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Abstract—Cloud Providers are nowadays the most popular
way to quickly deploy new services on the Internet. Understand-
ing mechanisms currently adopted in cloud design is fundamental
to identify possible bottlenecks, to optimize performance, and to
design more efficient platforms.

This paper presents a characterization of Amazon’s Web
Services (AWS), the most prominent cloud provider that offers
computing, storage, and content delivery platforms. Leveraging
passive measurements collected from several vantage points in
Italy for several months, we explore the EC2, S3 and CloudFront
AWS services to unveil their infrastructure, the pervasiveness of
content they host, and their traffic allocation policies.

Measurements reveal that most of the content residing on EC2
and S3 is served by one single Amazon datacenter located in
Virginia despite it appears to be the worst performing one for
Italian users. This causes traffic to take long and expensive paths
in the network. Since no automatic migration and load-balancing
policies are offered by AWS among different locations, content
is exposed to outages, as we were able to observe in our data.

The CloudFront CDN, on the contrary, shows much better
performance thanks to the effective cache selection policy that
serves 98% of the traffic from the nearest available cache.
CloudFront exhibits also dynamic load-balancing policies, in
contrast to the static allocation of instances on EC2 and S3.

Information presented in this paper will be useful for develop-
ers aiming at entrusting AWS to deploy their contents, and for
researchers willing to improve cloud design.

I. INTRODUCTION

Last years witnessed the growth of cloud-based services

that provide computing, storage and offloading capabilities

on remote datacenters, offering the opportunity to customers

to reduce costs by virtualizing hardware management. The

leading position in this panorama is taken by Amazon, which

offers a large gamma of cloud-based services, named Amazon

Web Services (AWS). Active since July 2002, they offer

computing and storage cloud solutions. The most well-know

Amazon cloud services are “Elastic Compute Cloud” (EC2),

and “Simple Storage Service” (S3), with “CloudFront” (CF),

the Content Delivery Network (CDN), that has augmented

Amazon’s portfolio in late November 2008.

Following the definitions provided in [1], AWS represents

an Infrastructure Provider, and EC2 and S3 correspond to

Infrastructure as Service products. In other words, through

virtualization, a large set of computing resources, such as

storing and processing capacities can be split, assigned, and

dynamically sized to satisfy customers’ demand. Customers

are represented by companies aiming at offering their content

without carrying on costs and risks of building and managing

their own hardware and infrastructure. Given the great scala-

bility and extremely low costs of pay-as-you-go cloud services,

many successful companies like Dropbox, Zynga and Netflix

to name a few, have been attracted by AWS and successfully

relies on them. Amazon indeed represents today one of the

largest source of traffic in nowadays Internet, accounting for

about 3.1% of the total HTTP/HTTPS traffic flows, i.e., one

fifth of Google’s [2].

Given its success, AWS has gained a large interest within

the research community. In particular, many works specifically

focus on the possibility of exploiting AWS EC2 for research

purposes [3], [4]. Other works instead focus on evaluating

the performance of AWS computing and networking virtual

resources [5], [6], [7]. However, to the best of our knowledge,

all the previous works focus on the benchmarking of AWS

services and infrastructure, and they all rely on “active” prob-

ing. What is missing is the characterization of Amazon Web

Services as perceived by the end-users, where the actual work-

load and performances can be evaluated by means of “passive”

observation of traffic. Only by the passive characterization

of services it is possible to discover eventual performance

degradation and, most of all, to gauge their impact on end-

users.

The goal of this paper is thus to provide an extensive

study of AWS through the passive analysis of network traffic

collected from our University campus and from three large

Points of Presence (PoP) of an Italian national-wide Internet

Service Provider (ISP). Our datasets span more than 60 days

during which the traffic generated by more than 50.000 end-

users has been observed.

In this work, we dig into a one week long portion of our

dataset with a twofold goal: first, we shed light on the AWS

infrastructure itself, proposing a simple yet accurate method-

ology to reveal the number of datacenters, their locations, and

resulting traffic allocation policies. Second, we evaluate which

are the services that run on AWS, and how they are accessed

by end-users. Notice that providing such characterizations

is a challenging task due to the nature of cloud services,

where encryption schemes and proprietary solutions are very

common, and virtualization allows to share resources and

dynamically move content and services over time.

This paper represents the first attempt of observing the

Amazon cloud from passive measures. We follow the direc-

tion suggested by other works that provide a characteriza-

tion of popular services such as social networks [8], [9] or

YouTube [10]. Our main findings are:

• Among the seven EC2 and S3 datacenters, the one placed
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in Virginia, close to Washington DC, is the most used one,

hosting more than 6.000 EC2 virtual machines and 120 S3

nodes regularly accessed by end-users. It handles alone 85%

of total traffic generated by EC2 and more than 64% for S3 –

serving daily more than 15TB of data to the ISP end-users in

Italy. Surprisingly, the datacenter in Ireland is not the preferred

one, and it serves only about 20% of AWS traffic to Italian

end-users.

• Web companies that offer their contents from EC2 and S3

systems tend to rely upon one datacenter only. This makes the

network to pay the large cost of carrying information to far

away end-users. Moreover, it represents a large risk in case

of failures, since no automatic load-balancing and migration

are offered by AWS. This is confirmed by the results we

provide about the outage happened on the 30th of June 2012,

in Virginia.

• Performance of datacenters in terms of response time (for

EC2) and goodput (for S3) show that the most popular data-

center is also the worst performing one. Evidence shows that

some contents suffer because of under-provisioned instances,

but we cannot exclude that the whole infrastructure may be

overloaded.

• Considering CloudFront, 24 out of 33 different world-wide

caches that build the CDN infrastructure have been spotted in

our traces. However, the cache selection policies adopted by

CloudFront wisely serve 98% of traffic from the cache placed

in Milan, the closest to Italian end-user. The remaining 2%

of traffic comes from worldwide caches. This happens to be

due to CloudFront directing traffic to other caches for load-

balancing purpose. A minimal fraction can be due to incorrect

DNS configuration of end-user Clients [11].

We believe this paper provides useful insights about the

infrastructure offered by AWS, helping in understanding the

properties of services relying on cloud-based platform EC2, S3

and CloudFront. Provided information may result worthwhile

for developers aiming at entrust AWS to deploy their contents.

The rest of this paper is organized as follows: Sec. II

describes products offered by AWS, and Sec. III overviews

the data collection procedure and the datasets we study. In

Sec. IV and Sec. V we present the techniques and the metrics,

respectively, we employed for the analysis of our datasets.

We then show the results of our study, starting with a spatial

characterization of AWS infrastructure (Sec. VI), moving on

the analysis of properties of hosted contents (Sec. VII) and

ending with the performance evaluation of AWS platform

(Sec. VIII). Finally, Sec. IX concludes the paper.

II. AMAZON WEB SERVICES PRIMER

Amazon Web Services offers on-demand cloud computing

services to web companies. Often AWS is accessed through

HTTP, REST and SOAP protocols. In addition TLS/SSL

encryption is optional to guarantee privacy on network com-

munications. Throughout this paper we focus on the three most

popular AWS services which are used by Amazon’s customers

to reach the end-users:

•EC2 is an on-demand virtual computing environment sup-

ported by Xen virtualization [12]; EC2 lets customers rent

free-to-use virtual machines, called instances, to run any ap-

plications. EC2 instances can be allocated on seven datacenters

(called also Availability Zones by AWS terminology1) world-

widely distributed. Customers can choose any Availability

Zone as support for their instances. Inside the Availability

Zone, AWS provides an optional DNS-based load-balancing

service, called Elastic Load Balancing, whose task is to

uniform the workload over rented instances. To the best of

our knowledge, no automatic tool for migration of instances

among different Availability Zones has been implemented yet.

Examples of web applications relying on EC2 are social-

gaming applications like Zynga and Playfish, or social net-

works like FourSquare.

• S3 offers storage services through standard interfaces (REST,

SOAP, and BitTorrent). Data are stored by means of “objects”

whose size can span from 1B to 5TB each. S3 is reported to

store more than a trillion objects as of June 20122. EC2 and

S3 are co-located in each Availability Zone.

• CloudFront is the Amazon’s Content Delivery Network

(CDN) for distributing content from locations near to end-

users, thus guaranteeing low latency access and high data

transfer speeds. CloudFront can deliver dynamic, static as well

as streaming content, using a unknown number of caches

placed at Internet Exchange Points around the globe. An

example of application supported by CloudFront is Insta-

gram, which exploits CloudFront network to distribute user-

generated content among end-users.

III. DATASET

We rely on passive measurements to characterize AWS

services in operational networks. We employ Tstat, the open-

source traffic monitoring tool developed at Politecnico di

Torino, to analyze packets exchanged by actual end-users

inside monitored vantage points [13].

Tstat was installed in four different vantage points where

it has been collecting measures from April to June 2012,

observing more than 50.000 end-users normally accessing

the Internet. The resulting dataset is large enough to reveal

significant information about AWS infrastructure as well as

about end-users’ habits and performance of the content served

by the AWS cloud.

For the sake of brevity, being the goal of this paper the un-

derstanding of AWS, we restrict our analysis on measurements

obtained from Home 1 PoP, an ISP PoP in a large city in Italy,

where about 15.000 ADSL lines are active. The entire week

starting from April 1st, 2012 is considered, during which 6M

TCP connections where directed to AWS servers, for a total of

more than 340GB of data exchanged overall. We have repeated

the analysis considering traffic from other two ISP PoPs and

from our Campus network, and at different periods of time. We

found that findings from Home 1 are general and not biased,

1http://aws.amazon.com/about-aws/globalinfrastructure/
2http://aws.typepad.com/aws/2012/06/amazon-s3-the-first-trillion-

objects.html
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being the results collected from the other datasets practically

identical. We acknowledge that some of the results presented

in this paper are biased by observing AWS traffic from a single

country. Naturally, we expect some of the results to change

based on different cultural influence and geographical location

of the vantage point.

IV. ANALISYS METHODOLOGY

Several challenges have to be faced when passively monitor-

ing cloud services: the separation between content and server

makes it hard to identify which content is actually accessed by

the end-users, and in which datacenter the server delivering the

content is placed. In cloud services indeed, virtualization, load-

balancing and migration techniques do not allow to simply rely

on information collected from the Network Layer to identify

the content, i.e., the server IP address and its official owner

(retrieved from whois) give no information on the content

being used.

In addition, the increasing adoption of TLS/SSL encryption

by large content providers (including most of those running in

the AWS platforms [2]) makes classic Deep Packet Inspection

(DPI) useless.

For example, consider the same AWS server hosting

www.acmegame.com and www.acmeshop.com content over

HTTPS. The IP addresses of instances hosting them allow

only to identify that both are handled by AWS (being the IPs

registered to Amazon). Hence, no indication about handled

contents can be achieved looking at information from Network

Layer. Furthermore, identifying which datacenter is being

used, and where it is located is not trivial.

A. Content Discovery

To identify the content retrieved by end-users from a

AWS server, Tstat has been augmented to implement DN-

Hunter [14], in such a way that the improved Tstat snoops

DNS queries performed by clients to resolve URLs, and uses

this information to tag network flows extracting the right

Fully Qualified Domain Name (FQDN). In the example above,

end-user’s client has first to resolve the www.acmegame.com

hostname into a list of IP addresses by contacting the DNS

server. Obtained the list of IP addresses, the client contacts

one of them to fetch the actual content. DN-Hunter caches

all DNS responses, and associates the original hostname to

the actual server IP addresses being contacted, associating

www.acmegame.com to the observed TCP flows. This key

feature allows Tstat to recover the original content name

requested by the client and being served by an AWS server.

Details on DN-Hunter are out of scope of this paper, and can

be found in [14].

B. Datacenter and Service Discovery

To identify the AWS traffic, and which platform is serving

it, we adopt a the following methodology. First, we proceed

isolating all known Amazon’s IP addresses as listed by the

MaxMind3 organization database, or equivalently returned by

3http://www.maxmind.com/app/ip-location

the whois database. Once Amazon IP addresses are identified,

we differentiate the traffic by EC2, S3 or CloudFront services.

Also in this case, we rely on the information provided by

the DNS. AWS indeed follow a strict naming rule for EC2:

the instance IP address a.b.c.d is registered with a Type-

A DNS record as ec2-a-b-c-d.XXXXX.amazonaws.com, where

XXXXX is a variable string. A simple DNS reverse lookup

from the IP address allows to discover that a.b.c.d hosts an

EC2 instance.

Unfortunately, the Type-A record for an IP address of

S3 and CloudFront does not always reveal which service

that server is providing. Hence, we employ a technique we

called IP-knocking: a HTTP HEAD request is sent to inspect

the Server field returned in the HTTP response; either

AmazonS3 or CloudFront are always returned in the

HTTP response, allowing easy classification of the service

hosted by that IP address.

We have found that the address space used by CloudFront

and S3 servers is separated. Furthermore, we have verified

that the allocation of IP addresses to these services is “static”,

allowing IP-knocking to be performed once for each IP

address.

Notice that IP-knocking cannot be employed for EC2 since

instances are managed by Amazon’s customers who are free

to run different Operating Systems as well as different HTTP

servers.

IP-knocking and name reversing have been performed over

any detected Amazon IP address in our datasets, letting us

identify every IP address associated to EC2, S3 and Cloud-

Front.

C. Server Geolocation

Last problem to solve is to geolocate the servers. Geoloca-

tion of IP addresses represents a well-known problem. Com-

mon public databases, such as RIPE4, ARIN5 or MaxMind,

do not represent reliable sources when seeking for information

about the physical location of a machine associated to a given

IP address [15].

A simple, yet accurate, approach is to exploit again informa-

tion provided by the Type-A DNS record assigned to servers

by Amazon administrators. Indeed, the Type-A record returned

when performing the reverse lookup of AWS IP addresses

often unveils information about server placement. In particular,

the standard International Air Transport Association (IATA).

airport location identifiers are used by Amazon in the form

server-a-b-c-d.AIR.r.cloudfront.net, where AIR is the IATA

airport code of the nearest large airport. Unfortunately, not

all Type-A entry of AWS servers include the IATA code, e.g.,

s3-1.amazonaws.com.

To geolocate IP addresses for which no IATA code is found,

we rely on active traceroute. Intuitively, when running

traceroute towards a given target IP address, we look for

the DNS names of routers returned along the path. Many of

4http://www.ripe.net/db/index.html
5http://www.arin.net
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these names reveal routers’ location. We call the last router

on the path for which location is revealed a pivot router. It

represents the closest router to the targeted AWS IP address

whose geographical position is known. The difference of RTT

from the pivot to the targeted IP address is a measure of the

geographical distance among the two nodes, so that the smaller

delay, the smaller their distance. This allows to position IP

addresses close to well-known locations. The approximation

obtained by running this simple algorithm have been proven

to be almost perfect on those AWS servers whose position

has been cross-checked via the IATA code (RTT errors below

1ms on average). Due to lack of space, we do not provide

performance evaluation of the algorithm in this paper.

In the remainder of this paper, we use IATA codes to identify

datacenters instead of conventional names of AWS Availability

Zones.

V. MEASUREMENTS DEFINITION

A. Per-flow Metrics

In our study we consider each TCP flow that Tstat passively

tracked. When running on the vantage point, Tstat observes

packets, rebuilds each TCP flow, tracks it, and, at the flow

end, logs more than 100 metrics [13]. Among the different

measurements, we consider the server IP address, its FQDN

as retrieved by DN-Hunter, the flow RTT, the amount of

bytes exchanged at the Application Layer, and the presence of

TLS/SSL at the Presentation Layer. These metrics are straight-

forward to monitor and we direct the reader to [13] and

references therein for more details.

More complicated metrics can be extracted from the log

files. In particular, we define:

1) Response Time: it is the time a server employs to start

sending the reply after receiving the first request from a client.

Let TAck be the timestamp of the first TCP ACK message

sent by server with relative ACK number greater than 1, i.e.,

acknowledging the reception of some data sent by the client.

Let TReply be the timestamp of the first TCP segment sent by

the server and carrying application data.The response time is

defined as

∆R = TReply − TAck. (1)

For HTTP flows, it represents an estimation of the time the

server takes to elaborate and to transmit the response to

the first HTTP request6(e.g. an HTTP response). For HTTPS

flows, ∆R represents the time taken by the server during the

SSL handshake to send the first SSL message.

2) Flow Goodput: it is defined as the rate at which informa-

tion generated at Application Layer by the server is delivered

to the client. Let TFirst and TLast be the timestamps of the

first and the last packet sent by the server and carrying data.

Let D be the size of effective data sent by the server. The

6The response time estimation can be affected by client requests that are
longer than 1 TCP segment. We assume these cases are independent from the
server, thus they do not bias the comparison.

server goodput is thus defined as

G =
D

TLast − TFirst

. (2)

To avoid the bias of short-lived flows and of Persistent-HTTP

requests, the server goodput is evaluated only on flows in

which the client sent exactly one data packet, and for which

D > 500kB. Notice that HTTPS flows are automatically

filtered out (requiring more than 1 data packet on the client

side to complete the SSL handshake).

B. Network Cost

We aim at evaluating the cost sustained by the Internet to

transport data generated by AWS servers to the monitored

end-users. To this extent, we define the Network Cost as the

weighted average of the distance traveled by information units.

Formally, given a flow, let b(c, s) be the number of Application

Layer bytes a client c exchanges with a server s, and let d(c, s)
be the distance between client c and server s. The resulting

network cost β(s) for a given server s is computed as

β(s) =

∑
c d(c, s)b(c, s)∑

c b(c, s)
. (3)

The average network cost of servers in a datacenter S results

β = E[β(s)|s ∈ S]. (4)

Observe that distance d(c, s) can be defined in different

ways, e.g., considering i) the average RTT, ii) the number of

traversed AS on the path7 or iii) the geodetic physical distance,

leading respectively to dRTT (c, s), dAS(c, s), dkm(c, s). Given

these different definitions, we can obtain different network cost

metrics βRTT , βAS , βkm, respectively.

VI. SPATIAL CHARACTERIZATION

We start by providing some aggregate information about the

spatial distribution of datacenters, the traffic they generated

toward monitored end-users, and its cost for the network.

Table I provides the breakdown of the AWS traffic distin-

guishing the identified datacenters.

A. EC2 and S3

the top part of the table reports the list of locations where

both EC2, S3 services were detected. Those located in Virginia

(IAD), Ireland (DUB) and California (SJC) appear to be the

largest datacenters hosting AWS from the point of view of our

vantage points placed in Italy.

Several observations hold. Focusing on the size of data-

centers, observe how the number of detected IP addresses

associated to EC2 service is much larger than to any other

service. This is due to the nature of EC2 service itself, that,

thanks to virtualization, is capable of allocating, re-sizing

and switching on/off independent EC2 instances, in general

each provided and reachable by a different public IP address.

S3 and CloudFront, instead, offer storage services that are

7The number of traversed AS is obtained running a traceroute and checking
the AS of returned routers.
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D
at

ac
en

te
rs

ID #IPs Exchanged Data (%) Avg. RTT [ms] βRTT [ms] βAS βkm [km]
EC2 S3 EC2 S3 EC2 S3

IAD 6429 121 85.31% 64.22% 132.13 113.97 116.18 3 6709
DUB 1167 24 12.65% 35.14% 45.10 48.73 43.77 3 1365
SJC 632 12 1.71% – 203.06 182.14 174.81 4 9556
NAR 18 0 – – 298.67 – – 4 9843
SIN 71 0 0.03% – 235.60 228.10 – 3 10390
SEA 0 32 – 0.02% 196.04 – 214.79 4 8617

97.26GB 37.13GB
C

ac
h
es

ID #IPs Exchanged Data (%) Avg. RTT [ms] βRTT [ms] βAS βkm[km]
IAD 2 – 132.13 102.75 3 6709
DUB 222 0.05% 45.10 49.76 3 1365
SJC – – – – 4 9556
NAR 115 – 298.67 – 4 9843
SIN 51 – 235.60 – 3 10390
SEA 64 – 196.04 – 4 8617
SFO 253 0.83% 172.80 175.21 4 9537
CDG 246 0.13% 32.09 38.43 3 584
FRA 245 0.17% 19.56 21.87 2 566
MXP 232 98.03% 18.34 21.26 3 124
EWR 208 – 105.28 109.53 3 6380
AMS 205 0.04% 23.94 29.88 3 837
LHR 182 0.17% 31.84 31.60 3 920
ANR 151 0.56% 41.02 41.48 3 1734

104.19GB

Table I
SUMMARY OF AMAZON’S DATACENTERS HOSTING EC2, S3 SERVICES (TOP) AND TOP 14 CLOUDFRONT CACHES WE LOCATED (BOTTOM).

implemented at application level, and data are made accessible

through URI pathnames. The pool of IP addresses needed to

keep the service alive is much smaller then, as confirmed by

values in Table I.

The large unbalance in the number of instances (number of

IP addresses in EC2 column) suggests that the Availability

Zone located in IAD is the most popular among the ISP

end-users, i.e., the most employed by AWS customers to run

their EC2 instances. This suggests that IAD datacenter is

much larger than all the others.8. The column reporting the

fractions of data generated by EC2 services further confirms

this, being the IAD datacenter responsible for generating more

than 85% of the total amount of data produced by EC2. It is

7 times higher than the volume handled by the DUB (Dublin)

datacenter, the second largest in our ranking.

Interestingly, IAD EC2 (S3) generates more than 80GB

(23GB) of data traffic in one day. Considering the user

population of the monitored PoP, we can extrapolate that the

IAD datacenter serves about 15TB of data per day to the all

ISP end-users.

Surprisingly, such large amounts of data are exchanged with

such a distant location. Given that Ireland is much closer

to Italy than US, indeed, one may expect to be DUB the

best candidate to host EC2/S3 instances for serving Italian

(and European) end-users. All but βAS network cost metrics,

indeed, look sizeable for IAD, from 233% to 491% more

expensive than the DUB datacenter. This may suggest that

AWS customers, for the sake of a simple management, are

more oriented to deploy their services on one Availability

Zone. IAD may represent the first choice for AWS customers

because of its lower price9.

8Confirmed by http://aws.amazon.com/about-aws/globalinfrastructure/
9http://aws.amazon.com/ec2/spot-instances/
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Figure 1. Evolution over time of data traffic volume (top) and traffic flows
(bottom) for EC2 service.

AWS offers load-balancing-based forwarders for incoming

traffic to enhance performance of instances, but no location-

aware policy is offered. Furthermore, recall that EC2 and

S3 services are statically allocated to Availability Zones that

are chosen by customers, and no automatic migration policy

for instances/objects among datacenter is provided. This at

the expenses of network cost, and, possibly, user experience.

Observe how βAS looks comparable for all Availability Zones,

suggesting that Amazon (and the ISP) have good peering

agreements with many providers.

We can enrich the picture about EC2 focusing on plots in
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Figure 2. Evolution over time of data traffic volume (top) and traffic flows
(bottom) for S3 service.

Fig. 1, where we report the evolution over time of the volume

of data traffic (top) and of the number of flows (bottom)

seen from the top three EC2 Availability Zones. One point

refers to a 4h long time interval; the first five days of the

dataset, starting from Sunday, April 1st, 2012, are reported.

Other datasets and periods of time show very similar trends:

a very periodic pattern that follows busy period of end-users.

IAD datacenter is consistently responsible for handling a much

larger amount of traffic with respect to DUB and SJC. This is

consistent with values presented in the top part of Table I, and

it confirms the static allocation of EC2 instances to Availability

Zones.

Same observation holds for S3 service, as reported in Fig. 2.

In this case, DUB exchanges an amount of data slightly lower

than IAD (notice the log scale that flattens differences).

Comparing the number of flows end-users exchange with

EC2 and S3 (bottom plot of Fig. 1 and Fig. 2, respectively),

it is possible to notice that S3 traffic is made of flows that

carry more data than EC2 flows, i.e., more elephants than

mice in S3, and vice-versa for EC2. This is confirmed by

observing the flow size Cumulative Density Function (CDF),

not reported here due to lack of space. Interestingly, comparing

the conditional CDF of different Availability Zones, marginal

differences are seen.

B. CloudFront

let us focus on CloudFront traffic breakdown, reported in

the second part of Table I. Interestingly, observe how biased is

the preference toward the MXP cache, located in Milan, which

results to be the best cache considering any definition of net-

work costs. As for most CDN, this confirms that CloudFront

relies on DNS load-balancing to direct the user to the closer

cache. Simply, whenever a client queries the local DNS server

for a CloudFront IP address, the local DNS server forwards
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Figure 3. Evolution over time of data traffic volume (top) and traffic flows
(bottom) for CloudFront service.

the query to the authoritative CloudFront’s DNS server, whose

reply will direct the client to the geographically closer cache.

This happens regardless the type of retrieved content.

This has been confirmed by running an active experiment in

which we resolved 100 different FQDN hosted by CloudFront

considering more than 2000 DNS servers scattered worldwide.

As a side discovery of this process, we identified 33 different

CloudFront caches, each hosting a /24 subnet. The bottom part

of Table I reports the top CloudFront caches whose servers

were detected in our passive measurements. Focusing on the

column reporting the location of detected caches, it can be seen

that EC2/S3 Availability Zones host also CloudFront caches,

even if ISP end-users are seldom directed to any of these.

Overall, we can conclude that the CDN policy selection of

CloudFront is very effective in directing ISP end-users to the

closest MXP cache. Less than 2% of traffic was delivered

from caches far away from end-users’ position. This can

be explained by the fact that some end-users could rely on

alternative DNS servers different from those provided by their

ISP; the Amazon Authoritative DNS would reply directing

traffic to caches located close to the used DNS server, but

eventually far from the ISP. For instance, both OpenDNS and

Google’s DNS servers causes requests from the ISP end-users

to be directed to FRA. This is consistent with findings in [11].

Fig. 3 reports the evolution over time of the volume of

data traffic (top) and of the number of flows (bottom) for the

top three caches, i.e. MXP, SFO and ANR. Regular patterns

are present for caches placed in Milan and San Francisco.

However this does not hold for ANR, in Stockholm, where it

presents an unusual peak on the third day of measurements,

precisely from 10pm of April 2 to 6pm of April 3. Investigat-

ing further, we verified that this was not due to some unusual

DNS end-users’ setting, but to an intentional change in the

Amazon DNS policies. Indeed, many end-users and contents
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Figure 4. Distribution of response time ∆R for EC2 (left), S3 (center) and CF (right) services.

that were typically available from MXP had been redirected

to ARN during that period. This is similar to what has been

observed for YouTube CDN [10].

While it is impossible to know why this happens, it is

observed that CloudFront policies are dynamic, in contrast

with the static allocation of the EC2/S3 content.

VII. CONTENT ANALYSIS

Around 50% of contents observed on CloudFront presents

a size smaller than 10kB, mostly probably being CSS or

JavaScript files employed for the rendering of web pages.

Other 20% of contents, which present a size larger than 100kB,

is binary data, e.g., Flash objects or images. Differences

between sizes of contents served by different caches are

negligible. Files hosted on S3 show in general the same size

distribution of files hosted by CloudFront. The average size

of contents distributed by CloudFront and S3 is 78kB for

both. Flows directed to EC2 carry smaller data in general,

being the 60% of them smaller than 1kB. These could be

small XML files or messages directed to APIs. For these files,

the TCP three-way-handshake and tear-down procedures last

longer than the data transfer. Even for EC2, no significant

difference among different locations is evident. The average

size of contents served by EC2 flows is 26kB.

IAD DUB

Service %Flows %Vol. Service %Flows %Vol.

zynga 14 5 wooga 24 4
farmville 13 6 invitemedia 18 3
playfish 9 3 cdn.com 6 0.2
widdit 6 1 360yield 6 0.1

chartbeat 3 >0.1 mydlink 2 >0.1
dropbox 0.4 59 wetransfer >0.1 16

Table II
THE TOP CONTENTS HOSTED BY EC2 BY NUMBER OF FLOWS OR VOLUME.

In Table II we report the most popular contents served

by EC2, i.e., those contents which are generating the largest

number of flows, or volume. The type of content/service is

quite heterogeneous, with the larger portion of flows gen-

erated by social games, such as Zynga, Farmville, Wooga

and DigitalChocolate, and by advertising companies, e.g.,

InviteMedia, 360yield. Notice how none of these services

is replicated among different Availability Zones, their traffic

coming exclusively from a single datacenter. The only notable

service we have found which is present on both IAD and SJC

datacenters is DigitalChocolate; it relies on the former for the

distribution and execution of games, while on the latter for the

management of system logins and subscriptions.

Considering the top services by volume, we can notice

the important presence of storage services like Dropbox and

WeTransfer. The former is responsible for 59% of volume of

data handled by EC2 alone, and it is only available from IAD!

Contents hosted by S3 presents similar properties of EC2.

S3 contents are in general services for storage, advertisement

and social games, but even in this case none of them results

distributed over different Availability Zones.

VIII. PERFORMANCE EVALUATION OF AWS

In this section we evaluate the performance of AWS on a

Availability Zone and on a content basis.

A. Availability Zones and Caches Performance Evaluation

Fig. 4 depicts the distribution of the estimated response time

∆R for EC2, S3 and CloudFront on left, center and right plot,

respectively. Top popular datacenters are shown. Data refer to

a single day of April 2012.

Focusing on the performance of different locations, EC2

in IAD shows values of ∆R larger than 100ms in 30% of

the cases, resulting the worst performing datacenter. These

plots combined with information about the large number of

IPs allocated on IAD might suggest that IAD is overloaded

because of the large number of hosted EC2 instances. How-

ever, the average bad performance of IAD could be caused by

popular and poorly performing contents running on congested

instances. We will return on this in Sec. VIII-B.

DUB appears to be the best choice among Availability

Zones for S3, while it competes with SJC in the case of EC2.

Since a sizable part of content hosted on EC2 is encrypted

using TLS/SSL (14% of flows), we report the response time

for HTTPS flows in left Fig. 4. Recall that ∆R is a measure

of the server reactiveness in the SSL handshake in this case.

Both IAD and SJC look very reactive, with 93% of the cases

responding to SSL initial negotiation almost with no delay.

This conflicts with the hypothesis of IAD being congested.

DUB instead shows large values of ∆R for 10% of the

flows, that we have found out to be due to a poor design of

proxy.eu.mydlink.com content. Flows directed to this content

suffer more than 10s of response time.
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This finding supports the idea that in general it is not

the entire EC2 datacenter to be congested, but rather some

instances running on it.

We complement results described above with Fig. 5 which

reports the evolution over time of E[∆R] for EC2 for a

period of one day for IAD and DUB. Measurements confirm

previous finding, with IAD consistently performing worse on

average than DUB. Notice that the average is i) a strongly non-

stationary measure (being it biased by the different contents

retrieved at different times), and ii) practically independent on

the datacenter load.

Moving to CloudFront, right plot in Fig. 4 shows in general

very good performance, being 83% of requests satisfied in

less than 20ms in the worst case, i.e., FRA. MXP and ARN

caches elaborate 80% of requests in less than 3ms; SJC and

FRA serve only 65% and 55% of request in less than 3ms,

respectively.

Fig.6 compares the distributions of goodput G. We compare

the performance of two main datacenters for S3, IAD and

DUB, together with CloudFront MXP cache. The plot shows

that more than 50% of flows get a goodput larger than 2Mbit/s

for S3 in DUB and CloudFront in MXP. For S3 in IAD, only

21% of flows can achieve a goodput larger than 2Mbit/s. This

difference can be due to the larger RTT running from our

vantage point to IAD, that affects the TCP congestion control,

thus, reducing achievable goodput.

B. Per-content Performance Evaluation

Fig. 7 reports the distribution of the response time ∆R for

different social gaming services hosted by different Availabil-

ity Zones. Notice that all social games hosted by IAD present

poor performance with respect to those hosted by DUB and
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Figure 8. Evolution during time of ∆R for two poorly performing contents
hosted on EC2.

SJC. This suggests again that IAD datacenter suffers from

congestion due the large number of instances it is hosting.

Observe how the instances of Farmville, a popular game, are

indeed performing poorly.

Congestion may affect single instances. For example, Fig.8

reports two examples of applications hosted by EC2 in DUB

that suffer large average ∆R. These two applications, Sam-

sungMobile and MyDlink, show really impaired performance,

with average response time higher than 2s. Recall that DUB

is the best performing Availability Zone in our measurements

(cfr. Fig. 4). This suggests that such poor performance is due to

a bad dimensioning of the instance, and not due to datacenter

issues.

At last, we show the impaired performance following the

outage of IAD datacenter on June 30th, 201210. We selected

two contents hosted at IAD, and a third one at DUB. The

plot shows that i) not all contents where affected by the IAD

outage, ii) it had no impact on DUB, iii) affected instances

suffer a 100 fold worse performance during the failure, and

iv) they kept suffering for performance issues for several hours

after the fault.

Focusing on the performance of CloudFront service, we

report in Fig. 10 the distribution of ∆R for different kinds

of contents that end-users downloaded from MXP cache.

Static refers to static content for web pages (e.g. HTML

files), js represents JavaScript files, img refers to binary data

such as images and Instagram is referred to contents related

to the well-known photo-sharing service. Aggregate reports

the behavior of all services together. As previously noticed,

CloudFront shows really good performance, being able to

10http://aws.amazon.com/message/67457/
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process 50% of requests in less than 2ms, independently on

the kind of content. However, ∆R is consistently better on

average for static and JavaScript files, whereas images and

Instagram contents show larger response time. This may be

due to the nature of the user-generated contents that are the

most critical to manage for content delivery services, because

of the size of the catalog, and of the small popularity of each

single content [16]. Finally, SSL flows show excellent ∆R,

suggesting that the cache, the path and the peering points are

not congested.

IX. CONCLUSIONS

We are the first, to best of our knowledge, to study the traffic

of Amazon Web Services (AWS) on the wild Internet. Our

analysis assessed the growth of interest for cloud-based plat-

forms, which, thanks to virtualization technology, represents a

scalable and inexpensive solution for many web companies.

Through the study of traces captured from live networks,

we confirmed that AWS represents a big player in nowadays

Internet, being responsible for the generation of a sizeable

portion of traffic.

We presented an extensive characterization of AWS offer-

ings, in particular for EC2, S3 and Amazon’s CDN Cloud-

Front. Results presented in this paper show that there is a big

workload unbalance among different datacenters hosting both

EC2 and S3 products; in particular, the datacenter in Virginia is

responsible for 85% of the total traffic sent to Italian end-users

and it handles seven times the traffic served by the datacenter

in Ireland. We observed that companies which rely on EC2 and

S3 tend to concentrate their content on one datacenter, with the

drawbacks of i) increasing the cost sustained by the network to

carry data to faraway end-users and, ii) increasing risk in case

of failures. We evaluated the performance of contents hosted

by EC2 and S3, in terms of servers’ reactiveness and network

goodput, providing comparison among datacenters and among

different contents. Our results show that the datacenter in

Virginia shows in general poorer performance, but we could

not understand if it is due to an actual overloading caused

by the large population of EC2 instances, or to congestion od

under-dimensioned instances offering particular content.

We also found that CloudFront performs much better, being

able to serve 98% of traffic to the best possible cache.

However, it presents issues that are typical of CDN systems: i)

generic DNS servers returning caches far from end-users, that

lower perceived QoS and system’s efficiency; ii) lower perfor-

mance when processing unpopular user-generated contents.
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“The Need for an Intelligent Measurement Plane: the Example
of Time-Variant CDN Policies,” in IEEE Networks, October 2012,
pp. –. [Online]. Available: http://www.retitlc.polito.it/finamore/papers/
finamore-networks12.ieeexplore.pdf

[3] E. Walker, “Benchmarking Amazon EC2 for High-Performance Scientic
Computing,” USENIX ;login: Magazine, October 2008.

[4] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, “The Cost
of Doing Science on the Cloud: The Montage Example,” in SC, Austin,
TX, November 2008, pp. 1 –12.

[5] S. L. Garfinkel, “An Evaluation of Amazons Grid Computing Services:
EC2, S3, and SQS,” Center for Research on Computation and Soci-
ety, School of Engineering and Applied Sciences, Harvard University,
Cambridge, MA, Tech. Rep., 2007.

[6] G. Wang and T. Ng, “The Impact of Virtualization on Network Perfor-
mance of Amazon EC2 Data Center,” in IEEE INFOCOM, San Diego,
CA, March 2010, pp. 1–9.

[7] S. Triukose, Z. Wen, and M. Rabinovich, “Measuring a Commercial
Content Delivery Network,” in WWW. ACM, March 2011, pp. 467–
476.

[8] M. Gjoka, M. Sirivianos, A. Markopoulou, and X. Yang, “Poking
Facebook: Characterization of OSN Applications,” in ACM WOSN,
Seattle, WA, 2008, pp. 31–36.

[9] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhat-
tacharjee, “Measurement and Analysis of Online Social Networks,” in
ACM IMC, San Diego, CA, 2007, pp. 29–42.

[10] A. Finamore, M. Mellia, M. M. Munafò, R. Torres, and S. G. Rao,
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