
On Combining a Semantic Engine and Flexible Network Policies for P2P
Knowledge Sharing Networks∗

S. Castano, A. Ferrara, S. Montanelli, E. Pagani, G.P. Rossi, S. Tebaldi
Universit̀a degli Studi di Milano

DICO - Via Comelico, 39, 20135 Milano - Italy
{castano,ferrara,montanelli,pagani,rossi,tebaldi}@dico.unimi.it

Abstract

Peer-to-Peer (P2P) systems have recently become pop-
ular for content sharing, and a number of different ap-
proaches have been studied to perform effective content re-
trieval in such networks. In this paper, we discuss how con-
ventional P2P network policies for content retrieval could
be combined with a semantic engine component to enforce
peer-based knowledge sharing. The semantic engine ex-
ploits peer ontologies for providing a semantically rich rep-
resentation of peer knowledge, and matching techniques for
comparing ontologies of different peers for knowledge shar-
ing and discovery purposes.

1. Introduction

Peer-to-Peer (P2P) systems have recently become pop-
ular for content sharing [2, 5, 6, 11, 13], and a number of
different approaches have been studied to perform effec-
tive content retrieval in such networks. Because of its de-
sirable qualities, the P2P paradigm can be effectively ex-
tended to the challenging problem of knowledge sharing in
distributed contexts [4, 7, 8, 9, 10].
This paper analyzes three content management approaches,
with the aim of highlighting the differences between content
management and knowledge management. Pros and cons
of content retrieval policies are evaluated, also by means
of simulations. The peculiarities of distributed knowledge
sharing are investigated, discussing the research issues in-
volved in combining a semantic engine with an underly-
ing P2P overlay network. The semantic engine exploits peer
ontologies for providing a semantically rich representation

∗ This paper has been partially funded by “Wide-scalE, Broadband,
MIddleware for Network Distributed Services (WEB-MINDS)” FIRB
Project funded by the Italian Ministry of Education, University, and
Research and by NoE INTEROP, IST Project n. 508011 - 6th EU
Framework Programme.

of peer knowledge, and matching techniques for comparing
ontologies of different peers for knowledge sharing and dis-
covery purposes. We study how the above mentioned con-
tent management policies could be adapted for supporting
knowledge retrieval according to a P2P approach, with the
purpose of learning concept in order to enrich the ontology
locally maintained by every peer.

2. P2P policies for content distribution and
query forwarding

Several policies have been proposed to distribute con-
tents and forward queries among peers [2, 5, 13]. Each
one of these policies adopts peculiar mechanisms for con-
tent distribution and query forwarding. The policies differ
in both their assumptions about the system and the impact
they have on the network and applications behavior.
The three policies studied in this section are characterized
by a common two-layer architecture. Thecontent search
layer takes in charge the content upload, replication and
download. Theoverlay network layer takes in charge the
routing of content queries and replies through the over-
lay network connecting the peers. The modules included in
these layers differ for different policies.

Flooding policy. Flooding (see Figure 1) is adopted for in-
stance by Gnutella [2]. Upon receiving a query, apeer P
replies to it if the searched content is locally available. Oth-
erwise, the query is forwarded to part or all the known peers
except the one it has been received from. Query forward-
ing is controlled by adding time-to-live (TTL) information
to the query message. This policy is stateless, as each peer
only needs to know the locally maintained contents, and the
list LPp of the known peers. To discard duplicates and pre-
vent loops in query forwarding, a peer should additionally
maintain a history of the formerly processed queries. Not re-
membering where concepts are located makes the approach
independent of content placement.

Network Interface

Routing Module

Contents

P_1: IPaddr, port#
...

P_n: IPaddr, port#

LP_p

CONTENT SEARCH LAYER

OVERLAY NETWORK LAYER

Content Search
Module Query Module

History of past queries

Figure 1. Functional architecture of a peer in
the flooding policy

Deterministic placement policy. According to this policy
(see Figure 2) – adopted for instance by CAN [13] – con-
tents are placed in pre-determined peers. Ahash functionis
defined, which associates a key with each content name. A
distance function between two keys must be defined. Each
key represents a point on ak-dimensional toroid. Each peer
involved in the system is in charge of the management of the
contents whose keys are in a given range; the range charac-
terizes an area of the toroidal surface. A peerp also stores
the addresses of the peers managing adjacent areas (listLPp

in the figure). The routing module forwards a query point-
to-point, by exploiting a greedy approach: the query is ad-
dressed to the peer, among the adjacent ones, owning the
range of keys nearest to the key of the searched content.
Chord [11] adopts a similar approach. The deterministic
placement policy may require that contents are placed in
peers different from their originators. All peers must know
the adopted hash function.

Network Interface

Routing Module

Contents

P_1: IPaddr, port#
...

P_n: IPaddr, port#

LP_p

CONTENT SEARCH LAYER

OVERLAY NETWORK LAYER

Content Search
Module Query Module

Hash Module

Figure 2. Functional architecture of a peer in
the deterministic policy

Deterministic placement with learning policy. This pol-
icy (see Figure 3) is adopted by FreeNet [1, 5]. According

to this policy, contents are associated with keys, as before,
and a content is deterministically placed in the peer taking
in charge the management of the related key. Yet, peers are
also able to learn content keys and to locally replicate con-
tents. Learning is performed as follows: when a peer gener-
ates a reply to a query, the reply is forwarded along the re-
verse path followed by the query, thus traversing peers that
manage keys similar to the searched one. Thelearning mod-
uleanalyzes the received responses, and it may decide to in-
crease the local knowledge by either recording the name of
the content included in the response together with the ad-
dress of the peer owning that content, or replicating the full
content as well. Along its route a query could thus traverse
a peer P that is not in charge of the management of the
searched content, but that either owns the content because
of a previous replication, or knows apeer Q owning the con-
tent. In the former case, thepeer P replies to the query. In
the latter case, thepeer P learning module sends thepeer Q
address to the routing module for query forwarding, thus ex-
pediting query processing. Otherwise, the learning module
hands the content key over to the hash module and the sys-
tem performs greedy forwarding as in the previous case.

Network Interface

Routing Module

Contents

P_1: IPaddr, port#
...

P_n: IPaddr, port#

LP_p

CONTENT SEARCH LAYER

OVERLAY NETWORK LAYER

Content Search
Module Query Module

Hash Module

Learning Module

Figure 3. Functional architecture of a peer in
the deterministic-with-learning policy

Comparison of the policies. In Table 1, we show the char-
acteristics of the policies we described in the previous sec-
tion. It partially summarizes some performance evaluations
we performed through simulation techniques. Besides of the
approach overheads, we consider the ability of fairly dis-
tributing the work among peers, and of adapting to the pat-
tern of query generation – for instance by replicating highly
requested documents and moving them near the requesting
peers.

Flooding generates the highest amount of traffic, which
is randomly forwarded. As a side effect, many query copies
could be deleted along the way because of TTL expiration,

communication
overhead

memory
overhead

processing
overhead

load
balancing

adaptability

flooding high low high low no
placement medium low medium high no
placement
with learning

low high medium high yes

Table 1. Comparative overview of the characteristics of content distribution policies

thus wasting network resources without accomplishing use-
ful work. Due to the stateless approach, peers are not able to
remember where frequently searched concepts are located.
Moreover, a content could be not retrieved although it ex-
ists in the system. Processing a query is not expensive but
the processing overhead is high because of the high over-
all number of queries to be processed. The random distri-
bution of contents does not allow to achieve load balancing,
nor to adapt to the request pattern. When using the flooding
approach to manage knowledge, a concept is not guaranteed
to be ever learnt by other peers besides of the one owning it.
In case semantic queries are heavy to process, running a se-
mantic engine could be affordable only by resource-rich de-
vices. On the other hand, several replies could be obtained
for a given query, thus boosting the knowledge dissemina-
tion process.

By contrast, the policies that adopt deterministic place-
ment guarantee that an upper bound exists on the time
needed to retrieve a content, if the content exists in the sys-
tem. To adopt this approach for knowledge management,
a placement technique should be devised that mirrors the
affinity among concepts into the peers proximity in the over-
lay topology – so as to shorten query routes – while still
guaranteeing load balancing.

The learning capability allows to adapt to network dy-
namics and changes in the content distribution, thus pro-
gressively yielding better performance in terms of latency
to obtain a reply, number of responses collected for a given
query, and number of generated messages. On the other
hand, performance depends on both the amount of memory
a peer uses to maintain locally replicated contents and con-
tent names, and the time needed to perform a remote copy
of the content.

We have studied the policies behavior by means of sim-
ulations (see Figure 4). The reported results have been ob-
tained considering a network composed by 1024 peers. The
figure shows the mean query route length; a query stops
when either the TTL expires, or the query is received at a
peer owning the searched document. Each document has a
unique key; each peer owns 3 documents. In the determinis-
tic placement case, peers are mapped onto a32× 32 square
grid wrapped up in a toroidal structure. In the placement
with learning case, each peer can record up to 10 neigh-

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30 35 40

ho

ps

search #

flooding det.learn. determ.

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30 35 40

ho

ps

search #

flooding det.learn. determ.

(b)

Figure 4. Comparison of the performance of
the three studied policies for (a) uniformly
distributed queries on the key space, and (b)
hot spot searches

bors. Queries may concern either keys uniformly chosen
from the key space (Figure 4(a)), or popular documents
(Figure 4(b)). In the latter case, half of the queries concern
the popular document, while the other queries are uniformly
distributed on the remaining keys. In both cases the flood-

ing policy shows the worst performance, as queries are ran-
domly forwarded. The deterministic placement policy guar-
antees that a known upper bound exists on the path length.
However, it is not able to adapt to the document request
pattern, thus showing a comparable behavior under both
query generation policies. By contrast, the placement with
learning approach can dynamically replicate keys and doc-
uments, and this characteristic allows to achieve shorter de-
lays to find the documents. This behavior is more evident
in case most of the requests concern a popular document,
whose replicas are maintained by several peers.

3. Requirements for knowledge sharing in
P2P systems

In contrast to content sharing in conventional P2P sys-
tems, a number of important additional requirements are
to be addressed for knowledge sharing in peer-based sys-
tems. In particular, a semantically rich description of data
sources to be shared is required. To this end, each peer pro-
vides a formal representation of its knowledge by means of
a peer ontology. Furthermore, appropriate ontology match-
ing techniques are required to identify semantic correspon-
dences among similar concepts in different ontologies, in
order to identify the neighbors of a peer based on estab-
lished semantic correspondences. Finally, expressive query
languages are needed for managing knowledge discovery
processes.

Ontology knowledge representation.In conventional
P2P systems, files to be shared are identified by means
of their names. In a P2P system with knowledge shar-
ing purposes, structured resources can be shared (e.g.,
structured data, semi-structured data), and a rich seman-
tic knowledge representation has to be provided. This is
accomplished through a peer ontology, thus exploiting Se-
mantic Web techniques. Using a peer ontology, the re-
sources shared by each peer can be represented in terms of
concepts, properties, and semantic relations.

Ontology matching techniques.Conventional matching
techniques for data retrieval are based on a perfect matching
strategy. Having a target object to be retrieved, each node
compares name and metadata specified for the target with
the corresponding information about the objects it owns. In
P2P systems for knowledge sharing, knowledge is repre-
sented by means of a peer ontology and semantic match-
ing techniques are required to match target concept(s) spec-
ified in a query against peer ontology concepts. In this con-
text, each peer is interested in comparing incoming requests
against its peer ontology, in order to discover whether it
can provide concepts matching the target. In order to ad-
dress this requirement, appropriate matching models are re-
quired capable to cope with different levels of detail in con-

cept descriptions. Matching techniques are exploited to per-
form dynamic matching at different levels of depth, with
different degrees of flexibility and accuracy of results by
taking into account various metadata elements (e.g., con-
cept name, concept properties) separately or in combina-
tion. The matching process returns a ranked list of con-
cepts semantically related to the target, in the range[0, 1]. A
thresholdt is specified to select the concepts in the ranked
list with the affinity value greater thant. In a peer ontol-
ogy, the meaning of ontology elements depends basically
on the names chosen for their definition and on the rela-
tions they have with other elements in the ontology. In the
matching process, an important requirement is related to the
fact that these features can have a different impact in differ-
ent ontology structures. In particular, the aim of matching
techniques is to allow a dynamic choice of the kind of fea-
tures to be considered in the matching process, with the goal
of providing a wide spectrum of metrics suited for dealing
with many different matching scenarios. A detailed descrip-
tion of an ontology matching algorithm we have developed
for peer-based systems can be found in [3].

Query/answer representation. In P2P systems for knowl-
edge sharing, two query models are defined to distinguish
between two different kind of searches: the probe query
model and the search query model.
Probe query model.The probe query model is used by a
peer interested in extending its knowledge acquiring knowl-
edge related to target concept(s) from other peers. Each peer
having concepts matching the target concept(s) of a probe
query can answer to the requesting peer. The answer to a
probe query is constituted by metadata about concepts hav-
ing semantic affinity with the target. A requesting peer can
use the answer to a probe query to extend its knowledge on
target concept(s) with new properties or relations.
Search query model.The search query model is used by a
peer in order to find in the network data related to one or
more concepts of interest. Each peer storing data matching
the target concept(s) of a search query can answer to the re-
questing peer.

Probe queries, conceived for allowing knowledge shar-
ing between nodes, represent a real add-on with respect to
conventional search query models. For knowledge sharing,
we require an expressive probe query representation to sup-
port the specification of concepts, properties, and semantic
relations, as well as the specification of the matching model
and the matching threshold required for the query process-
ing. A reference template for probe queries is shown in Fig-
ure 5. It is composed of the following clauses:

• Find: list of target concept(s) names.

• With: (optional) list of properties of the target con-
cept(s).

• Where:(optional) list of conditions to be verified by
the property values, and/or (optional) list of concepts
related to the target by a semantic relation.

• Matching model:(optional) specification of the match-
ing model asked by the requesting peer to process the
query.

• Matching threshold:(optional) specification of the
threshold valuet, with t ∈ (0, 1] to be used for the se-
lection of matching concepts based on the semantic
affinity value determined by the matching pro-
cess. If a matching threshold is not specified in
the query, the answering peer adopts its own de-
fault threshold.

Query template
Find Target concept name [, ...]
[With 〈Property name〉 [, ...]]
[Where Condition, 〈related concept, semantic

relation name〉 [, ...]]
[Matching model Matching model to be used]
[Matching threshold t ∈ (0, 1]]

Figure 5. Probe query template

When a peer receives a query from another peer, the
query is processed in order to extract the target concept(s)
and the matching model to use. In particular, the query is
transformed into an ontological description of the target
concept(s) (using information in theFind, With, andWhere
clauses) for comparison against the peer ontology.
Once concepts matching a target concept have been identi-
fied using the matching algorithm, they are returned to the
requesting peer through a query answer, which contains the
list of concepts matching the target. Each concept is de-
scribed by the following answer template (see Figure 6):

• Concept:name of the matching concept.

• Properties:(optional) list of properties of the match-
ing concept.

• Adjacents:(optional) list of concepts related to the
matching concept by a semantic relation.

• Matching:set of pairs〈target concept, affinity value〉,
specifying the target concept with which the match-
ing concept matches, together with the corresponding
affinity value.

• Location relations:(optional) list of location relations
known by the answering peer for a matching concept.

• Matching model:specification of the matching model
applied to process the query.

• Matching threshold:(optional) specification of the
threshold valuet, with t ∈ (0, 1] used for the se-
lection of matching concepts based on the semantic

affinity value determined by the matching pro-
cess.

Answer template
{Concept Concept name
[Properties 〈Property name〉 [, ...]]
[Adjacents 〈related concept, semantic relation

name〉 [, ...]]
Matching 〈Target concept, affinity value〉[, ...]
[Location Relations Location relation [, ...]]
Matching model Matching model name
[Matching threshold t ∈ (0, 1]]}

Figure 6. Answer template

4. A semantic engine architecture for knowl-
edge sharing

According to the requirements illustrated in Section 3,
we present a reference semantic engine architecture to sup-
port knowledge sharing in P2P systems. Such an architec-
ture provides a semantic infrastructure which enables each
peer of a P2P network to evolve thecontent search layer
of conventional P2P architectures to aknowledge search
layer enriched with semantic functionalities. As shown in
Figure 7, the semantic engine is composed of the follow-
ing components:

Query/
Answer

Manager

Network Interface

Routing Module

Contents

P_1: IPaddr, port#
...

P_n: IPaddr, port#

LP_p

Hash Module

Peer Ontology
Manager

Learning Manager

SEMANTIC ENGINE

KNOWLEDGE SEARCH LAYER

OVERLAY NETWORK LAYER

Peer Ontology

Matching Manager

Figure 7. The semantic engine architecture

• Peer ontology manager.The peer ontology manager
is responsible for maintaining the peer ontology which
is organized into apeer knowledge layerand anet-
work knowledge layer, respectively. The peer knowl-
edge layer describes the knowledge a peer brings to
the network. The network knowledge layer describes

the knowledge that a genericpeer P has of the knowl-
edge owned by other peers in the network. When a
peer P receives a content concept from anotherpeer
P1 in response to a probe query, the peer ontology
manager stores in the network knowledge layer a de-
scription of thepeer P1. Peer descriptions are given
in form of network concepts, characterized by a set of
properties describing the network features ofP1 (e.g.,
IP-address, bandwidth). Alocation relationconnects a
content conceptc with a network conceptc′ describing
a node containing resource concepts matchingc (i.e.,
concepts semantically related toc). A genericpeer P
can increase its knowledge by adding/extending con-
tent concepts and/or by adding new location relations
and network concepts.

• Matching manager.The matching manager is respon-
sible for performing semantic matching between a tar-
get concept in a query and concepts in the peer on-
tology. With respect to the content search engine of
conventional P2P architectures, the matching manager
provides a semantic improvement in concept compari-
son, by considering both the linguistic and the contex-
tual features of ontology concepts in peer ontologies.
A detailed description of the ontology matching algo-
rithm we have developed for the matching manager is
presented in [3, 4]

• Query/answer manager.The query/answer manager
is responsible for query composition, processing, and
answering. With respect to conventional P2P architec-
tures, the functionalities of this component are pro-
vided by the query3 module. We have integrated the
query/answer manager in the semantic engine because
of the strong interaction with the matching manager, as
described in Section 3.

• Learning manager.The learning manager is responsi-
ble for the acquisition of information about the place-
ment of contents in the network in order to increase
query distribution effectiveness. In contrast to con-
ventional P2P architectures, the learning manager has
been integrated in the knowledge search space because
information about content distribution are maintained
and accessed through peer ontologies.

The semantic engine enables peers to support knowledge
sharing requirements, and constitutes a flexible infrastruc-
ture capable to cope with any P2P architecture implemented
in the overlay network layer1. Nevertheless, the presence
of semantic functionalities based on peer ontologies and

1 In Figure 7, a comprehensive representation of the three overlay net-
work architectures presented in Section 2 are summarized. The hash
module is represented through broken lines because only the deter-
ministic placement and deterministic placement with learning policies
require this module.

matching techniques poses additional issues which are to be
addressed when considering the interaction between the se-
mantic engine and the Overlay Network. With respect to the
P2P architectures presented in Section 2, we discuss how
the Overlay Network components can be properly adapted
to cooperate with the semantic engine components to sup-
port knowledge sharing functionalities.

Flooding with learning. The query distribution protocol
adopted in the flooding policy, is wasteful due to the high
generated traffic and the processing overhead. In order to
improve the performance of such an approach, the semantic
engine can be adopted to support a semantics-based query
distribution protocol. Each peer exploits its peer ontology
in order to maintain information about semantically related
concepts stored in other peers by means of location rela-
tions. For instance, a location relation connecting a content
conceptCC with a network conceptNC, is used to repre-
sent that the peer described throughNC can provide con-
cepts semantically related toCC. When a peer has to for-
ward a probe query containing a target conceptTC, the peer
ontology is exploited by semantic matching techniques: (i)
to discover concepts semantically related toTC, and (ii)
to identify location relations connecting such concepts to a
set of network concepts describing the peers to which the
query is to be sent, by avoiding flooding. A learning man-
ager has to manage and update the location relations refer-
ring to other peers knowledge.

Semantic placement.As the deterministic content place-
ment, the semantic knowledge placement combines a prede-
fined network structure with a hash function in order to im-
plement an efficient query distribution protocol. Concepts
are dynamically distributed in the network following simi-
larity criteria, so that each peer maintains in its peer ontol-
ogy concepts with a high affinity among them. When a tar-
get conceptTC is to be placed in the network, each peer
evaluates the semantic affinity ofTC with the concepts ac-
tually stored in its peer ontology, by exploiting semantic
matching techniques in order to decide ifTC is to be in-
serted in the peer ontology or if it is to be forwarded for a
better placement. As described in Section 2, simulation re-
sults show that deterministic knowledge placement can im-
prove query distribution efficiency due to hashing. When
semantic criteria are followed for knowledge placement,
hashing improvements are possible only if the hash func-
tion adopted preserves the semantics of the affinity evalua-
tion.

Semantic placement with learning.Combining learning
techniques and semantic knowledge placement, an adap-
tive P2P architecture can be defined. As described in se-
mantic placement, knowledge is distributed in the network
according to similarity criteria. When a target conceptTC
is to be placed in the network, each peer applies semantic

matching techniques in order to evaluate the semantic affin-
ity betweenTC and its peer ontology concepts. Accord-
ing to affinity evaluation results, more than one peer can de-
cide to maintainTC in its peer ontology. As in conventional
adaptive networks, concepts have not a static placement and
move in the network according to requests. A learning strat-
egy, implemented through location relations as in the flood-
ing with learning policy, can be adopted to maintain infor-
mation about other peer contents enforcing the effective-
ness of query distribution. An ontology merging policy is
required in order to preserve the correctness of peer ontol-
ogy descriptions when new concepts are to be dynamically
inserted.

Considerations. Evolving content sharing to knowledge
sharing networks is a challenging issue which is being ad-
dressed by other research projects providing different so-
lutions [7, 8, 9, 10, 12]. With respect to these approaches,
the main contribution of the semantic engine architecture
we propose is related to the presence of an ontology match-
ing manager which allows dynamic knowledge discovery
and sharing without a centralized authority (e.g., SuperPeer)
and/or integrated knowledge descriptions. Moreover, the se-
mantic engine architecture is suitable for knowledge shar-
ing in dynamic scenarios and can be properly adapted to be
placed on different P2P infrastructures.

5. Concluding remarks and future work

Several issues have to be investigated for the develop-
ment of an effective knowledge sharing P2P system based
on a semantic engine. Porting policies from a content search
context to a knowledge search context is not such immedi-
ate. Differences lie in the concept management. For policies
involving a dynamic replication mechanism, the pace of the
ontology growth must be analyzed, as well as possible ef-
fects for query processing depending on the limitation of the
peer ontology size. Concepts dynamically placed in a peer
ontology may yield an overlay (virtual) topology more con-
nected than in case of content management, thus possibly
generating more traffic for query forwarding. We are work-
ing in the direction to evaluate the impact of different learn-
ing strategies on query processing in order to identify for
each peer the correct trade off between concepts to include
in the peer ontology and concepts to distribute in the net-
work.
Performance indexes to be considered for a knowledge
search context differ from those usually considered for
content search. Knowledge management, namely, concept
matching and concept insertion into a peer ontology, can be
expensive in terms of processing. Their costs depend on the
policy chosen for concept replication in different peers and
for query forwarding, which can be controlled by adopting
policies that implement deterministic placement. In these

cases, policies could be devised to distribute query process-
ing among several peers each one of which carries on the
search for a subset of related concepts, thus avoiding work
duplication. To guarantee an effective load balancing, con-
cept keys assignment should place only a few highly generic
concepts or frequently requested concepts on a certain peer
so as to avoid that it becomes a bottleneck.
According to the considerations presented in Section 4, our
future research work will be devoted to evaluate the perfor-
mance of different P2P architectures for knowledge sharing
based on the proposed semantic engine.

References

[1] The Freenet website.http://freenet.sourceforge.net.

[2] The Gnutella website.http://www.gnutella.com.

[3] S. Castano, A. Ferrara, and S. Montanelli. H-MATCH: an
Algorithm for Dynamically Matching Ontologies in Peer-
based Systems. InProc. of the 1st SWDB VLDB Workshop,
Berlin, Germany, 2003.

[4] S. Castano, A. Ferrara, S. Montanelli, and G. Racca. Match-
ing Techniques for Resource Discovery in Distributed Sys-
tems Using Heterogeneous Ontology Descriptions. InProc.
of ITCC 2004, Las Vegas, Nevada, USA, 2004.

[5] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: A
Distributed Anonymous Information Storage and Retrieval
System.Lecture Notes in Computer Science, 2009:46, 2001.

[6] A. Crespo and H. Garcia-Molina. Routing Indices for Peer-
to-Peer Systems. InProc. of ICDCS 2002, Vienna, Austria,
2002.

[7] J. B. et al. A Metadata Model for Semantics-Based Peer-to-
Peer Systems. InProc. of the 1st SemPGRID WWW Work-
shop, Budapest, Hungary, 2003.

[8] W. N. et al. EDUTELLA: a P2P Networking Infrastructure
Based on RDF. InProc. of WWW 2002, Honolulu, Hawaii,
USA, 2002.

[9] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema Medi-
ation in Peer Data Management Systems. InProc. of ICDE
2003, Bangalore, India, 2003.

[10] R. Huebsch, J. Hellerstein, N. Lanham, B. T. Loo,
S. Shenker, and I. Stoica. Querying the Internet with PIER.
In Proc. of VLDB 2003, Berlin, Germany, 2003.

[11] I. Stoica et al. Chord: A Scalable Peer-to-Peer Lookup Ser-
vice for Internet Applications.IEEE/ACM Transactions on
Networking, 11(1):17–32, February 2003.

[12] A. Kementsietsidis, M. Arenas, and R. J Miller. Mapping
Data in Peer-to-Peer Systems: Semantics and Algorithmic Is-
sues. InProc. of ACM SIGMOD Int. Conference on Manage-
ment of Data, San Diego, California, USA, June 2003.

[13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Addressable Network. In
Proc. of the ACM SIGCOMM 2001, San Diego, CA, USA,
2001.

