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ABSTRACT
Several proposals are available in the literature that deal
with the problem of message forwarding in Opportunistic
Networks (ONs). These proposals attempt to derive the
path from source to destination that minimizes delivery la-
tency and traveled hops, and maximizes the probability of
successful delivery, while saving the overall system resources
through a limitation of the number of message copies. Utility-
based forwarding achieves these goals through the use of
functions that discriminate among nodes in terms of their
utility to reach a destination. Although the approach is very
promising, so far, there is no understanding about the tight
relationship between utility functions and the mobility sce-
nario in which they operate and, as a consequence, we are
unable to design efficient solutions for practical ONs.

In this work, we focus on this point by analysing five well
known utility functions in five different scenarios. We es-
tablish relationships between the mechanisms adopted by
the utility functions to discriminate among candidate re-
lays, and the characteristics of the environment in terms
of people mobility and the structure of their communities.
The results can be useful to select an appropriate forwarding
mechanism when deploying an experimental Opportunistic
Network, and to design a novel utility function able to adapt
to variable mobility patterns.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Network
Architecture and Design

Keywords
Opportunistic networks, Utility-based forwarding

1. INTRODUCTION
The recent advances in short range radio technologies are

driving the search for new wireless networking platforms
that complement the 3G/4G network infrastructure with the
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aim of offloading cellular networks and providing a flexible
alternative to deliver emerging mobile computing services
such as, those location-sensitive (i.e targeted advertising,
recommending systems) and contact-sensitive (i.e. mobile
social networking, content sharing, urban sensing) [23, 12].
In this emerging heterogeneous networking scenario, Oppor-
tunistic Networks (ONs) [20] have great potential as a viable
solution to enable the communications between the content
source (either a mobile user in the neighborhood or a road-
side AP) and the target mobile user(s). This communication
is obtained by deploying a multi-hop path on top of contacts
amongst mobile devices. The practical feasibility and the
efficiency of such a path mainly depend on the function of
forwarding.

The research has longly studied forwarding in ONs and
proposed a variety of solutions in the literature [1, 2, 7, 8,
9, 10, 14, 16, 18]. For evident motivations, the most vi-
able and practical solutions are those following the single-
copy approach or a controlled multi-copy. The challenge is
to approximate the performance and efficiency of the unvi-
able, but optimal, forwarding achieved by using an oracle
knowing all future contacts. Several interesting and practi-
cal solutions are available that attempt to approximate the
oracle decisions by assigning utility values to nodes on the
base of the available set of past and current contacts. If the
values are properly assigned the forwarding is more likely
able to discriminate, among the set of contacts, the relays
that belong to the optimal path towards destination. The
bet is that the past behavior of a node will be maintained in
the future. In order to effectively discriminate among relays
of different quality, contact dynamics should show two rele-
vant behaviors. First, the contact pattern within every pair
of nodes needs to be somehow regular. Irregular encounters
make impossible to forecast the node likelihood of encoun-
tering the destination. Secondly, contact dynamics between
different pairs of nodes need to be somehow heterogeneous,
otherwise any node is an equally good candidate for data
relaying.

Social and human sciences tell us that the human atti-
tude of grouping in social communities, of sharing common
locations or of commuting from one location to another, ac-
tually generates the required regularities and heterogeneities
[21, 19, 22, 6]. This makes the approach promising but con-
centrates all challenges on the choice of the utility function.
A good utility function captures the proper behavior of a
given mobility pattern and is thus able to discriminate be-
tween good relay nodes (with more chances to encounter the
destination in the future) and the others. A bad utility func-
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tion is unable to do this and considers all nodes as equally
useful.

For the above arguments, it is easy to argue that utility-
based forwarding is highly influenced by the nature of under-
lying mobility patterns. Despite that, nobody has analyzed
utility functions in different mobility scenarios. As a con-
sequence, today we are unable to select the utility function
that better fits with the nature of a given practical, deploy-
able networking scenario or to design a good utility function
for a given mobility setting. This paper focuses on these still
open points by analyzing 5 well known utility functions in 5
different mobility scenarios. The results of the paper should
be useful when deploying an experimental ON or to design
a novel utility able to adapt to changing mobility patterns.

This is not the only paper approaching this argument; in
[9], a subset of the utility functions we consider here have
been analyzed; however, the analysis covers a very short time
interval (3 hours) and uses real traces reproducing densely
populated environments only.

2. MOBILITY SCENARIOS
ONs are supposed to be active in the mobile periphery of

the Internet, the belt centered around the locations where
users live, work or socialize. We can assume that each loca-
tion covers a limited area (let us say at most 1000 × 1000
m.), involves at most a few hundred people and is charac-
terized by mobility patterns that reflect the type of sociality
people have there. In fact, the social destination of a place
influences the way communities are formed, how people in-
teract and move from group to group etc., thus conditioning
the behavior of regularities and heterogeneities. With the
intention of describing relevant human mobility and social
attitudes we devised 5 scenarios that are described in the
following.

The first scenario describes human attitudes in workplaces.
Individuals in such a scenario are highly sedentary, but, due
to the limited space, sooner or later also individuals belong-
ing to separate communities (let us call them unfamiliar)
happen to encounter one another. The mobility setting is
characterized by contacts among familiar people lasting for
long time and by unfrequent contacts between unfamiliar
nodes. By slightly varying the previous scenario we can rep-
resents two new conditions that reproduce the human at-
titudes in spaces with higher mobility. In the former, very
closed communities are considered. Sporadically, an individ-
ual belonging to a community may temporarily visit a differ-
ent community. By contrast, a few individuals (namely, the
travelers) continuously go back and forth thus having fre-
quent contacts with people belonging to different communi-
ties. In the second, the community boundaries are softened
and people belonging to different communities have more
chances to encounter one another. In both cases, the con-
tact duration is shorter than before – due to higher mobility
– and the amount of global contact opportunities is higher.
Two extreme conditions are also considered: a random and
a deterministic mobility scenario. The latter yields perfectly
predictable contacts; similar conditions can be found, for in-
stance, in mobility patterns of a public transportation sys-
tem.

2.1 Implementation of the Scenarios
We reproduce the five scenarios above by means of, re-

spectively, a real trace, a synthetic model (HCMM [3]), and

two benchmark models (Random Waypoint and a perfectly
deterministic encounter pattern). We adopted HCMM be-
cause it can model human mobility patterns according to
the influence of both popular locations and social relations.
This is in contrast with, for instance, [13, 5, 17] that only
consider one of the two aspects. Moreover, the setting of the
HCMM parameters is very simple, easier than, for instance,
in [15].

PMTR traces.
The real traces are obtained through a campus experi-

ment and are generated by 44 people equipped with wireless
devices, named PMTRs, with 10 m. radio range [11].1 In
order to compare the trace from a real dataset with those
obtained from synthetic models, we eliminated nights and
weekends from the experimental dataset, thus producing a
dataset covering 13 working days, from 8:00 AM to 8:00
PM (156 h.). These samples are more than the 80% of the
samples obtained from the whole experiment.

HCMM model.
In the two scenarios produced with HCMM, 44 nodes

move in a 1000 × 1000 m. area with speed in [0.5, 1.5]
m/s for 156 hours; the transmission range is 10 m. As an
initial interaction matrix, we used weights derived from the
number of contacts between pairs of nodes in the PMTR
trace. The highest number of contacts was assigned weight
0.9. The weight associated to half of the average number
of contacts has been adopted as a threshold to derive the
connection matrix. No reconfiguration is performed and the
remaining probability is set to 0.8. In the scenario named
HCMM det5, the next cell is chosen deterministically and
the rewiring probability is 0.1; we adopted 5 travelers. In the
HCMM pro1 scenario, the probabilistic criterion is adopted,
with rewiring probability of 0.3 and 1 traveler.

Random Waypoint.
We produced a RWP scenario with BonnMotion v1.5 [4],

with 44 nodes moving for 156 hours over a 500 × 500 m.
area, with speed varying in the interval [0.5, 1.5] m/s. We
adopted a pause interval of 3600 s. The trace produced by
BonnMotion is post-processed in order to derive the contacts
between nodes, assuming that the communication range is
10 m. and with sampling granularity of 1 s.

Deterministic model.
A deterministic (DET) scenario has been produced in the

same environment as RWP as follows: communities of a 10%
of nodes each have been set. Then, for each pair of nodes i
and j, contacts are generated with parameters drawn from
the mean values obtained with PMTRs (Table 1). The first
contact occurs at a random time within the first hour. All
contacts occur with a fixed inter-contact time ict cij from
one another and have a fixed contact length lij . In our ex-
periments, cij has been extracted with uniform distribution
within the range [1000, 1500] s. for nodes in the same com-
munity, and [5000, 6000] s. otherwise, while lij always varies

1The data set can be downloaded from the crawdad archive
(http://www.crawdad.org/unimi/pmtr).
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Table 1: Comparison between synthetic scenarios and PMTR traces
scenario # contacts length (s.) ict (s.) E(σ(ictij)) σ(E(ictij)) #hops O latency O %dest O
DET 146.83 452.12 3369 0 1250 3.41 323 s. 100
PMTR 15.59 521.98 3381 3709 4198 3.22 32207 s. 87.8
HCMM det5 292.28 11.88 1599 14738 21922 4.08 4367 s. 87.3
HCMM pro1 58.75 11.94 8814 17243 20527 3.69 1273 s. 100
RWP 3600 22.05 123.03 24149 23674 6127 3.54 2130 s. 99.7

in the range [300, 600] s. This will allow to differentiate
nodes in terms of their utility to reach a certain destination.

In both DET and RWP, all pairs of nodes eventually have
a contact; this is not true in the other settings. However, in
DET, nodes in the same group are more used to encounter
one another, i.e. they encounter with a higher rate than with
other nodes. In HCMM det5, communities are quite closed,
and their members mainly communicate through travelers.
In PMTR, communities are not that closed, but people are
sedentary and encounters occur seldom and are quite long.
HCMM pro1 still produces communities – unlikely RWP –
but they are often mixed. As far as HCMM traces are con-
cerned, we verified that the icts they produce fit with a
Pareto’s distribution. In Table 1, we show a comparison
among the characteristics of the PMTR traces and those
obtained by synthetic mobility models. All indices are av-
eraged over all pairs of nodes and concern the whole time
window. For PMTR, the ict is evaluated only for consecu-
tive contacts occurring within the same day. In columns 5
and 6 of Table 1, we report respectively: (i) the average on
all pairs of nodes of the standard deviation of the ict be-
tween node i and node j; (ii) the standard deviation among
all pairs of nodes of the average ict between node i and
node j. The former gives an indication about the regularity
of contacts within every pair. The latter gives an indica-
tion of the heterogeneity between different pairs of nodes. In
Table 1, the performance achieved with an oracle-based op-
timal forwarding O is also reported, as the number of hops,
latency, and percentage of reached destinations from each
node to every other.

3. UTILITY-BASED FORWARDING
We study utility functions that capture various aspects of

human interactions by using different mechanisms. In this
work, we do not consider approaches involving community
detection (e.g. [14]). Indeed, community detection is com-
putationally expensive and still difficult to implement in a
distributed manner. We do not assume that knowledge is
a-priori available about movements, as in [18, 1]. We rather
focus on mechanisms allowing to gain knowledge on contact
dynamics in order to infer future encounters, e.g. through
the analysis of the encounter history, as in [16, 9, 8], or the
estimation of the centrality of nodes, as in [7]. This knowl-
edge can be used for unicast communications. In particular,
the following functions are considered:

• Greedy (G) online: the utility of a relay increases
with the number of times it has encountered the mes-
sage destination so far [9].

• Greedy-total (GT) online: the utility of a relay in-
creases with the number of encounters (with any node)
it has observed so far [9].

Table 2: Comparison between utility functions
G GT F P SB

coloc. vs. social coloc coloc coloc coloc social
dest. dependent Yes No Yes Yes mix
aging No No Yes Yes No
transitivity No No No Yes No

• Fresh (F): a node n1 has greater utility than n2 for
a destination D if the last encounter of n1 with D
occurred more recently than that of n2 [8]. This ap-
proach has no memory of the past.

• Prophet (P): in [16], three mechanisms are used to
maintain utilities. When two nodes n1 and n2 en-
counter, each one increments its delivery probability
to the other as follows: P (n1, n2)← P (n1, n2) + (1−
P (n1, n2))·Pinit. A transitivity property of encounters
is considered, such that, if n2 encountered n3, then
the delivery probability of n1 to n3 is P (n1, n3) ←
P (n1, n3) + (1− P (n1, n3)) · P (n1, n2) · P (n2, n3) · β.
To take into account changing contact dynamics, an
aging function is applied before each utility exchange
such that P (n1, n2) ← P (n1, n2) · γt, where t is the
time elapsed since the last update.

• SimBet (SB): the utility of a node n1 for a destina-
tion D depends on both n1’s betweenness (i.e., whether
it belongs to the shortest path between any two other
nodes), and its similarity with D (i.e., whether there
are nodes encountered by both n1 and D). We esti-
mate both indexes as in [7].

In Table 2, we report a comparison among the characteris-
tics of the considered approaches in terms of: whether co-
location or social aspects are considered, whether the ap-
proach is destination dependent or not, whether it includes
aging and transitivity mechanisms.

3.1 Measuring the Utility
In order to measure the goodness of a generic utility func-

tion U , we consider its distance from optimal routing, able
to follow the shortest path between source and destination.

To capture the dynamics of the utility values, we proceed
as follows: every M minutes we freeze the utilities held at
that time by nodes. According to those values we compute
the (U) path followed from each source to each destination,
and we compute the distance between such path and the op-
timal one. Two indices ∆e and ∆l are considered to evaluate
the distance and obtained as follows:

∆e =
#hops of U path − #hops of O path

#hops of O path
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(a) (b) (c)

Figure 1: Comparison among approaches in terms of (a) ∆e, (b) ∆l, and (c) ∆d.

(a) (b)

Figure 2: DET: ecdf of the utility values (one plot
for each node), for (a) Fresh, and (b) Prophet.

∆l =
latency of U path − latency of O path

latency of O path
.

We use the path length in hops as an indirect measure of
the overall system energy consumption (the higher the hop
count, the more the devices involved to forward third party
traffic over a radio channel). ∆l measures how worse is the
service offered to the users. ∆e and ∆l are measured just
for the destinations reached by both O and U . An index ∆d

is computed similarly, accounting for the fraction of destina-
tions that U reaches with respect to O. Clearly, if U follows
paths with the same characteristics as O, its distances will
be 0.

4. SIMULATIONS
We used simulations to observe performance and behavior

of the described utility functions in the different mobility
scenarios. The following general settings have been adopted.
The sampling rate is M = 30 minutes. This is also the length
of the warm up period before generating the first message
(this lets the utilities to initialize). The sampling is stopped
after (7×12) hours leaving the last (6×12) hours for message
delivery. Results are averaged over all source-destination
pairs. The same single-copy forwarding policy is used for all
approaches: if n1 has a message m for D and it encounters
n2 with greater utility for D than its own, then n1 forwards
m to n2 and removes m from its buffer.

Some more specific settings follow. Prophet simulations
use the following parameters [16]: Pinit = 0.75, β = 0.25,
γ = 0.98. In SimBet, the parameter α, weighing between
similarity and betweenness, is set to α = 0.5 [7].

(a) (b)

Figure 3: SimBet: (a) utility changes, and (b) ∆e vs.
time.

4.1 Results
In this Section, we focus on the simulation results with

the aim of understanding the impact of different mobility
settings on the performance of utility functions, and of cap-
turing what mechanisms – among those the functions adopt
– are successful to accurately discriminate among the util-
ity of candidate relays. For a given mobility model, a good
utility function is able to assign high values to nodes with
more chances of encountering the destination in the future,
while it assigns lower values to the other nodes. By con-
trast, a utility function that happens to flatten the assigned
values cannot behave properly. Fig.1 summarizes the per-
formance of the different approaches with the considered
mobility traces. We now analyze in detail the relevant situ-
ations for each mobility model.

Let us consider the DET model first. The challenge in
DET is identifying the groups of nodes that are used to en-
counter one another with the higher frequency, and assigning
them a high utility. Here most of the approaches do not work
well for slightly different motivations. All of them can hardly
discriminate between nodes belonging to the community of
the destination (that more likely meet the destination) and
the other nodes (as shown by the ecdf of the utility values
for the various destinations (Fig.2)). In Fresh, a node out-
side the community of the destination d might be chosen as
forwarder because it encountered d very recently although
it has few opportunities of being co-located with d. The
performance of Prophet is negatively affected by the aging
mechanism that flattens all the utilities to small values. As
a consequence, the utility of nodes in the same community
(familiars) is slightly higher than those of outside nodes (un-
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(a) (b) (c)

Figure 5: Greedy in HCMM det5: ecdf(utilities) for (a) a sedentary node, and (b) a traveler. (c) ∆e vs. time.

(a) (b)

Figure 4: Greedy in DET: (a) utilities, and (b) ecdf
of the utility values (one plot for each node).

familiars), but both are extremely low (0.107 and 0.018 on
average respectively). Under these conditions, at each for-
warding a very small progress towards the destination may
be obtained, thus negatively affecting both latency and num-
ber of hops. A similar behavior is shown by Greedy Total:
as the pattern of encounters is really similar for all nodes,
utilities for the nodes are aligned and no node clearly dis-
tinguishes as preferred forwarder. An almost random choice
does not guarantee that the destination is approached.

SimBet is more qualitative than quantitative: for each
pair of nodes it records whether they have encountered or
not. In DET (but similar arguments apply to RWP), when
all nodes have encountered one another at least once, then
no node is between any source-destination pair, and every
node is equally similar to each other (both have encoun-
tered all the other nodes). At this point, utilities are all
equal, and the approach is forced to behave as a direct con-
tact, as there is no node better than the source to reach
the destination. In order to show this, we measured the fre-
quency of changes of the utilities associated to the nodes.
To measure this index, as before we measure the number of
changes in the utilities occurring in every time window of
M minutes. The frequency drops to 0 after at most 6000
s. (the longest ict) with DET, and a couple of days with
RWP (Fig.3(a)).2 When this occurs, all nodes are equal, and
∆e becomes negative indicating that forwarding is through
direct contact(Figg.1(a) and 3(b)).

By contrast, Greedy remembers the whole past history
and properly detects the familiarity of a node with the des-
tination. Thus, it perfectly catches the existence of 9 com-
munities in DET (Fig.4(a)): for every node there is a sharp
difference between the utilities of nodes outside and inside

2For the sake of comparison, the behavior with one setting
where not all nodes encounter is shown. But, for readability,
not all models are shown.

(a) (b)

Figure 6: (a) ICTs with HCMM det5, and (b) utili-
ties learnt by Fresh.

the destination community (Fig.4(b)). Hence, as soon as a
node in the same community of the destination is encoun-
tered, it is adopted as a relay, and its utility guarantees
that further forwarding can only occur within the destina-
tion community. After a short learning phase of around 2-3
hours, Greedy is able to characterize paths that reach all the
destinations with performance comparable to that of O.

In HCMM det5, the challenge should be to capture the
few travelers. Greedy utilities discriminate among trav-
elers, nodes resident in a community different from that
of a destination d, and nodes familiar with the destina-
tion. A sedentary node unfamiliar with d has utility for
d equal to 0 (Fig.5(a), left part). By contrast, a node fa-
miliar with d encounters it many times and its counter is
high (Fig.5(a), right part). Travelers show the behavior in
Fig.5(b).3 Travelers move around and encounter almost all
nodes, but for few times: notice the difference in the x-axis
between Fig.5(a) and (b). Fig.5(b) also shows that travel-
ers do not visit all communities with uniform probability.
The consequence on forwarding is that: (i) a node unfa-
miliar with d forwards the message to either a traveler or
a node familiar with d that it happens to encounter; (ii)
a traveler forwards the message to a node familiar with d.
When a traveler is adopted as relay, its utility guarantees
that further forwarding can only involve either a traveler
more accustomed to visit the destination’s group, or the des-
tination’s group itself. As soon as the destination’s group
is reached, forwarding is confined within it. Fig.5(c) shows
that initially – during the first 8 hours roughly – counters
(utilities) are not yet well differentiated, and direct contact
is often used.

The behavior of Fresh and Prophet in HCMM det5 can

3Plots in Fig.5(a) and (b) are for two specific nodes, but
their behavior is common to all residents and travelers re-
spectively.
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(a) (b)

Figure 7: Fresh in HCMM det5: ecdf(utilities) for
(a) a sedentary node, and (b) a traveler.

(a) (b)

Figure 8: HCMM det5 – (a) Fresh: ∆d vs. time. (b)
Prophet: ecdf(utilities) for a node.

be explained with similar arguments. Although the mobil-
ity pattern is close to DET, both the approaches perform
better. In fact, despite Fresh has no memory, the habit
of frequent encounters within groups continuously refreshes
the time of the last encounter with a destination and lets
emerge the familiarity.4 In Fig.6, the value of the ict’s and
the Fresh utilities are shown for all pairs of nodes, in (a)
and (b) respectively. Sedentary nodes do not see unfamil-
iar nodes (Fig.7(a), left side), while have very recent en-
counters with nodes in their group (Fig.7(a), right side).
By contrast, travelers have some nodes visited very recently
(Fig.7(b), right side) – possibly of the last visited community
– nodes visited in a more or less recent past (Fig.7(b), mid-
dle), and nodes never encountered (Fig.7(b), left side). The
very same classification of nodes is achieved as with Greedy,
with similar results. The successful learning of familiarities
is brought into evidence by the variation of the reached des-
tinations along time: after a learning period of around 7-8
hours, where some losses are experimented, all destinations
are reached as with O (Fig.8(a)).

As far as Prophet is concerned, the aging mechanism vir-
tually resets utilities deriving from sporadic visits to unfa-
miliar communities. As in Fresh, utilities of familiar nodes
are continually refreshed. By contrast, the utility of travel-
ers derives from two contrasting forces: on the one hand, the
aging decreases the utility for nodes belonging to commu-
nities visited long ago. On the other hand, the transitivity
mechanism increases the utility of travelers for nodes not en-
countered, but belonging to most visited communities (i.e.,
whose familiars have been encountered by the traveler). As
a results, the utility values are slightly better differentiated
(Fig.8(b)), and again acceptable performance is achieved.

In this environment, the approaches unable to single out
useful relays are those partly or completely destination-inde-

4Notice the small average ict in Table 1.

(a) (b)

Figure 9: SimBet in HCMM det5: (a) utilities for
every pair of nodes, and (b) ecdf(utilities) for a cer-
tain node.

(a) (b)

Figure 10: Fresh in PMTR: (a) ecdf(utilities) for a
node. (b) ∆e vs. time.

pendent, namely, Greedy Total and SimBet. With the for-
mer, a node continuously encountering its familiars – but
never visiting unfamiliar groups – could have a high counter.
With SimBet, each node has very homogeneous utilities for
all destinations, indicating that the destination-independent
component of the utility function is predominant (Fig.9(a)).
Similarly, the ecdf’s over the utilities show only a big step
(an example is shown in Fig.9(b)) distinguishing between
the nodes never encountered and all the others. The nodes
with high utilities are more than the travelers; they could
also be nodes connecting two communities just because they
belong to one and happened to visit the other. Such a node
could be chosen as forwarder, but it gives no guarantees of
encountering a destination resident in a different group.

The PMTR setting is quite similar to HCMM det5, al-
though the higher sedentariness and longer contact dura-
tion impose much higher latencies than in the other settings
(Fig.1(b)). Yet, these characteristics help Fresh utilities in
differentiating among familiar users (recently encountered),
groups frequented less often, and users never seen (the mul-
tiple steps in Fig.10(a)). As in HCMM det5, Fresh is able to
learn these differences within roughly 12 hours (Fig.10(b)),
and they are continuously refreshed thanks to users’ habits
in spite of the Fresh lack of memory. Noticeably, the dif-
ferences among different degrees of familiarity are reported
more sharply by Fresh utilities than by Greedy utilities (Fig.
11). We conjecture that this is due to the fact that the area
is relatively small, and almost all pairs of nodes are likely to
encounter soon or late. In such an environment, familiarity
could be better caught by considering the duration of the
encounters, rather than their number as Greedy does. For
all nodes, the ecdf over Greedy utilities shows a behavior
similar to that of travelers in HCMM det5 (Fig.5(b)).

The other approaches are penalized by the characteristics
of the environment. Greedy Total differentiates very well
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(a) (b) (c)

Figure 13: Greedy in HCMM pro1: (a) utilities for every pair of nodes; (b) ecdf(utilities) for a node. (c) ∆e.

(a) (b)

Figure 11: PMTR: utilities for every pair of nodes
for (a) Fresh, and (b) Greedy.

(a) (b)

Figure 12: PMTR – (a) Greedy Total: utilities. (b)
Prophet: ∆e vs. time.

among the popularity of different people (Fig.12(a)). We
verified that nodes with high utilities correspond to individ-
uals either with many cooperations, or whose office is in a
central position where people frequently pass by. As before,
utilities of SimBet mainly depend on betweenness. Though,
as with HCMM det5, destination-independence leads to in-
appropriate choice of the forwarders – which are not guar-
anteed to encounter the destination in the near future –
and thus to poor performance. Due to high sedentariness,
the utilities of Prophet are drastically reduced by the aging
mechanism, making difficult for social structures to emerge,
and thus hindering the identification of appropriate forwarders.
As a consequence, direct contact is often used for message
delivery (Fig.12(b)).

In HCMM pro1, the accumulation of the whole history
performed by Greedy makes it able to differentiate the com-
munities, although mixed, as it emerges by both the utilities
reported in Fig.13(a) (they are not uniform, as instead it
happens in RWP) and the behavior of the ecdf over utili-
ties (which shows more encounters with a subset of nodes)
(Fig.13(b)). As a consequence, Greedy is able to discover the
communities (although with a long learning phase: roughly

(a) (b)

Figure 14: HCMM pro1 – (a) Fresh: ecdf(utilities)
for a node. (b) Greedy Total: utilities of nodes.

24 hours) and to move from a direct contact policy to an
adequate choice of forwarders, as shown in Fig.13(c)

The mixing of communities in HCMM pro1 negatively af-
fects Fresh ability of distinguishing different degrees of fa-
miliarity with a destination. Utilities either show nodes
never encountered, or nodes recently encountered, which
are all the others due to the mix (Fig.14(a)). Similarly,
Prophet utilities do not make nodes habits to emerge. Mix-
ing however helps the two approaches in reaching all the
destinations, although with longer latencies than Greedy.
By contrast, the destination-oblivious approach taken by
both Greedy Total and SimBet, although able to differen-
tiate among nodes with different popularity (Fig.14(b)), in
spite of mixing communities, chooses forwarders that do not
guarantee of eventually reaching the destinations, as high-
lighted by Fig.1(c).

In summary.
From the above considerations we can say that:
• in all environments, the maintenance of the whole history
allows to accurately discriminate among relays;
• the approaches that either do not maintain or forget the
past show good discrimination capability when the people
habits continuously refresh the information about recurrent
encounters, and there is a sharp difference between the en-
counter dynamics of familiar and unfamiliar nodes;
• as a consequence of the above argument, the approaches
that maintain a qualitative record of the past encounters do
not let recurrences to emerge, thus flattening the differences
among relays;
• destination independency does not allow to identify the
relays that are more likely approaching a given destination;
this makes packets traveling away from the optimal paths.
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5. CONCLUSIONS
In this paper, the behavior of five utility functions for mes-

sage forwarding in ONs is studied, in five different mobility
models. The results allow to characterize what mechanisms
are able to discriminate among the usefulness of various re-
lays depending on the environment characteristics. Hence,
indications emerge that can drive the choice of the appro-
priate policy for computing the utilities according on the
people mobility and the confinement of their communities.

Several developments are possible. Modifications of the
mechanisms can be studied, in order to overcome difficulties
that they may face in some environments. We are designing
a utility mechanism able to adapt to the mobility character-
istics of the people involved in an ON. As a future work, we
plan to adapt some of the considered approaches in order
they are able to “follow” several nodes pooled by a common
interest, instead of a unicast destination.
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Routing in Intermittently Connected Networks. In
Proc. 1st International Workshop on Service
Assurance with Partial and Intermittent Resources,
2004, pp. 239-254.

[17] A. Mei, J. Stefa. SWIM: a Simple Model to Generate
Small Mobile Worlds. In Proc. IEEE INFOCOM 2009.

[18] A. Mtibaa, M. May, M. Ammar, C. Diot. PeopleRank:
Combining Social and Contact Information for
Opportunistic Forwarding. In Proc. IEEE Infocom
2010 Mini Conference, pp. 1-5.

[19] M. Musolesi, C. Mascolo. Designing mobility models
based on social network theory. ACM SIGMOBILE
Mobile Computing and Communications Review 11(3),
ACM Press (2007).

[20] L. Pelusi, A. Passarella, M. Conti. Opportunistic
Networking: data forwarding in disconnected mobile
ad hoc networks. IEEE Communications Magazine
44(11), November 2006, pp. 134-141.

[21] J. Su, A. Chin, A. Popivanova, A. Goel, E. de Lara.
User mobility for opportunistic ad hoc networking.
Proceedings of IEEE WMCSA, 2004.

[22] J. Whitbeck, M. Dias de Amorim, V. Conan. Plausible
mobility: inferring movement from contacts.
Proceedings of ACM Workshop on Mobile
Opportunistic Networking (MobiOpp), February 2010.

[23] J. Whitbeck, M. Dias de Amorim, Y. Lopez,
J. Leguay, V. Conan. Relieving the Wireless
Infrastructure: When Opportunistic Networks Meet
Guaranteed Delays. Proc. IEEE WoWMoM 2011.

36




