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In the era of pervasive mobile computing, human encounters can be leveraged to enable
new forms of social interactions mediated by the personal devices of individuals. In this
framework, emerging needs, such as content dissemination, social discovery and question
and answering, advocate the raising of novel communication paradigms where the binding
content-recipients is not provided by the sender (in the classical IP addressing style), but
directly executed by specific recipients with interest in it.

This paper proposes a novel communication protocol, named InterestCast, or ICast,
solving the problem for a wide range of social scenarios and applying to an opportunistic
network whose nodes are the personal devices of moving individuals, possibly interacting
with fixed road-side devices. The protocol is able to chase users’ interests decoupling con-
tent tags from locations and social communities. In order to cross community boundaries
and reach farthest destinations, ICast adopts mechanisms that properly extract weak ties,
i.e. encounters between nodes that rarely interact, but that connect different communities.
The main advantages the proposal achieves are: it ensures remarkable performance
results; it is simple and feasible and it keeps computational and networking costs low; it
can preserve users’ privacy.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction from human-mediated to computer-mediated communi-
Real-life encounters are the oldest form of human
communication where individuals mediate the (verbal)
information exchange from source(s) to recipient(s)
through either single or multi-hop paths. In the era of
pervasive mobile computing, human encounters can be
leveraged to provide an intermittently-connected network
where the delivery of delay tolerant information is medi-
ated by the personal devices of individuals. The growing
interest in human social interactions is hastening the shift
cations. Emerging needs, such as content dissemination,
social discovery and question and answering, inspire the
creation of novel communication paradigms where the
binding between content and recipients is not provided
by the sender (in the classical IP-addressing style), but
directly executed by specific recipients with an interest
in it. According to this paradigm, unaddressed contents
can be freely advertised on the network with a tag describ-
ing the content type, while human encounters drive the
information flow towards potential recipients that extract
the content from the stream when its type and local
personal interest are matching. This is giving rise to an
information-centric anycast communication capable to
intercept the user’s interests and to preserve, on the one
hand, the communication resources and, on the other,
the user’s privacy. We call it Behavior-cast. Such a new
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1 Complete coverage of the destinations might be hindered by partitions.
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form of interaction requires a suitable programming and
networking platform supporting it.

The design of routing algorithms for Behavior-cast has to
face with a number of challenging issues whose complex-
ity is mainly due to the fact that the set of recipients is
unknown, its cardinality is unpredictable and changes
dynamically over time as a result of mobility and tempo-
rary disconnections, the users’ behavior needs to be some-
how defined and captured. This problem has become a hot
research topic in Opportunistic Networks (ONs) and a few
research works have recently faced with it. Yet, they
assume that users sharing the same interests either have
social relations or visit the same places; we survey them
in Section 3. All the aforementioned assumptions greatly
simplify the original problem because they inherently con-
fine message delivery within a specific location and/or
community. On the other hand, some real experiences
show that human interests are not only bound to specific
locations or closely assigned to a given community. In
[8], it is argued that the most valuable data are obtained
leveraging the weak social ties with people belonging to
other social communities, rather than the strong ties with
people within our same community. Indeed, in the latter
case, knowledge amongst socially related people is quite
uniform and communication does not bring any novel
information. The undersound testbed application, devel-
oped in the framework of the BioNets Project [2], revealed
that people are willing to exploit extemporary encounters
with someone having the same interests in order to share
content, even if no social ties exist. By contrast, social ties
may arise as a consequence of a shared interest. In [14], the
authors observe that the correlation among all planes is
not immediate, while in [25] it is shown that this correla-
tion varies with changing scenarios. These and other
results in the literature [17,11] show that weak ties are fun-
damental in order to bridge the gap between different
communities and reach out all the target destinations of
a certain content.

The contribution of this paper is manifold. First, we
define the novel BehaviorCast communication paradigm
and introduce a functional architecture to support it.
Second, we present a novel routing algorithm (InterestCast,
or ICast for short) that solves the problem in an opportu-
nistic network of individuals, possibly interacting with
fixed stations [29]. The algorithm comes in two flavors:
basic (bICast) and weighted (wICast). We adopt utility
functions that find weak ties and properly chase the user’s
interests independently of locations and social communi-
ties. While bICast does so in a stateless and privacy-
preserving manner, wICast provides better effectiveness
at the expenses of some state maintenance. The capability
of the algorithms of solving the BehaviorCast problem is
formally analyzed. Their performances are measured
through simulation techniques in realistic scenarios, and
compared with other solutions in the literature that cope
with the problem in a subset of the conditions discussed
above. ICast may also be used to support communication
according to the publish-subscribe paradigm. Indeed, it pro-
vides space, time and synchronization decoupling [9]
between content producers and consumers. It realizes a
sort of distributed event service where each node may con-
tribute to convey content to interested nodes. According to
[9], ICast implements the content-based scheme.

The main advantages of this proposal are: the algo-
rithms succeed both in keeping coverage very high, and
in reducing the consumption of network resources in com-
parison with the other solutions in the literature. This is
achieved without observing any significant increase of
delivery latency. The algorithm adopts utility functions
with low computational cost, that each node autono-
mously computes by using only local information collected
during encounters with other nodes, i.e. the solution is dis-
tributed, does not require any global information, and is
thus viable in practice. The analysis shows that both algo-
rithms have a cost OðjIjÞ – with I set of interested destina-
tions – in terms of number of transmissions performed by
a node, number of content replicas contemporarily existing
in the system, and, for wICast, memory overhead for state
information.

2. Problem definition and system assumptions

We consider a mobile network composed of N nodes
that communicate through wireless links. A node may be
either the personal device of a user, which moves with
him/her, or a fixed station, as in the case of a road-side
gateway to/from a wired network. Thus, we are consider-
ing a hybrid urban network infrastructure [13,18,34].
Throughout this paper, all nodes, both fixed or mobile,
have the same capabilities; each node operates as source,
recipient and forwarder of messages with specified
interests. We assume without loss of generality that only
one interest I is assigned to a node. The purpose of the
algorithm is to deliver a message to (approximately) all
nodes matching the interest I .1

A message (Fig. 1) contains: the source identifier, the
target expressed as a tag indicating the interest(s) match-
ing the content, a lifetime constraining the existence of
the content in the system, a content ID, a type flag, and
the content. When a node n receives a content c; n records
the arrival time of c. When c is forwarded to another relay,
the lifetime is updated by subtracting to the current
value the amount of time that c spent in n. No global syn-
chronization is required. When the lifetime reaches 0, c
is dropped from buffers and no more exchanged. The con-
tent ID uniquely identifies the content. The type flag
indicates whether the content matches a local interest
and it is forwarded to the node only for delivery, or it must
also be buffered for relaying to other nodes. Addressing is
performed on a per-content basis. Content’s tags and
node interests do not have to match exactly. Folksonomic
reasoning [20] is used to match interests with content
tags and when a matching is verified the message is
delivered to the local recipient.

The problem we consider in this work is defined as
follows:

Definition 1 (BehaviorCast Problem). Let I be a set of
recipients with a common interest I . Let U be the set of



Fig. 1. Structure of a content message.

316 E. Pagani et al. / Ad Hoc Networks 25 (2015) 314–329
all nodes in the system. An algorithm solving the Behav-
iorCast Problem for a content c labeled with interest I
must ensure the following properties:

� Validity: (i) c must be delivered to a subset I0 # I of
recipients, but (ii) no node in I ¼ U � I must deliver c.
� Effectiveness: the service should approximate total

coverage, i.e., it should keep the cardinality of I0 as close
as possible to that of I.
� Efficiency: the service should minimize both (i) the

number of nodes 2 U � I used as relays, and (ii) the
number of transmissions performed by those nodes.
� Eventual Termination: within a finite time from the

generation of c, no more messages are exchanged con-
taining c, and no more memory overhead is paid to
store c.

The validity property guarantees that recipients with-
out interest about I are not spammed with unwanted mes-
sages, that is, it excludes broadcast (adopted, e.g., in [34]).
The effectiveness property has to do with user satisfaction.
In order to achieve it, nodes outside I may be used as relays
if they increase the probability of reaching the destina-
tions. However, the efficiency property excludes resorting
to trivial solutions such as epidemic diffusion to solve the
problem. Without the eventual termination property, an
algorithm could work indefinitely, thus guaranteeing per-
haps that coverage asymptotically tends to 100%, but also
implying an infinite overhead. In Section 5, we provide a
formal analysis to prove that the proposed algorithms ful-
fill the properties of the BehaviorCast problem.

To determine the intended recipients of a message, we
introduce the Timed Delivery Model (TDM). In TDM, the
delivery of a message is constrained within the time inter-
val [t1; t2], where t1 is the time of message generation and
t2 is the message expiry time. When a message m with
label I is issued, the intended recipients of m are all nodes
in I that are reachable within the time interval [t1; t2].2

In order to prove that the proposed algorithms fulfill
Definition 1, the following assumption on mobility is used:

Definition 2 (Encounter assumption). If two nodes n1 and
n2 have shown habit of encounters in the past, hence this
habit preserves in the future. This can be expressed
formally as follows: let kn1 ;n2 ðtÞ be the contact rate at time
t with which n1 and n2 encounter. Then kn1;n2 ðtÞ � kn1;n2

ðt þ DtÞ; 8n1;n2 2 U; 8t 2 N.

In Fig. 2, a reference functional architecture is
represented; continuous arrows mark communications
amongst modules, while dashed arrows indicate data
flows; the numbers in the figure indicate the steps
explained hereafter. A user may configure the interests
for which s/he is willing to receive content in a local table
(1). When a user generates a new content, it is stored in the
2 Our model is similar to the Temporal Membership Model in [37].
local repository (2), and passed for diffusion via the service
primitive send.Req to the underlying BehaviorCast mod-
ule (BCM) which stores it in its local buffer (3). When a
node n has a contact with another node, the link layer
entity responsible for channel set-up and exchange of
Layer 2 beacons notifies the presence of a new neighbor
in a Layer 3 table (4). The mechanisms adopted to detect
the existence of new neighbors, set up a channel with them
and access the channel depend on the specific wireless
technology adopted. Nodes that enter in reciprocal radio
range exchange Layer 3 beacons carrying state information
– such as e.g. the local interest and a summary of the held
content – according to the implemented algorithm (5). This
information is obtained from the BCM, which has access to
the user interests (6). The state information is used to
update the local knowledge maintained by n (7) to com-
pute its own utility and the utility of the other node for
each message held in the buffer using the utility engine

included in the BCM (8). A message in the local buffer is
sent to the other node when either the message interest
matches against the other node’s interest or the other node
has higher utility than n for the message interest (9).
Received messages are stored in the buffer for further dis-
semination. Moreover, the BCM module uses its interest

engine to match the content interest against the local inter-
est (6): messages that are of local interest are notified to
the user via the delivery.Ind service primitive and
inserted in the local content repository (10). The algorithms
solving the BehaviorCast problem implement the BCM.

3. Related work

The design of a platform for BehaviorCast is still in its
infancy. Solutions adhering to the IP multicast model are
not suitable for ONs as they assume a global a priori
knowledge of the group membership (e.g., [5,12,19,37])
and possibly try to form a tree-like routing infrastructure
(e.g., [36,35]). By contrast, the behavior of a user can be
defined considering several aspects, and different behav-
iors shall be considered for content diffusion. As an exam-
ple, in [30], the temporal, spatial, and activity profiles of
the users are studied. In [23], user behavior is analyzed
in terms of visited locations and accessed web domains.

Some preliminary works taking into consideration
users’ interests for message diffusion, actually do not solve
the BehaviorCast problem. MobiClique [31] allows a user
to flood messages to all members of an interest group
(taken from social networks) s/he belongs to. Both
PeopleRank [26] and ML-SOR [32] support unicast commu-
nications and consider the number of interests shared
amongst nodes to derive indicators able to single out
promising relays to reach a certain destination. In [1,24],
interests are used to diffuse content among similar nodes,
with the aim of maximizing the satisfaction of each user in
terms of his/her interest in the received content, rather
than of maximizing the probability for a node to receive
all contents of interest.



Fig. 2. Functional architecture.
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To solve problems more similar to BehaviorCast, some
preliminary results are obtained by starting from the basic
assumption that user’s interests and customarily fre-
quented locations are closely related to one another. Pro-
fileCast [15] belongs to this category. A content
generated by a node is addressed to (‘‘is of interest for’’)
nodes used to visit the same locations as the source.
Another class of approaches (SocialCast [7], ONSIDE [6],
SANE [22]) goes a little further by assuming that users with
the same interests have the attitude to meet with each
other more often than with other users. These are the solu-
tions in the literature more similar to the ICast algorithms
proposed in this work and that we use for performance
comparison in Section 6. In particular, we consider Profile-
Cast, and SocialCast as the representative of its class as it is
the most stable proposal. They are described in more detail
in the following subsections for readers’ convenience.
Habit [21] considers a different granularity in that nodes
indicate a list of sources whose content they are interested
in. By exchanging this information, each node builds a con-
tent dissemination network that is used by a source to
compute the whole paths – forming a sort of a tree – to
reach the interested users; these paths are included in
the message and used as in source-routing.

In Section 4, we describe in details the ICast algorithms,
which solve the BehaviorCast problem in ONs reasoning
with a content-based granularity. They adopt a fully dis-
tributed approach, do not require any a priori knowledge
on the system nor make any assumption about either the
interests nature or the reciprocal mobility attitudes of
nodes with similar interests. This work improves our pre-
vious papers [28,27] in several respects, mainly in intro-
ducing a novel variant of the basic algorithm and in
performing a more accurate algorithm analysis.

3.1. ProfileCast

In ProfileCast [15], nodes must a priori agree on a set of
reference locations. For a given time slot t, each node n
records the time ratio spent at each location in that slot,
thus generating an association vector AVt

n with as many
entries as locations. The association matrix AMn is built,
whose column i is AVi

n, with i 6 number of time slots
observed so far. Hence, the association matrix represents
the behavior of the node along its history. The association
matrix is decomposed as AM ¼ U D VT by using Singular
Value Decomposition (SVD). The left singular vectors in U
capture – in decreasing order of importance – the node
behavior in terms of time spent in the locations. The i-th
vector ui has an associated weight, computed from the
diagonal matrix D of singular values as dii=

P
8j djj, that

describes the significance of the vector.
When two nodes nj and nk encounter, they exchange

their first xj and xk left singular vectors, such that for each
node the sum of the weights of the sent vectors in not less
than a threshold hW . In [15], node similarity Sjk is defined
as:

Sjk ¼
Xxj

J¼1

Xxk

K¼1

weightuj
J

weightuk
K

uj
J � uk

K

��� ��� ð1Þ

If, let us say, nj owns a message m to be distributed to sim-
ilar nodes, and Sjk P hPC for a certain threshold hPC , then the
two nodes are considered sufficiently similar, and nj for-
wards m to nk that is considered an interested node. This
procedure is summarized in Fig. 3(a).

ProfileCast has been recently extended (CSI:D [16]) so
as to allow dissemination of content when the target pro-
file is independent of the behavior profile expressed as vis-
ited locations. The goal is pursued by passing the content
to some message holders with very different behavior pro-
files, in the attempt of randomly taking dissimilar paths in
the encounter plane (Fig. 3(b)) so as to span it and to have
some probability that the holders run into the destinations
similar in the behavior plane. In this work, we choose to
study the original ProfileCast, in order to avoid introducing
biases due to the policy of holder selection, thus guaran-
teeing a fairer comparison.



Fig. 3. (a) Finite state automaton for a ProfileCast node and (b) difference
between behavior similarity and encounter attitudes.
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3.2. SocialCast

In [7], the SocialCast algorithm is proposed for content
diffusion in ONs according to the publish-subscribe para-
digm. The solution heavily relies on the assumption that
nodes having a common interest also tend to encounter
more often than with other nodes. Given a certain interest
I , the routing of messages labeled with I leverages a utility
function based on two factors, namely (i) the probability
Ucol of being colocated in the future with nodes having I
as their interest, and (ii) the estimation Ucdc of the change
degree of connectivity. The former bases on the mentioned
assumption to select promising relays to the group of inter-
ested nodes. The latter aims at selecting nodes whose
neighborhood frequently changes. Those nodes are of
interest because they have more options to disseminate
information, and to encounter either good relays or inter-
ested nodes. In detail, for each interest I , in each node n,
the two factors are sampled with frequency s this way:
Fig. 4. Finite state automata for (a) a SocialCa
Ucoln;I ðtÞ ¼
1 if n was located with a

subscriber for I at time t

0 otherwise

8><
>:

Ucdcn;I ðtÞ ¼
jN ðt � sÞ [ N ðtÞj � jN ðt � sÞ \ N ðtÞj

jN ðt � sÞ [ N ðtÞj

whereNðtÞ is the set of neighbors of n at time t. Leveraging
the encounter assumption (Definition 2), the future values
of both Ucol and Ucdc are predicted using Kalman filters,
obtaining bUcol and bUcdc respectively. In [7], the predicted
values are used in the computation of the utility U , to
decide message exchange:

Un;I ¼ wcol
bUcoln;I þwcdc

bUcdcn;I ð2Þ

with wcol and wcdc weights assessing the relative impor-
tance of the two factors.

With period T, each node n updates its own utility for
each interest, and broadcasts the values to its own one-
hop neighbors, together with its own interest and the iden-
tifiers of the held content (interest dissemination phase). For
each neighbor �n whose message is received, and for each
interest I ; n evaluates whether U�n; I > Un;I þ e; in this
case, �n is a better relay than n for the content tagged with
I . Then, all data matching �n’s interest, and all data for
which �n is a better relay, are forwarded to �n. As far as the
latter data are concerned, they are discarded from n’s buf-
fer. Duplicate forwarding is avoided by transferring the
data not already owned by �n, according to the list it broad-
casted in the interest dissemination phase. Associating
either a TTL or a lifetime to data prevents their indefinite
existence in the system. Fig. 4 summarizes the procedure.

4. InterestCast

In this Section we consider the problem of forwarding a
content to destinations belonging to the set of neighbor in
the behavior plane but not necessarily in the encounter
plane (see Fig. 3(b)). Nodes A, B, and C are neighbors in
the behavior plane as they share a common interest I1.
st relay and (b) a SocialCast destination.



3 I.e., t is the time at which the contact begins.

E. Pagani et al. / Ad Hoc Networks 25 (2015) 314–329 319
Similarly, nodes D, E, and F share a common interest I2.
Yet, neighbor nodes in the behavior plane may be far from
one another in the encounter plane, as they are not used to
encounter. In order to fulfill the effectiveness property in
Definition 1, an algorithm should resort to ‘‘bridge’’ nodes,
able to connect nodes that are neighbors in the behavior
plane but not in the encounter plane (such as nodes B
and C, that shall communicate through E). ICast aims at
discovering those bridges and using them for message
relaying. As a consequence of having multiple recipients
sharing a common interest I , we can expect to have poten-
tially several relays involved, and that their selection
should be influenced by their inclination to encounter
nodes declaring I as an interest. We propose two utility
functions for basic and weighted ICast (bICast and wICast
respectively). Both aim at identifying weak ties among
communities, which allow to span the nodes in the system
and maximize the probability of reaching all the destina-
tions. bICast is stateless and preserves privacy; yet its
performance – although very good on average (Section
6), – may suffer local maximums. wICast guarantees high
effectiveness in every situation (Section 5) at the expenses
of some state maintenance.

Algorithm 1. Basic ICast

1: INIT: counter  []; buffer  ;;
2: when contact with node �n do
3: receive (I �n) from �n;
4: send (my I) to �n;
5: if (counter[I �n] already exists for interest I �n)

then
6: counter[I �n]  counter[I �n] þ1;
7: else
8: allocate counter[I �n]  1;
9: end if

10: my U  f8 known I ’s, counter[I]};
11: send my U to �n;
12: receive Uð�nÞ from �n;
13:
14: for all messages m in my buffer do
15: //(let Im be the interest to which m is

addressed)
16: if (Im ¼¼ I �n) then
17: send m to �n and keep copy;
18: else if (UImð�nÞ > my UIm ) then
19: send m to �n;
20: if (I’m not interested in I) then
21: remove copy from buffer;
22: else
23: keep copy;//for other destinations only
24: end if
25: end if
26: end for
27: receive messages from �n and put them into

buffer;
28: deliver to application the messages tagged with

my I;
29: end do
For bICast, let us indicate with CðtÞ the set of contacts
occurred in the system up to time t. Let us define an
encounter by the tuple hn1;n2; ti, such that at time t nodes
n1 and n2 enter in mutual communication range.3 Then,
8�t P t; hn1; n2; ti 2 Cð�tÞ. The utility function for a node n
at time t w.r.t. a generic interest I is:

UIðn; tÞ ¼ jf8t0 6 t;8�n 2 I; �n – n : hn; �n; t0i 2 CðtÞgj

¼
X

x2CðtÞ
1IðxÞ ð3Þ

which counts the number of encounters that node n had
with interested nodes, in the past. The function is com-
puted by each node n, using just local knowledge, every
time it encounters a node whose beacon includes I . Nodes
do not need to know beforehand the set of interests of the
other nodes; rather, when an unknown interest is discov-
ered from a neighbor’s beacon, a new element is allocated
for it and initialized to 1.

Algorithm 1 supplies the pseudo-code for bICast
executed by a generic node n. The local knowledge con-
struction and the utility function computation are in lines
5–9. A relevant aspect of the algorithm is the message rep-
lication mechanism. Whenever a node n, with no interest
in I , forwards a message m to a node with higher utility
(lines 18–19), n delegates the other node to continue for-
warding, and hence removes the copy of m from its own
buffer (line 21). By contrast, if n forwards the message to
a legitimate recipient, then n maintains the message copy
(line 17). In fact, its habit of encountering recipients in I
might be useful for delivering m to other destinations.
Nodes in I always maintain the message (line 23) and they
can forward a copy to other recipients (line 16); yet, they
forward the message to a more useful relay at most once
in order to prevent a proliferation of replicas. We assume
that, as in [33], summary vectors are exchanged in Layer
3 beacons – together with local interests – to prevent
forwarding of duplicate messages. Fig. 5 summarizes the
procedure and allows to compare the three approaches
we consider in this work (Figs. 3(a) and 4).

The advertisement of content on the network is worth
continuing until the time validity of the tagged message
expires. This is the motivation underpinning the lifetime
we introduced in Section 2. In Section 6, we show through
simulations that the algorithm has also an interesting self-
stabilization property: once a content c is carried by high-
utility relays, no more forwardings take place apart to des-
tinations and the traffic generated for c settles down.
4.1. Weighted InterestCast

The performance of bICast can be improved by remov-
ing the limitation of the utility in Eq. (3) due to the fact that
it has no memory of encounters. As an example, consider
two nodes p1 and p2 such that both have utility – according
to bICast – ub ¼ 100 resulting, in case of p1, from encoun-
tering twice 50 different nodes and, in case of p2, from
encountering 20 different nodes, 5 times each. Intuitively,



Fig. 5. Finite state automata for (a) an ICast relay and (b) an ICast
destination.
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p1 is more useful to boost coverage. The problem can be
overcome by adopting a utility function that awards nodes
with a larger variety of encountered nodes in I. This is
achieved by resorting to Shannon’s entropy: each node n
records a list recipientsI whose size is upper bounded
by jIj such that recipientsI ðxÞ is the number of encoun-
ters n had with nx 2 I. According to the described variation,
the weighted utility Uw

I ðn; tÞ is computed as:

Uw
I ðn; tÞ ¼ �

X
8nx2I

recipientsI ðxÞP
8krecipientsI ðkÞ

� log
recipientsI ðxÞP
8krecipientsI ðkÞ

� �
ð4Þ

Algorithm 2 supplies the pseudo-code for wICast exe-
cuted by a generic node n, with highlighted lines empha-
sizing the differences with bICast. Both the forwarding
mechanism and the interest discovering mechanism of
wICast are the same as bICast. Nodes do not need to know
a priori the number of devices in the system: when a new
node is discovered with interest in I , a new element is
allocated in recipientsI and initialized to 1 (line 8).

Algorithm 2. Weighted ICast

1: INIT: buffer  ;; recipients  [];
2: when contact with node �n do
3: receive I �n from �n;
4: send my I to �n;
5: if (recipientsI �n ð�nÞ already exists for I �n and �n)

then
6: recipientsI �n ð�nÞ  recipientsI �n ð�nÞ þ 1;
7: else
8: allocate recipientsI �n ð�nÞ  1;
9: end if

10: update my Uw according to Eq. (4);
11: send (my Uw) to �n;
12: receive (Uwð�nÞ) from �n;
13:
14: //. . . message exchange as in Algorithm 1
15: end do
The use of Uw
I generates a remarkable performance

improvement (see, Section 6) that might be payed with
the memory space each node has to allocate and whose
size grows with the growth of considered interests, nodes,
or both. Yet, the memory overhead for a certain interest I
is OðjIjÞ.

5. Analysis of ICast

In this section, we analyze how the ICast algorithms
solve the BehaviorCast problem according to Definition 1.
The Validity property is guaranteed by the definition of
the delivery.Ind primitive provided by the architecture.
The Eventual Termination property is guaranteed by the
lifetime management policy. Hence, we analyze just effi-
ciency and effectiveness of the proposed algorithms. We
adopt the same notation as in Definition 1. Let Fm

t # I be
the set of non-interested nodes used as relays for a mes-
sage m at a time t. Let Mm

t be the set of nodes holding
the message m at a time t. Let tm

0 ; Tm
� �

be the interval in
which m exists in the system. Finally, let sm

u be the number
of times a generic node u 2 U forwards the message m. The
following property holds for both bICast and wICast as they
adopt the same forwarding policy.

Property 1 (Efficiency). (1) The maximum number of nodes
2 I used as relays for a message m is OðjIjÞ. (2) The maximum
number of transmissions for a message m performed by a
generic node is OðjIjÞ.

Proof. According to the algorithms’ pseudo-codes, a copy
of a message m is created just when: (i) a node u 2 U rep-
licates m to a node k 2 I; or (ii) a node u 2 I encounters
k 2 I with UIðk; tÞ > UI ðu; tÞ. Therefore, the maximum
number of m’s replicas corresponds to the situation when
m is generated by a node 2 I, all nodes 2 I receive m and
each of them forwards the message to a distinct relay 2 I.
Hence, the cardinality of Mm

t is bounded by:

jMm
t j 6 2 � jIj þ 1; 8t 2 tm

0 ; Tm
� �

ð5Þ

And, the number of nodes 2 I contemporarily used as
relays is at most

Fm
t

�� �� 6 Mm
t

�� ��� jIj 6 jIj þ 1 ð6Þ

In the worst case, the number of transmissions that a node
u 2 U has to do corresponds to the situation in which u con-
tacts all the destinations before encountering another node
2 I with a better utility. Then, the maximum number of
transmissions required to u for the message m is bounded by

sm
u 6 jIj þ 1 ð7Þ

Thus for a given message, the maximum number of trans-
missions required to a node u is OðjIjÞ. This is very profit-
able if we consider that in real world scenarios jIj � jIj.

As far as effectiveness is concerned: in the following, let
us consider a network where nodes are organized in two
closed communities, z1 and z2, connected only by one
traveller. Interested nodes are present in both communi-
ties and they are not travellers. The traveller is the weak tie
between communities. Moreover, communities are
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assumed to be physically far from each other, then the time
spent by the traveller to move to and from the commu-
nities affects its contact rate. Finally, mobility inside
communities is assumed to be exponential. Let s 2 U be a
non traveller node belonging to either z1 or z2. Let s 2 I be a
traveller node. Let ks;s0 ðtÞ and ks;s0 ðtÞ be the contact rate at
time t with which nodes s and s meet a node s0,
respectively. h
Assumption 1. Due to the time needed by a traveller to
move from z1 to z2, it is reasonable to assume the follow-
ing relation

ks;s0ðtÞ > ks;s0 ðtÞ; 8s; s0; s 2 U ð8Þ
According to Assumption 1 from now on the time vari-

able for contact rates will be omitted. Moreover �ks (�ks)
denotes the mean contact rate for the node s (s) w.r.t. all
the other s0 2 U.
Property 2 (Effectiveness). Through the utility function U
the algorithm identifies the most useful relays to be used in
order to approximate the total coverage.
Proof (bICast). Considering the utility function of Eq. (3),
for each time interval Dt ¼ ½t1; t2� , the sequence of incre-
ments of U can be interpreted as a stochastic process
Vu ¼ fVigi¼tþDt where Vi 	 Binomialð�nu; puÞ, with �nu ¼ �kuDt
and pu ¼ jK # I\U0 j

jU0 j . Here U0 is the set of nodes belonging to
the communities visited by u and K is the set of interested
nodes 2 U0. For each contact, nodes u1; u2 2 U0 have the
same probability of encountering a node 2 I:

pu1
¼ pu2

() Ku1 ¼ Ku2

Thus, their utility functions are affected only by the order
relation between their contact rates �ku1 ;

�ku2 :

UIðu1; tÞ > UIðu2; tÞ () �ku1 >
�ku2 ) �nu1 pu1

> �nu2 pu2
ð9Þ

In a single community scenario, bICast is able to select the
most useful relays according to the value of their utility
function. However, in a scenario with communities con-
nected by travellers, the total coverage is not guaranteed.
Indeed, according to (8) the contact rate of a sedentary
node s is reasonably greater than that of a traveller s,
due to the time spent by s for moving between communi-
ties. Hence, on average we have the following order
relation

UIðs; tÞ > UIðs; tÞ

that has the effect of preventing to relay a message to a
weak tie to other communities and to reach far destina-
tions. Therefore, bICast might not guarantee the Effective-
ness property. h
Proof (wICast). Let us now consider two nodes s and s
such that s is a traveller node that visits both community
z1 and z2, while s moves only inside community z1. Let us
denote with U0 # U the set of nodes belonging to the com-
munities visited by s, and with K # U0 the set of interested
nodes 2 I. Then, due to the habits of s and s the following
relation holds:
jDsðtÞj < jDsðtÞj () jKsj < jKsj ð10Þ

where DsðtÞ;DsðtÞ# I are the set of interested nodes met by
the node s; s up to time t, respectively. Thus, a traveller
can meet a greater variety of different nodes 2 I w.r.t. a
non traveller node. This ability is well captured by the
Shannon entropy, used in wICast as utility function. Let
us rewrite:

f̂ uðdÞ ¼
recipientsI ðdÞP
8c2CðtÞrecipientsI ðcÞ

¼
P
8c2CðtÞdc;dP
8c2CðtÞ1IðcÞ

ð11Þ

The function f̂ u is the empirical probability mass function
that measures the conditional probability the node u has
to meet the destination d given that the encountered peer
is a node 2 I, and dc;d is the Kronecker delta function. Every
node u in the system stores these empirical probabilities
into a stochastic vector du of size jDuðtÞj. Given that for
each

XjDuðtÞj

i¼1

di ¼ 1; 8u 2 U

we have the following implication

UIðs; tÞ > UIðs; tÞ () jDsðtÞj > jDsðtÞj ð12Þ

In this way wICast avoids to get trapped inside a commu-
nity. In fact, a traveller which encounters more interested
nodes is always preferred w.r.t. a non traveller. We point
out that this is far better than simply counting how many
destinations a traveller has encountered. That is, the use of
entropy as utility value permits to differentiate between
travellers with the same number of encountered destina-
tions because it considers also the frequencies with which
they use to meet them. In other words we are considering
both the quantity and the quality of a traveller. In fact,
given the same number of encountered destinations, more
homogeneous contact frequencies are preferred. On aver-
age, this is profitable in situations when two travellers
use to meet the same set of destinations though at differ-
ent rates. In light of this, the Effectiveness property for
wICast is derived.

As an example, we use an unrealistic yet demonstrative
setting, represented by the trace HEXT produced with
HCMM [4], whose characteristics are shown in the last line
of Table 1. This trace describes an environment where
encounter communities are strongly closed (see, social
modularity produced by the Louvain algorithm [3]). This
trace involves 4 communities of 11 nodes each, connected
by 12 travellers having IDs from 1 to 12. Interests are
asymmetrically distributed, that is, the 50% of interested
nodes belong to the same community while the other
communities involve only one destination each. This
represent a difficult configuration because the first com-
munity actually is an attractor in which messages could
remain trapped, preventing their complete dissemination.
Fig. 6 shows the utilities for each node; nodes belonging to
the same community are shown as dots with the same
color. With the bICast utility, in this peculiar environment
travellers have utilities lower than those of sedentary
nodes in the same community as the interested nodes (red
community). By contrast, with the wICast utility, travellers



Fig. 6. Utility values for (a) bICast and (b) wICast in the HEXT trace.

Table 1
Main characteristics of the PMTR and the HCMM traces.

Scenario # Contacts Length (s) ICT (s) Location mod. Social mod.

PMTR 11829 521.98 3381 0.536 0.419
HD5 139714 11.88 1599 – 0.488
HEXT 196148 3.29 1097 – 0.613
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are more useful than the sedentary nodes in other com-
munities. As a consequence, a source in, e.g., the blue
community can correctly relay a message for the red
community to one of the travellers. h
6. Performance evaluation

In this section, ICast is compared with both ProfileCast
and SocialCast. We consider different scenarios satisfying
the different assumptions of the algorithms and allowing
a meaningful and fair comparison. To this aim, contact
traces are needed, supplying: (i) mobility behavior of the
nodes in terms of visited locations (thus satisfying the
ProfileCast assumptions); (ii) real or realistic contacts
characterizing social attitudes of people (for SocialCast);
(iii) realistic interest distribution across nodes (for ICast).
In Section 6.1, we introduce the traces we adopted –
satisfying the above requirements – and we analyze their
characteristics. In Section 6.2, ProfileCast is compared with
a simplified version of ICast where the interest is a certain
location and a content is addressed to the nodes accus-
tomed to visit it. In Section 6.3, SocialCast is compared
with ICast by assigning the same interest to all nodes
belonging to a certain encounter community.

Simulations recreated a variety of conditions. In all
cases, without loss of generality, we assumed that only
one interest exists in the system. Message generation starts
after 12 h, so as to allow the algorithms to initialize their
utility values. We assume that every hour, each source gen-
erates a message labeled with the interest. Content genera-
tion stops before the end of the traces (after 7 days) so as to
allow the dissemination of the last generated messages.
Nodes have infinite buffers, there is no bandwidth con-
straint, and messages have a lifetime longer than the time
needed to deliver them, thus removing possible biases in
the comparison. The performance indexes analyzed are:
coverage (percentage of recipients in I that deliver the mes-
sage) – which estimates the algorithms Effectiveness – mean
number of hops to reach a recipient, mean latency to a reci-
pient, number of nodes involved as relays in the forwarding
of a message. All indexes are averaged over all recipients in I
and all sources. The mean number of hops and the number
of involved forwarders are an indirect measure of the
algorithms Efficiency.
6.1. Scenarios

We used a real contact trace and a synthetic trace. For
the former, we use the PMTR trace [11] (available in the
CRAWDAD repository). This is a trace recorded in our campus,
with fine granularity in terms of both time (1 s. beaconing
frequency) and space (10 m. radio range), and long dura-
tion. Since we conducted the experiment, we know what
nodes were located in fixed locations, and what are both
the social and the interest groups, which allows us to build
scenarios satisfying the requirements above. To the best of
our knowledge, there are no other real contact traces pub-
licly available, supplying the same characteristics. The syn-
thetic trace (HD5) supplies an artificial (and thus well
known and manageable) yet realistic environment. It has
been produced with HCMM [4]. Both traces involve 44
nodes, moving over a 1000 
 1000 m2 area at pedestrian
speed (0.5–2 m/s). The traces duration spans 13 working
days, at 12 h per day (8:00 AM to 8:00 PM). In Table 1, the
characteristics of the two traces are reported. The PMTR
trace shows sedentary nodes with few long contacts, and
high inter-contact time (ICT). Though, over the observed
time window, all nodes run into each other. By contrast,
the HD5 trace describes closed communities connected



Fig. 7. (a) Location-based and (b) encounter-based communities in the PMTR trace.
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by 5 traveller nodes. Contacts are more frequent and
shorter than in the PMTR trace.

From those traces, we built scenarios with nodes
grouped according to their habits in terms of either visited
locations, or encounter habits; the former has been possi-
ble just with the PMTR trace, where we know the nodes
placed in fixed locations. To this purpose, the Louvain algo-
rithm [3] has been used, as it is considered one of the best
in the literature [10], it avoids grouping nodes in a giant
community, and it achieves greater modularity than other
algorithms in the literature. To extract location-centered
communities, a weighted graph G is obtained from the
contact trace, so that an edge exists between two nodes
if one of them is a fixed location, and the other has ever
met that location at least once. The edge weight is the
mean duration of the contacts between the node and the
fixed location. For encounter-based communities, we run
the Louvain algorithm on both the PMTR and the HD5
trace, this time using the reciprocal of the ICT as edge
weight. The Louvain algorithm is supposed to detect
significant communities when the modularity is greater
than 0.4. The last two columns of Table 1 report the
modularities obtained in all cases, while Fig. 7 shows both
PMTR location-based and encounter-based communities.
The edge thickness is proportional to the weight. In
Fig. 7(a), the fixed nodes are represented as black squares.
White squares in Fig. 7(b) represent a social and interest
community of students in the same class year; its
orthogonality to the encounter groups enforces the
evidence that encounters and interests are not necessarily
correlated. With the HD5 trace, the Louvain algorithm
produces 7 encounter communities of size ranging
between 3 and 12 nodes.

6.2. Location-based BehaviorCast

In this subsection, we compare ICast with ProfileCast,
assuming that the interest is described in terms of custom-
arily visited locations. The five scenarios in Fig. 7(a) are
used.

6.2.1. Analysis of the scenarios
We start determining the best parameter settings for

ProfileCast in the considered scenarios. For each scenario,
we computed the similarity either between nodes belong-
ing to the considered location-based community (simIN),



Table 2
ProfileCast – similarity between nodes in and out of community.

hW ¼ 0:9 scenA scenB scenC scenD scenE

# nodes 5 5 10 12 12
simIN 0.2123 0.0197 0.2715 0.2537 0.2360
simOUT 0.2071 0.1211 0.1519 0.1703 0.1618
hPC 0.21 0.01 0.16 0.175 0.165

Fig. 8. Mean coverage and percentage of uninterested nodes receiving the
message, for different values of hPC in (a) scenA and (b) scenB.
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or between nodes belonging to that community and nodes
outside of it (simOUT). The time slot used to build associa-
tion vectors is 12 h. Results are shown in Table 2, for
hW ¼ 0:9; mind that hW determines the degree of summa-
rization of the nodes’ behavior. The shown values are aver-
aged over all possible pairs of nodes and are computed at
the end of the experiment, that is, after 13 association vec-
tors were collected. We also considered hW ¼ 0:7 and
hW ¼ 0:8: in all cases, variations are negligible, in the order
of 0.6% on average. We decided to use hW ¼ 0:9 in the rest
of the paper.

As it can be observed, for all, but one, scenarios simIN is
greater than simOUT, thus correctly individuating commu-
nities of nodes with similar mobility behavior. These eval-
uations directly impact on the setting of the similarity
threshold (hPC) and can have heavy influence on the algo-
rithm performances and efficiency, (see, Section 6.2.2).
The setting of the value of hPC might depend on the specific
location-based community to be addressed, and also on the
day we are considering. This makes the choice of the
appropriate setting very tricky because nodes have no a
priori knowledge of the overall system behavior.
6.2.2. Sensitivity of ProfileCast to hPC

In this section, we analyze how the choice of hPC

impacts on the performance of ProfileCast. Coherently with
the setting proposed in [15] we consider, for the different
scenarios, hPC ¼ 0:5 and we compare the influence of this
setting against a new set of values obtained from the eval-
uation of simIN and simOUT, as reported in Section 6.2.1. In
fact, the proper value for hPC should be simIN >

hPC > simOUT , in order to try to maximize coverage for
the considered target community, while avoiding bother-
ing uninterested nodes. The incorrect delivery of a message
to an uninterested node causes a waste of node’s resources
in terms of memory, processing, energy and radio channel.
The percentage of uninterested nodes in the system receiv-
ing the message is an indirect global estimate of such inef-
ficiency. In the following measures, sources are all and only
the nodes in the target community.

In Fig. 8, the behavior of the coverage is shown for two
different scenarios and different values of hPC . When the
ratio between simIN and simOUT is greater than 1
(Fig. 8(a)), the coverage is very stable also for values of
hPC not perfectly fitting with the criteria above, that is,
either slightly greater than simIN or lower than simOUT.
Nonetheless, with a higher value (namely hPC ¼ 0:5), the
coverage drastically drops. Scenarios scenC, scenD and scenE

behave similarly to scenA. If, by contrast, similarities are in
the reverse relationship (Fig. 8(b)), hPC must be low enough
to guarantee that the interested nodes are reached. The
effects of this choice affect resource saving: the number
of nodes not belonging to the target community and
receiving the message in spite of this behaves exactly the
same as coverage. In scenB, a high coverage (> 80%) is
achieved when no threshold is set, thus resorting to a
broadcast. In this case, 33 out of the 39 uninterested nodes
– the 84% – receive the message.

In general, the value hPC ¼ 0:5 proposed in [15] turned
out to be unsuitable to perform adequately in the PMTR
scenarios. A viable policy to adapt its value to unpredict-
able conditions seems to be hardly identified. This inability
might be paid with high waste of communication, energy
and processing resource.
6.2.3. ProfileCast and ICast with location-based communities
Last line of Table 2 shows the value of hPC we adopted

for comparison between ProfileCast and ICast. The values
are chosen in order to maximize coverage while limiting
the useless message exchanges. For all the scenarios with
simIN > simOUT this is coincident with a value equal to
simOUT þ e for small e.

The performances of the three algorithms differ in
terms of both coverage (Fig. 9(a)) and resource waste
(Table 3). For all scenarios, ProfileCast is unable to reach
the same coverage as both bICast and wICast, while at
the same time it delivers the messages to a ratio of uninter-
ested nodes higher than the relays used by both ICast. In
order to correctly interpret the results in Table 3 – aver-
aged over all scenarios – it is worth to point out that the
number of hops performed by a message is measured



Table 3
Location-based communities – resource usage for different algorithms.

Uninterested
nodes (%)

Gain
(%)

Transmissions/
node

Gain
(%)

#
Hop

ProfileCast 62.6 1.003 3.07
bICast 47.4 24.3 1.105 �10.1 2.91
wICast 35.1 43.8 0.764 23.9 4.73

Fig. 9. Comparison between ProfileCast and InterestCast in terms of (a)
obtained coverage, and (b) latency.

Fig. 10. (a) Ucol values in different scenarios for the PMTR trace and (b)
utilities U for all nodes in SocialCast (Eq. (2)).
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when a copy of it is received at a destination. Yet, content
diffusion occurs along a sort of a tree structure springing
from the source; the number of nodes not in I receiving a
message, and the number of transmissions performed by
nodes, are counted for all tree branches, even for those that
do not lead to a destination. Furthermore, in the case of
ICast, uninterested nodes are involved in the forwarding
process not because the message is erroneously delivered
to them – as in ProfileCast – but because they are useful
bridges to reach the target community. wICast shows the
best performance in terms of both coverage and resource
saving at nodes: just 35% of the nodes not in I are involved
in the message forwarding (that is, around 12 nodes), thus
achieving a gain of almost 44% with respect to ProfileCast
in terms of memory usage at uninterested nodes. As far
as energy saving is concerned, while nodes perform around
1 message transmission with ProfileCast, bICast is a bit
more exigent, while wICast achieves a gain of almost 24%
in battery usage. This is due to a more clever choice of
the relays, due to the adopted utility function that magni-
fies the differences amongst candidate forwarders. In this
perspective, the mean number of hops can be correctly
interpreted: wICast takes paths straight to the destina-
tions, by just involving the nodes needed to this aim, and
succeeds in reaching also destinations ‘‘difficult’’ for other
approaches.

In Fig. 9(b), we show the latency to reach the maximum
coverage of recipients for the two protocols. The latency
obtained by bICast is apparently higher than that of Profile-
Cast, but this is due to the fact that it is evaluated on the
reached destinations, and bICast obtains a higher coverage.
For a fair comparison, we evaluated the bICast and wICast
latency by truncating the message diffusion when the
same coverage as ProfileCast is reached. We can observe
that bICast takes approximately the same or less time to
reach the same number of destinations as ProfileCast. We
conjecture that for ProfileCast, the involvement of uninter-
ested nodes – which become on their behalf message for-
warders to nodes similar to themselves (rather than to the
source) – introduces a factor of ‘‘deviation’’ from the path
to the targeted recipients. Truncated wICast spends a time
slightly greater than that of truncated bICast. This is partic-
ularly evident in case of scenB: mind that scenB has a
reversed ratio between simIN and simOUT. In spite of being
an unfavorable setting for ProfileCast, wICast reaches
almost all destinations; yet, waiting useful relays to them
requires more time. In summary, under the considered sce-
narios, ProfileCast reveals both less effective and less effi-
cient than the two ICast algorithms.
6.3. Social-based BehaviorCast

In this section, we compare ICast and SocialCast, when
the interested nodes belong to the same encounter



Table 4
SocialCast – reference scenarios.

PMTR HD5

Scenario Size Ucol IN Ucol OUT Scenario Size Ucol IN Ucol OUT

scenC 3 0.046 0.017 scenA 3 0.111 0.002
scenJ 5 0.0517 0.0358 scenC 5 0.027 0.008
scenL 9 0.1308 0.0567 scenG 9 0.071 0.021
scenG 8 0.1489 0.0586
scenH 11 0.1324 0.0774
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community. As communities, we use a subset of those
emerging from the clusterization described in Section
6.1; they are shown in Fig. 7(b) for PMTR. Besides, in PMTR
we considered two scenarios scenG and scenH that are two
real communities of users bound by common interests: a
group of students in the same class year, and the group
of researchers in Computer Networks respectively. Both
are distributed over six encounter-based communities;
scenG is represented in Fig. 7(b) by white squares. As an ini-
tial step, we analyze the sensitivity of SocialCast to the
parameter setting, and we determine good values for the
parameters of the Kalman filters in the considered scenar-
ios. Throughout this section, some parameters are however
fixed. Namely, the period s for state sampling is set equal
to the period T for interest dissemination, whose value is
20 s. as in [7]. The weights associated to bUcol and bUcdc in
Eq. (2) are wcol ¼ 0:75 and wcdc ¼ 0:25 as in [7]. SocialCast
allows senders to generate c copies of a content; for the
sake of comparison, we set c ¼ 1.
4 Mind that both Ucdc and Ucol are in the range [0,1]. In particular, Ucol

only provides a qualitative indication of familiarity with target nodes,
instead of quantitative, i.e., it does not discriminate between nodes
encountering either one, or several destinations. Recall the argumentation
of Section 5 concerning wICast.
6.3.1. Analysis of the scenarios
For every scenario, the median value of both Ucdc and

Ucol was 0 for all nodes for both PMTR and HD5 traces. A
median 0 for Ucdc means that – for more than half of the
samples – in two consecutive samples a node has no neigh-
bors; a median 0 for Ucol means that a node has no neigh-
bors in I for more than half of the samples. On the other
hand, there could be encounters or changes occurring
between two consecutive samples that pass completely
disregarded.

In Fig. 10(a), Ucol is reported for the different scenarios
of the PMTR trace: either averaged for all nodes in the com-
munity of interested users (Ucol IN), or for the nodes out-
side that community (Ucol OUT). Scenarios scenA, scenB

and scenI have a value of Ucol greater for nodes outside I
than for the members of I. We decided to discard those sce-
narios, as they violate the SocialCast assumption. This also
occurs with the HD5 trace. The scenarios selected for the
simulations, and their characteristics, are summarized in
Table 4. In Fig. 10(b), we show the behavior of the Social-
Cast utility function for all nodes in an HD5 encounter-
based community of 12 nodes. Predictions have been
obtained by setting the measurement noise covariance R
to 1 and the process noise covariance Q to 10�5 for both
Kalman filters. This plot explains the performance of
SocialCast discussed in Section 6.3.2. It is evident that util-
ities are not well differentiated. For a source not belonging
to the community where destinations reside, passing the
message to travellers is really difficult. Indeed, travellers
move around and encounter the destinations far less than
the sedentary nodes belonging to the target community,
which have Ucol 10 times greater than the other nodes.
And, travellers have a lower Ucdc , as they may not encoun-
ter any node while moving between communities, while
sedentary nodes continuously run into other nodes in the
same community and their neighborhood changes. In fact,
throughout the HD5 trace, travellers have 2213 encounters
on average, while sedentary nodes observe 6881 encoun-
ters on average. That is, SocialCast fails in characterizing
weak ties, as utility values are very similar.4 Results with
the PMTR trace are more fuzzy but provide the same
indications.

Fig. 11 motivates our choice for R and Q: we compare
the Ucdc samples and the predictions bUcdc for a node with
the PMTR trace and two different settings of the covari-
ances. Similar results are achieved also for the HD5 trace,
and for Ucol and bUcol in all scenarios. A high value of Q
and a low value of R produces predictions more noisy
and quickly changing according to the samples. Yet, as
many sampling are done when nodes have no neighbors,
this setting risks to yield many predictions equal to 0. As
a consequence, no discrimination would be possible
between relays and SocialCast might degrade to a Direct
Contact policy. In this work, we thus adopt R ¼ 1 and
Q ¼ 0:00001. Some experiments with the reverse setting
show that it dramatically affects performance in terms of
low coverage and high latency, because nodes are less able
to choose appropriate relays.

We also analyzed the impact of the hysteresis e used to
decide whether to forward a message (Section 3.2). With
an hysteresis of 0.01, coverage decreases of 1–1.5%, but
latency considerably increases up to 70% because several
forwardings are prevented due to very similar utilities.
Therefore, in the sequel we use e ¼ 0.

6.3.2. SocialCast and ICast with encounter-based communities
In the following measures, all nodes in the system act as

source of messages to the members of the considered sce-
nario; every source generates one message per hour. In
Fig. 12, we compare the performance of SocialCast, bICast
and wICast in the PMTR scenarios. According to the consid-
erations above, SocialCast is less effective than both flavors
of ICast in reaching the destinations as it takes inappropri-
ate paths, particularly when the communities of the
source and the destination differ. In fact, sources in the



Fig. 11. Comparison between Ucdc and bUcdc with (a) R ¼ 1 and
Q ¼ 0:00001, or (b) R ¼ 0:00001 and Q ¼ 1.

Fig. 12. (a) Coverage and (b) mean number of hops to destinations with
the PMTR trace.

Fig. 13. (a) Mean number of hops and (b) latency to destinations with the
HD5 trace.
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community of I achieve a coverage 15% higher than exter-
nal sources, on average. This drawback of SocialCast yields
longer paths (Fig. 12(b)). In comparison to the truncated
versions of both bICast and wICast, latency is 10% higher;
this is also due to the fact that in most of the interest
dissemination phases there is no interested neighbor or
no neighbors at all. The number of existing copies of the
content is roughly 37% less than bICast and wICast.
Though, this does not indicate a clever resource usage of
SocialCast; rather, it confirms our consideration: content
is replicated just when either a destination is reached, or
a reached destination is also a relay and it encounters a
more useful node (Fig. 4). The low number of copies con-
firms that SocialCast forwards the message along a series
of relays without encountering any destination.

The closed communities of HD5 even better emphasize
this behavior (Fig. 13). The SocialCast mean coverage is
around 64% of the destinations, while both bICast and
wICast obtain a coverage 45% higher, that is, 93% of the
destinations. Sources within the target community show
a coverage 22% higher than external sources. A long time
is spent before selecting a suitable next relay and paths
are tortuous.

Finally, we validate through simulations the property of
Eventual Termination. Fig. 14 shows both the number of
transmissions and the cumulative number of reached
recipients over time for bICast, with PMTR. The former
index is measured as the number of forwarding operations
in ‘‘slices’’ of 2000 s. of simulation: every 2000 s. we count
the number of message forwarding operations occurred
from the end of the previous sample. In Fig. 14, results con-
cern scenL with a source external to the social communities
to which the recipients belong. Interestingly, the algorithm
shows a sort of autonomic ability to self-stabilize; in
fact, the number of transmissions decreases as the number
of reached recipients increases. This is motivated by



Fig. 14. Performance in terms of transmissions and reached recipients, for scenL of PMTR, and an external source.
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observing that messages are forwarded from lower to
higher utility nodes and are then removed from the buffers
of forwarders; this gradually leads to confining message
copies only in the buffers of nodes with high utility for I ,
which have reduced forwarding opportunities. It is worth
to notice that communication gradually turns off before
the message lifetime is reached, that is, it settles down
when all interested users are reached.
7. Conclusion

In this work, we introduce the BehaviorCast communi-
cation paradigm, in which the binding content-recipients
is not provided by the sender (in the classical IP-addressing
style), but directly executed by specific recipients with an
interest in a tagged content. We propose the ICast algo-
rithms to solve the problem. ICast provides a new form
of content-driven addressing and has been explicitly
devised to operate over Opportunistic Networks of individ-
uals. ICast uses utility functions expressly designed to find
weak ties allowing to connect different communities and
chase target destinations wherever they are, indepen-
dently from locations or social communities, thus provid-
ing a very general solution to the problem. We show by
means of both analysis and simulations the remarkable
performance of the proposed algorithms in comparison
with similar approaches presented in the literature. In par-
ticular, the experiments show the superior capability of
ICast of appropriately capturing human behaviors and of
adequately exploiting them for content diffusion.
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