
Quality of Service Multipath Multicast Protocol∗

Pierpaolo Baccichet
Computer Science

Department
University of Milan

via Comelico 39, I–20135
Milano, Italy

p.bacciche@tin.it

Elena Pagani
Computer Science

Department
University of Milan

via Comelico 39, I–20135
Milano, Italy

pagani@dsi.unimi.it

Gian Paolo Rossi
Computer Science

Department
University of Milan

via Comelico 39, I–20135
Milano, Italy

rossi@dsi.unimi.it

ABSTRACT
This paper reports the preliminary work on QoSM2P [1],
a multicast protocol for the Internet that supports QoS–
sensitive routing. QoSM2P has been designed to achieve a
better usage of network resources.

The primary trouble encountered in QoS multicast is the
“false rejection” of join requests generated by the clients,
when the network load is particularly high. The works de-
scribed in [2], [3] and [4] may fail in serving the user properly,
because they consider only one path returned from the un-
derlying unicast protocol, without checking the existence of
other alternative paths. QoSM2P introduces an extended
mechanism for finding feasible paths, that checks several al-
ternatives within the same join request procedure.

The QoSM2P protocol also provides the possibility to
reorganize the QoS requirements, without any disconnection
from the group. This feature is useful in many applications
like layered video, in which a user may change the desired
quality of service at any time.

Categories and Subject Descriptors
C.2 [Computer Systems Organization]: Computer Com-
munication Networks—network protocols, protocol architec-
ture; D.2.8 [Software Engineering]: Metrics—performance
measures

General Terms
Multicast algorithms, Performance analysis

Keywords
multicast, multipath, reservation, protocol architecture, qual-
ity of service

∗This work was supported by the MURST under contract
no. MM09265173 “Techniques for end–to–end Quality–of–
Service control in multi–domain IP networks”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NGC ’02 Boston, Massachussetts USA
Copyright 2002 ACM 1-58113-619-6/02/0010 ...$5.00.

1. INTRODUCTION
Multicasting can be defined as the distribution of the same

information stream from one to many nodes concurrently. In
the last few years, multicast routing has attracted a lot of at-
tention from the network community, since many emerging
applications are of multicast nature, such as teleconferenc-
ing, tele–education, and computer aided collaborative work.
A multicast connection can substitute for many unicast con-
nections carrying the same information, while reducing the
network load.

The Internet is a packet–switching network that princi-
pally provides best–effort service. That is, there are no guar-
antees for services and applications running over it; appli-
cations may “starve”, end–to–end delays may be arbitrary,
and packets may be lost. Our work is motivated by the need
to support QoS–sensitive multicast applications.

This document describes a QoS–aware multicast routing
algorithm that implements resource reservation at the IP
routing level. This approach aims to alleviate a problem
that may be encountered with other frameworks (see RSVP
[5]), under which routing is decoupled from resource reser-
vation: the inability to satisfy receiver QoS requests even
when suitable paths exist in the network.

There exist many other protocols for QoS multicast rout-
ing, like QoS–CBT, QoSMIC and QoS–PIM. QoS–CBT [2]
extends the existing protocol proposed by A. Ballardie in
[6] and supports one bi–directional shared tree. It was de-
signed so because the primary objectives of the protocol were
to maintain scalability while providing efficient link sharing.
Consider a QoS–enabled scenario where multiple sources of
a multicast group are transmitting through a shared bi–
directional tree. Each sender has to transmit at a data rate
that is the maximum of the individual data rates required
by its receivers. In this case, a link on the tree may have
to reserve bandwidth for packets from one or more of those
senders. Based on the preceding reasons, source–specific
trees seem better suited for scalable QoS–based IP multi-
cast.

In [4], the original protocol QoSMIC that uses source spe-
cific trees is proposed. While this protocol is functionally
feasible, the following problems can be identified. First, ev-
ery new receiver join procedure requires an extensive network–
wide search that is carried out by both the receiver and the
multicast tree that it intends to join. Also, it increases sig-
nificantly the join latency for a new receiver, because of the
timeout set up for the reception of the messages generated
by the candidate routers. Moreover, the path search–space

for a potential new receiver is restricted to the unicast paths
used by the route advertisement packets, from the potential
joining routers on the tree to the new receiver. This restric-
tion may give rise to reduced join–success rate in certain
scenarios.

QoS–PIM is an extension of PIM–SM [7] to support QoS
traffic and it introduces two different policies for finding a
feasible path. TIQM has scalability troubles because it tries
to find a path basing on dynamic information about QoS
parameters stored on each node. NUQM performs a search
analyzing, once at a time, the paths returned from the un-
derlying unicast protocol.

The first goal of this work is to increase the ratio of suc-
cessful join the protocol can serve, and as a consequence the
network utilization. QoSM2P uses particular information
to implement a search engine that is able to look for many
feasible paths within the same join process.

Our approach is similar to that proposed in [8] to pro-
vide a QoS–aware unicast routing service in ad hoc wireless
networks. However, the algorithm in [8] does not support
multicast communications.

We want to give the user the possibility to specify more
than one QoS metric without excessively increasing the com-
plexity of the algorithm. Since the problem to find a
bandwidth–constrained least–cost path in a network is
NP–complete [9], we use an heuristic function to find a sub-
optimal path that allow us to limit the control overhead
generated.

The paper is structured as follows: in section 2, we de-
scribe the proposed algorithm, different types of messages
exchanged and data collected on the nodes. In section 3,
we discuss the performance achieved by implementing the
algorithm in the ns–2 simulation framework. Section 4 con-
cludes the work.

2. PROTOCOL OVERVIEW
The QoSM2P protocol has been designed to support mul-

timedia applications that generate large amount of traffic.
Our purpose is to achieve a better usage of the Internet pub-
lic infrastructure trying to serve as many users as possible
at the same time. Then, our primary goal in the protocol
design was the increase of the percentage of join requests
accepted in comparison with other existing protocols like
QoS–CBT and QoSMIC.

Since the response time observed by end users is partic-
ularly important for multimedia applications, another im-
portant parameter we considered is the join and leave la-
tency. For example, registered users of a cable TV company
have to switch among many different shows, causing fre-
quent changes of the group membership. For this reason,
another goal we would like to achieve is the reduction of the
join and leave latency.

The Join procedure is initialized by a designated router 1

when it receives a request from a client directly connected.
The DR then starts sending some messages containing par-
ticular information data called “tickets” (see section 2.1).
QoSM2P does not require the exchange of additional state
information about QoS parameters at every change of the
group membership. It takes decision about routing basing

1The designated router is trivially the network node re-
turned by the IGMP protocol, that is responsible for the
join and leave of clients directly connected.

on data usually stored in the network nodes by a link state
unicast algorithm.

Without generality loss, we use the bandwidth as an ex-
ample of QoS metric for the rest of this paper. QoSM2P is
able to negotiate any number of different metrics using the
same independent format for packets exchanged (see sec-
tion 2.3). It permits the change of existing requests without
disconnecting the client from a group.

The algorithm can be used to construct the distribution
tree basing on given requirements specified by the connected
clients and the source of the effective data flow. We use
different types of messages, listed in Table 1, to support
join, leave and change of existing requirements of a client.

Table 1: Message types

Type Explanation

Join Req A DR starts a network inquiry to find a
feasible path for the connection

Join Ack The Core accepts the request of the DR
and stabilizes the path

Join NAck The request has been rejected by the Core
ReDim Req A DR or an on–tree router requests the

change of the allocated resources
ReDim Ack An on–tree router accepts the ReDim Re-

quest
ReDim NAck An on–tree router rejects the ReDim Re-

quest
Leave The message is forwarded upstream on

the tree to allow the disconnection of a
DR that has no more clients connected

Each packet type presents a common header containing
the following data fields, needed to correctly manage the
requests:

Type Field used to discriminate between packet types
CID IP address of the source of the data flow (i.e. the

core router)
GID IP address of the multicast group
NID IP address of the designated router that initiates

the request
RID Request Identifier, that is a sequence number

unique for each designated router
Since we want to build source based trees, we will refer

to the source of the data flow as the Core Router of a given
distribution tree.

2.1 Ticket information
We use the term “ticket” to represent an ideal token used

to check the existence of a path suitable for the connection
to the multicast distribution tree. These tokens are used
either:

• to install a temporary reservation of the required re-
sources that can be later confirmed;

• to limit the total number of different paths examined in
a join procedure. Since every ticket can travel through
a different path, we are able to control the diffusion
of the network search varying the number of tickets
enclosed in a join request message;

• to collect information about dynamic conditions en-
countered on the network nodes. These data can be

later used for the selection of the best path to install
among all those examined;

Obviously the amount of tickets initially generated by a
designated router affects the control overhead. In a real im-
plementation our routers can be configured to start inquiring
the network with a limited number of tickets and then, only
if no suitable paths are found, to retry enclosing more tickets
enlarging the diffusion of the search.

2.2 Data Structures
In order to guarantee the correct behaviour of the proto-

col, some data must be stored on network nodes. For in-
stance, each router must store information about the avail-
able bandwidth on the configured network devices. Besides,
it has to maintain the following data structures:

• Installed paths, stores data about incoming and
downstream interfaces for every couple (Source, Group)
- <S,G>. This table is used both for the routing of
the active data flow and the check of resources already
allocated at the arrival of a new request;

• Temporary reservations, collects information about
Join and ReDim requests received. It contains the
specification of requested resources, the identifier 2 and
a flag indicating if the path has been already installed.
This table is used to temporary reserve the bandwidth
necessary for a connection when a join request arrives;
the reservation can be later confirmed by an Ack mes-
sage or deallocated by a NAck.

Other collected data differs among different types of router
involved. A Core router has to collect data about the re-
quests received in a table called Requests database, until
it selects the best ticket to install. The designated router
maintains a Client database with information about all
the connected hosts in the local area network and the re-
spective QoS requirements.

The storage needed to maintain these data structure, in
presence of frequently changing groups, might reveal as a
limit in a real implementation of QoSM2P. At this stage
of the work we have not yet considered a multi–domain or
hierarchic architecture.

2.3 QoS Constraints
In order to contain the complexity of this exposure, we

are making examples using one QoS constraint, typically
the bandwidth. Most of existing protocols work specifying
just one metric and have problems to scale well using two
different metrics.

QoSM2P has been explicitly designed to get round this
problem, to allow any client to specify its QoS requirements
using as many constraints as it needs. For this purpose,
we have introduced into the join request packet format, a
Constraints field. This is the sequence of specifications that
the communication channel must satisfy. For example, a
client can request a connection with a given bandwidth B,
a maximum end–to–end delay D and a packet loss ratio to
be not more than L.

In order to correctly manage asymmetric links, we assume
that every node is able to maintain information about the

2A request can be identified by the couple < NID, RID >

“incoming” QoS parameters. In practice, we request nodes
to have a measure of the performance that each directly
connected peer can guarantee them. This can be achieved
with an initial setup phase, in which every router of the
network communicates to adjacent nodes its outgoing QoS
parameters.

2.4 Joining a group
When a client needs to join a specific group, it notifies

the designated router of its local area network. The DR
checks the presence of an entry in the Client database and,
if the request has not been previously traced, generates a
Join Request packet. This message consists of the common
header and the following information fields:

Validity Flag indicating if the nodes on which
the packet has travelled so far satisfy the
specification and have reserved the nec-
essary resources

TTL Time–to–live of the message. It has to
be expressed in terms of real time, rather
than hops count, in order to ensure the
correct termination of the algorithm

TTot Total number of tickets initially transmit-
ted by the designated router

Tn Number of tickets carried by the current
packet

TID Lowest identifier of the tickets carried
Constraints Any sequence of QoS specifications to be

satisfied (see section 2.3)
Costs Information about the costs of the path

examined so far

Core

DR

Tickets

Multicast

Distribution

Tree

Figure 1: Example of Join process.

A Join Request message travels on the network and can
be splitted into many pieces, each one passing through a dif-
ferent path. When a request carrying Tn tickets (Tn ≤ TTot)
arrives, the router first checks the existence of an entry in the
Temporary reservations table, to avoid problems about re-
transmission of packets and the possibility to generate loops
in the distribution tree. If the couple <NID,RID> has not
been previously inserted for the data flow <CID,GID>, it
records the entry and performs the following checks:

• If the node is on–tree, it has to maintain an entry in
the Installed paths table about <S,G>. The router
will only check the availability of bandwidth on the
incoming interface previously registered for that cou-
ple. It considers both resources already allocated and
others possibly available for reservation, and:

– if there are sufficient resources to satisfy the re-
quest, the router reserves the necessary bandwidth;

– if the bandwidth is not enough, the router inval-
idates the tickets.

Then, the message is forwarded to the upstream node
in the tree.

• If the router is not on–tree, it checks the existence
of interfaces with sufficient bandwidth among those
from which the same join request has not been received
before3:

– if there are no suitable interfaces, it invalidates
the tickets and sends a unicast message carrying
them to the Core. We decided to forward invali-
dated tickets, instead of setting up a timeout on
the core router , in order to minimize the response
time observed by the end–user;

– otherwise, it splits the tickets received basing on
an heuristic function locally computed (see “par-
tition function” in section 2.4.2) and forwards
the messages generated to the selected adjacent
routers.

The tickets are also used to collect in the costs field the
dynamic information about QoS parameters encountered on
the path. This information is stored on the Core that waits
for a given amount of time, starting from the reception of the
first message concerning a given Join request, the reception
of all the tickets Ttot initially generated.

Eventually, the Core router decides for the request:

• if at least one valid ticket exists, the Core selects one of
these, according to an heuristic function locally com-
puted4 (see “selection function” in section 2.4.2) and
generates a Join Ack message;

• if there are only invalid tickets, the Core rejects the
request and notifies the DR by sending a Join NAck
message.

To optimize the ratio of successful join requests, a Join
Ack message is sent on all network nodes, on which the
tickets of the interested request have previously travelled.
The Ack packet is used both to install the correct path and
to release the unnecessary allocated resources. It contains,
in addition to the common header, the number Tok of the
ticket selected for the path installation.

For the purpose of freeing the previously allocated re-
sources in the case a request is rejected, a NAck packet is
also sent on all the examined paths. The request identifier
RID carried on the message is used to retrieve the correct
entries to delete in the table of Temporary reservations.

3This check is done to avoid the possibility to create loops
in the tree.
4The Core can select the ticket that has allocated the min-
imum amount of bandwidth on the network.

We have not chosen a “soft state” approach because it
can bring to false rejections of join requests when the group
membership often changes. In this case, a client requesting a
connection for a given bandwidth can find the channel busy,
because another host has temporarily reserved the resource,
also in the case this one has already installed another path.
This approach allowed us to maximize the ratio of accepted
join requests, increasing the number of clients served and,
consequently, the profits of a virtual ISP.

2.4.1 Timeout for reservations
In order to avoid that network faults5 excessively penal-

ize performances, we introduce the following timeouts on
routers involved in the algorithm:

• τres is set on each network node at the arrival of a
Join or ReDim request. After the expiration of this
timeout, resources temporary allocated for a not yet
confirmed request can be deallocated;

• τcore is the maximum time spent by the core for the
expectation of all the tickets of a given request.

2.4.2 Heuristic functions
In order to obtain an algorithm independent from the un-

derlying unicast protocol and network architecture, we have
defined two different heuristic functions that can be consid-
ered as “black boxes” and are:

• Selection function: used on the core router to choose
the better path among those examined by the collected
tickets;

• Partition function: computed on each router to split
the tickets received among the candidate outgoing in-
terfaces.

These functions can differ on the base of the requested
constraint type and the reliability of information locally
stored. The effectiveness of these functions impacts the ef-
ficiency of the final distribution tree. For instance, if the
client wishes to have a low end–to–end delay, we will pre-
fer to build distribution trees with higher breadth, trying to
limit the depth.

The information collected by an underlying link–state uni-
cast algorithm, can be used to compute the Partition func-
tion, basing only on the hop distance from the local router
and the Core. Consider a node Ri receiving on the interface
number 3 a join message carrying Tn = 12 tickets for the
couple <CID,GID> and requesting 10 Mb/s of bandwidth.
The router obtains by the underlying unicast (i.e. OSPF)
the following distances from CID, for each interface:

Interface (ifj) if1 if2 if3 if4 if5
Distance (∆j) 3 4 8 6 2
Available BTWH (Mb/s) 6 12 10 7 15

We expect that, after having purged interfaces number 1
and 4, that have no sufficient bandwidth, Ri will send more
tickets on the interface number 5 rather than on if2. It can
trivially partition the tickets received, sending Tk of these
on interface ifk, using the following partition function:

5For example, the loss of a NAck packet does not allow to
free useless reservations.

Tk =
Tn ∗

1

∆k∑
j

1

∆j

Then Ri will forward the packets on if2 and if5 carrying:

Interface (ifj) if1 if2 if3 if4 if5
N. of forwarded tickets (Tj) 0 4 0 0 8

The selection function can be implemented differently vary-
ing on the goals of the network manager. If we want to
preserve the network usage we will prefer to accept connec-
tions that allocate a minimal amount of bandwidth on the
network. If we want to guarantee to our clients a low end–
to–end delay we will install the minimal length path.

2.5 Leaving a group
A client that decides to leave a group has to notify the

decision to the correct Designated Router. The DR checks
in the Client database the existence of other hosts member
of the specified group and, if it has no more receivers directly
connected, generates a leave message that is forwarded to
the router upstream on the multicast distribution tree.

The leave packet is recursively sent upstream, causing the
disconnection of nodes that receive it, until a router (with
other connected downstreams) stops the message. In this
case, a ReDim request (see section 2.6) for the remaining
bandwidth can be generated and sent to the upper node in
the tree.

In Fig. 2 we show an example of leave process (on–tree
nodes are shadowed).

Core

2

4
3

8
 Mb

4
 Mb
 8
 Mb

5

1

8
 Mb

10
 Mb

Leav
e

Leave

ReDim
 (
4Mb
)

Figure 2: Example of leave process.

The DR 5 receives a leave request from a directly con-
nected client and initiates a leave message that is forwarded
upstream until it arrives in the node 2. Then, the on–tree
router 2 checks the existence of another downstream and
generates a ReDim Request specifying the residual band-
width (4Mb/s). Fig. 3 shows the situation after the com-
pletion of the leave procedure.

2.6 Changing existing requirements
A ReDim packet encapsulates the new QoS specification

for the communication channel and thus can be used for
both increasing and decreasing the allocated resources. It
can be generated when:

Core

2

4
3

4
 Mb

4
 Mb

5

1

10
 Mb

Figure 3: Situation after the completion of the leave.

• a client wants to join or leave a group with other re-
ceivers in the same local area network;

• a client explicitly requests the change of its QoS spec-
ifications;

• the leave of a downstream node on the tree causes a
change of the existing requirements.

The first on–tree node with an incoming connection from
the core that matches the new specification, can stop the
forwarding of the ReDim packet and instantly notify the
decision to the router that has generated the request.

To avoid the possibility of generating loops in the mul-
ticast distribution tree, we restrict the use of the ReDim
messages, allowing the check of the needed resources only
on the path previously installed on the tree, without look-
ing for further alternatives. If the ReDim request is rejected
(due to a lack of additional available resources on the path
installed), a client can decide to leave the group and start
another join request to cause a new wide path search.

3. SIMULATION RESULTS
We study several aspects of our protocol through sim-

ulations using the ns–2 simulation framework. We have
implemented a module that provide basic methods for the
installation of the distribution tree for QoSM2P and QoS–
CBT and a simplified version of QoSMIC (using the “local
minima” algorithm for the designation of candidate routers).
We are reporting results obtained about the percentage of
successful join requests, the control overhead and the mul-
ticast efficiency of generated trees.

We have generated two different network topologies with
64 nodes each, connected through links of 2Mbit/sec. One of
these is a close–meshed network presenting a higher number
of connections (about 6 outgoing interfaces for each node)
than the other (3/4 links).

We instantiate a number of groups with a casual core
router, transmitting a 1Mb/s data flow and we start 10 join
requests for each group. The tests compare the measures
among QoSMIC, QoS–CBT, QoSM2P with only one ticket,
QoSM2P with 5 and 10 tickets.

We consider only the available bandwidth as an example
of QoS metric. The output interfaces selected for the for-
warding are those with enough available resources. As in

the example set forth in sec. 2.4.2, we have implemented a
partition function such that the lower is the distance of the
neighbor from the core, the higher is the number of tickets
forwarded to it. In order to achieve a better usage of the
network, we implemented a selection function that finds out
the ticket that allocates the minimal amount of bandwidth.

3.1 Successful Join request Ratio
We have studied the amount of join requests that can

be served, varying the number of groups created and the
network load. In Fig. 4 we show the obtained results for
the close–meshed network, while in Fig. 5 are reported the
performances on the scattered topology. We can observe
that, almost in every condition, QoSM2P is more efficient
than QoSMIC and QoS–CBT, finding more possible paths
and then satisfying a greater number of join requests.

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

Groups istantiated

P
er

ce
nt

ag
e

of
 s

uc
ce

ss
fu

l j
oi

n
re

qu
es

ts

QoSMic
 QoSMmp / 1
 QoSMmp / 10

QoSMmp / 5
 QoSCBT

Figure 4: Percentage of successful join requests
(close–meshed network).

QoSM2P is able to satisfy more requests than QoS–CBT,
even with only one ticket, because it performs the check on
resource availability on all output interfaces, rather than
being constrained to the interface provided by the unicast
routing service.

QoSMIC and QoS–CBT can fail the join also in relatively
good network conditions, due to the limits exposed in the in-
troduction. We can see that with only 10 groups present (it
can be better observed considering the first network topol-
ogy), QoSM2P is able to satisfy all the requests (99.9%)
generated versus the 93.8% accepted by QoSMIC and the
89.9% or QoS–CBT.

We can notice that augmenting the network load, instan-
tiating more groups, the ratio of QoSMIC exceeds the one
of QoSM2P / 1 ticket but remains considerably lower than
QoSM2P with 5 or 10 tickets.

Increasing the network load, the difference between the
version of QoSM2P with 1 ticket and the one with 10 tick-
ets increases, showing the advantages of a wider research of

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

Groups istantiated

P
er

ce
nt

ag
e

of
 s

uc
ce

ss
fu

l j
oi

n
re

qu
es

ts

QoSMic
 QoSMmp / 1
 QoSMmp / 10

QoSMmp / 5
 QoSCBT

Figure 5: Percentage of successful join requests
(scattered network).

possible paths. Generating a great number of join requests
(60 groups instantiated on the close–meshed network), we
have obtained very good performances for the version with
5 and 10 tickets, satisfying respectively the 71.38% and the
74.62% of the total, while the version with 1 ticket performs
more like QoSMIC arranging around the 62/64% of the to-
tal.

3.2 Multicast efficiency
The “Multicast efficiency” ME can be useful to give a

measure of the goodness of the multicast distribution trees
built with an algorithm. It is obtained as:

ME =

∑
members

(distances from core)

Total number of links allocated

We have surveyed the measures varying the number of
routers requesting the join to 3 different groups, transmit-
ting a data flow of 1Mb/s each, on a close–meshed network
with 2Mb/s links. In Fig. 6 we show the average results
obtained for the three groups instantiated using QoS–CBT,
QoSM2P with 1, 5 and 10 tickets.

The usage of tickets in the setup phase of the QoSM2P
algorithm allows us to find paths that allocate less band-
width for the connection of new routers. More tickets used
in the setup phase can guarantee a better performance in
the distribution of the actual data content.

3.3 Control overhead
Finally, we report in Fig. 7, the statistics about the

control overhead of setup messages, generated comparing
QoSM2P and QoS–CBT on the scattered topology.

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

10
 15
 20
 25
 30
 35
 40
 45
 50

Number of join requests

M
ul

tic
as

t E
ff

ic
ie

nc
y

QoSMmp / 1
 QoSMmp / 5
 QoSMmp / 10
 QoS-CBT

Figure 6: Multicast efficiency.

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

11,000

12,000

13,000

14,000

15,000

16,000

17,000

18,000

19,000

20,000

21,000

22,000

23,000

24,000

25,000

26,000

10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

Groups istantiated

of

 m
es

sa
ge

s
ge

ne
ra

te
d

QoSMmp / 1
 QoSMmp / 10
 QoSMmp / 5
 QoSCBT

Figure 7: Control overhead.

The control overhead generated by QoSM2P can be ap-
proximated as:

Control overhead = O (T ∗ N ∗ G ∗ K)

where T is the number of tickets initially enclosed in the
join request, N is the number of groups instantiated and G

the group density; K is a constant varying with the network
topology.

We have noticed a significative increment of the number
of messages exchanged, compared with that of QoS–CBT.

Nevertheless, the packets are very small and do not con-
sume a large amount of bandwidth travelling hop–by–hop.
We think this is an acceptable arrangement if we want to
increase the ratio of successful join requests accepted, the
number of served clients and consequently augmenting the
network utilization.

4. CONCLUSIONS AND FURTHER WORKS
We propose QoSM2P , a protocol for supporting QoS–

sensitive multicast applications over the Internet. This pro-
tocol identifies multiple paths in the same Join Process, and
selects the most promising one using dynamic information
that the tickets can collect on the travel.

The decentralization of the computation on the various
routers involved in the protocol has significantly improved
the performance of the Join Protocol, augmenting the ratio
of successful requests we can serve and the multicast effi-
ciency of the distribution trees.

The most important problems arising with the usage of
QoSM2P in presence of high density groups is the amount of
memory needed to store information in Temporary

reservation and Installed path tables. Further works
will focalize attention on the design of a hierarchical infras-
tructure in order to allow a better scalability for sparse and
dynamic groups.

We are still evaluating the possibility to extend the algo-
rithm for the creation of a bidirectional shared tree. Many
other protocols (like [3], [4]) use this approach to preserve
the resources on network and routers, creating first a con-
nection to a single bidirectional tree and then, only if the
application presents particular needs, a source centered tree.

5. REFERENCES
[1] Pierpaolo Baccichet. Analisi e valutazione di protocolli

di instradamento multicast multi–path per traffico con
QoS. Master Thesis, May 2002.

[2] J. Hou, H. Y. Tyan, B. Wang, Y. M. Chen. QoS
Extension to CBT. Internet draft, March 1998.

[3] S. Biswas, R. Izmailov, B. Rajagopalan. A QoS–Aware
Routing Framework for PIM–SM Based IP–Multicast.
Internet draft, June 1999.

[4] R. Pankaj M. Faloutsos, A. Banerjea. Qosmic: Quality
of service sensitive multicast internet protocol. Proc.
ACM SIGCOMM, September 1998.

[5] L. Zhang, R. Braden, S. Berson, S. Herzog, S. Jamin.
Resource reSerVation Protocol (RSVP) - Version 1
Functional Specification. RFC 2205, September 1997.

[6] Z. Zhang A. Ballardie, B. Cain. Core Based Tree
(CBT ver. 3) Multicast Routing - Protocol specification.
RFC 2189, September 1997.

[7] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S.
Deering. Protocol Independent Multicast-Sparse Mode
(PIM-SM): Protocol Specification. RFC 2362, June
1998.

[8] S. Chen, K. Nahrstedt. Distributed Quality–of–Service
Routing in Ad Hoc Networks. IEEE Journal on selected
areas in Communications, August 1999.

[9] D. Johnson M. Garey. Computers and Intractability: A
Guide to the Theory of NP–Completeness. 1979.

