
A KVM-Based Tool for Evaluating and

Enhancing Virtual Routing Performance

Luca Abeni

University of Trento

luca.abeni@unitn.it

Csaba Kiraly

University of Trento

kiraly@disi.unitn.it

This paper describes a new tool to build virtual routers, allowing to easily
perform reproducible performance tests with different virtual routing architec-
tures and different software versions and configurations. Some usage examples
are described, showing how the presented tool allows to compare the perfor-
mance of various virtual router implementations, and can be used for research
on virtual routing.

1 Introduction

With the advent of cloud computing, outsourcing and virtualization of comput-
ing resources has became a huge commercial success in recent years. As more
and more complex systems are being outsourced, virtualization of networking
resources has also become a hot topic investigated by researchers. Although
software routers have been available for some time, virtualization of software
routing resources brings now opportunities, such as supporting hot migration
of routers in case of hardware of link failures [WKB+08], providing fine-grained
router level control of shared hardware resources to virtual network operators
[SKHL12], or the virtualization of complex distributed systems as a whole.

It has been shown [FIM+11] that recent advances in CPU, chipset and NIC
architectures and, in general, advances in off-the-shelf commodity hardware
enable high performance software routers. However, building high performance
virtual routers remains challenging, as the number of architectural choices and
fine-tuning parameters is vast, and knowledge about the effect of these choices
on performance is still rather limited. Moreover, experimenting with various
options could be very time consuming due to the time required to generate
virtual machines with various configurations and to run a reasonable set of
performance benchmarks.

In fact, results reported in literature are hardly comparable to each other
due to the large variety of virtualization technologies, operating system kernel
versions, and networking configurations used.

In [EGH+08, EGH+10] authors analyse performance characteristics of soft-
ware routers as well as of Virtualised software routers. Both Xen and OpenVZ

1

based virtualization are studied, and various possible system architectures are
confronted. They conclude that the effect of architectural choices is tremendous,
observing differences of an order of magnitude.

[RHS11] and [RHS10] focuses on various ways of conveying packets between
the host OS and guest virtual routers (OpenVZ and Linux Namespaces are their
preferred virtualization platform). The performance gain achieved by using the
macvlan device is studied and modifications to macvlan are proposed. Similarly,
[BHEKP11] works on improving performance of passing packets to VRs, but
their modification groups packets and conveys them in batches to avoid I/O
overhead.

Authors of [BMM+08] build their own container-based network virtualiza-
tion solution. Performance tests show results that are better than those of Xen
or OpenVZ based solutions.

[SKHL10] defines an interesting algorithm for increasing scalability in the
number of VRs that could be run by the same physical host, however, perfor-
mance of the proposed scheme is evaluated only in simulation, without a real
implementation.

Although several of the above papers show more-or-less detailed performance
results, reproduction of these is cumbersome due to the many undocumented
minor details. Unfortunately, these minor details could cause tremendous per-
formance differences. For example, Xen based solutions are sometimes shown
as having really bad performance, while in other cases Xen performs quite well.
Moreover, to the best of our knowledge, none of the above systems have been
packaged and published in a way that simplifies comparison with other ap-
proaches.

This paper contributes to research on virtual routing by introducing an open
source tool for building virtual routers, and running reproducible (and compa-
rable) performance tests. The presented approach allows to easily test and
compare different virtual routing technologies and different software versions
and configurations, and to repeat the same experiments (same virtual router
configuration, etc...) on different machines.

2 The Problem

When implementing a Virtual Router (VR), there are many different possi-
bilities and implementation options. For example, a software router can be
modified to implement multiple virtual forwarding tables [WKB+08], or an un-
modified software router can be executed inside a Virtual Machine (VM). In
the second case, a program called Virtual Machine Monitor (VMM) provides
a virtualised environment in which the software router is executed. The VMM
generally executes in a host Operating System (OS), while the software exe-
cuting inside the VM is called guest (hence, in this context the VR is just a
specialised guest). The VMM can provide either ”OS level” (container-based)
virtualisation [lxc, ope], full hardware virtualisation [Bel05], or some form of
paravirtualisation [BDF+03, Rus08].

2

Even when focusing on unmodified software routers (virtualised by executing
them in a VM) and when considering only one VM type, there still are numerous
different implementation options. For example, the routing/forwarding subsys-
tem of an OS kernel (such as Linux) can be used (running the OS in a VM that
uses full hardware virtualisation or paravirtualisation), or some different kind of
(kernel space or user space) software router, such as click [KMC+00] can be used
instead. Moreover, the virtual router can be monolithic or can be split in dif-
ferent modules to improve performance or flexibility [AKLB]. Each one of these
different design decisions implies performance/flexibility trade-offs, and from a
research perspective it can be useful to compare the routing performance of the
various options. This kind of experimentation requires to set up several similar
VR implementations, only changing some well defined details that are under in-
vestigation, and to repeat exactly the same experiment (without changing other
variables) for each setup in order to get comparable results.

Moreover, the VMM and host kernel version and configuration can heavily
affect the virtual routing performance. Hence, once the VR structure and design
is fixed different versions and configurations of the software need to be tested
and compared. As a result, for each VR setup it is necessary to generate and
install different versions and configurations of the host tools.

Finally, performance tests have to be performed on different machines, and
need to be reproducible. Hence, some way to reproduce exactly the same host
and guest configuration on a number of different nodes is needed. An approach
that is often used to run experiments with virtual routers is to install a general
purpose host OS, to install the VMM on such a general purpose OS, and then to
configure the host OS and the VMM. However, this might require an excessive
amount of time (and disk space): for example, installing a Linux distribution
on a PC might require almost 1GB of disk space and a considerable time (about
30 minutes). This approach also requires to manually configure all the nodes
involved in a test, and to copy large virtual router images (sometimes, up to
4GB of disk image).

3 Building the VR and the Host

The performance tests described in Section 2 generally require the following
steps to be performed:

guest image generation First of all, the routing software has to be installed
and configured in a guest image, in order to setup a VR. In the simplest
case, this simply requires to install a guest kernel and some routing daemon
(monolithic router), in other cases, some additional software (for example,
the Click modular router) has to be installed and configured. Note that in
some situations, the additional routing software might depend on the OS
kernels: for example, Click can be compiled as a Linux kernel module, but
only supports Linux kernels up to 3.0. Hence, a specific kernel version has
to be installed in the guest, and the Click modules have to be compiled
for that specific kernel

3

host installation and configuration A VMM has to be installed in the host
system, together with the guest image generated in the previous item,
together with all its dependencies

VMM and virtual networking setup The VMM has to be configured to
properly start one or more VRs. This also requires to setup some kind
of virtual network in the host (to connect the virtual network interfaces,
as seen by VR, to the physical interfaces of the host, or to connect the
various guests in case of modular VRs). This can be done using differ-
ent technologies (for example, TAP or MACVTAP interfaces, vhost-net
accelerations in case of paravirtualised network interfaces, etc...).

Two software packages have been developed to automate the steps mentioned
above: VRouterScripts and ImageScripts.

VRouterScripts allows to easily setup KVM-based VMs and the virtual
networks needed to connect them and to create a VR (step 3).

ImageScripts build the VR, taking care of the guest image generation,
and install the VR and a VMM in the host (steps 1 and 2). Basically, this
package compiles, installs and configures different kinds of Linux kernels and
routing software in the guest image, and compiles, installs and configures KVM
to execute such a generated guest image. The VRouterScripts is then used
to control KVM and to start the VR. All the generated binaries are installed
(together with VRouterScripts) in a small Linux-based host OS in a bootable
USB key. Hence, the host does not need to be installed on the test PC, but can
be booted from USB.

This approach allows to generate pre-configured bootable host images that
contain everything needed to run virtual routing experiments. The version and
configuration of the VMM and host kernel are decided when building the image,
and no other tuning, configuration or installation step is needed. Note that the
VR is also configured, built, and installed in the bootable image, so that it
automatically starts at boot time, without needing other configurations.

The generated images are also optimised for size, so that they can be installed
on small USB keys, and can be easily moved between different machines. A
configured guest fits in less than 16MB of disk space, and a configured host
image (containing a simple virtual router) fits in 64MB. This result has been
obtained by using the Linux initramfs technology to store the core of the OS
(all the binaries, configuration files and scripts needed to boot and to start a
shell), and using traditional disk partitions only to store additional components
(in the host, the VMM, VRouterScripts, and the guest image; in the guest,
the routing software). The compressed ”OS core” is based on busybox1 and
almost the same for host and guest (only the kernel modules contained in it are
different). Its size is about 8MB.

The flexibility of VRouterScripts allows to easily test different technologies
for interconnecting VRs with the host’s physical interfaces (or for interconnect-
ing VRs running on the same host, or different modules of a modular VR),

1http://www.busybox.net

4

ranging from more “traditional” TAP interfaces (which do not provide good
performance) to experimental technologies such as netmap [Riz12]. In this way,
it has been possible to evaluate the performances of the various solutions, and
to compare them. Similarly, ImageScripts allows to install different versions
of the Linux kernel, and to compile it with different options. This allowed, for
example, to compare the performance of a 64bit host kernel and a 32bit host
kernel (see Section 4).

All the software is open-source (under the GNU General Public License -
GPL), and a first release will be available soon2 and is designed and implemented
to be portable, and have no particular dependencies. A generic x86 machine
with the Linux distribution of choice can be used to build an host image, only
requiring to have a C compiler and few basic development libraries installed.
This result is obtained by recompiling from source all of the software installed
in the host3.

4 Usage Examples

To show the usefulness of the presented tools, some simple examples of its usage
are presented. All the examples are based on tests that have been performed
using ImageScripts and VRouterSctipts to compare the routing performance
of various VRs and various software configurations. Notice that all the setups
used in these experiments are based on VRouterSctipts and have been auto-
matically generated by ImageScripts.

First of all, ImageScripts and VRouterSctipts have been used to setup a
monolithic VR (the routing subsystem of a a 3.2.4 Linux kernel running inside a
VM) and to evaluate its performance when changing some configuration param-
eters in the host kernel and in the VMM. The goal of this set of experiments is
to show how the proposed tool help in testing different VMM and host configu-
rations and versions for the same kind of VR (in this case, the monolithic VR).
Figure 1 reports the performance of the monolithic VR running on a 32bit host
kernel and on a 64 bit host kernel. The results for the 32bit host kernel have
been measured when using only 1 CPU core, 2 CPU cores, or 4 CPU cores.
When 4 CPU cores have been used, the VMM has been executed with and
without static binding of the VMM threads to the CPU cores. From the figure,
it is possible to notice that the routing performance improves when increasing
the number of CPU cores used; moreover, static binding of the various VMM
threads to the CPU cores can further improve the performance (since migration
overhead is removed). Finally, a 64bit kernel (using the x86 64 ISA) using 4
cores with static CPU bindings provide the best performance. This is probably
due to the fact that the x86 64 architecture provides more general purpose CPU
registers, thus the kernel can be more efficient.

2currently, a preliminary alpha version is available - contact the authors via email if inter-

ested
3Note that this is also a simple way to respect the GPL.

5

 0

 200000

 400000

 600000

 800000

 1e+06

 0 200000 400000 600000 800000 1e+06 1.2e+06

O
u

tp
u

t
p

a
c
k
e

t
ra

te
 [
p

p
s
]

Input packet rate [pps]

1 core, 32bit
2 cores, 32bit

4 cores, 32bit
4 cores, 32bit, RT

4 cores, 64bit, RT
x

Figure 1: Performance of a monolithic VR, with different numbers of CPU cores
and different configurations.

The proposed approach can also be used to compare the performance of dif-
ferent VR designs. For example, Figure 2 compares the Parallel Virtual Routing
(PVR) architecture [AKLB] with the monolithic VR already evaluated in Fig-
ure 1 (the best performing monolithic configuration is used in this example).
The monolithic VR’s performance curve is topped at 900 Kpps. Even in the
best case, with 4 cores and proper binding, it starts to loose packets as soon as
the offered load increases above this level. Using the PVR architecture, cycles
of additional CPU’s are better exploited. The PVR architecture can achieve
higher forwarding rates (both when using 2 and when using 3 VRs in parallel),
although some losses can be observed here as well above 900 Kpps.

Finally, Figure 3 shows the results of some experiments performed with
a more complex VR architecture: the MultiStage Router (MSR) [BBGL10].
Again, these experiments compare the performance of different VMM configu-
rations (since the MSR is modular and the different modules execute in different
VMs, the configuration space is much larger than for a simple monolithic VR).
The figure shows how the presented tool can be used to tune the VMM con-
figuration for performance, by evaluating the impact of various configuration
parameters on the MSR routing performance. There are significant differences
between results obtained without binding (allowing VM processes to migrate
between CPUs and relying only on the scheduler to handle the CPU allocation)

6

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 200000 400000 600000 800000 1e+06 1.2e+06

O
u

tp
u

t
p

a
c
k
e

t
ra

te
 [
p

p
s
]

Input packet rate [pps]

4 cores, 1 router
4 cores, 2routers

4 cores, 3routers
x

Figure 2: Comparison between the performance of a monolithic VR and the
performance of a PVR.

and with various CPU bindings. By selecting the proper binding, the perfor-
mance curve can be optimized for various targets, like statistical stability (low
statistical variance between test runs), or overload stability (flatter performance
curve in case of high offered traffic).

Notice that performance is in general lower in this case than in the case of
a monolithic or PVR virtual router achitecure, which is due to the improved
flexibility provided by the MSR architecture.

5 Conclusions and Future Work

This paper described ImageScripts and VRouterScripts, two software pack-
ages that can be used to simplify the automatic creation of VRs. These tools are
useful for research because they allow to easily reproduce performance experi-
ments in a predictable way, and to build different implementations and version
of a VR, in order to understand the performance impacts of the various design
decisions.

As a future work, the software will be extended to support OS-level vir-
tualisation (based on LXC) and some research technologies (such as real-time
kernels, reservation-based scheduling, new drivers architecture, etc...) in order

7

 0

 100000

 200000

 300000

 400000

 500000

 0 200000 400000 600000 800000 1e+06 1.2e+06

O
u

tp
u

t
p

a
c
k
e

t
ra

te
 [
p

p
s
]

Input packet rate [pps]

1 core, 1 LB, 1 router
2 core, 1 LB, 1 router no bind

2 core, 1 LB, 1 router bind case A
2 core, 1 LB, 1 router bind case B

4 core, 1 LB, 1 router no bind
4 core, 1 LB, 1 router bind

x

Figure 3: Performance of an MSR with different configurations.

to evaluate their performance. It will also be used to build a more complex
testbed for evaluating virtual routing performance in more realistic situations.
The usage of KVM migration capabilities to migrate the VRs between different
hosts will also be investigated.

References

[AKLB] Luca Abeni, Csaba Kiraly, Nanfang Li, and Andrea Bianco. Tuning
kvm to enhance virtual routing performance. In submission at ICC
2013.

[BBGL10] Andrea Bianco, Robert Birke, Luca Giraudo, and Nanfang Li. Mul-
tistage software routers in a virtual environment. In Proceedings
of the IEEE Global Telecommunications Conference (GLOBECOM
2010), Miami, Florida, December 2010.

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Har-
ris, Alex Ho, Rolf Neugebar, Ian Pratt, and Andrew Warfield. Xen
and the art of virtualization. In Proceedings of the nineteenth ACM
symposium on Operating systems principles (SOSP03), 2003.

8

[Bel05] Fabrice Bellard. Qemu, a fast and portable dynamic translator.
In Proceedings of the 2005 USENIX Annual Technical Conference,
Anaheim, CA, April 2005.

[BHEKP11] M. Bourguiba, K. Haddadou, I. El Korbi, and G. Pujolle. A
container-based i/o for virtual routers: Experimental and analyt-
ical evaluations. In Communications (ICC), 2011 IEEE Interna-
tional Conference on, pages 1 –6, june 2011.

[BMM+08] Sapan Bhatia, Murtaza Motiwala, Wolfgang Muhlbauer, Yogesh
Mundada, Vytautas Valancius, Andy Bavier, Nick Feamster, Larry
Peterson, and Jennifer Rexford. Trellis: a platform for building
flexible, fast virtual networks on commodity hardware. In Proceed-
ings of the 2008 ACM CoNEXT Conference, CoNEXT ’08, pages
72:1–72:6, New York, NY, USA, 2008. ACM.

[EGH+08] Norbert Egi, Adam Greenhalgh, Mark Handley, Mickael Hoerdt,
Felipe Huici, and Laurent Mathy. Towards high performance vir-
tual routers on commodity hardware. In Proceedings of the 2008
ACM CoNEXT Conference, CoNEXT ’08, pages 20:1–20:12, New
York, NY, USA, 2008. ACM.

[EGH+10] Norbert Egi, Adam Greenhalgh, Mark Handley, Mickael Hoerdt,
Felipe Huici, Laurent Mathy, and Panagiotis Papadimitriou. A
platform for high performance and flexible virtual routers on com-
modity hardware. SIGCOMM Comput. Commun. Rev., 40(1):127–
128, January 2010.

[FIM+11] Kevin Fall, Gianluca Iannaccone, Maziar Manesh, Sylvia Rat-
nasamy, Katerina Argyraki, Mihai Dobrescu, and Norbert Egi.
Routebricks: enabling general purpose network infrastructure.
SIGOPS Oper. Syst. Rev., 45(1):112–125, February 2011.

[KMC+00] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and
M. Frans Kaashoek. The Click modular router. ACM Trans. Com-
put. Syst., 18(3):263–297, 2000.

[lxc] http://lxc.sf.net.

[ope] Openvz linux containers. http://www.openvz.org.

[RHS10] M.S. Rathore, M. Hidell, and P. Sjodin. Performance evaluation of
open virtual routers. In GLOBECOM Workshops (GC Wkshps),
2010 IEEE, pages 288 –293, dec. 2010.

[RHS11] MuhammadSiraj Rathore, Markus Hidell, and Peter Sjdin. Data
plane optimization in open virtual routers. In Jordi Domingo-
Pascual, Pietro Manzoni, Sergio Palazzo, Ana Pont, and Caterina
Scoglio, editors, NETWORKING 2011, volume 6640 of Lecture

9

Notes in Computer Science, pages 379–392. Springer Berlin Hei-
delberg, 2011.

[Riz12] Luigi Rizzo. Revisiting network I/O apis: the netmap framework.
Communications of the ACM, 55(3):45–51, Mar 2012.

[Rus08] Rusty Russel. virtio: Towards a de-facto standard for virtual I/O
devices. ACM SIGOPS Operating Systems Review, 42(5), 2008.

[SKHL10] Haoyu Song, Murali Kodialam, Fang Hao, and T. V. Lakshman.
Building scalable virtual routers with trie braiding. In Proceed-
ings of the 29th conference on Information communications, IN-
FOCOM’10, pages 1442–1450, Piscataway, NJ, USA, 2010. IEEE
Press.

[SKHL12] Haoyu Song, M. Kodialam, Fang Hao, and T.V. Lakshman.
Efficient trie braiding in scalable virtual routers. Networking,
IEEE/ACM Transactions on, 20(5):1489 –1500, oct. 2012.

[WKB+08] Yi Wang, Eric Keller, Brian Biskeborn, Jacobus van der Merwe,
and Jennifer Rexford. Virtual routers on the move: live router mi-
gration as a network-management primitive. In Proceedings of the
ACM SIGCOMM 2008 conference on Data communication, SIG-
COMM ’08, pages 231–242, New York, NY, USA, 2008. ACM.

10

