demand Network Systems and Services, WONS, 2010, pp. 17–24. http://dx.doi.org/10.1109/WONS.2010.5437139.

[27] E. Yoneki, P. Hui, S. Chan, J. Crowcroft, A socio-aware overlay for publish/subscribe communication in delay tolerant networks, in: Proceedings of
the 10th ACM Symposium on Modeling, Analysis, and Simulation of Wireless and Mobile Systems, MSWiM’07, ACM, New York, NY, USA, 2007,
pp. 225–234. http://dx.doi.org/10.1145/1298126.1298166.

[28] P. Costa, C. Mascolo, M. Musolesi, G. Picco, Socially-aware routing for publish–subscribe in delay-tolerant mobile ad hoc networks, IEEE J. Sel. Areas
Commun. 26 (5) (2008) 748–760. http://dx.doi.org/10.1109/JSAC.2008.080602.

[29] J. Reich, A. Chaintreau, The age of impatience: optimal replication schemes for opportunistic networks, in: Proceedings of the 5th International
Conference on Emerging Networking Experiments and Technologies, CoNEXT’09, ACM, New York, NY, USA, 2009, pp. 85–96. http://dx.doi.org/10.
1145/1658939.1658950.

[30] A.C. Harvey, C. Fernandes, Time series models for count or qualitative observations, J. Bus. Econom. Statist. 7 (4) (1989) 407–417.
[31] D. Fink, A compendium of conjugate priors, Tech. Rep., Environmental Statistics Group, Dept of Biology, Montana State University, 1997.
[32] P.S. Almeida, C. Baquero, N. Preguiça, D. Hutchison, Scalable bloom filters, Inform. Process. Lett. 101 (6) (2007) 255–261. http://dx.doi.org/10.1016/

j.ipl.2006.10.007. URL: http://www.sciencedirect.com/science/article/pii/S0020019006003127.
[33] C. Boldrini, A. Passarella, HCMM: modelling spatial and temporal properties of human mobility driven by users’ social relationships, Comput.

Commun. 33 (9) (2010) 1056–1074. http://dx.doi.org/10.1016/j.comcom.2010.01.013. URL: http://www.sciencedirect.com/science/article/pii/
S0140366410000514.

[34] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker, Web caching and zipf-like distributions: evidence and implications, in: INFOCOM ’99. Eighteenth
Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 1, 1999, pp. 126–134 http://dx.doi.org/10.1109/
INFCOM.1999.749260.

[35] P. Tournoux, J. Leguay, F. Benbadis, V. Conan, M. Dias de Amorim, J. Whitbeck, The accordion phenomenon: analysis, characterization, and impact on
DTN routing, in: INFOCOM 2009, IEEE, 2009, pp. 1116–1124. http://dx.doi.org/10.1109/INFCOM.2009.5062024.

[36] P. Hui, People Are The Network: Experimental Design And Evaluation of Social-based Forwarding Algorithms, UCAM-CL-TR-713 713, Cambridge
University, 2008.

[37] A.-K. Pietilainen, E. Oliver, J. LeBrun, G. Varghese, C. Diot, Mobiclique: middleware for mobile social networking, in: Proceedings of the 2Nd ACM
Workshop on Online Social Networks, WOSN’09, ACM, New York, NY, USA, 2009, pp. 49–54. http://dx.doi.org/10.1145/1592665.1592678.

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf
http://dx.doi.org/doi:10.1109/MCOM.2006.248176
http://dx.doi.org/doi:10.1145/1282427.1282422
http://dx.doi.org/doi:10.1145/2518017.2518018
http://refhub.elsevier.com/S1574-1192(14)00081-9/sbref7
http://refhub.elsevier.com/S1574-1192(14)00081-9/sbref8
http://dx.doi.org/10.1109/WoWMoM.2011.5986145
http://refhub.elsevier.com/S1574-1192(14)00081-9/sbref10
http://refhub.elsevier.com/S1574-1192(14)00081-9/sbref11
http://refhub.elsevier.com/S1574-1192(14)00081-9/sbref12
http://refhub.elsevier.com/S1574-1192(14)00081-9/sbref13
http://dx.doi.org/doi:10.1007/s10339-009-0337-0
http://refhub.elsevier.com/S1574-1192(14)00081-9/sbref16
http://dx.doi.org/doi:10.3758/PBR.17.3.287
http://refhub.elsevier.com/S1574-1192(14)00081-9/sbref18
http://dx.doi.org/10.1002/9781118511305.ch12
http://dx.doi.org/10.1002/9781118511305.ch12
http://dx.doi.org/10.1002/9781118511305.ch12
http://dx.doi.org/10.1002/9781118511305.ch12
http://dx.doi.org/10.1002/9781118511305.ch12
http://dx.doi.org/10.1002/9781118511305.ch12
http://dx.doi.org/10.1002/9781118511305.ch12
http://dx.doi.org/10.1002/9781118511305.ch12
http://dl.acm.org/citation.cfm?id%3D1487652.1487654
http://dx.doi.org/10.1109/WoWMoM.2011.5986466
http://dx.doi.org/10.1109/WoWMoM.2011.5986466
http://dx.doi.org/10.1109/WoWMoM.2011.5986466
http://dx.doi.org/10.1109/WoWMoM.2011.5986466
http://dx.doi.org/10.1109/WoWMoM.2011.5986466
http://dx.doi.org/10.1109/WoWMoM.2011.5986466
http://dx.doi.org/10.1109/WoWMoM.2011.5986466
http://dx.doi.org/10.1109/WoWMoM.2011.5986466
http://dx.doi.org/10.1109/WoWMoM.2011.5986466
http://dx.doi.org/10.1145/1374512.1374535
http://dx.doi.org/10.1145/1374512.1374535
http://dx.doi.org/10.1145/1374512.1374535
http://dx.doi.org/10.1145/1374512.1374535
http://dx.doi.org/10.1145/1374512.1374535
http://dx.doi.org/10.1145/1374512.1374535
http://dx.doi.org/10.1145/1374512.1374535
http://dx.doi.org/10.1145/1374512.1374535
http://dx.doi.org/doi:10.1109/WOWMOM.2008.4594890
http://dx.doi.org/10.1016/j.comnet.2009.09.001
http://dx.doi.org/10.1016/j.comnet.2009.09.001
http://dx.doi.org/10.1016/j.comnet.2009.09.001
http://dx.doi.org/10.1016/j.comnet.2009.09.001
http://dx.doi.org/10.1016/j.comnet.2009.09.001
http://dx.doi.org/10.1016/j.comnet.2009.09.001
http://dx.doi.org/10.1016/j.comnet.2009.09.001
http://dx.doi.org/10.1016/j.comnet.2009.09.001
http://dx.doi.org/10.1016/j.comnet.2009.09.001
http://dx.doi.org/10.1016/j.comnet.2009.09.001
http://dx.doi.org/10.1016/j.comnet.2009.09.001
http://www.sciencedirect.com/science/article/pii/S1389128609002783
http://www.sciencedirect.com/science/article/pii/S1389128609002783
http://www.sciencedirect.com/science/article/pii/S1389128609002783
http://www.sciencedirect.com/science/article/pii/S1389128609002783
http://www.sciencedirect.com/science/article/pii/S1389128609002783
http://www.sciencedirect.com/science/article/pii/S1389128609002783
http://www.sciencedirect.com/science/article/pii/S1389128609002783
http://www.sciencedirect.com/science/article/pii/S1389128609002783
http://dx.doi.org/doi:10.1145/1454503.1454541
http://dx.doi.org/10.1109/WONS.2010.5437139
http://dx.doi.org/doi:10.1145/1298126.1298166
http://dx.doi.org/doi:10.1109/JSAC.2008.080602
http://dx.doi.org/10.1145/1658939.1658950
http://dx.doi.org/10.1145/1658939.1658950
http://dx.doi.org/10.1145/1658939.1658950
http://dx.doi.org/10.1145/1658939.1658950
http://dx.doi.org/10.1145/1658939.1658950
http://dx.doi.org/10.1145/1658939.1658950
http://dx.doi.org/10.1145/1658939.1658950
http://dx.doi.org/10.1145/1658939.1658950
http://refhub.elsevier.com/S1574-1192(14)00081-9/sbref30
http://dx.doi.org/10.1016/j.ipl.2006.10.007
http://dx.doi.org/10.1016/j.ipl.2006.10.007
http://dx.doi.org/10.1016/j.ipl.2006.10.007
http://dx.doi.org/10.1016/j.ipl.2006.10.007
http://dx.doi.org/10.1016/j.ipl.2006.10.007
http://dx.doi.org/10.1016/j.ipl.2006.10.007
http://dx.doi.org/10.1016/j.ipl.2006.10.007
http://dx.doi.org/10.1016/j.ipl.2006.10.007
http://dx.doi.org/10.1016/j.ipl.2006.10.007
http://dx.doi.org/10.1016/j.ipl.2006.10.007
http://dx.doi.org/10.1016/j.ipl.2006.10.007
http://www.sciencedirect.com/science/article/pii/S0020019006003127
http://www.sciencedirect.com/science/article/pii/S0020019006003127
http://www.sciencedirect.com/science/article/pii/S0020019006003127
http://www.sciencedirect.com/science/article/pii/S0020019006003127
http://www.sciencedirect.com/science/article/pii/S0020019006003127
http://www.sciencedirect.com/science/article/pii/S0020019006003127
http://www.sciencedirect.com/science/article/pii/S0020019006003127
http://www.sciencedirect.com/science/article/pii/S0020019006003127
http://dx.doi.org/10.1016/j.comcom.2010.01.013
http://dx.doi.org/10.1016/j.comcom.2010.01.013
http://dx.doi.org/10.1016/j.comcom.2010.01.013
http://dx.doi.org/10.1016/j.comcom.2010.01.013
http://dx.doi.org/10.1016/j.comcom.2010.01.013
http://dx.doi.org/10.1016/j.comcom.2010.01.013
http://dx.doi.org/10.1016/j.comcom.2010.01.013
http://dx.doi.org/10.1016/j.comcom.2010.01.013
http://dx.doi.org/10.1016/j.comcom.2010.01.013
http://dx.doi.org/10.1016/j.comcom.2010.01.013
http://dx.doi.org/10.1016/j.comcom.2010.01.013
http://www.sciencedirect.com/science/article/pii/S0140366410000514
http://www.sciencedirect.com/science/article/pii/S0140366410000514
http://www.sciencedirect.com/science/article/pii/S0140366410000514
http://www.sciencedirect.com/science/article/pii/S0140366410000514
http://www.sciencedirect.com/science/article/pii/S0140366410000514
http://www.sciencedirect.com/science/article/pii/S0140366410000514
http://www.sciencedirect.com/science/article/pii/S0140366410000514
http://www.sciencedirect.com/science/article/pii/S0140366410000514
http://dx.doi.org/10.1109/INFCOM.1999.749260
http://dx.doi.org/10.1109/INFCOM.1999.749260
http://dx.doi.org/10.1109/INFCOM.1999.749260
http://dx.doi.org/10.1109/INFCOM.1999.749260
http://dx.doi.org/10.1109/INFCOM.1999.749260
http://dx.doi.org/10.1109/INFCOM.1999.749260
http://dx.doi.org/10.1109/INFCOM.1999.749260
http://dx.doi.org/10.1109/INFCOM.1999.749260
http://dx.doi.org/10.1109/INFCOM.1999.749260
http://dx.doi.org/doi:10.1109/INFCOM.2009.5062024
http://dx.doi.org/doi:10.1145/1592665.1592678

	Scalable data dissemination in opportunistic networks through cognitive methods
	Introduction
	Background and related work
	Cognitive models
	Content distribution in OppNets
	Recognition heuristics in data dissemination for opportunistic networks

	Problem statement and system assumptions
	Data dissemination based on probabilistic recognition
	Bayesian roots of probabilistic recognition
	Data dissemination algorithms

	Performance evaluation
	Experimental setup
	Simulation results
	Opportunistic cache size sensitivity analysis
	Network overhead
	Dynamic scenario: channel injection
	Dynamic scenario: items injection
	Dynamic scenario: repeated items injection
	Churning nodes
	Bloom filter sensitivity analysis

	Real world scenarios

	Conclusion
	Equivalence between  πt  and  hat πt  diffusion indexes
	References


