
Journal on Satisfiability, Boolean Modeling and Computation 8 (2012) 29-61

Universal Guards, Relativization of Quantifiers, and Failure
Models in Model Checking Modulo Theories

Francesco Alberti francesco.alberti@usi.ch

Università della Svizzera Italiana,
via G. Buffi, 13,
CH-6904, Lugano

Silvio Ghilardi ghilardi@dsi.unimi.it

Elena Pagani pagani@dico.unimi.it

Department of Computer Science, Università degli Studi,
via Comelico 35,
I-20135 Milano

Silvio Ranise ranise@fbk.eu

FBK (Fondazione Bruno Kessler),
Povo - Via Sommarive 18
I-38123 Trento

Gian Paolo Rossi rossi@dico.unimi.it

Department of Computer Science, Università degli Studi,

via Comelico 35,

I-20135 Milano

Abstract

Model Checking Modulo Theories is a recent approach for the automated verification
of safety properties of a class of infinite state systems manipulating arrays, called array-
based systems. The idea is to repeatedly compute pre-images of a set of (unsafe) states by
using certain classes of first-order formulae representing sets of states and transitions, and
then reduce fix-point checks to Satisfiability Modulo Theories problems. Unfortunately, if
the guards contain universally quantified index variables, the backward procedure cannot
be fully automated. In this paper, we overcome the problem by describing a syntactic
transformation on array-based systems, which can be seen as an instance of the well-known
operation of relativization of quantifiers in first-order logic. Interestingly, when specifying
and verifying distributed systems, the proposed syntactic transformation can be inter-
preted as the adoption of the crash-failure model, which is well-known in the literature of
fault-tolerant systems. By eliminating universal quantifiers from guards, the transforma-
tion significantly extends the scope of applicability of the symbolic backward reachability
procedure. To provide empirical evidence of this claim, we discuss our findings in apply-
ing the proposed technique to a significant case-study in the verification of some classical
algorithms for reliable broadcast.

Keywords: model checking modulo theories, failure models, quantifiers instantiation,
reliable broadcast

Submitted February 2011; revised February 2011; published January 2012

c©2012 Delft University of Technology and the authors.

F. Alberti et al.

1. Introduction

In [15], a declarative approach to the specification and automated verification of a class of
infinite state systems manipulating arrays, called array-based systems, is introduced. The
key idea is to represent the algebraic structures of the indexes and the elements stored in
the arrays by using theories and certain classes of first-order formulae for representing sets
of states and transitions. On top of this, a symbolic backward reachability procedure can be
automated by reducing tests for fix-point and safety to Satisfiability Modulo Theories (SMT)
problems. Safety problems for several classes of systems and algorithms can be handled
in this way; e.g., parameterized protocols for mutual exclusion or imperative algorithms
manipulating arrays (see, e.g., [17, 13, 15]).

In [17], it is realized that formulae representing transitions of array-based systems can
be restricted to, so-called, guarded assignments, i.e. array variables are updated according
to a certain function provided that a guard is satisfied. Guards are expressed as first-order
formulae involving array state variables. Usually guards can be expressed as conjunctions
of two conditions: one involving a limited number of indexes of array variables, called local,
and another one universally quantifying over the (finite but unbounded) domain of indexes,
called global. When the guard is purely local (i.e. the global condition is equivalent to
true), it is possible to show that the class of formulae used to represent sets of states is
closed under pre-image computation (see, e.g., [17]). This is one of the crucial requirements
for the automation of the symbolic backward reachability procedure used to solve safety
problems. Unfortunately, in several situations, the global condition must be considered and
the closure under pre-image is lost. Indeed, this severely restricts the scope of applicability
of verification procedures based on symbolic backward reachability as described in [15]. To
overcome this problem, in this paper, we provide a fully formal account of a purely syntactic
transformation, its main properties relating the set of possible executions of the original and
the transformed system, as well as its implementation in mcmt, acronym for Model Checker
Modulo Theories [16]. We also discuss in details its relationship with the crash-failure
model (in which, a process may halt at any moment and cannot recover from its crashed
state) developed in the context of distributed systems (see, e.g., [22, 27]), when array-based
systems model fault-tolerant algorithms. We also sketch how more complex failure models
(e.g., the send-omission failure model [27]) can be formalized in our framework.

The main source of inspiration for designing our transformation is the work on monotonic
abstraction [3, 4, 5, 1] developed by Abdulla et al, which is more semantic and needs to
be adapted each time a new of class of systems is to be verified. On the contrary, our
transformation is purely syntactic and may be applied to arbitrary array-based systems,
even those not modelling distributed systems, and put to productive work for verification
problems where a semantic approach à la Abdulla et al would be much more difficult to
adapt. For example, we used our transformation in the verification of imperative programs
manipulating arrays or strings in [16, 15]. So, the work described in this paper can be seen
as the reinterpretation and generalization of Abdulla et al monotonic abstraction in the
fully declarative framework of model checking modulo theories. This has been anticipated
in [17] where we informally describe a syntactic transformation of array-based systems with
global conditions in the guards of transitions so that if the transformed system is proved
safe with respect to a reachability property, then also the original system is so. Along

30

Universal Guards in Model Checking Modulo Theories

the lines of [17], the idea underlying the transformation described here can be informally
illustrated as follows. Consider a parametric system formed by identical processes which are
finite state automata. Each automaton has a finite set Q = {q1, ..., qn} of control locations.
Let us extend Q to a set Q′ = Q ∪ {qcrash}, where qcrash 6∈ Q, and augment the set of
transitions of each process as follows: it is always possible to go from state qi to qcrash ,
for each i = 1, ..., n (this formalizes the fact that in the crash-failure model, a process can
halt without warning at any time).1. Now, consider a transition with a global condition
saying that a process i can execute a transition if a certain predicate C is satisfied by all
processes j 6= i. In the crash-failure model, this can be expressed without the universal
quantification as follows: the non-crashed process i takes the transition without checking
the global condition C and, concurrently, all non-crashed processes j 6= i not satisfying the
condition C move to the state qcrash ; moreover, all non-crashed processes j 6= i satisfying C
behave as originally prescribed. The key observation is that in the transformed system all
the processes involved in the transition are required to be non-crashed. Formally, this can
be expressed by a standard syntactic transformation known in the literature about first-
order logic as relativization of quantifiers (see, e.g., [12]). By eliminating global conditions,
the transformed array-based system can be automatically analyzed by the model checking
modulo theories procedure. Crucially, since it is possible to prove that the transformed
system satisfies a subset of the class of safety (or even recurrence) properties satisfied by
the original system (since the latter has fewer runs), establishing a safety property for the
system in the crash-failure model implies that the same property is fulfilled by the original
system.

Given the connection between our syntactic transformation and the crash-failure model,
we have found it natural to consider the verification of an important class of parameterized
fault-tolerant algorithms to test the usefulness of our approach. Reliable broadcast algo-
rithms are such a class and we consider some of the classical algorithms developed in [28].
In particular, our experimental results show that it is possible to formalize the step-wise
specification and verification of an important safety property (called agreement in the lit-
erature) confirming the pen-and-paper proofs in [28]. For scalability, we found the use of
invariants crucial for pruning of the search space of the backward reachability procedure, as
discussed in [13, 15]. Indeed, when considering the syntactically transformed array-based
system for verification, also the invariants to be employed should be suitably transformed.
We show that this is particularly easy in our setting. We believe that the experiments
reported in this paper (together with those already discussed in [15]) show that our tech-
nique, despite its conceptual simplicity, significantly widens the scope of applicability of our
symbolic reachability procedure based on SMT solving.

Plan of the paper. Section 2 introduces selected notions from [17, 13, 15]. Sections 3
and 4 give an overview of the specification and automated analysis of safety problems
of array-based systems. Section 5 describes the syntactic transformations to eliminate
global conditions from the guards of the transition, formally states and proves its main
properties, and discusses how they affect invariants and their use in pruning the search

1. An alternative (equivalent) solution would be to keep the original set Q of control locations and add
a Boolean flag saying that a given process is crashed or not. This will be the solution adopted in this
paper.

31

F. Alberti et al.

space of the backward reachability procedure. Section 6 considers the interpretation of the
transformation as the adoption of the crash-failure model and compares our verification
technique with others available in the literature, such as the monotonic abstraction of
Abdulla et al. Section 7 describes the implementation and integration of the syntactic
transformation in mcmt and discusses our experiments with the verification of some of the
algorithms for reliable broadcast in [28]. Section 8 concludes. A simple protocol for mutual
exclusion taken from [1] is used as a running example throughout the paper to illustrate
the various notions. The material concerning the case study of Section 7 has appeared in
preliminary form in [7, 6], the remaining content of the paper is published for the first time.

How to read the paper. Readers interested only in the transformation to handle global
conditions in the guards of transitions can focus on Sections 2, 3, and 5; although Sections 2
and 3 can be omitted if already familiar with the formal framework underlying mcmt.
Particular attention should be paid to Table 2 that contains the formal definition of the
transformation together with Sections 5.2 and 5.3 that prove the key properties of the
transformation and Table 1 that reports the assumptions under which the properties are
proved. Those readers interested in understanding the relationship between the proposed
transformation and the crash-failure model of distributed systems should also read Section 6.
The specification of more complex failure models is discussed in Section 7.3. Finally, those
interested in the implementation and evaluation of the technique may also read Section 7.

2. Formal Preliminaries

We assume the usual syntactic (e.g., signature, variable, term, atom, literal, and formula)
and semantic (e.g., structure, sub-structure, assignment, truth, satisfiability, and validity)
notions of many-sorted first-order logic (see, e.g., [12]). The equality symbol = is included in
all signatures considered below. IfM is a structure for a signature Σ (briefly, a Σ-structure),
we denote by SM, fM, PM, . . . the interpretation in M of the sort S, the function symbol
f , the predicate symbol P , etc. If Σ0 is a sub-signature of Σ, the structure M|Σ0

results
fromM by forgetting about the interpretation of the sorts, function and predicate symbols
that are not in Σ0 and M|Σ0

is called the restriction of M to Σ0.

According to the current practice in the SMT literature [25], a theory T is a pair (Σ, C),
where Σ is a signature and C is a class of Σ-structures; the structures in C are the models
of T . Below, we let T = (Σ, C). A Σ-formula φ is T -satisfiable if there exists a Σ-structure
M in C such that φ is true in M under a suitable assignment to the free variables of φ (in
symbols, M |= φ); it is T -valid (in symbols, T |= ϕ) if its negation is T -unsatisfiable. Two
formulae ϕ1 and ϕ2 are T -equivalent if ϕ1 ⇔ ϕ2 is T -valid. The satisfiability modulo the
theory T (SMT (T)) problem amounts to establishing the T -satisfiability of quantifier-free
(i.e. not containing quantifiers) Σ-formulae.

A T -partition is a finite set C1(x), . . . , Cn(x) of quantifier-free formulae (with free vari-
ables contained in the tuple x) such that T |= ∀x

∨n
i=1Ci(x) and T |=

∧
i 6=j ∀x¬(Ci(x) ∧

Cj(x)). A case-definable extension T ′ = (Σ′, C′) of a theory T = (Σ, C) is obtained
from T by applying (finitely many times) the following procedure: (i) take a T -partition
C1(x), . . . , Cn(x) together with Σ-terms o1(x), . . . , on(x); (ii) let Σ′ be Σ∪ {F}, where F is
a “fresh” function symbol (i.e. F 6∈ Σ) whose arity is equal to the length of x; (iii) take as

32

Universal Guards in Model Checking Modulo Theories

C′ the class of Σ′-structures M whose restriction to Σ is a model of T and such that

M |=
n∧

i=1

∀x (Ci(x)⇒ F (x) = oi(x)).

Thus a case-definable extension T ′ of a theory T contains finitely many additional function
symbols, called case-defined functions. It is not hard to effectively translate any SMT (T ′)
problem into an equivalent SMT (T)-problem, see [15] for details. In the following, by abuse
of notation, we shall identify a theory T and its case-definable extensions T ′. In the rest of
the paper, a case-defined function F will be written as follows:

F (x) := case of { C1(x) : o1; · · · Cn(s) : or },

where C1, ..., Cn is a T -partition for a suitable theory T . When n = 2, the partition has the
form C(x),¬C(x) for some formula C so that we will write F (x) := if C(x) then o1 else o2.
To improve readability, we will use λ-abstractions to define functions; although, we empha-
size that all expressions can be rewritten in pure first-order logic.

3. Array-Based systems

The theory AE
I specifies the array data structure manipulated by the class of transition

systems considered in the paper. It is parametric with respect to the indexes and elements
stored in the arrays, whose algebraic structures are again specified as theories TI and TE ,
respectively. We assume TI = (ΣI , CI) to have only one sort symbol INDEX. The sorts of
the theory TE = (ΣE , CE) are given names ELEM`, where ` varies in a given finite index set.
We define the composed theory AE

I = (Σ, C) of arrays with indexes in TI and elements in
TE as follows. The signature of AE

I contains the sort symbols of TI , TE , together with a
new sort symbol ARRAY` for each ELEM` of ΣE , and all the function and predicate symbols
in ΣI ∪ ΣE together with a new function symbol []` : ARRAY`, INDEX −→ ELEM` for each
ELEM` of ΣE . Intuitively, a[i]` denotes the element of sort ELEM` stored in the array a of
sort ARRAY` at index i; when the sort ELEM` is clear from the context, we simply write a[i].
The class C of models of AE

I contains a multi-sorted structure M iff for each sort ELEM` of
ΣE , we have that ARRAYM` is interpreted as the set [INDEXM → ELEMM`] of (total) functions
from INDEXM to ELEMM` , the function symbol [] is interpreted as function application, and
M|ΣI

,M|ΣE
are models of TI and TE , respectively.

An array-based (transition) system (for (TI , TE)) is a triple S = (a, I, τ) where (i)
a = a1, . . . , as is the tuple of the array state variables (these arrays encode local data of
sorts ELEM1, . . . , ELEMs, respectively); (ii) I(a) is the initial formula; and (iii) τ(a, a′) is the
transition formula. Notice that in τ(a, a′) not only the tuple a occurs but also its renamed
copy a′: this is because the transition formula τ is meant to express a constraint relating the
values of the state variables before and after the execution of τ (usually, such a constraint
is a conditional update).

Given an array-based system S = (a, I, τ) and a formula U(a), (an instance of) the safety
problem is to establish whether there exists a natural number n such that the formula

I(a0) ∧ τ(a0, a1) ∧ · · · ∧ τ(an−1, an) ∧ U(an) (1)

33

F. Alberti et al.

is AE
I -satisfiable. If there is no such n, then S is safe (w.r.t. U); otherwise, it is unsafe

and there exists a run (i.e. a sequence of transitions) of length n leading the system from a
state in I to a state in U .

Array-based systems have been used to model a variety of systems coming from several
verification domains; the interested reader is pointed to [15] for an overview.

3.1 Running Example

We consider a protocol (taken from [1]) ensuring mutual exclusion for an arbitrary num-
ber of processes with a linear topology. Each process has four control locations: I(dle),
R(equesting), W(aiting), and C(ritical section). The processes are linearly ordered: the set
of processes on the left (right) of a given process p are those processes coming before (after,
respectively) p in the linear order. Initially, all processes are in control location I. Each
process can perform the following transitions:

t1: if a process is in location I and all other processes (on its left and right) are either in
location I or R, then it can move to location R;

t2: if a process is in location R, then it can move to location W;

t3: if a process is in location W and all the processes on its left are in location I, then it
can move to location C;

t4: if a process is in location C, then it can move to location R; and

t5: if a process is in location R, then it can move to location I.

All those (bad) states containing at least two distinct processes in the control location C
violate the mutual exclusion property that the protocol is intended to guarantee.

To formalize this protocol as an array-based system, we start defining the theories over
indexes and elements. Let TI be the theory of linear orders, which contains the binary
predicate symbol < (written infix) interpreted as a transitive, antisymmetric, and total
relation over a set of elements. Let TE be the theory of an enumerated data type containing
only the constant symbols I, R, W, and C whose interpretations are distinct elements of a
set containing just those four elements (thus the class of models of TE is a singleton). Then,
we consider an array-based system with only one state variable a, the set of initial states is
characterized by

I(a) := ∀z.a[z] = I,

and the transitions are formalized by

t1(a, a′) := ∃i.(a[i] = I ∧ ∀j.(j 6= i⇒ a[j] ∈ {I,R})∧ a′ = upd(a, i,R))
t2(a, a′) := ∃i.(a[i] = R∧ a′ = upd(a, i,W))
t3(a, a′) := ∃i.(a[i] = W ∧ ∀j.(j < i⇒ a[j] = I)∧ a′ = upd(a, i,C))
t4(a, a′) := ∃i.(a[i] = C∧ a′ = upd(a, i,R))
t5(a, a′) := ∃i.(a[i] = R∧ a′ = upd(a, i, I)),

where t ∈ {c1, ..., cn} abbreviates t = c1 ∨ · · · ∨ t = cn for t a term and ci a constant (i =
1, ..., n) and upd(a, i, c) abbreviates the case-defined function λj.(if (j = i) then c else a[j])

34

Universal Guards in Model Checking Modulo Theories

function BReach((a, I, τ), U)
1 P ←− U ; B ←− ⊥;
2 while (P ∧ ¬B is AE

I -sat.) do
3 if (I ∧ P is AE

I -sat.) then return unsafe;
4 B ←− P ∨B;
5 P ←− Pre(τ, P);
6 end
7 return (safe, B);

Figure 1. The symbolic backward reachability algorithm

for a, i, and c constants of appropriate sorts. So, the array-based system (a, I, τ) formalizes
the protocol for mutual exclusion introduced above, where τ(a, a′) :=

∨5
`=1 t`(a, a

′). The
formula describing the set of bad states is

U(a) := ∃i, j.(i < j ∧ a[i] = C ∧ a[j] = C).

The safety problem for this protocol consists of establishing if there exists n ≥ 0 such that

∀z.a0[z] = I ∧ t`1(a0, a1) ∧ · · · ∧ t`n(an−1, an) ∧ ∃i, j.(i 6= j ∧ an[i] = C ∧ an[j] = C)

is AE
I -satisfiable for `1, ..., `n ∈ {1, ..., 5}. Notice that for n = 0, we have that

∀z.a0[z] = I ∧ ∃i, j.(i < j ∧ a0[i] = C ∧ a0[j] = C)

is AE
I -unsatisfiable since its quantifier-free instance (obtained by considering the existen-

tially quantified variables i, j as Skolem constants and instantiating the universally quanti-
fied variable z with i and j):

a0[i] = I ∧ a0[j] = I ∧ i < j ∧ a0[i] = C ∧ a0[j] = C,

is obviously AE
I -unsatisfiable (to see why, consider the first and fourth, or the second and

last, literals and derive I = C, which is TE-unsatisfiable as I and C denote distinct elements
in the model of TE).

4. Backward Reachability for Array-based Systems

A general approach to solve instances of the safety problem is based on symbolically com-
puting the set of backward reachable states. For n ≥ 0, the n-pre-image of a formula K(a)
is Pre0(τ,K) := K and Pren+1(τ,K) := Pre(τ, Pren(τ,K)), where

Pre(τ,K) := ∃a′.(τ(a, a′) ∧K(a′)). (2)

Given S = (a, I, τ) and U(a), the formula Pren(τ, U) describes the set of backward reach-
able states in n steps (for n ≥ 0). At the n-th iteration of the loop, the basic back-
ward reachability algorithm, depicted in Figure 1, stores in the variable B the formula

35

F. Alberti et al.

BRn(τ, U) :=
∨n

i=0 Pre
i(τ, U) representing the set of states which are backward reach-

able from the states in U in at most n steps (whereas the variable P stores the formula
Pren(τ, U)). While computing BRn(τ, U), BReach also checks whether the system is unsafe
(cf. line 3, which can be read as I ∧ Pren(τ, U) is AE

I -satisfiable) or a fix-point has been
reached (cf. line 2, which can be read as ¬(BRn(τ, U)⇒ BRn−1(τ, U)) is AE

I -unsatisfiable
or, equivalently, that (BRn(τ, U)⇒ BRn−1(τ, U)) is AE

I -valid). When BReach returns the
safety of the system (cf. line 7), the variable B stores the formula describing the set of states
which are backward reachable from U which is also a fix-point. For BReach (Figure 1) to be
a true (possibly non-terminating) procedure, it is mandatory to identify a class of formulae
for representing sets of (backward) reachable states (line 5), in such a way that the class
is closed under pre-image computation and the safety (line 3) and fix-point (line 2) checks
are effective.

In [15], we identified such a class of formulae and sufficient conditions on the component
theories TI and TE to guarantee decidability of the satisfiability problem; we also identified
the shapes of the formulae of an array-based transition system and of the formula represent-
ing the set of bad states to guarantee closure under pre-image computation. To precisely
state these assumptions and the related results, we need to introduce the following nota-
tional convention and definitions: d, e range over variables of a sort ELEMS of ΣE , i, j, k, z, . . .
over variables of sort INDEX. An underlined variable name abbreviates a tuple of variables
of unspecified (but finite) length and, if i := i1, . . . , in, the notation a[i] abbreviates the
s ∗ n-tuple of terms

a1[i1], . . . , a1[in], . . . , as[i1], . . . , as[in].

Notice that we use the underlined notation i, e, . . . for tuples of elements and index variables,
whereas we use just a (not underlined!) for the tuple a1, . . . , as of array variables: the reason
for this asymmetric choice is due to the fact that the length s of the tuple a is fixed during
model checking (it is given in the definition of an array-based system); whereas the length
of the tuples i arising during backward reachability is finite but unknown. As a general
rule, whenever we do not underline a variable name, we mean that it represents a single
variable or a tuple of variables of fixed length s; on the contrary, whenever a variable name
is underlined, it means that it represents a tuple of variables of unspecified length.

Possibly sub/super-scripted expressions of the form φ(i, e), ψ(i, e) denote quantifier-free
(ΣI ∪ ΣE)-formulae in which at most the variables i ∪ e occur. Also, φ(i, t/e) (or simply
φ(i, t)) abbreviates the substitution of the Σ-terms t for the variables e. Thus, for instance,
φ(i, a[i]) denotes the formula obtained by replacing e with a[i] in the quantifier-free formula
φ(i, e). A ∀I-formula is a formula of the form ∀i.φ(i, a[i]). An ∃I-formula is a formula of
the form ∃i.φ(i, a[i]). An ∃A,I∀I-sentence is a sentence of the form ∃a ∃i ∀j ψ(i, j, a[i], a[j]).

To mechanize BReach, the additional assumptions reported in Table 1 on the theories TI
and TE , and the form of the formulae I, τ , and U specifying safety problems are mandatory.2.

The following theorem—a consequence of slightly more general decidability results in [15]—
supports the automation of safety and fix-point checks, that are reduced in BReach to the
satisfiability of ∃A,I∀I -sentences.

2. In the table, “M is closed under sub-structures” means means that if M is in CI , X is a subset of
INDEXM, and M′ is the structure having X as support set and whose interpretation of predicate symbols
is given by the restriction to X, then also M′ is in CI .

36

Universal Guards in Model Checking Modulo Theories

Table 1. Assumptions on TI , TE , and the form of I , τ , and U

(HT1) the STM(TI) and STM(TE) problems are decidable

(HT2)
ΣI does not contain function or constant symbols
and its class CI of models is closed under sub-structures

(HF1) I is a ∀I -formula

(HF2) U is a ∃I -formula

(HF3) τ is in functional form, i.e. a disjunction of formulae of the form

∃i (φL(i, a[i]) ∧ a′ = λj.F (i, a[i], j, a[j])) (3)

where the quantifier-free formula φL is called the (local) guard and
F = F1, . . . , Fs is a tuple of case-defined functions, called the (global)
updates

(wHF3) τ is in weak functional form, i.e. a disjunction of formulae of the form (3) or
universally guarded transition formulae in functional form

∃i (φL(i, a[i]) ∧ ∀k ψ(i, k, a[i], a[k]) ∧ a′ = λj.F (i, a[i], j, a[j])), (4)

where φL and F are as for (HF3) and ψ is a quantifier-free formula,
called the (global) guard.

Theorem 4.1. Under the assumptions (HT1) and (HT2) in Table 1, we have that

(RT1) the AE
I -satisfiability of ∃A,I∀I-sentences is decidable;

(RT2) an ∃A,I∀I-sentence is AE
I -satisfiable iff it is satisfiable in a finite index model, i.e.

in a model in which the interpretation of the sort INDEX is a finite set.

The following property states that sets of backward reachable states can always be
represented by ∃I -formulae provided that the formulae representing the array-based systems
and the set of unsafe states satisfy suitable restrictions (identified in [17, 15]).

Proposition 4.1. Under the assumptions (HF1), (HF2), and (HF3) in Table 1, the
following hold:

(RF1) if K is an ∃I-formula, then Pre(τ,K) is equivalent to an (effectively computable)
∃I-formula;

(RF2) the AE
I -satisfiability tests at lines 2 and 3 of the procedure BReach in Figure 1

involve only ∃A,I∀I-sentences.

The proof of (RF1) consists of simple logical manipulations that will be illustrated on
the running example below, while that of (RF2) is immediate.

In the rest of the paper, unless explicitly stated, we will assume that (HT1), (HT2),
(HF1), and (HF2) in Table 1 always hold. This is reasonable since it is possible to spec-
ify several classes of systems—such as parameterized and distributed systems, imperative
programs, and protocols for mutual exclusion or cache coherence—as array-based systems
for which these assumptions hold [17, 15]. However, for several of these problems, (HF3)

37

F. Alberti et al.

is not satisfied, but its weakening, called (wHF3) in Table 1, is so. To widen the scope
of applicability of BReach to array-based systems satisfying (wHF3), we describe a syn-
tactic transformation in Section 5. Before, we illustrate how BReach works on the running
example of Section 3.1 and the difficulties encountered to automate it when dealing with
transitions satisfying (wHF3) but not (HF3).

4.1 Running example: pre-images and backward reachability

One of the key functionalities of procedure BReach in Figure 1 is Pre(τ, P) at line 5. We ap-
ply Proposition 4.1 for the computation of some pre-images with the transitions considered
in Section 3.1. First, we observe that Pre(τ, P) is logically equivalent to

∨5
`=1 Pre(t`, P)

when τ :=
∨5

`=1 t`. Furthermore, the assumptions of Theorem 4.1 are satisfied: (HT1)
holds since the SMT problem for the theory TE of the enumerated datatype is obviously
decidable and that of the theory TI of linear orders is also decidable (see, e.g., [9]) and
(HT2) is satisfied because the signature of TI contains only predicate symbols while clo-
sure under substructures holds because TI can be axiomatized by universal sentences only
(see again [9]). Finally, establishing that assumptions (HF1) and (HF2) hold is immedi-
ate by inspection of the formulae I and U in Section 3.1. The situation for (HF3) is more
complex and leads us to the main problem considered in this paper. Before discussing this
issue, let us observe that t2, t4, and t5 are all in functional form and thus do satisfy (HF3).
We illustrate the application of Proposition 4.1 by computing Pre(t2, U), which is logically
equivalent to

∃a′.(∃k.(a[k] = R ∧ a′ = upd(a, k,W)) ∧ ∃i, j.(i < j ∧ a′[i] = C ∧ a′[j] = C))

by (2). By simple logical manipulations, the formula can be rewritten as

∃a′.∃i, j, k.(a′ = upd(a, k,W) ∧ a[k] = R ∧ i < j ∧ upd(a, k,W)[i] = C ∧ upd(a, k,W)[j] = C).

Now, observe that the first conjunct can be dropped, and, recalling the definition of upd,
we derive:

∃i, j, k.(i < j ∧ k 6= i ∧ k 6= j ∧ a[i] = C ∧ a[j] = C ∧ a[k] = R);

in fact the cases k = i and k = j yield the TE-unsatisfiable equality W = R.3. This formula
is subsumed by U , hence it can be discarded during backward search.4.

3. Notice that disjunctions of ∃I -formulae are equivalent to an ∃I -formula by simple logical manipulation.
So, we can conveniently keep ∃I -formulae in the so called primitive differentiated format (see, e.g., [15] for
a precise definition), namely as disjunctions of existentially quantified conjunctions of literals containing
all pairwise distinctions of their existentially quantified variables. Primitive differentiated formulae are
used by mcmt [16].

4. With “subsumption”, we refer to “partial fix-point tests” according to what is implemented in mcmt [16].
In fact, instead of having a single large ∃I -formula K equivalent to Pre(τ, U), mcmt maintains several
primitive differentiated formulae K1, ...,Kr (see the previous footnote for a characterization of this class
of formulae), whose disjunction is logically equivalent to K but which are smaller and are easier to
simplify (roughly, K1, ...,Kr derive from the computation of Pre(t̂`, U), for each `). In this way, instead
of checking K for fix-point, we check for “partial” fix-point each K1, ...,Kr. This way of implementing
BReach seems to be crucial for performance as witnessed by the results of mcmt reported in [16, 15].

38

Universal Guards in Model Checking Modulo Theories

It is easy to see that Pre(t4, U) and Pre(t5, U) also give rise to subsumed formulae (in
fact, the tool mcmt does not even generate these formulae because it implements some
optimizations which allow it to detect such subsumptions statically, see [17] for details).

Let us now consider formulae t1 and t3, which are not in functional form because they
contain a universally quantified formula in their guards. Although Proposition 4.1 does not
apply, we can still use (2) to compute, e.g., Pre(t3, U):

∃a′.(∃k.(a[k] = W ∧ ∀l.(l < k ⇒ a[l] = I) ∧ a′ = upd(a, k,C))∧
∃i, j.(i < j ∧ a′[i] = C ∧ a′[j] = C)).

In turn, this is equivalent to

∃i, j, k. ∀l.
(
a[k] = W ∧ (l < k ⇒ a[l] = I)∧
i < j ∧ upd(a, k,C)[i] = C ∧ upd(a, k,C)[j] = C

)
,

which is easily seen to be logically equivalent to a ∃A,I∀I -sentence by recalling the definition
of upd. So, it does not seem possible to compute an ∃I -formula which is logically equivalent
to the pre-image of an ∃I -formula when the transition contains a universal formula in its
guard. At first sight, this does not seem to prevent the mechanization of BReach. In fact,
the satisfiability checks at lines 2 and 3 are still covered by Theorem 4.1 since the formulae
which are involved (Pre(t3, U)∧¬U and I ∧ Pre(t3, U), respectively) are transformed into
∃A,I∀I -sentences with simple logical manipulations. The problem arises at the next iteration
of the main loop in BReach since the pre-image of Pre(t3, U) will again be a ∃A,I∀I -sentence
(even if the considered transition is in functional form) so that the satisfiability check at
line 2 will involve the conjunction of a ∃A,I∀I -sentence with its negation. This is not
covered by Theorem 4.1 and we are no more guaranteed to be able to give fully automated
support to BReach. A possible solution would be to study the decidability of sentences of
the form ∃a, i.∀j, a′∃j′.ϕ(a, i, j, a′). However, classical results about the (un-)decidability of
fragments of first-order logic allowing alternation of quantifiers as those considered above
suggest that it is very difficult to obtain practically useful conditions. Fortunately, there is
a different approach which consists in introducing a failure model and adapting a standard
technique in first-order logic, called relativization of quantifiers, to translate formulae of
many-sorted to unsorted logic (see, e.g., [12]). This is the topic of the following section.

5. Eliminating Universal Conditions in Guards

As illustrated in Section 4.1, it is difficult to automate BReach when the transition formula
τ is in weak functional form, see (wHF3) in Table 1 for the definition. The main problem
is to establish that the global guard of a disjunct of the form (4) in τ holds for all processes
comprising the system (i.e. a finite but unknown number of processes) rather than on a
bounded number as it is the case for a local guard. To overcome this problem, the key idea
is to design a syntactic transformation of the array-based system so as to obtain a sufficiently
precise abstraction that preserves the safety properties. The abstraction is induced by the
adoption of the following simple failure model : we allow processes to crash and we stipulate
that crashed processes cannot take an active role in the protocol. Once the reference model
has changed because crashes may occur, it is not difficult to see that (modulo bisimulation)
universally guarded transitions in functional form (4) can be replaced by transitions in

39

F. Alberti et al.

Table 2. Definitions of the mappings (̃·) and (̂·)

Original
Array-based
System S and
unsafe states
U

(a) TI , TE
(b) a = a1, ..., as
(c) U(a) := ∃i.φ(i, a[i])
(d) I(a) := ∀i.φ(i, a[i])

(e)

t`(a, a
′) := ∃i

(
φL(i, a[i]) ∧ ∀k ψ(i, k, a[i], a[k])
a′ = λj.F (i, a[i], j, a[j])

)
where F (i, e, j, d) := case of {

C1(i, e, j, d) : o1(i, e, j, d)
· · ·

Ck(i, e, j, d) : ok(i, e, j, d) }
(f) τ(a, a′) :=

∨n
`=1 t`(a, a

′)

7−→ (̃·)

Intermediate
Array-based
System S̃ and
unsafe states
Ũ

(a) T̃I := TI and T̃E := TE plus constants t 6= f of sort ELEMs+1

(b) ã := a, as+1 where as+1 is of sort ARRAYs+1

for i := i1, ..., ik, the notation A(i) abbreviates
∧k

`=1(as+1[i`] = t)

(c) Ũ(ã) := ∃i.(A(i) ∧ φ(i, a[i]))

(d) Ĩ(ã) := ∀i.(A(i)⇒ φ(i, a[i]))

(e)

t̃`(ã, ã
′) := ∃i

(
A(i) ∧ φL(i, a[i]) ∧ ∀k (A(k)⇒ ψ(i, k, a[i], a[k]))∧
a′ = λj.FA(i, a[i], j, a[j], as+1[j]) ∧ a′s+1 = as+1

)
where FA(i, e, j, d, β) := case of {

C1(i, e, j, d) ∧ β = t : o1(i, e, j, d)
· · ·

Ck(i, e, j, d) ∧ β = t : ok(i, e, j, d)
β = f : d }

(e′) t̃n+1(ã, ã′) := ∃i (A(i) ∧ a′ = a ∧ a′s+1 = upd(as+1, i, f))

(f) τ̃(ã, ã′) :=
∨n+1

`=1 t̃`(ã, ã
′)

7−→ (̂·)

Target Array-
based System
Ŝ and unsafe
states Û

(a) T̂I := T̃I and T̂E := T̃E
(b) â := ã

(c) Û(â) := Ũ(ã)

(d) Î(â) := Ĩ(ã)

(e)

t̂`(â, â
′) := ∃i

 A(i) ∧ φL(i, a[i]) ∧
∧

j∈i ψ(i, j, a[i], a[j])

a′ = λj.F ∀
A (i, a[i], j, a[j], as+1[j])∧

a′s+1 = λj.f∀A (i, a[j], j, as+1[j])

where F ∀

A (i, e, j, d, β) := case of {
C1(i, e, j, d) ∧ β = t ∧ ψ(i, e, j, d) : o1(i, e, j, d)

· · ·
Ck(i, e, j, d) ∧ β = t ∧ ψ(i, e, j, d) : ok(i, e, j, d)

β = f ∨ ¬ψ(i, e, j, d) : d }
and f∀A (i, e, j, d, β) := if (β = f ∨ ¬ψ(i, j, e, d)) then f else β

(e′) t̂n+1(â, â′) := t̃n+1(ã, ã′)

(f) τ̂(â, â′) :=
∨n+1

`=1 t̂`(â, â
′)

40

Universal Guards in Model Checking Modulo Theories

simple functional form (3). Intuitively, this is because runs in which processes not satisfying
the condition in the universal guards crash are allowed in the abstract system. We shall
make this observation rigorous in the technical developments below. Here, we point out
that the array-based system obtained by this transformation is more liberal, i.e. it has
more runs than the original system. As a consequence, if a set of bad states U is shown
to be unreachable for the more liberal system, then it will also be unreachable for the
original system. In practice, many common distributed algorithms are fault-tolerant and
this explains why it is not by chance that our approach usually works and produces the
desired safety certifications, as it is evident from the extensive experiments reported in [15].

Let TI and TE be theories, S = (a, I, τ) be an array-based system, and U a ∃I -formula
(describing a set of unsafe states) satisfying the assumptions (HT1), (HT2), (HF1),
(HF2), and (wHF3) in Table 1. To simplify the formal definition of the syntactic trans-
formation, we split it in two maps, namely (̃·) and (̂·), defined on safety problems, i.e. pairs
of an array-based transition system and an ∃I -formula. The first mapping (̃·) introduces
failures and transforms (S, U) into (S̃, Ũ). The second mapping (̂·) removes the universal
guards and takes (S̃, Ũ) to (Ŝ, Û). The two mappings are in Table 2.

First Step: (S, U) 7−→ (S̃, Ũ) . The technique for introducing the failure version of (S, U)

consists in adding an auxiliary variable and then in relativizing all quantifiers to the formula
describing non-crashed processes. This is done as follows.

- In (a), we add a new sort ELEMs+1 with two constant symbols t and f to TE so that
its models are expanded in such a way that ELEMs+1 is interpreted as a set of two
elements, and t and f are mapped to distinct elements of the set.

- In (b), the auxiliary (array state) variable as+1 of sort ARRAYs+1 is also added to the
original variables a of the system and the resulting tuple of variables is denoted with
ã. The abbreviation A(i) is introduced in order to identify the conjunction of equalities
between the terms as+1[i] and the constant t: the formula A(i`) means that “i` is not
crashed”.

- In (c), the existential quantifier of formula U is “relativized” with respect to A.

- In (d), the universal quantifier of I is also relativized.

- In (e), the existential and universal quantifiers of the transition formula are relativized
with respect to A; similarly, the case-defined functions of the updates are also rel-
ativized in order to modify the values of the arrays a only whenever the auxiliary
variable as+1 is set to t. Formally, this is done by adding an extra parameter β to
the case-defined function and creating a new partition by splitting on its two possible
values (either t or f) and then distributing over C1, ..., Ck. According to this trans-
formation, formulae of the form (3), obtained from t(a, a′) in Table 2 by taking ψ to
be equivalent to true, are mapped to

∃i (A(i) ∧ φL(i, a[i]) ∧ ã′ = λj.F̃ (i, ã[i], j, ã[j])) (5)

and those of the form (4) to

∃i
(

A(i) ∧ φL(i, a[i]) ∧ ∀k (A(k)⇒ ψ(i, k, a[i], a[k]))∧
ã′ = λj.F̃ (i, ã[i], j, ã[j])

)
, (6)

41

F. Alberti et al.

where ã′ = λj.F̃ (i, ã[i], j, ã[j]) abbreviates a′ = λj.FA(i, a[i], j, a[j], as+1[j]) ∧ a′s+1 =
as+1.5. Notice that the value of as+1 is not changed by the transition t̃`.

- In (e′), we formalize the fact that a process can crash at any time: we add the (n + 1)-
transition which leaves the original variables in a unchanged and non-deterministically
changes the value of a cell of as+1 from t to f.

- Finally, in (f), we construct the new transition formula τ̃ by simply taking the disjunction
of the “relativized” transition formulae t̃1, ..., t̃n with the additional disjunct t̃n+1.

It is not difficult to show that the safety problems (S, U) and (S̃, Ũ) have the same answer
provided that τ is in functional form (see Proposition 5.2 in Section 5.2 below).

Second Step: (S̃, Ũ) 7−→ (Ŝ, Û) . We now eliminate the universal guards. The definition

of this mapping is simpler since most of the work has already been done.

- We do not modify further the component theories (a), the tuple of the state variables
(b), the unsafe (c) and the initial formulae (d), and (e′) the additional transition
non-deterministically updating the auxiliary variable as+1.

- Our main purpose is (e) to transform the formulae t̃1, ..., t̃n by replacing the universally
quantified formula ∀k (A(k) ⇒ ψ(i, k, a[i], a[k])) in the guard by the finite conjunc-
tion of quantifier-free formulae

∧
k∈i ψ(i, k, a[i], a[k]); in addition, we modify the case-

defined function of the updates as follows. First, we update only the values j of the
arrays a having the auxiliary variable as+1[j] set to t (as before) and for which the (re-
moved) global condition ψ(i, j, a[i], a[j]) holds; furthermore—and most importantly—
we force the value of as+1[j] for those cells j for which ψ(i, j, a[i], a[j]) does not hold
to become f. Formally, we create a new partition by splitting on ψ(i, e, j, d) and then
distributing over the intermediate partition (C1 ∧ β = t), ..., (Ck ∧ β = t), β = f.
According to this transformation, formulae of the form (5) are mapped to

∃i (A(i) ∧ φL(i, a[i]) ∧ â′ = λj.F̂ (i, â[i], j, â[j])) (7)

and those of the form (6) to

∃i (A(i) ∧ φL(i, a[i]) ∧
∧
k∈i

ψ(i, k, a[i], a[k]) ∧ â′ = λj.F̂ (i, â[i], j, â[j])), (8)

where â′ = λj.F̂ (i, â[i], j, â[j]) abbreviates a′ = λj.F ∀A (i, a[i], j, a[j], as+1[j]) ∧ as+1
′ =

λj.f∀A (i, a[i], j, a[j], as+1[j]), where FA, fA are as explained above and as formally de-
fined in Table 2.

We will show (Theorem 5.1 below) that the safety problems (S̃, Ũ) and (Ŝ, Û) have the same
answer under the assumptions (HT1), (HT2), (HF1), (HF2), and (wHF3) of Table 1.

5. In Table 2, we made some notational simplifications that deserve a comment. First, in the lines marked
with (e), the length of the tuple i as well as the vectors of function symbols F, FA, . . . should depend
on `; we omitted this dependence to avoid the notation overhead. Second, since the F ’s are vectors
(having s-components, like the a’s), the tuple o1, . . . , ok is a tuple of vectors of terms, each of which
having s-components. (All this is consistent with our policy to use non-underlined names for tuples of
expressions having fixed length s.) Third, since any two T -partitions have a common refinement, one can
freely assume that the T -partition used in the definitions of the F ’s is the same for all the s-components
of the vector F .

42

Universal Guards in Model Checking Modulo Theories

5.1 Running example: elimination of universal conditions

We illustrate the two mappings on the transitions of our running example in Section 3.1.
First of all, we introduce the auxiliary variable v (corresponding to as+1 above) together
with the extension to theory TE of the enumerated data-type for control locations.

The sequential application of the two mappings on the initial state formula I and the
unsafe formula U (recall them from Section 3.1) yields

Î(a, v) := ∀i.(v[i] = t⇒ a[i] = I) and

Û(a, v) := ∃i, j.(v[i] = t ∧ v[j] = t ∧ i < j ∧ a[i] = C ∧ a[j] = C),

respectively. Notice that this initialization does not exclude that some processes are crashed
from the very beginning, but this liberal assumption is in fact immaterial.

The effect of the composition of the mappings (̃·) and (̂·) on t2, t4, and t5 (of the form (3))
is very limited: quantifiers are relativized with respect to v[i] and v is updated identically.
we show the result of transforming t2, namely

t̂2(a, v, a′, v′) := ∃i.(v[i] = t ∧ a[i] = R ∧ a′ = upd(a, i,W) ∧ v′ = v),

and omit those for t4 and t5 as they are very similar. The additional transition t̂6 for the
non-deterministic update of v is

t̂6(a, v, a′, v′) := ∃i.(v[i] = t ∧ a′ = a ∧ v′ = upd(v, i, f)),

which arbitrarily selects a process i and sets the corresponding value in v to f. Now, we
consider the more interesting cases of t1 and t3, which both contain a global condition in
their guards. The result of syntactically transforming t1 is

t̂1(a, v, a′, v′) := ∃i.

v[i] = t ∧ a[i] = I ∧ (i 6= i⇒ a[i] ∈ {I,R})∧
a′ = upd(a, i,R)∧

v′ = λj.

(
if (v[j] = f ∨ ¬(j 6= i⇒ a[j] ∈ {I,R}))
then f else v[j]

)
 .

Notice that (i 6= i⇒ a[i] ∈ {I,R}) can be removed from t̂1(a, v, a′, v′) since it is always true.
Similarly, the transformation of t3 yields the formula:

t̂3(a, v, a′, v′) := ∃i.

v[i] = t ∧ a[i] = W ∧ (i < i⇒ a[i] = I)∧
a′ = upd(a, i,C)∧

v′ = λj.

(
if (v[j] = f ∨ ¬(j < i⇒ a[j] = I))
then f else v[j]

)
 ,

where (i < i⇒ a[i] = I) can be deleted.

It should now be clear that τ̂ :=
∨6

`=1 t̂` is in functional form; whereas τ was not,
because of t1 and t3. The transformed safety problem allows us to overcome the difficulties
of applying BReach in discussed in Section 4.1. For example, recall that we were not able to
compute an ∃I -formula logically equivalent to Pre(t3, U) in Section 4.1: the application of
the definition (2) of pre-image yielded an ∃A,U∀I -sentence. Let us now compute Pre(t̂3, Û)

43

F. Alberti et al.

and recall that (RF1) in Proposition 4.1 ensures us to be able to find a logically equivalent
∃I -formula since t̂3 is in functional form:

∃a′, v′.

 ∃k.
 v[k] = t ∧ a[k] = W ∧ a′ = upd(a, k,C)∧

v′ = λj.

(
if (v[j] = f ∨ ¬(j < k ⇒ a[j] = I))
then f else v[j]

) ∧
∃i, j.(v′[i] = t ∧ v′[j] = t ∧ i < j ∧ a′[i] = C ∧ a′[j] = C)

 ,

which rewrites to

∃i, j, k.

v[k] = t ∧ a[k] = W ∧ i < j∧
upd(a, k,C)[i] = C ∧ upd(a, k,C)[j] = C∧
(if (v[i] = f ∨ ¬(i < k ⇒ a[i] = I)) then (f = t) else (v[i] = t))∧
(if (v[j] = f ∨ ¬(j < k ⇒ a[j] = I)) then (f = t) else (v[j] = t))

by logical manipulations similar to those discussed in Section 4.1 when computing Pre(t3, U).
By case-splitting on k = i, k = j, and k 6= i∧k 6= j, further simplifications, and satisfiability
checks modulo TE , the formula above can be simplified to the disjunction of

∃i, j.(i < j ∧ v[i] = t ∧ v[j] = t ∧ a[i] = W ∧ a[j] = C),

and

∃i, j.k (i < j ∧ i > k ∧ j > k ∧ v[k] = t ∧ v[i] = t ∧
v[j] = t ∧ a[k] = W ∧ a[i] = C ∧ a[j] = C);

the third disjunct is unsatisfiable as it contains i < j ∧ j < i. Since the second disjunct
is subsumed by U , only the first one needs to be kept. The computation of Pre(t̂`, U) for
` = 1, 2, 3, 5, 6 yields an unsatisfiable or subsumed ∃I -formula and thus U ∨ Pre(τ̂ , U) is

equivalent to U∨Pre(t̂3, U). Now, observe that Pre(τ̂ , U)∧Î is ÂE
I -unsatisfiable (this means

that unsafety has not been detected after one iteration of BReach) and Pre(τ̂ , U)⇒ Û is ÂE
I -

invalid (hence, a fix-point has not been reached). We should proceed to the next iteration
and compute the pre-image of U1 := Pre(t̂3, U) with respect to τ̂ . Using simplification and
subsumption, only the following new ∃I -formula remains:

∃i, j.(i < j ∧ v[i] = t ∧ v[j] = t ∧ a[i] = R ∧ a[j] = C).

It is then possible to see that Pre(U1, τ̂) ∧ Î is ÂE
I -unsatisfiable (hence, unsafety has not

been detected), and Pre(U1, τ̂)⇒ (U1 ∨ Û) is again ÂE
I -invalid (so that a fix-point has not

been detected). One more iteration of BReach is sufficient to discover that a fix-point is
reached and that the intersection with the initial set of states is empty. As a consequence,
BReach returns the answer safe for the (target) safety problem (Ŝ, Û).

What can we infer about the (original) safety problem (S, U)? We will see that it has
the same answer because of the properties of the two mappings (̃·) and (̂·). The key point
is that Ŝ admits more runs than S and if Û is unreachable from Î by any finite sequence
of applications of τ̂ , then—a fortiori—U is unreachable from I by applying τ . To see an

44

Universal Guards in Model Checking Modulo Theories

example of a run in Ŝ which is not allowed in S, consider the set of states of S described
by the following ∃I -rule:

P := ∃i1, ..., i7.(a[i1, ..., i7] = I,R, I,C,W,W,R).

Transition t3 is not enabled in P since its universal condition, namely ∀j.(j < i⇒ a[j] = I),
cannot be satisfied. In fact, in order to satisfy the local condition of the guard a[i] = W,
one should take either i = i5 or i = i6 so that the universal condition turns out to be
violated at, e.g., i2 where a[i2] = R 6= I. Now, consider the corresponding set of states in Ŝ,
described by the following relativized ∃I -formulae:

P̂ := ∃i1, ..., i7.(v[i1, ..., i7] = t, ..., t ∧ a[i1, ..., i7] = I,R, I,C,W,W,R).

if we apply twice t̂6 to i2 and i4, we obtain

∃i1, ..., i7.(v[i2, i4] = f, f ∧ f [i1, i3, i5, i6, i7] = t, ..., t ∧ a[i1, ..., i7] = I,R, I,C,W,W,R),

and the transition t̂3 becomes enabled as the values of f at i2 and i4 make them irrelevant
for its application.

5.2 Properties of (S, U) 7→ (S̃, Ũ)

When the answer to a safety problem (S, U) is safe (unsafe), we say that S is safe (unsafe,
respectively) with respect to U .

Proposition 5.1. If S̃ is safe with respect to Ũ , then S is safe with respect to U .

Proof. Suppose (by contra-position) that

I(a0) ∧ τ(a0, a1) ∧ · · · ∧ τ(an−1, an) ∧ U(an)

is AE
I -satisfiable in a modelM under a certain assignment a. We expand the modelM to a

model M̃ of ÃE
I in the obvious way by interpreting ELEMs+1 as a set containing two distinct

elements, say 0 and 1 for the constants f and t, respectively, and interpreting ARRAYs+1 as
the set of (total) functions from INDEXM to {0, 1}. Then, we expand the assignment a by
assigning to n-copies (as+1)1, · · · , (as+1)n of the new array variable as+1 the array whose
constant value is 1. In this way, it is easy to see that

M, a |= I(ã0) ∧ τ(ã0, ã1) ∧ · · · ∧ τ(ãn−1, ãn) ∧ U(ãn)

holds under the assignment a as expanded above and hence S̃ is unsafe with respect to
Ũ .

Safety of the intermediate system S̃ implies safety of the original system S. The contrary
is false for arbitrary array-based systems although we can prove it for systems in functional
form. In the rest of the current Subsection 5.2, we assume that ((a, I, τ), U) is a safety
problem for which assumptions (HT1), (HT2), (HF1), (HF2), and (HF3) hold (thus,
we consider τ(a, a′) to be in functional form).

We show that the sets of backward reachable states are the same for the original and
the intermediate systems. For a ∃I -formula K := ∃i ψ), we let K̃ be ∃i.(A(i)∧ψ); similarly,
for a ∀I -formula J := ∀i φ), we let J̃ be ∀i.(A(i)⇒ ψ) (this is consistent with the notation
used in Table 2).

45

F. Alberti et al.

Lemma 5.1. Let K be an ∃I-formula and K0 be the ∃I-formula which is logically equivalent
to Pre(τ,K). Then, the ∃I-formulae K̃ ∨ K̃0 and K̃ ∨ Pre(τ̃ , K̃) are ÃE

I -equivalent.

Proof. We need three observations. First, according to Proposition 4.1, ∃I -formulae are
closed under pre-images when transitions are in functional form. Second, ∃I -formulae are
closed under disjunctions, modulo simple logical manipulations. Third, the disjunct K̃ in
the statement of the Lemma 5.1 is needed because τ̃ contains also the disjunct t̃n+1(a, a′);
see (e′) in Table 2.

The Lemma follows straightforwardly from the definition of (̃·), in particular (c), (d),
(e), and (e′) in Table 2; and the fact that it is not possible to change the value of as+1[i]
when this has been set to f by construction of τ̃ .

Safety checks for the original and the intermediate systems are equivalent.

Proposition 5.2. S̃ is safe with respect to Ũ if and only if S is safe with respect to U .

Proof. Unsafety of S̃ with respect to Ũ means that
∨

k≤n Pre
k(τ̃ , Ũ) is ÃE

I -consistent with

Ĩ for some n. Now, if we put K :=
∨

k≤n Pre
k(τ, U), we have that K̃∧ Ĩ is ÃE

I -consistent iff

K∧I is AE
I -consistent by Lemma 5.2 below. This concludes the proof in view of Lemma 5.1

above.

As a side remark, we observe that Proposition 5.2 does not apply to properties different
from safety, like deadlock-freedom.

Lemma 5.2. Let I be a ∀I-formula and K be a ∃I-formula. Then, Ĩ ∧ K̃ is ÃE
I -satisfiable

iff I ∧K is AE
I -satisfiable.

Proof. One side of the equivalence (from right to left) is trivial. For the other side, suppose
that M̃ |= Ĩ ∧ K̃ and let K be ∃ iφ(i, a[i]). Thus M̃ |= Ĩ ∧ A(i) ∧ φ(i, a[i]) holds for some
assignment to a, as+1 and to the i. Let the AE

I -modelM be obtained from the ÃE
I -model M̃

by restricting the interpretation of the sort INDEX to the elements assigned to the i (notice
that hypothesis (HT2) is used here). It is clear that all processes selected forM are active
in M̃ (i.e. M̃ |= A(j) holds for every j ∈ INDEXM), hence if we assign inM to a the arrays
so restricted in the domain, we get M |= I(a) ∧K(a) from M̃ |= Ĩ ∧ φ(i, a[i]).

5.3 Properties of (S̃, Ũ) 7→ (Ŝ, Û)

Consider the transition t̂` of the target system in Table 2: the universal condition in the
guard of t̃` of the intermediate system has been removed and the corresponding values
in as+1 of those processes violating it are set to f. We prove that the elimination of
the universal conditions from transitions is without loss of precision when verifying safety
properties. The reason why S̃ and Ŝ are equivalent is that the transition τ̂ can be simulated
by finitely many application of the additional transition t̃n+1 followed by the application of∨n

`=1 t̃`. In fact, the universal condition of the guard has been instantiated in t̂` of Table 2
only to the processes enabling the transition, so that the transition can fire anyway if the
values of as+1 of those processes violating the universal condition of the guard have been
set to f before the transition applies. To make this intuition precise, we need to introduce
some technical notions and, in particular, that of bisimulation.

46

Universal Guards in Model Checking Modulo Theories

Let S = (a, I, τ) be an array-based system. A state of S is a pair (s,M) where M is
a model of AE

I and s is a tuple of elements in ARRAYM1 , ..., ARRAYMs . A configuration of S
is a state (s,M) where M is a finite index model, i.e. INDEXM is a finite set. Below, we
will write Ms to denote the finite index model where s is taken from. The n-th iteration
of τ(a, a′) is inductively defined as follows: (i) τ0(a, a′) := (a = a′) and (ii) τn+1(a, a′) :=
∃a′′.(τ(a, a′′) ∧ τn(a′′, a′)).

Definition 5.1. Suppose we are given two array-based systems S1 = (a, I1, τ1) and S2 =
(a, I2, τ2) (with the same background theory AE

I). A bisimulation between them is a relation
R between configurations of S1 and S2 satisfying the following properties:

- for every s1, there exists s2 such that R(s1, s2) holds (and vice versa);

- if R(s1, s2), then Ms1 |= I1(s1) iff Ms2 |= I2(s2);

- if R(s1, s2) and Ms1 |= τ(s1, s
′
1), then there exist s′2 and n ≥ 0 such that R(s′1, s

′
2) and

Ms2 |= τn(s2, s
′
2) (and vice versa).

The safety problems (S1, U1) and (S2, U2) are compatible with the bisimulation R iff R(s1, s2)
implies that Ms1 |= U1(s1) iff Ms2 |= U2(s2).

The following key property for bisimulations of array-based systems is an immediate
consequence of the fact that formula (1) in the definition of safety problem is a ∃A,I∀I -
sentence and that an ∃A,I∀I -sentence is AE

I -satisfiable iff it is satisfiable in a finite index
model (see (RT2) of Theorem 4.1).

Lemma 5.3. Suppose that R is a bisimulation between S1 = (a, I1, τ1) and S2 = (a, I2, τ2)
and that the safety problems (S1, U1) and (S2, U2) are compatible with R. Then, S1 is safe
with respect to U1 iff S2 is safe with respect to U2.

We are now ready to formally state and prove our main result.

Theorem 5.1. Let S = (a, I, τ) be an array-based system and (S, U) be a safety problem
satisfying assumptions (HT1), (HT2), (HF1), (HF2), and (wHF3) in Table 1, i.e. τ
is in weak functional form. Then, S̃ is safe with respect to Ũ iff Ŝ is safe with respect to Û .

Proof. We apply Lemma 5.3 with the identity relation as the bisimulation. The proof can be
concluded by observing that the transition τ̂ can be simulated by finitely many applications
of the additional transition t̃n+1 in the intermediate system of Table 2 followed by a single
application of τ̃ ; conversely, each application of τ̃ is obviously also an application of τ̂ .

The importance of Theorem 5.1 lies in the fact that the transition τ̂ of Ŝ is in functional
form and it does not have universal quantifiers in guards. This allows us to automate
BReach as explained in Section 4.

47

F. Alberti et al.

5.4 Invariants and relativization of quantifiers

It is well-known that invariants can dramatically prune the search space of backward reach-
ability procedures; see [13, 15] for an in-depth discussion about this issue and related exper-
iments. Here, we briefly recall the notion of invariant for array-based systems and explain
how they can be used in combination with the technique for eliminating universal conditions
from guards.

A ∀I -formula ∀i φ(i, a[i]) is an (inductive) invariant for an array-based system S =
(a, I, τ) iff the formulae (a) I ⇒ ∀i φ(i, a[i]) and (b) ∀i φ(i, a[i])∧ τ(a, a′)⇒ ∀i φ(i, a′[i]) are
both AE

I -valid. If, in addition to (a) and (b), also the formula (c) ∀i φ(i, a[i])∧U(a) is AE
I -

unsatisfiable, then we say that the ∀I -formula ∀i φ(i, a[i]) is a safety invariant for the safety
problem (S, U). Notice that the AE

I -validity and AE
I -satisfiability tests required in (a),

(b), and (c) are decidable by Theorem 4.1 under the hypothesis (HT1), (HT2), (HF1),
(HF2), and (wHF3) in Table 1. Thus, in a sense, using invariant for the verification of
safety properties—called the invariant method in the literature—is more general than using
a backward reachability procedure as we propose in Section 4. Unfortunately, the invariant
method is more difficult to apply because finding safety invariants cannot be mechanized
(see again [13, 15] for details). However, if an invariant has been found in some way (for
instance, by using some heuristics) or it is supplied by a trusted third-party, the invariant
can be put to productive use (even if it is not a safety invariant) in the backward reachability
procedure by adding it as an extra hypothesis in the fix-point test. More precisely, line 2
of Breach in Figure 1 can be substituted by the following instruction:

2′ while (P ∧ Inv ∧ ¬B is AE
I -sat.) do

where Inv is a conjunction of the available invariants, i.e. ∀I -formulae satisfying conditions
(a) and (b) above. In this way, we try to augment the possibility to detect unsatisfiability
by further constraining the formula P ∧¬B with the invariants in Inv . As shown in [13, 15],
this modification may have dramatic effects on the performance of the backward reachability
procedure; in some cases, we may even get a safety certificate by using invariants while the
procedure does not terminate without them.

Combining invariants with the technique for eliminating universal conditions in guards
described above is straightforward; it is sufficient to relativize the universal quantifiers
occurring in ∀I -formulae. More precisely, we extend the mapping (̃·) to invariants as follows:

∀i φ(i, a[i]) 7−→ ∀i (A(i)⇒ φ(i, a[i]))

where A is defined as in Table 2. The mapping (̂·) acts as the identity on invariants. It is
easy to adapt the results of Sections 5.2 and 5.3 for the two mappings extended in this way.

6. Related Work

Relationship with failure models. A (partial) failure of a distributed system may
happen when one of its components fails (see, e.g., [27]). The failure may affect the operation
of some components while leaving others unaffected. It is crucial to build distributed systems
which are tolerant to partial failures. The task of designing and verifying such systems is
complex and error prone; for this reason, some methodologies have been proposed for their

48

Universal Guards in Model Checking Modulo Theories

modular design (see, e.g., [19]). Abstractly, a (partial) failure can be characterized as a
deviation from the correct behavior. For example, a process can crash at any time and
after doing so it stops executing further computation steps. This is called the crash failure
model (CFM) or the stopping-failure model in [22]. It is possible to characterize a hierarchy
of increasingly more complex failure models, one including the type of failures considered
by the simpler ones. For example, in the send-omission failure model (SOFM), a process
may omit to send a message besides crashing as in the CFM; in the general-omission failure
model (GOFM) a process may fail to perform some prescribed (e.g. send or receive) action
besides crashing and, worst of all, in the Byzantine failure model a process may arbitrarily
deviate from its behavior, i.e. it can exhibit any behavior whatsoever. The reader interested
in having more details about failure models is pointed to standard textbooks on distributed
systems, e.g., [22, 27].

We claim that the transformation (̃·) is equivalent to adopting the CFM when array-
based systems model distributed systems. To see this, let us assume that the array-based
system S = (a, I,

∨n
`=1 t`(a, a

′)) models a certain distributed system and consider the inter-
mediate system S̃ of Table 2. If we interpret as+1[i] = f as “the process i has crashed” or,
equivalently, A(i) as “the process i is not faulty according to the CFM,” then the transition
formula t̃n+1(ã, ã′) models the fact that a process may crash at any time. Furthermore, the
way we modified the update functions from F to F̃ models the fact that crashed processes
remain crashed in the CFM; the relativization of quantifiers in the guards of transitions
implies that faulty processes cannot contribute to any run of the system; finally, the rela-
tivization of quantifiers in the unsafe formula means that faulty processes cannot be used
as witnesses of undesired behaviors of the system. As a consequence, S̃ models the compu-
tations of S when assuming the CFM.

Notice that the syntactic transformation described in Section 5 can be applied to any
array-based system, regardless of it modeling a distributed system or not. When modeling
other types of systems (e.g., imperative programs manipulating arrays), finding an intuitive
reading of the proposed transformations is more difficult, if possible at all. However, from
the point of view of formal verification, the transformation can be performed and if the
backward reachability analysis terminates with a global fixpoint, meaning that it is not
possible to reach an unsafe state from an initial one, then we are entitled to conclude the
safety of the original system.

Relationship with other verification techniques. The use of monotonic abstractions,
which are similar to the CFM, has been advocated by Abdulla et al [3, 4, 5, 1]. The key
idea is to use backward reachability on configurations, which are used as finite represen-
tations of infinite sets of state. More precisely, a well-quasi-order (roughly, a pre-order
which guarantees the termination of the backward reachability procedure) on the set of
configurations is defined, so that a configuration may be used as a finite symbolic repre-
sentation for a certain class of sets of states (see, e.g., [3] for more details). To overcome
the problem that universal conditions in the guards of transitions prevent monotonicity,
an abstract transition relation is defined that forces monotonicity whereby processes inside
a configuration violating a universal condition are deleted from the configuration. In this
way, an over-approximation of the original transition is obtained and the safety of this new
system implies the safety of the original one. The results in [3, 4, 5] can be derived in

49

F. Alberti et al.

our framework by exploiting the notion of configuration induced by ∃I -formulae (recall the
formal definition at the beginning of Section 5.3). For a formal account of the relationship
between our approach and that of Abdulla et al, the reader is pointed to [15]. We emphasize
that our transformation, being purely syntactic, can be applied to any array-based system
whereas the approach in [3, 4, 5, 1], being more semantic, needs to be adapted each time
a new class of systems is considered. This adaptation can become problematic whenever
the modeling language becomes expressive; for instance, when registers containing process
identifiers are required.

More recently, monotonic abstractions have been combined with the paradigm of counter-
example-guided abstraction (CEGAR) [2], by computing interpolants in the theory of the
elements manipulated by a parameterized system. It would be natural to adapt such an
approach in our framework which is fully declarative. We leave this to future work. In the
context of the CEGAR approach to model checking infinite state systems, an alternative
and long line of works goes back to the seminal paper [18] which introduces the technique
of predicate abstraction. The idea is to abstract a parametric system to a finite state sys-
tem, perform model checking, and then refine spurious traces (if any) by using decision
procedures or SMT solvers. This approach has been implemented in several tools and is
often combined with interpolation algorithms for the refinement phase. A major problem
with predicate abstraction (as already pointed out in [21]) is that it must be carefully
adapted when (universal) quantification is used to specify the transitions of the system or
its properties, as it is the case for the verification problems considered in this paper.

An alternative approach to the verification of parametric system was initiated by McMil-
lan in [23]. This work starts by observing that some classes of parametric systems can be
specified in terms of the cardinality n of a parameter set (e.g., the set of processes in a
fault-tolerant algorithm). So, the idea is to establish a cut-off value n for n so that the
corresponding instance of the parametric system exposes all the possible behaviors which
are relevant for the verification of certain properties. There are two drawbacks to this ap-
proach. First, finding the cut-off value is difficult and crucially depends on the topology
of systems. Second, the value of the cut-off is usually high and the verification of the cor-
responding instance of the parametric system turns out to be a computationally expensive
task. Several papers—such as [20, 26, 8, 24, 10]—propose refinements in order to alleviate
the two problems identified above and make the approach more scalable.

7. The Case Study: Reliable Broadcast

As discussed above, the task of designing and verifying fault tolerant distributed systems is
complex and error prone. Methodologies for their modular construction usually start with
the simplest failure model (i.e. CFM) and then refine the algorithms in order to consider
more realistic types of failures. This is exemplified in [28] where some classical algorithms
for reliable broadcast (i.e. a process broadcasts a message and all non-faulty processes
consistently decide on delivering that message) are developed and pen-and-paper proofs of
correctness are also given. The paper is part of a long line of research which focuses on
providing communication primitives, which are perceived as one of the weakest points of
any distributed system. The algorithms described in [28] are designed for reliable broadcast
in increasingly more complex failure models and thus constitute ideal benchmarks for the

50

Universal Guards in Model Checking Modulo Theories

evaluation of the practical viability of our techniques. We discuss how the safety of three
of the algorithms in [28] can be automatically verified by mcmt. Before describing our
experiments, we explain how the technique to handle global conditions in guards have been
implemented in the tool.

7.1 Eliminating universal conditions: implementation

mcmt [16] implements the procedure BReach in Figure 1 combined with the syntactic
transformation for the elimination of universal conditions described in Section 5.6. It is based
on a client-server architecture: the client iteratively computes pre-images and generates
the satisfiability problems encoding the safety and fix-point checks, and the server is the
combination of the SMT solver Yices [11] with a dedicated quantifier-instantiation procedure
for universal quantifiers in ∃A,I∀I -sentences (see [15, 14] for details).

In mcmt, the backward reachability procedure attempts to prune the search space by
using invariants as described in Section 5.4. Powerful heuristics for the synthesis of invari-
ants have been designed and implemented [13, 15, 16]. The advantages of using invariant
synthesis on a substantial set of benchmarks is documented in [15]. Both synthesized and
user-provided invariants can be used in mcmt without compromising its correctness as the
tool may be instructed to preliminarily check that the invariant under consideration is re-
ally so and only afterwards be used in the fix-point checks of the backward reachability
procedure. Invariants can also be used to simplify the specification of an array-based sys-
tem. For example, it is possible to model shared registers, i.e. variables shared among the
processes of a distributed systems, as follows. Let c be an array variable that should model
a shared register. Then, we add ∀i, j.(c[i] = c[j]) to the initial formula, update the array
c by using a constant update function f satisfying the invariant ∀i, j.(f [i] = f [j]). In an
mcmt input file, all this is done simply by declaring c as a “global” variable. In a similar
vein, it is possible to model the situation where the values stored in an array, say b, are
integers to be used as indexes of other processes. To cope with this, we introduce an integer
valued array id , whose interpretation is fixed over the runs of the array-based system (or,
equivalently, there is no transition modifying its values) and is constrained by the following
invariant ∀i, j.(id [i] = id [j]⇒ i = j), saying that the functions interpreting id are injective.
As a consequence, we may regard id as an array of process identifiers. If we then write
b[j] = id [j], or, for simplicity, b[i] = j, we can express the fact that b[i] is equal to the
identifier of process j.

mcmt implements the transformations of Table 2 in Section 5 from the original to the
target array-based systems and invokes the backward reachability procedure on the latter.
Upon termination with unsafe, if at least one universal condition in the guard of a transition
has been encountered, the tool prints out a message that warns the user about the adoption
of a possibly approximated model. The user is responsible to verify if the conditions of
Theorem 5.1 hold or not (this is reasonable since, in general, checking conditions (HT1)
and (HT2) is undecidable). The implementation in mcmt of the syntactic transformations
for eliminating universal conditions slightly differs from Table 2. This is so because mcmt
manipulates sub-classes of the formulae considered in this paper to describe sets of states

6. The executable of mcmt, several benchmark problems, the documentation, and related papers can be
downloaded at http://homes.dsi.unimi.it/~ghilardi/mcmt.

51

http://homes.dsi.unimi.it/~ghilardi/mcmt

F. Alberti et al.

Initialization:
if (p is the sender)

then estimate[p]← m; coord id[p]← 0;

else estimate[p]← ⊥; coord id[p]← −1;

state[p]← undecided;
End Initialization

for c← 1, 2, ..., n+ 1 do // Process c becomes coordinator for four rounds
Round 1:

All undecided processes p send request(estimate[p], coord id[p]) to c;

if (c does not receive any request) then it skips rounds 2 to 4;
else estimate[c]← estimate[p] with largest coord id[p];

Round 2:
c multicasts estimate[c];
All undecided processes p that receive estimate[c] do

estimate[p]← estimate[c] and coord id[p]← c;

Round 3:
All undecided processes p that do not receive estimate[c] send(nack) to c;

Round 4:
if (c does not receive any nack) then c multicasts Decide; else c halts;

All undecided processes p that receive Decide do
decision[p]← estimate[p];
state[p]← decided;

end for

Pseudo-code 1: Algorithms 1, 1e, and 2 of [28]

and transitions (see footnote 3. at page 38 and, e.g., [13, 15] for more details). This implies
a more involved definition of the syntactic transformation aimed to produce formulae in the
accepted classes. We omit the details as they are conceptually irrelevant for the discussion
of the results in this paper. Another difference concerns mcmt’s (implicit) assumption that
all the quantifiers over indexes it works with are relativized so that it never displays those
parts of formulae concerning the relativization; thereby greatly improving the readability
of its output.

7.2 Reliable Broadcast

Roughly, a reliable broadcast algorithm ensures that when a process broadcasts a message,
all non-faulty (with respect to a given failure model) processes consistently decide on the
value of the message. Its crucial safety property is called agreement and can be formulated
as follows: if a non-faulty process decides the message m, then all non-faulty processes must
also decide m. In [28], some algorithms providing efficient (both in time and number of
messages) reliable broadcasts are described for the CFM, the SOFM, and the GOFM. Here,
for simplicity, we discuss only the first three algorithms of [28] for the CFM and the SOFM.
The algorithm for the GOFM is omitted because, besides containing universal conditions
in guards, it also features substantial arithmetic reasoning for which we are still developing
suitable techniques.

52

Universal Guards in Model Checking Modulo Theories

The Pseudo-code 1 contains three round-based algorithms. Each round is split in two
phases: in the former, each process sends a message to some or all of the other processes
(the content of the messages will depend on the current state of the sending process) and
in the latter, each process changes its state according to its current state and the collection
of messages it received in the first phase. Messages are transferred instantaneously from
senders to recipients between the two phases. The processes operate in lockstep: all of
them perform the two phases of the current round, then move on to the first phase of the
next round, and so on. The algorithms are assumed to be parametric in the number n
of processes and each process is connected to any other process of the system. Cyclically,
n processes become coordinator for a constant number of rounds each. Once elected, a
coordinator determines a decision value and convinces all the other processes to agree on
the same value. Since at most n− 1 coordinators can be faulty and, in each round, all the
messages are to/from the coordinator, the algorithms are efficient both in time, as agreement
is reached in O(n) rounds, and number of messages, which are O(n · k) where O(k) is the
number of messages sent per round. Each process p can be in one of two states, decided
or undecided, and maintains a variable estimate[p] representing p’s current estimate of
the final decision. Algorithm 1 in [28] can be read in the Pseudo-code 1 by ignoring the
instructions which are underlined; to derive algorithm 1e, the reader should consider also
the underlined instructions involving only the nack variable; and for algorithm 2, consider
all the instructions in the pseudocode regardless of the fact that they are underlined or not.
The goal of the algorithms is to ensure the agreement property in the CFM (algorithm 1)
or in the SOFM (algorithms 1e, which is bugged, and 2). For a more detailed discussion of
the algorithms, the reader is pointed to [28].

We have translated the three algorithms in a high-level syntax accepted by the tool
which provides some convenient syntactic sugar to specify array-based systems and safety
problems as defined in this paper. For the sake of conciseness, we illustrate only some of
our modelling choices.

The theories TI and TE that we need to model the topology and the data-structures
manipulated by the algorithms are similar to those used in the running example of this
paper and certainly satisfy assumptions (HT1) and (HT2) above for each one of the three
algorithms of Pseudo-code 1.

If an algorithm comprises, say, three rounds (as it is the case for algorithm 1), we
introduce a shared register variable round (see Section 7.1) storing the current round of
execution encoded as an integer. Since the number of rounds is bound to three, besides
the invariant constraining the array variable round to be constant, we can also require that
∀i.(1 ≤ round[i] ∧ round[i] ≤ 3).

At the beginning of each algorithm, no process of the system has yet decided on the
value of the message being broadcast (represented as state[i] = false), no one is or has been
the coordinator (coord[i] = false, aCoord[i] = false), no message request has been sent
by any process (request[i] = false) and the system is at the beginning of the first round
(round[i] = 1, done[i] = false). This can be formalized by the following ∀I -formula:

∀i.
(
round[i] = 1 ∧ state[i] = false ∧ coord[i] = false ∧
aCoord[i] = false ∧ done[i] = false ∧ request[i] = false

)
.

Thus, assumption (HF1) is also satisfied.

53

F. Alberti et al.

Recall that the key safety property for our algorithms is agreement. The complement of
this property (characterizing the set of unsafe states) can be represented by the following
∃I -formula:

∃i1, i2.(i1 6= i2 ∧ state[i1] = true ∧ state[i2] = true ∧ decision[i1] 6= decision[i2])

so that also assumption (HF2) holds.

To illustrate how we specify that a process goes from one round to the next, let us
consider the following universally guarded transition formula in functional form—thus, also
the last assumption (wHF3) is satisfied—modeling a transition from the first to the second
round:7.

∃i.

 round[i] = 1 ∧ request[i] = true∧
coord[i] = true ∧ ∀j.(done[j] = true)∧
round′ = λj.2

 ,

i.e. if the current round is 1, process i has already received a request, it is the coordinator,
and all processes have finished the execution of that round, then the shared register variable
round is set to 2. Notice that all the other state variables are unchanged by the transition
and the update of round maintains the invariant ∀i, j.(round[i] = round[j]) introduced
when declaring it as a shared register.

We recall that the correct reading of the ∃I -formula expressing the complement of the
agreement property is the following: there exist two distinct and non-faulty processes i1
and i2 such that the values of state at i1 and i2 are true and the values of decision at i1 and
i2 are distinct. Notice that the two processes to be considered should be non-faulty since
in mcmt, when using the CFM, all the process (index) variables are implicitly relativized
to non-faulty (see again Section 7.1). Similar remarks hold also for the initial state formula
and the transition formulae above.

7.3 Reliable broadcast and more complex failure models

While mcmt provides native support for the CFM, the handling of the SOFM (or more
complex failure models, such as the GOFM) is difficult as it must be done manually. To
simplify this task, we have developed a methodology that can also be mechanized in mcmt
although we leave this to future work. The capability of specifying different failure models
may be important for developing new abstractions to be used in the automated verification
of distributed systems. In fact, as the syntactic transformation in Table 2 can be seen as
the formal counterpart of the CFM (as discussed in Section 6), more complex failure models
(such as the SOFM) may induce new over-approximations that can be put to productive
work in model checking. We leave the evaluation of this kind of abstractions to future work.
Instead, in the rest of this section, we show how the capability of specifying complex failure
models gives us the possibility to more faithfully represent the environments in which fault
tolerant algorithms are supposed to work for the case of reliable broadcast algorithms. As
a preliminary, we sketch our methodology which is based on the notion of action omission

7. In this section, for simplicity, when writing transition formulae, we omit to specify the update of the
array variable which are unchanged.

54

Universal Guards in Model Checking Modulo Theories

model (AOM). Let S = (a, I, τ) be an array-based system such that τ :=
∨n

`=1 t`(a, a
′).

Assume that τ` has the form

∃k ∃i (φL(i, k, a[i], a[k]) ∧ ah[k] = f ∧ a′ = λj.F (i, k, a[i], a[k], j, a[j])) , (9)

for some ` = 1, . . . , n, where ah is an array variable whose values can either be t or f, and
the h-th component of the vector F of functions is upd(a, k, t). The role of ah is that of
a flag indicating that a process k has performed the action (9). Once the action has been
executed, the “done?” flag ah changes its value from f to t. We want to introduce the
possibility for a process k to omit the action expressed by τ`: in this case, the flag ah[k]
will again change its value from f to t but, since the action has been omitted, the update
function F is replaced by an identical update function for all array variables al (l 6= h). An
extra flag is added to record the fact that, from now on, process k has to be considered faulty
according to the AOM, because it failed to execute the action expressed by the transition
τ`. The AOM version (S, U) of a safety problem (S, U) for U an unsafe formula is defined
by the following purely syntactic transformations. Let a be a extended with an auxiliary
array variable as+1 of sort ARRAYs+1 as specified in Table 2, which indicates that a process
is faulty or not according to the AOM, i.e. that the process has omitted an action of the
form (9). Each tm (for m 6= `) is left unchanged (in particular, the auxiliary variable as+1

is updated identically); t` is replaced by the following pair of disjuncts:

∃k ∃i
(
φL(i, k, a[i], a[k]) ∧ ah[k] = f∧
a′ = λj.F (i, k, a[i], a[k], j, a[j]) ∧ a′s+1 = as+1

)

∃k ∃i
(
φL(i, k, a[i], a[k]) ∧ ah[k] = f∧∧

l≤s,l 6=h a
′
l = al ∧ a′h = upd(ah, k, t) ∧ a′s+1 = upd(as+1, k, f)

)
corresponding to the cases in which the process k performed or omitted to perform, re-
spectively, the action (9). In the second case, the process k is considered faulty (from
there on) and the value of a′s+1[k] is updated accordingly. The initial formula I becomes
I ∧ ∀j.(as+1[j] = t). The precise specification of the transformation into the AOM of an
array-based system depends on the details of the application we are considering. In particu-
lar, when building (S, U), we may or may not relativize existentially quantified variables in
the unsafe formula (and in the guards of some transitions) to processes which are non-faulty
with respect to AOM. For example, a process that has been elected as coordinator in a dis-
tributed algorithm can continue (or not) to play its role even after omitting an important
action, depending on what is the behavior of the system. This is the main difference with
respect to the CFM, which always assume that, after crashing, the process is unable to
perform any further computations. Interestingly, we can modularly combine AOM trans-
formations by starting with an array-based system (S, U), deriving its AOM version (S, U),

and then obtaining an AOM version (S, U) of the latter by selecting a different disjunct of
the form (9) in τ . This chain of AOM transformations is useful to refine the failure model
under consideration. We will see an application of this idea in the next section when the
CFM is considered first and then refined to the SOFM.

We now use the notion of AOM to derive the SOFM for the reliable broadcast algorithm
considered here. The key point is the addition of the array state variable as+1 which will be

55

F. Alberti et al.

denoted by faulty, mapping indices to Booleans such that faulty[i] is false (true) when the
process i is correct (faulty, respectively) with respect to the SOFM (i.e. besides crashing,
the process i may also omit to send a message). Indeed, the new variable must be mentioned
in the safety properties to be checked and explicitly updated by the transitions specified
by the user so as to model the situation when the process executing a transition is correct
or faulty. Since the failures due to the CFM are still implicitly handled by mcmt, we only
need to take into consideration the send omission failures. To illustrate the impact of doing
this on the specification, let us consider the ∃I -formula describing the complement of the
agreement property in the SOFM:

∃i1, i2.(i1 6= i2 ∧

 state[i1] = true ∧ faulty [i1] = false∧
state[i2] = true ∧ faulty [i2] = false∧

decision[i1] 6= decision[i2]

),

where it is explicitly required that the two processes i1 and i2 are non-faulty (i.e. the flag
faulty is false at both i1 and i2). For transitions, let us consider the situation where the
undecided processes send a request to the coordinator in the first round. In CFM, this
transition can be formalized by the following formula:

∃i1, i2.(i1 6= i2 ∧

 round[i1] = 1 ∧ done[i1] = false ∧ state[i1] = false∧
coord[i2] = true ∧ request′ = λj.true∧
done′ = upd(done, i1, true)

).

When considering the SOFM, we also need to specify the situation when the sending of
the request to the coordinator (process i2) from process i1 is not successful. This can be
formalized as follows:

∃i1, i2.(i1 6= i2 ∧

round[i1] = 1 ∧ done[i1] = false∧
state[i1] = false ∧ coord[i2] = true∧
faulty ′ = upd(faulty, i1, true)∧
done′ = upd(done, i1, true)

).

A final remark is in order. Besides the transitions formalizing the various instructions in the
pseudo-code of the algorithm, some transitions have been added so as to (i) allow progress
of the system in case no requests are received in Round 1; (ii) describe the switching to
a new coordinator either at the end of Round 4 for the current one, or when the current
coordinator crashes; (iii) specify the behavior of already decided processes. For a description
of the high-level syntax and the formal specifications of all the problems considered here, the
reader is referred to http://www.inf.usi.ch/phd/alberti/mcmt/reliableBroadcast/.

7.4 Experimental results

In [28], the algorithms are presented step-wise. Algorithm 1 is first proved correct for the
CFM. Then, the unsafety for the SOFM is shown. An error trace violating agreement is
considered and a first refinement is proposed and called algorithm 1e. This is still proved
unsafe for the SOFM so that a further refinement, called algorithm 2, is proposed and shown
safe for the SOFM, but unsafe for the GOFM. In the following, we follow the exposition
of [28] by replacing pen-and-paper proofs or the manual definition of error traces with the

56

http://www.inf.usi.ch/phd/alberti/mcmt/reliableBroadcast/

Universal Guards in Model Checking Modulo Theories

use of mcmt. The behavior of the tool on the various problems is summarized in Table 3.
The first line reports whether the algorithm satisfies the agreement property in the chosen
failure model; the second line shows the time (in seconds) taken by mcmt to find the
answer to the safety problem. The following two lines gives a rough idea of the dimension
of the specifications by reporting the number of array state variables (line 3) and that of
transitions (line 4) in the array-based system. The remaining lines record some statistics
output by the tool: the number of disjuncts of the formula (in disjunctive normal form)
representing the set of backward reachable states, when exiting the procedure of backward
reachability (line 5) gives a rough idea of the size of the explored search space, and the
number of invocations of the SMT solvers (line 6) gives an idea of the complexity of solving
the satisfiability problems encoding the safety and fix-point checks. The last three lines
deserve some more comments.

The length of the unsafe trace (line 7) suggests how complex it is to consider all the
possible interleavings of the transitions for this class of algorithms (notice that the demon-
stration of the unsafety of algorithm 1e in the SOFM requires a sequence of 33 transitions).
Unsafe traces are automatically computed by mcmt and are extremely useful for debugging.
For example, when considering algorithm 1 with the SOFM, mcmt discovers an error trace
of length 11 that, manually translated in the form of a message sequence chart for better
readability, is shown in Figure 2. This trace involves only one coordinator whereas the trace
considered in [28] is longer as it involves two coordinators. Each time a new coordinator
is elected, the algorithm re-starts from Round 1; thus, the more coordinators are elected,
the longer is the trace. By analyzing the error trace, according to what is suggested in [28],
one can come up with the idea of using an additional variable for negative acknowledgment
(nack) to be used in the additional Round 3 and the conditional statement in Round 4 (i.e.
algorithm 1e in Pseudo-code 1). Algorithm 2 is obtained in a similar way by analyzing the
longer trace produced by mcmt when checking the safety of algorithm 1e in the SOFM. The
idea here is to augment the information sent around by processes; namely, when sending a
request, they should also include their current estimate and the identity of the coordinator
from which it has been received. In this way, the current coordinator does not impose its

Table 3. Performances of (dis-)proving agreement for algorithms 1, 1e, and 2

Algo. 1, CFM Algo. 1, SOFM Algo. 1e, SOFM Algo. 2, SOFM

Safe (agreement) Yes No No Yes
time (sec) 0.87 11.35 1,255.51 3,846.82
state vars 8 9 11 15
transitions 13 16 22 28
size fix-point 92 438 8,909 9,916
SMT calls 2,399 19,733 1,338,058 2,563,756
Length unsafe trace × 11 33 ×
Max # processes 4 3 4 6
invariants × × × 19 (+7)

Timings are obtained by running mcmt on a machine equipped with an Intel Core i7 @ 2.80GHz
CPU with 8 GB of RAM.

57

F. Alberti et al.

Figure 2. Unsafe trace found by MCMT for algorithm 1 in the SOFM

own decision; rather, it adopts and circulates the estimate associated with the most recent
coordinator (i.e. algorithm 2 in Pseudo-code 1).

Line 8 shows the maximum number of (distinct) process identifiers which are mentioned
in the formula representing the set of backward reachable states. Initially, only two such
identifiers are mentioned in the unsafe formula (representing the complement of agreement).
However, mcmt may insert additional processes identifiers when needed to enable the sym-
bolic (backward) execution of a transition. For efficiency, heuristics have been implemented
in the tool to perform this addition lazily (see [14, 16] for more details on this point). Here,
it is worth noticing that all problems need to consider twice or three times the number
of process identifiers mentioned in the set of unsafe states. Automatically detecting when
enough process identifiers have been inserted to prove safety is one of the main sources of
complexity in handling parametric verification problems.

The last line of Table 3 shows the number of invariants which have been used to prune
the search space of the backward reachability procedure as explained in Section 7.1. We
have used invariants only for solving the last safety problem as the others are solved in a
reasonable time without them. The fully automatic verification of agreement for algorithm
2 in the SOFM is quite problematic: mcmt runs for several hours without finding a fix-
point. Although quite effective in pruning the search space for the verification of many
safety problems [13, 15], even the invariant synthesis capabilities of the tool [13, 15] do not
help pruning the search space enough to find a fix-point in a reasonable amount of time.
Fortunately, the possibility to interact with the tool by proving simpler properties (that an
expert in fault reliable broadcast algorithms is able to identify) and then telling mcmt to
exploit them for proving more difficult ones is the key to the result recorded in the last
column, last line of Table 3: 19 is the number of invariants that have been automatically
synthesized by the heuristics explained in [13, 15] whereas 7 is the number of invariants
that have been suggested by us. As discussed above, the inclusion of these invariants does
not affect the validity of the final result of the verification process, since they are verified by
the tool before being used for the validation of other properties. The 7 invariants suggested
by us are simple properties that do not require deep understanding of the algorithm; e.g.,
“there is only one coordinator at a time.”

The tool also easily validates the three lemmas used in [28] to perform the pen-and-paper
proof of the correctness of the algorithm.

58

Universal Guards in Model Checking Modulo Theories

In summary, these experimental results suggest the practical viability of our techniques
to handle global conditions in guards when combined with symbolic backward reachability
for the verification of fault tolerant algorithms.

8. Conclusions

We have formally described a syntactic transformation, which can be seen as an instance of
the well-known operation of relativization of quantifiers in first-order logic, for array-based
systems. The transformation allows us to eliminate global conditions in the transition
formulae of array-based systems. Being syntactic in nature, the transformation is easy to
grasp, simple to implement, and can be applied to a large class of array-based systems
without further modifications. Crucially, it significantly extends the scope of applicability
of the symbolic backward reachability procedure introduced in [15], which has proved to be
useful in several verification problems. A significant case-study concerning the verification of
some classical algorithms for reliable broadcast shows its usefulness and practical viability.

Acknowledgements. The work of the first author was supported by the Hasler Foun-
dation under project 09047. The work of the fourth author was partially supported by
the “Automated Security Analysis of Identity and Access Management Systems (SIAM)”
project funded by Provincia Autonoma di Trento in the context of the “team 2009 - Incom-
ing” COFUND action of the European Commission (FP7).

References

[1] P. A. Abdulla. Forcing monotonicity in parameterized verification: From multisets
to words. In Proceedings of the 36th Conference on Current Trends in Theory and
Practice of Computer Science, SOFSEM ’10, pages 1–15. Springer-Verlag, 2010.

[2] P. A. Abdulla, Y.-F. Chen, G. Delzanno, F. Haziza, C.-D. Hong, and Rezine A. Con-
strained monotonic abstraction: A cegar for parameterized verification. In CONCUR
2010 - Concurrency Theory, 21th International Conference, Paris, France, August 31-
September 3, 2010. Proceedings, pages 86–101, 2010.

[3] P. A. Abdulla, G. Delzanno, N. B. Henda, and A. Rezine. Regular model checking
without transducers. In TACAS, 4424 of LNCS, pages 721–736, 2007.

[4] P. A. Abdulla, G. Delzanno, and A. Rezine. Parameterized verification of infinite-state
processes with global conditions. In CAV, 4590 of LNCS, pages 145–157, 2007.

[5] P. A. Abdulla, N. B. Henda, G. Delzanno, and A. Rezine. Handling parameterized
systems with non-atomic global conditions. In Proc. of VMCAI, 4905 of LNCS, pages
22–36, 2008.

[6] F. Alberti, S. Ghilardi, E. Pagani, S. Ranise, and G. P. Rossi. Automated Support for
the Design and Validation of Fault Tolerant Parameterized Systems: a case study. In
Proc. of AVOCS 10, Electr. Comm. of the EASST, 2010.

59

F. Alberti et al.

[7] F. Alberti, S. Ghilardi, E. Pagani, S. Ranise, and G. P. Rossi. Brief Announcement:
Automated Support for the Design and Validation of Fault Tolerant Parameterized
Systems—a case study. In Proc. of DISC 10, number 6343 in LNCS, pages 392–394,
2010.

[8] J. Bingham. Automatic Non-interference Lemmas for Parameterized Model Checking.
In Formal Methods in Computer Aided Design (FMCAD), 2008.

[9] Chen-Chung Chang and Jerome H. Keisler. Model Theory. North-Holland, Amsterdam-
London, third edition, 1990.

[10] C.-T. Chou, P. K. Mannava, and S. Park. A simple method for parameterized verifi-
cation of cache coherence protocols. In FMCAD’04, pages 382–398, 2004.

[11] B. Dutertre and L. De Moura. The yices smt solver. Technical report, Computer Science
Laboratory, SRI International, 2006. Available at http://yices.csl.sri.com.

[12] H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, New York-
London, 1972.

[13] S. Ghilardi and S. Ranise. Goal Directed Invariant Synthesis for Model Checking
Modulo Theories. In (TABLEAUX 09), LNAI, pages 173–188. Springer, 2009.

[14] S. Ghilardi and S. Ranise. Model Checking Modulo Theory at work: the integration
of Yices in MCMT. In AFM 09 (co-located with CAV09), 2009.

[15] S. Ghilardi and S. Ranise. Backward reachability of array-based systems by SMT-
solving: termination and invariant synthesis. Logical Methods in Computer Science,
6(4), 2010.

[16] S. Ghilardi and S. Ranise. MCMT: A Model Checker Modulo Theories. In Automated
Reasoning, 5th International Joint Conference, IJCAR 2010, Edinburgh, UK, July
16-19, 2010. Proceedings, 6173 of Lecture Notes in Computer Science, pages 22–29.
Springer, 2010.

[17] S. Ghilardi, S. Ranise, and T. Valsecchi. Light-Weight SMT-based Model-Checking.
In Proc. of AVOCS 07-08, ENTCS, 2008.

[18] S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In Proc. of
CAV 1997, 1254 of LNCS. Springer, 1997.

[19] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems, pages
97–145. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 1993.

[20] S. Kristić. Parameterized system veriication with guard strengthening and parameter
abstraction. In Automated Verification of Infinite-State Systems, 2005.

[21] S. K. Lahiri and R. E. Bryant. Predicate abstraction with indexed predicates. ACM
Transactions on Computational Logic (TOCL), 9(1), 2007.

[22] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

60

http://yices.csl.sri.com

Universal Guards in Model Checking Modulo Theories

[23] K. L. McMillan. Parameterized verification of the FLASH cache coherence protocol by
compositional model checking. In Correct Hardware Design and Verification Methods
(CHARME), pages 179–195, 2001.

[24] A. Pnueli, S. Ruath, and L. D. Zuck. Automatic deductive verification with invisible
invariants. In Proc. of TACAS 2001, 2031 of LNCS, 2001.

[25] S. Ranise and C. Tinelli. The SMT-LIB Standard: Version 1.2. Technical report, Dep.
of Comp. Science, Iowa, 2006. Available at http://www.SMT-LIB.org/papers.

[26] M. Talupur and M. R. Tuttle. Going with the flow: Parameterized Verification Using
Message Flows. In Formal Methods in Computer Aided Design (FMCAD), 2008.

[27] A. S. Tanenbaum and M. Van Steen. Distributed Systems: Principles and Paradigms.
Prentice Hall PTR, 1st edition, 2001.

[28] S. Toueg and T. D. Chandra. Time and Message Efficient Reliable Broadcast. In Proc.
4th Int. Workshop on Distributed Algorithms, LNCS, pages 289–303, 1990.

61

http://www.SMT-LIB.org/papers

	Introduction
	Formal Preliminaries
	Array-Based systems
	Running Example

	Backward Reachability for Array-based Systems
	Running example: pre-images and backward reachability

	Eliminating Universal Conditions in Guards
	Running example: elimination of universal conditions
	Properties of (S,U) (,)
	Properties of (,) (S"0362S,U"0362U)
	Invariants and relativization of quantifiers

	Related Work
	The Case Study: Reliable Broadcast
	Eliminating universal conditions: implementation
	Reliable Broadcast
	Reliable broadcast and more complex failure models
	Experimental results

	Conclusions

