
Wireless mesh networks filtering,

from a firewall to a waterwall∗

Leonardo Maccari, Renato Lo Cigno

DISI – University of Trento, Italy

leonardo.maccari@unitn.it, renato.locigno@unitn.it

Abstract

Filtering has always been intended as a function to
be applied to the border routers, in order to separate
segments of networks. In a wireless mesh network,
however, there is no usable definition of border, so
the function of a firewall must be distributed among
all the nodes in the network. But a firewall is gener-
ally installed on a complex, powerful machine, which
is able to filter/analyze/log traffic based on rule-sets
that can be made of thousands of rules, without any
obvious structure to suggest an efficient organization
to reduce search costs. A low-cost mesh node that
need to implement filtering can be realized with a
166MHz CPU and 4 Mbytes of disk space. Neverthe-
less, mesh networks like community networks can be
made of thousands of nodes, and service tens of thou-
sands of end customers, just like any big traditional
network. and consequently they can be configured
with thousands of specific rules. The firewall concept
must be changed: from a powerful single host to a
coalition of nodes that realize the same function by
distributing among a subset of them portions of the
rule-set. The goal becomes reaching a given global
accuracy with the minimum cost, and the means is
no more a single unbeatable barrier, but a fluid shift-
ing and changing functionality whose goal is washing
the network clean of unwanted traffic: a waterwall!
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In this contribution we explore two different possibil-
ities. The first one is based on the estimation of the
filtering node position along the source-destination
path, while the second is based on the estimation of
the node centrality with respect to the network rout-
ing/traffic.

1 Introduction

Protecting a network from unsolicited, often mali-
cious traffic is one of the constant concerns of any net-
work administrator. Apart from standard network-
ing devices as switches and routers, normally mid-
dleboxes as NATs (Network Address Translations)
and firewalls are installed on the network boundary
to separate trusted portions of the network form the
global Internet or in general from less trusted ones.

In some cases however, even the separation be-
tween the internal and the external network is
not straightforward, and identifying boundaries and
points of interconnection is even more difficult. A
typical example is a wireless mesh network, where
a collection of subnets are interconnected through
a backbone of mesh nodes, but each subnet is only
loosely coupled with the others, and many points of
access to the global Internet may exist (see figure 1 for
a pictorial representation). Mesh networks are often
used with this configuration in order to bring con-
nectivity in a cost-effective way to areas where other
technologies would be too expensive. As a concrete
example, community networks use this approach to
share network resources between hundreds or even
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thousands of users and represent one of the most
successful application of mesh networking. Projects
like Guifi or Awmn (see Guifi.net and awmn.gr)
represent an example of how this technology can be
competitive with the infrastructured communication
networks and how successful this approach can be.
In this report we tackle the problem of firewalling

in large mesh networks. In such networks each mesh
node applies a specific firewall rule-set to the traf-
fic directed to itself (or to subnets attached to it).
The firewall will be used in order to defend the local
network from attacks, to shape the access to the In-
ternet across its connection, or to forbid the access to
certain logical resources. If all the nodes share their
rule-sets and enforce them also on the outgoing traf-
fic, the traffic would not be filtered at the destination
but directly at the source, reducing the waste of net-
work resources. But in this case each node would be
filtering with a global rule-set made of thousands of
rules, which is not practical for most of low-power
Linux-based mesh routers. We propose to split the
global rule-set in pieces and enforce only a portion of
it at every hop with the goal of filtering the packets as
close as possible (given the constraints on the rule-set
dimension to be implemented) to their source node
in order to save network resources.
We explore two different alternative approaches.

In the first one, we propose to partition the rule-
set among the nodes that are along the source-
destination pair, trying to filter the packet as close
as possible to the source (to reduce resource waste in
the network), while maintaining the filtering burden
for nodes below a given threshold. In the second one,
we propose to enforce the full rule-sets only in a por-
tion of the nodes of the network. We show that using
the OLSR protocol we can easily identify the most
central group of nodes that will route a large portion
of the whole traffic, and apply the full rule-set only on
that set of nodes. We will recall and use the notion
of shortest path betweenness SPBof a node, in order
to identify the nodes that will carry a larger amount
of traffic.
A traditional firewall does not introduce false posi-

tives (packets that should be dropped but are instead
forwarded) when it is correctly configured. Indeed,
with our approach each node singularly introduces

Figure 1: A common mesh-network structure

some false positives, but as a global network func-
tion the firewall will work with a parametrizable ac-
curacy. To stress the difference from a typical firewall
we chose the term waterwall to indicate a distributed
and homogeneous filtering function spread on all the
nodes in the network. Note that we use filtering as
our target application for the sake of simple explana-
tion and by way of example, but with the same logic
we could enforce some other traffic analysis functions
such as intrusion detection.

2 Motivation

Figure 1 shows a widely-used configuration for a wire-
less mesh network where a set of mesh routers inter-
connect separated LANs. Each LAN has its own IP
addressing and the routing protocol running on the
mesh routers allows the clients of distinct LANs to
communicate. In some cases nodes may physically
roam from a LAN to another, depending on the kind
of routing protocol they may or may not maintain
their initial IP address to keep their sessions alive.
Finally, some of the LANs have a direct access to In-
ternet and share it with the other users that are not
equipped with it.

In this scenario the owner of a mesh node is gener-
ally also the manager of the corresponding LAN and
is interested in protecting it. We take into considera-
tion three use cases applicable to the simple network
in figure 1:
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1. The manager of network C wants to protect its
network from unwanted traffic coming from the
outside. For instance, he does want to block con-
nections to remote shell protocols coming from
the mesh network to host A in LAN C;

2. With a more finer grain he may want to limit ac-
cess only to some logical resources, for instance,
host A may have some folders that are shared
only on the LAN while some other are shared
with the whole mesh network. The access to
these resources can be denied or simply limited
to a maximum bit-rate;

3. The manager of network C wants to forbid some
kinds of traffic that come from the mesh net-
work and are directed to the Internet using its
connection. This is normally due to the com-
mercial agreements that the manager has with
his networks service provider. Again, traffic can
be forbidden or it can be limited to a certain
maximum bitrate.

Now imagine that a node in the network labeled E
starts an attack against, let’s say, a host in network
C. This may be due to a malicious user or to a virus
that took control of a host in the network and starts
a DoS, or a brute force attack. We then add a fourth
use case:

4. The manager of network C detects an attack and
reactively enforces network filters to protect its
resources.

The issues described in the use cases can be par-
tially resolved configuring a firewall on each mesh
node in order to filter the traffic directed to its LAN.
The first three use-cases can be approached setting
up a mixture of layer-4 and application layer firewall
rules on the mesh-router in C that will drop or shape
some traffic. The fourth one can be approached with
dynamical rules that are activated when the firewall
detects an anomaly in the usage of the resources,
for instance, an abnormal number of ICMP pack-
ets. Linux-based firewalls support all these features.
What remains unsolved are the consequences for the
rest of the mesh network and for the other LANs. The

malicious traffic coming from network E will still tra-
verse the mesh network and subtract useful resources
to the allowed communications. Considering that in
a mesh network the available bandwidth is shared be-
tween upload and download, this can severely impact
the victim LAN but also the other networks on the
way from the attacker to the victim.

This example shows how the concept of border fire-
wall does not correctly apply to the mesh network
scenario, where the border of the network is hard to
define.

To solve this problem the mesh routers can share
their rule-sets in order to apply them directly on the
other mesh routers. The rule-set of mesh router C
applies only to the traffic directed to LAN C, to some
logical resources it controls or to the Internet traffic
flowing across its connection. Each mesh router will
collect all the rule-sets in a global rule-set and enforce
it directly on the multi-hop path so that the traffic is
filtered as close as possible to the source. It’s not the
goal of this paper to investigate how the rule-sets are
securely distributed, in the most simple case rule-
sets can be known in advance and every node just
sponsors the ID of one or more predefined rule-set in
routing messages. This approach indeed protects not
only the resources of each LAN but also the shared
resources of the mesh network.

Now imagine that this model is applied to a large
mesh network. As an extreme but realistic use-case,
imagine that this model is applied to a community
wireless mesh network like the Guifi network. Guifi
is made of thousands of nodes1 and used by tens of
thousands of users that daily access the network from
various places (see [3] for a characterization of its
topology features). What happens if even only 10%
of the mesh routers start distributing a rule-set made
of, let’s say, 30 rules each? That the global rule-set
will be made by tens of thousands of rules. Corpo-
rate firewalls can handle large rule-sets up to tens of
thousands of rules, but this is not the case for wireless
routers that are generally low-cost devices with min-
imal energy consumption. The most used products

1At the time of writing, Guifi network is made of about

19.000 nodes and growing at a pace of a hundred nodes per

week. The network is divided in zones, each one can be formed

by hundreds of nodes.
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are commercial devices that embed a low-power pro-
cessor (e.g., a 133 MHz Intel or AMD low end device),
one or more IEEE 802.11b/g/a/n wireless cards and
run a customized Linux kernel. The whole hardware
is enclosed in an outdoor shell powered over LAN
and costs no more than 100e. A 133 MHz processor
can not easily handle a rule-set made of thousands
of rules organized in a linear list, it will introduce
processing delays and packet dropping.
To improve filtering performance, rule-sets can be

pre-processed with various approaches, none of which
is easy to port in this context. For instance, once
the whole rule-set has been created, wildcards and
numeric ranges can be used to group rules and re-
duce their total number. This involves a complex and
costly pre-processing of the rule-set but speeds up the
look-up time during the routing decision. It is conve-
nient when the rule-set is mostly static and when the
hardware is powerful enough for the pre-processing.
In the case we consider rules can be dynamically gen-
erated, nodes can be added or removed to the net-
work and links may be temporally unavailable. Each
of these events will change the single rule-sets or the
whole topology (and consequently add/remove rule-
sets associated with nodes). Assuming that the nodes
are powerful enough to perform the pre-processing,
they would spend most of their CPU time repeating
this task.
Complex data structures can be used instead of a

linear list such as trees or graphs. The more com-
plex is the data structure, the more memory and
pre-processing are needed. The less complex the data
structure, the less flexible and performing is the tech-
nique. For instance, rules can be grouped using their
target netmask, but this is meaningless for applica-
tion layer rules, for multicast rules or when a node
that has a certain resource to be filtered roams to a
new network. Moreover with a mesh network made of
thousands of nodes, there are thousands of netmasks,
so that filtering is still cumbersome.
Both these approaches are hardly applicable when

the rules do not match IP addresses and TCP ports
but layer-7 data inside a packet. In this work we take
a different direction trying to exploit the distributed
nature of mesh networks instead of being doomed by
it.
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Figure 2: Delay introduced by a growing rule-set size
when the host forwards approximately 1Mbit/s of
traffic.

2.1 Firewalls with large rule-sets

Before we detail the proposed approach, we further
investigate the consequences of large rule-sets on the
performance of the network. Figure 2 reports the
increment in the processing time of a single packet
when the rule-set size grows. The data have been
measured using an embedded system equipped with
a 400MHz processor and 128Mbytes of RAM over
a wired network. 50% of rules match network and
transport layer fields, the rest match the packet con-
tents at layer-7. Contrarily to the results we obtained
for a previous work [13] where the tests were carried
without traffic, the measures have been taken when
the node is under a load of 1Mbit/s.

Up to 3000 rules the delay grows almost linearly,
meaning that the system is able to handle the load as
expected. After that threshold the delay grows at a
faster pace and arrives close to 0.5 s with 5000 rules.
Since this delay is introduced by every node for ev-
ery hop, the total round-trip-time in a mesh network
using this rule-set makes the network unusable. This
explains that filtering is not a function that can be
introduced “for free” when the rule-sets get large.
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3 Route based filtering

Consider a network like the one in figure 1 made of N
nodes where a proactive routing protocol is running,
(from now on, for simplicity we will refer to mesh-
nodes simply as “nodes”). Each node j is connected
to a subnet and for each node j exists a rule-set rj
that is used to filter the traffic directed to its own
subnet, to itself or to the Internet across the connec-
tion attached to its subnet. Node j will sponsor its
own rule-set to the rest of the nodes, so that every
node is aware of a global rule-set R that is the union
of rj for every j. The routing table of a node i con-
tains the next hop and the distance in terms of hops
to reach j and all the nodes in the subnet of j. This
is the usual setup of a mesh network configured, for
instance, with the OLSR protocol.

Now consider a packet p that comes from the sub-
net of node k, is forwarded by node i, and is destined
to the subnet of node j, for this packet there exists a
rule in R that will drop it when it arrives to j. The
aim of the waterwall is to drop the packet as close
as possible to the source node k. The most simple
solution is to enforce the whole R directly in k. This
solution has two drawbacks: it is impossible if R is
made of thousands of rules for the considerations in-
troduced in section 2.1, and it would be extremely
easy to circumvent, since when the packet leaves its
own subnet it is not filtered anymore. A node k that
behaves in a malicious way can start an attack against
a node j and all the traffic will arrive at destination.
To tackle the second issue, more nodes on the path
from k to j will have to apply the filter, thus aggra-
vating the first issue. The strategy we propose is to
filter at each hop with only a subset of the global rule-
set that is dynamically chosen for each packet and for
each hop. We use larger rule-sets for nodes close to
the source and smaller rule-sets for nodes far from
the source. Table 1 contains symbols and notation
used in this contribution.

How can a node i estimate the distance from the
source node k of the packet p destined to j? The most
simple measure is to look at the time-to-live field in
the IP header, but, again, it is also the easiest to cir-
cumvent. The attacker we take into consideration is
able to mangle the contents of packets, but we imag-

sp(i, j) a set of nodes that form the
shortest path between node i
and node j

spl(i, j) the length of spl(i, j)
δ a parameter that determines

the maximum size of a rule-set
enforced on a node

m(i) the average distance of node i
from all the other nodes in N

r the average size or a rule-set
used by a node in N

R the global rule-set, i.e. the
union of all the rule-sets

t(i) spl(i, j) for a packet with source
node k, destination j, averaged
for every couple (k,j) for which
i ∈ sp(k, j)

Table 1: Notation and symbols used

ine that the routing protocol implements some secu-
rity measures to avoid, or at least identify, attacks
on network routing. This kind of attacker could sim-
ply change the TTL value in the source packet and
avoid the waterwall to be effective. Another way is
to use the distance from the source node k to i. The
attacker could set the source IP to the address of
another node w and, contrarily to what happens on
the Internet, it would still be able to intercept the
replies provided it is in the shortest path between w
and i. Summing up, node i can not trust the con-
tents of a packet coming from a node that is possibly
an attacker so the distance from the source must be
estimated with other means.

We propose to increase the size of the rule-set de-
pending on the ratio between the distance from the
destination and m(i), the average distance of node i
to any node in the network. In practice, node i com-
pares the length of the remaining path to the desti-
nation with the average length of the path of packets
generated by i itself. We define:

Pf(k, i, j) ,

{

spl(i,j)
m(i) δ if spl(i, j) ≤ m(i)

1δ if spl(i, j) > m(i)
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δ is a parameter that can be used to limit the max-
imum number of rules enforced in a single node.
Node i will use a random subset Ri of R of size
Pf(k, i, j) ∗ ||R||, so Pf(k, i, j) represents the proba-
bility of p to be filtered on i. If R is organized as a
linear list, this can be implemented starting to scan
the list from a random point for a portion of the list

of size ||Ri||. When i is close to j the fraction spl(i,j)
m(i)

decreases, contrarily when i is close to k the value
of Pf(k, i, j) is close to 1 ∗ δ. We define also t(i) as
the value of spl(i, j) averaged on all routes passing
through i between any couple (k, j).

t(i) ,
∑

k,j∈N,k!=j,j!=i,i∈sp(k,j)

spl(i, j)

(N − 1)(N − 2)

To understand how our approach scales with the size
and shape of the network graph we have to under-
stand the behaviour of t(i). Let’s define m and t as
the averagem(i) and t(i) computed on every node. m
is the expected number of hops that a packet p gen-
erated by any node k will perform in the network, t
is the expected remaining path of p when it passes
across a node, averaged on all the nodes. Intuitively
we expect t to be smaller than m, but how do t(i) and
m(i) change depending on the position of i in the net-
work? In the next sections we will first present the
results based on an example linear topology, then we
will analyze a more complex 2D topology.

3.1 1D linear topology

As a clarifying example, we take a linear topology
with 10 nodes and we report the average values of
t(i), m(i) and t(i)/m(i) in figure 3.
It can be noticed that the values of m(i) are influ-

enced by the position of i in the topology. In par-
ticular, nodes that are close to the border will have
larger values compared to nodes that are in the center
of the topology. This can be explained noting that
when i is in the periphery of the network its distance
from the other nodes is in average larger than when
i is in the center, so m(i) is higher on the borders.
It can also be easily shown that in this simple topol-
ogy, if we compute t(i) excluding the packets that
are generated by i itself, t(i) is constant. This would
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Figure 3: The values of t(i), m(i) and their ratio on
a sample linear topology with 10 nodes

make the ratio t(i)/m(i) decrease for nodes close to
the extremes of the network. In the figure, instead,
we plotted t(i) including also the packets generated
by node i, which increases the values of t(i) on the
borders. This is to take into account that in our net-
work scenario we consider each node as the gateway
of its own subnet, so the first hop is generated in the
subnet. Even in this case, t(i)/m(i) is still larger for
nodes that are central in the topology.

We expect the central nodes of the network to be
more congested than the nodes in the borders, since
the number of shortest paths that pass across them
is higher. Considering this, the shape of t(i)/m(i)
introduces a positive effect: the more p gets close to
the center of the network, the higher is the chance
of being filtered. The practical consequence is that
when p is moving from the periphery to the center
of the network, that is more congested, its chances
of being filtered are increased. When p has already
passed the central region of the network, the chances
of being filtered decrease. If we look it from a differ-
ent perspective, we impose a larger filtering effort for
packets that are going towards the most loaded area
of the network because we want to save resources in
that area where they are more precious. When the
packets have passed the central area we spend less
effort to filter them, since they are directed to the
periphery of the network, which is going to be less
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Figure 4: The values of Pf(h) on the linear topology
with 10 nodes

congestioned. Moreover, packets will be filtered at
destination anyway.
We now define the probability of a packet p to be

filtered after h hops from the source node k when it
is destined to node j.

Pfh(k, h, j) = Pf(k, i, j) where spl(k, i) = h

Pfh() moves the dependency of Pf() from the node i
where the packet is filtered to the position of i in the
route from k to j. Pfh() can be averaged for all the
couples k, j in order to keep only the dependency on
h. Once defined Pfh() we can compute the inverse
probability that p arrives at h hops from the source
node, that we call Pa(h) (arrival probability):

Pa(h) =

i=h−1
∏

i=0

(1− Pfh(i))

In figure 4 we report Pa for the network depicted in
figure 3 when δ as been set to 0.5
The diameter of the network is equal to 9 hops,

when the packet arrives at destination it is filtered
with a different rule-set then when it is filtered on the
path, so we do not include the last hop in the curve.
We have numbered them from 0 to 8 indicating that
the first chance of being filtered is on node k itself.
From figure 4 we can see that in average we obtain the
desired effect, the chances of a packet to be filtered

are higher in the neighborhood of the source node
and decrease when it gets close to destination.

3.2 2D Topologies

In the linear topology described so far the distance
between two nodes is given by the modulus of the
difference between their node Id so the results are ob-
tained by means of simple computations. When the
network topology is defined on a 2-dimensions plane
more complex instruments must be used. The most
suitable instrument to study the behaviour of a mesh
network with a 2D topology is computer simulations,
nevertheless, we want to test our technique against
network that may grow up to hundreds of hosts. Net-
work simulators can not handle scenarios of such size,
so we will use Python networkX library to evaluate
the characteristics associated with large topologies.
For some applications approximating a wireless mesh
network with an abstract graph may be a simplifica-
tion that is too far from reality. In our case instead,
we rely on the existence of a proactive routing proto-
col running in the mesh network. We are not inter-
ested in physical layer and MAC layer performances
(that are more sensitive to the simplifications intro-
duced by graph analysis), we operate directly on the
graph that the routing protocol generates, assuming
that it is able to find neighbor nodes, to identify and
use only symmetric links and to build the routing
table from any source k to any destination j. This
is perfectly compatible with, for instance, the widely
used OLSR protocol. Note also that we assume the
routing protocol uses a shortest-path metric. It is out
of the scope of this paper to show it, but we believe
that the same approach can be applied even when
the routing is not a simple distance-vector. In this
case the graph will be a weighted one where it is still
possible to compute m(i) and t(i) taking into account
the weights of each graph edge.

To test the performance of the waterwall we will
use two metrics introduced in previous works [13],
[15] and defined as follows:

• M1(k, j): counts each false positives on the
route from k to j, that is, it is incremented each
time an unwanted packet is forwarded on the
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path from the sender to the destination. It is
normalized on the route length from k to j so it
expresses the fraction of the path that p is able
to reach before being filtered.

• M2(k, j): counts each false positives end-to-end,
that is, it is incremented each time an unwanted
packet arrives to j. It is normalized to 1 so it
represents the probability of arriving to destina-
tion j.

When averaged on every couple (k, j) M1 gives
an estimation of the impact of false positives on the
whole network traffic. For instance, when a node
that has been infected by a worm starts a DoS at-
tack against any host, M1 tells how much the water-
wall is able to mitigate this attack in terms of wasted
network resources.
M2 instead measures the inefficiency in filtering

traffic directed against a certain host. In our sce-
nario we imagine that the destination node j applies
its own rule-set, so that M2 always goes to zero one
step before the destination. We consider it since it
is useful in other scenarios (for instance for intru-
sion detection , or when some traffic is forbidden by
a network administrator but not all nodes support
filtering) and it is used to compute M1.

M2(k, j) can be defined as the probability of not
being filtered on the whole path from k to j, that
is equal to Pa(k, j): we can then define M(1) as the
average number of hops that p is able to reach:

M1(k, j) =
(

spl(k,j)−1
∑

i=0

spl(k, i) ∗M2(k, i) ∗ P (k, i, j)+

spl(k, j) ∗M2(k, j)
) 1

spl(k, j)

The first term of the equation takes into account
packets that are filtered before they arrive to destina-
tion (including on node k) while the second includes
packets that arrive to the destination.
One more evaluation parameter we consider is the

average end-to-end delay for every route in the net-
work. For a network in which every node j has a
rule-set of size rj = 30, for each route we compute
the average end-to-end delay introducing at each hop
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Figure 5: Metric M1 for increasing network size and
δ ranging from 0.1 to 0.9.

a delay d that depends on Pf(k, i, j). The value of
d is taken directly by the data measured on a real
platform and reported in figure 2. The delay thus
depends on the total number of nodes and on the
value of the δ parameter.

The figures 5, 6, 7 report the value of the metrics
M2, M1 and delay for a 2D topology with random
placement of nodes increasing the network size and
varying δ. The nodes are placed in a playground of
growing size with constant spatial density of nodes
and each node is connected to the neighbors that fall
inside a radius of 70m.

We can see that, as expected, M1 and M2 decrease
when δ is increased (recall that M1 and M2 mea-
sure false positives, so they are measures of badness).
This is intuitive since a larger δ corresponds to less
false positives. Less intuitive is the fact that given
a certain δ a larger network has smaller values of
M1 and M2. In the previous section we have shown
that the values of t(i) are smaller if i is close to the
borders of the network, this is still true even in 2D
topologies. As a consequence, the ratio t(i)/m(i) is
smaller in the periphery of the network as can be
seen in the figure 3. In a 2D topology the border of
the network is represented by nodes that are placed
on the perimeter of the covered area and have fewer
neighbors compared to the ones that are in center
of the playground. If we keep the density constant
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and we increase the number of nodes we increase the
covered area, and consequently its perimeter. But
the perimeter of the network grows more slowly com-
pared to the area, so the largest the network, the less
relevant is the fraction of the nodes on the perimeter.
As a consequence, a larger network will have a larger
average t/m value and will filter more packets per
hop. Figure 7 shows the expected delay for the net-
works under consideration. A larger δ corresponds to
higher delays introduced at every hop.

To interpret these results, consider a network with

200 nodes and 30 rules per node, thus ||R|| = 6000.
With such a large rule-set, each hop would introduce
a delay larger than 0.45 seconds, as can be seen in
figure 2. If we consider that m in such a network
has an average larger than 8, this would produce en
average delay larger than 3.6 seconds, which makes
the network unusable. Instead, with the waterwall
approach we can configure the δ parameter in order
to find the right equilibrium between latency and fil-
tering efficiency, for instance, if δ = 0.4 we obtain an
average M1 lower than 50% and we keep the delay
around 0.15 seconds. That is, we decrease the filter-
ing efficiency to one half, but we reduce the delay of
a factor of 24.

Still, if a higher performance of the firewall is
needed with large network size, the delay introduced
by the waterwall must be further reduced. In the
next section we introduce a further optimization that,
at the cost of a simple ordering function applied to
the rule-set can further reduce the false positive rate.

3.3 Smart rule-set partition

When node i processes a packet p from k to j, it ran-
domly chooses a position λ in R and uses a portion of
the rule-set Ri starting from λ, of a size determined
by Pf(k, i, j). Packet p is tested against all the rules
in Ri. The probability of evaluating the same rule
twice in the path from source to destination is high
since each choice of λ is independent at each hop.
We can try to find a smarter way to chose λ in order
to minimize the intersection between Ri at various
steps. One way is to chose λ in function of specific
network parameters of p and node i. A simple ap-
proach is to define λ as follows:

λ = (IPdest ⊕ IPsrc ⊕ (IPprot|IPtos|IPid)⊕ ˆIPi

)mod(||R||)

Where:

• IPdst and IPsrc are the destination and source
IP of p

• IPprot, IPtos and IPid are fields of the IP header
that are immutable from source to destination
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but their combination is unique for each packet
(due to the identification field)

• ˆIPi is the IP address of node i with the bytes
order inverted.

• ⊕ is the XOR operator, | is the concatenation
operator and mod is the modulo operation

The rationale of this choice is to produce a δ that
changes from hop to hop depending on a unique pa-
rameter of node i, this way trying to spread the vari-
ous choice of λ with a deterministic algorithm. Since
the size of Ri is not predictable, we need to prevent
that node i, when filtering two packets belonging to
the same traffic flow chooses twice the same λ, or else,
some portion of the R may never be covered. Thus,
the choice of including the IPid field that is unique
for every IP packet.

For this approach to be applicable, every node
must keep the rules in its rule-set in an ordered list.
This ordering is not intended to speed-up the evalua-
tion of the rule-set so it can be any ordering function,
independent on the semantic contents of the rule. For
instance, given the data structure that is used to store
the rule in the operative system, an ordering based
on a fingerprint on this data structure is sufficient.

If we are able to use minimum overlapping Ri sets
than the M1 and M2 decrease more sharply with the
distance from the source. The results obtained with
this new constraint are reported in figure 8 and 9.
Comparing 5 and 8 we can see that to obtain similar
results a lower value of δ is sufficient, for instance
to have M1 below 50% δ = 0.3 is sufficient (even
δ = 0.2 is below 50% for network larger than 100
nodes) which corresponds in figure 7 to a tolerable
delay even for a network with 300 nodes.

Note that in all the results we have shown so far M1
and M2 hardly reach values lower than 0.1. This is
due to the fact that Pf (k, i, j) at the first hop may not
be equal to 1 even at the first hop. If larger values of δ
were used (values larger than 1 are perfectly allowed)
we can lower the false positive rate even more.
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4 Centrality based filtering

In this section we present a different approach to the
same problem. Instead of enforcing the waterwall on
every node we identify the nodes that have a higher
centrality in the network and enforce the whole global
rule-set only on those nodes. This approach is imag-
ined as a simpler alternative to the previous one for
networks of smaller size. If we look at Fig. 2 we see
that the performance of the filtering function dramat-
ically decreases after a certain threshold. If the global
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rule-set size is below that threshold, we can afford to
enforce the whole rule-set in some nodes that will not
introduce false positives. To reduce the overall delay
we limit the numbr of nodes that participate to the
waterwall. If we call F the set of filtering nodes we
will try to reduce its size (||F ||) selecting the nodes
that are more central in the topology, while limiting
the rate of false positives over the total traffic sent.
Estimating the centrality of a set of nodes in a

network graph is a hard task for several reason we
will explain, nevertheless we will show that using the
OLSR protocol the centrality of a group of nodes can
be approximated using the size of the MPR selec-
tor set of all the MPR nodes. Before we go deep in
this subject we need to recall the basic notions about
shortest path betweenness (the centrality measure we
adopted) and the way the OLSR protocol works.
If σk,j(i) is the set of all the shortest paths between

nodes nk and nj passing across ni and σk,j is the
set of all the shortest paths between nk and nj , the
shortest path betweenness SPB(·) of ni is defined as

SPB(i) =
1

(N − 1)(N − 2)

∑

k 6=j,j 6=i

||σk,j(i)||

||σk,j ||
(1)

Accordingly, the SPB(·) of a group of nodes F is

SPB(F ) =
1

(N − 1)(N − 2)

∑

k 6=j,j 6=i

||
⋃

i∈F σk,j(i)||

||σk,j ||

(2)
As in the previous approach the betweenness is

defined excluding the end-points of a path. Using
OLSR, node ni has enough information to compute
all the shortest paths to any other node nj in the
network. To identify a set of nodes F with a given
group betweenness, ni should compute its own be-
tweenness, the betweenness of any other node nj in
the network and then solve a combinatorial problem
to have one of the smallest sets possible. Once F has
been identified ni will be part of the waterwall only
if it falls into F . Two issues make this approach in-
adequate, the first is that OLSR doesn’t give enough
information to node ni to compute the shortest path
between any couple of nodes (nk, nj) in the network
(see the next section). The second is the complex-
ity of such a computation, which must be repeated

at every node at every modification of the network
graph.

Before we describe the proposed solution it is nec-
essary to highlight how OLSR works. As it is a very
well treated subject in the literature, we recall here
only the features important for our work.

4.1 OLSR Principles

In OLSR each node ni periodically sends an HELLO
message containing its symmetric one-hop neighbors.
This is enough for every node to have the full knowl-
edge of its two-hop neighborhood. Once the two-hop
neighborhood is known, ni will choose among its one-
hop neighbors a subset of them that will be elected
Multi Point Relays (MPR).

As defined in [9] the MPR setM(ni) is an arbitrary
subset of its symmetric 1-hop neighborhood N1(ni)
that satisfies the following condition: every node in
the 2-hop neighborhood N2(ni) must have at least a
symmetric link towards a node in M(ni). More intu-
itively, node ni can reach any node in N2(ni) through
nodes in M(ni). It has been shown that identifying
the minimal MPR set is NP-Hard, so OLSR intro-
duces a heuristic to reduce the necessary computation
that is effective in most cases [11].

Once ni has selected its MPRs it communicates to
each of them that it has become one of their MPR
selectors setting the appropriate flag to its HELLO
messages. Nodes that have been selected MPR be-
have as follows:

1. They periodically generate TC messages con-
taining the list of their selectors;

2. They rebroadcast the TCs that are received from
nodes that are their selectors.

The first point allows the construction of shortest
path routing table and the second reduces the number
of control messages compared to flooding. Moreover
this procedure distributes globally another important
information: the set of all the MPRs in the network
and the size of the selector set for each MPR. In
the OLSR RFC it is strongly suggested that MPR
nodes are preferred over non MPR nodes as next-hop
in routing tables, we expect the implementations to
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follow this guideline. In OLSRv2 RFC [8] the choice
of MPR nodes can be done with different algorithms
but routing through MPRs is mandatory. If nodes
ni and nj are direct neighbors they may talk directly
even if none of them is an MPR.
Suppose that an MPR m has been selected by both

nodes ni and nj . Nodem sends TC messages contain-
ing both the IP addresses of its selectors. When node
a nk that is not in the two-hop neighborhood of m
receives such a TC it will not be able to tell if ni and
nj are direct neighbors since m does not propagate
that information. Nodes nk approximates the topol-
ogy of the network other than its two-hop neighbors
only with the links between MPRs and their selec-
tors. For this reason a generic node nk does not have
enough information to compute the exact between-
ness of any other node ni in the network. Even if
the deviation may be little, each node may compute
a different F set.

4.2 Betweenness of groups of ranked

nodes

We consider a network in which each node gener-
ates traffic flows to random destinations, each node
is aware of the global rule-set but, contrarily to the
previous approach only a subset made of the most
central nodes will enforce the whole rule-set (and be
part of the waterwall) while the others will simply
forward the traffic. The key observation is that the
selection of node ni as MPR is an indicator of its lo-
cal betweenness. Let Si be the selector set of node
ni, and ||Si|| its size. If ni is not an MPR then Si = ∅
and ||Si|| = 0.
If we set F to the set of all the MPRs, then only

the traffic that flows between two non-MPR neigh-
bors will not be filtered. Moreover, the larger is the
selector set of ni, the more ni is important as an
intermediary in its neighborhood. This intuition is
confirmed by the results of Fig. 10 where the between-
ness of the MPRs of random networks with 100 nodes
is plotted versus ||Si||. The betweenness grows with
||Si||. Topologies where some MPRs have large ||Si||
are rare, so for large ||Si|| the data is noisy, still the
trend is clear.
If we desire to reduce F we can remove MPR nodes
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Figure 10: Betweenness centrality for MPR nodes
ranked by ||Si|| on 20 runs for a 100-nodes topology

starting from the ones that have small ||Si||. In prac-
tice, we enforce the filters on the group of MPR nodes
that have ||Si|| > t. But how this threshold relates
to the rate of false positives? Can we find a relation-
ship that is scalable on the network size and valid on
different topologies?

In section 4.3 we identify a normalized threshold
t′ with the remarkable property of being almost in-
variant of the networks size and topology, offering a
practical means for any node to independently decide
if it is part of F or not.

4.3 Simulation Results

We consider an area covering 500 × 500m with five
different topologies:

Uni – Nodes are randomly placed in the area with a
uniform distribution.

NonUni – The nodes follow a Poisson distribution
centered on the center of the playground (density
decreasing with distance).

Grid – The nodes are initially distributed on a reg-
ular grid so that each node will have at most
8 one-hop neighbors. A random noise on both
X and Y axis is added for at most 20% of the
inter-node distance.

Clust – Four clusters are created, each cluster con-
tains one fourth of the nodes. The center of each
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cluster is fixed and placed on the diagonals of the
square area, within clusters nodes follow a Pois-
sone distribution.

Obst – Three obstacles are inserted in the area.
Nodes are randomly placed outside the obsta-
cles and the penetration of the wireless signal in
the obstacles is extremely limited.

For each topology we simulate 5 cases with increas-
ing number of nodes: 36, 49, 64, 81 and 100. The
number of nodes are perfect squares to generate co-
herent grids. In total 25 networks with distinct fea-
tures are considered. Each node in the simulation
uses an omnidirectional antenna and has an approx-
imate maximum communication radius of 75m with
a dual-slope path-loss model. Ray-tracing is imple-
mented in order to limit the penetration of the wire-
less signal in the obstacles to few meters.
Fig. 11 reports metric M2(t), for the sake of read-

ability we report only the curves relative to 36 and
100 nodes, as all other curves fall between these.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25

M
2(

t)

t

36-Uni-Static
36-NonUni-Static

36-Clustered-Static
36-Obstacles-Static

36-Grid-Static
100-Uni-Static

100-NonUni-Static
100-Clustered-Static
100-Obstacles-Static

100-Grid-Static
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M2(1) is due only to traffic generated by a non-
MPR node with final destination a non-MPR node
that is a neighbor of the generator. In a small net-
work, the fraction of 1-hop neighbors of a node over
the total is higher than compared to larger networks,
so M2(1) is higher for small networks. This is one-
hop traffic that can be filtered only at the destination
node, and represents in large networks a low percent-
age of the overall traffic. Since we are interested in

the betweenness of nodes we will not consider this
fraction of the overall traffic in the next graphs.

As t increases, the difference between the be-
haviour of a small and large network increases too
and a stronger dependency on the topology arises.
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A straight explanation is that a larger network has
more MPRs than a smaller one and a more dense
network has Si on average than a less dense one. This
trend can be seen in Fig. 12 where for each scenario
is reported the histogram of the number of MPRs
versus Si. It can be seen that the networks differ in
the right limit (the highest selector set size), in the
total number of MPRs (the integral of the curve) and
in the shape of the curves. As a consequence, using
the same threshold doesn’t correspond to a similar
behaviour: a threshold t set on Si is not a scale and
topology free parameter to select F .

The authors of [11] have shown that when the den-
sity of a network increases the number of MPR nodes
grows slowly, while the average ||Si|| increases. This
means that given a certain covered area, increasing
the density will not increase the number of MPRs
but will increase the selectors per MPR. As a conse-
quence, the value of t to achieve a certain filtering rate
strongly depends by the network size while the num-
ber of MPRs has a weaker dependency, if instead of
making F depend on t we make it depend on the frac-
tion of MPR nodes over the total that are included
in F (t) we expect the curves in 11 to be closer.
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Let NMPR(t) be the number of MPRnodes ni that
have ||Si|| = t and normalize it to obtain a comple-
mentary cumulative distribution:

N ′
MPR(t) =

∑i=tmax

i=t NMPR(i)
∑i=tmax

i=1 NMPR(i)

where tmax is the largest ||Si||. N ′
MPR(t) is the frac-

tion of MPR nodes with ||Si|| ≥ t. N ′
MPR(t) is plotted

in Fig. 13.
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tor set

We define t′(t) = N ′
MPR(t). When t = 1 then

t′(1) = 1 and when t = tmax then t′(tmax) = 0.
Furthermore we observe that the following two equiv-
alences hold:

M2′(t′(t)) ≡ M2(t)

and we redefine the set F ′ as:

F ′(t′(t)) ≡ F (t)

In practice, instead of using the dependence of M2
from t, that is too much scenario dependent we have
formalized a dependence of M2 on t′ which we have
shown in Fig. 13 is less scenario-dependent. When
t′ = 1 F is made of all the MPR nodes, for other val-
ues, t′ represents a fraction of MPR nodes in F . Note
that every node ni is able to compute t′(t) without
much effort since ni knows all the MPRs and their
selector sets so they can easily compute t′(t).
The results are plotted in Fig. 14 which shows a

much more regular behaviour and curves that are
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closer than before. The results for all the scenar-
ios are summarized in figure Fig. 15 where the color
(grey) area is limited by the curves that have the
largest and the smallest area below them. It includes
all points of all the simulations for every network size
while the dotted curve is the spline generated us-
ing the average values of all the curves. It can be
seen that using t′ instead of t we can define an up-
per threshold that is valid for anyone of the consid-
ered scenarios (without having to discriminate on the
topology or on the size) close to the real performance.
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In Fig. 16 is reported also metric M1′, that is, met-
ric M1 with the same rescaling of the x axis applied
to have M2′. The metric has higher values than M1
and the trend of the curves is different from Fig. 14,
for a large portion of the x axis the curves show a
trend close to linear. This can be easily explained
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observing that each traffic flow is composed of multi-
ple hops. For each false positive in M2 several false
positives are generated in M1, moreover, M2 = 0
does not imply M1 = 0. The value of M1 depends
on how close to the source node a flow is filtered,
which, compared to M2 is more influenced by the
size of F than by the position of the nodes included
in F .
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4.3.1 Practical implications

The practical implication of this analysis is that the
average curve in figure 15 can be taken as a reference
by the network manager of a wireless mesh network
(or by any automated algorithm) to set the size of
F in order to achieve the necessary betweenness and
consequent precision for the firewall, network monitor
or IDS. For instance, if the manager wants to apply a
very fine grained filter achieving 90% of the precision,
he can set t′ = 0.5 independently of the size and
topology of his network.

The lowest is t′ the smallest is the size of F , the
less resources are spent. To have an estimation of
how much nodes are necessary to achieve the wanted
group betweenness in table 2 we report the size of the
MPR sets and the average hop-count corresponding
of the results of fig. 14.

It can be seen that t′ = 0.5 will correspond to only
25% of the nodes in the best case and to 40% the
worst, with a significant resource saving at the cost
of only 10% accuracy.

36 nodes 100 nodes
Scenario MPS hop-count MPS hop-count
uniform 19 2.7 64 4.4

nonuniform 19 2.2 62 3.3
clustered 19 2.8 55 3.9
obstacles 17 2.6 59 4.5

grid 25 3 78 3.9

Table 2: MPR set size (MPS) and average hop-count
per simulation scenario

5 Related Works

Distributed firewalling has been explored in litera-
ture, an initial model has been proposed by Bellovin
et al. in [10] where the firewall is moved from a bas-
tion host to the endpoints of a still traditional cen-
tralized network. Recently, the subject has received
more attention, Bellovin proposed a distributed pol-
icy enforcement platform [21],[19],[20],[22], as well as
other authors [1]. Those works are not focused on
the complexity introduced by large rule-sets. Other
works focus on the application of hash functions to
speed-up rule-matching [5] or on limiting the nodes
that enforce the firewall [13]. None of these works fo-
cus on techniques to reduce single rule-sets. The work
that has more in common with this one is [17], where
a cache is used to filter only using a subset of the most
recently matching rules. The cache is split in two
halves, each one regulated with a different policy in
order to ensure efficiency and fairness. This approach
requires a feedback from the nodes that generate the
rule-sets in order to organize the cache, moreover, as
every caching strategy its performance depends on
the characteristics of the underlying traffic.

In our work we assume that the default filtering
policy is to forward a packet. Packets are denied
only when there is a rule that matches them. This
approach is more viable in a mesh networks than a
deny-by-default one. For the last one to be usable
the rule-sets must be perfectly synchronized and up-
dated, otherwise there is the risk of dropping allowed
traffic. Nevertheless, in networks where a high secu-
rity level is required this approach can be used [18, 2],
but it does not match our network scenario.
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SPB has been used in social science since the late
seventies to identify influential individuals in social
networks [7]. Its adoption in the context of network-
ing, together with other metrics derived by social
studies is much more recent [12]. The extension of
SPB to group betweenness has been shown to be a
NP-Hard task in the general case [6], nevertheless, it
is at the base of some works whose aim is to find a
favourable subset of nodes in a network to perform
network monitoring [4, 16]. Our approach differs
from the ones in the literature since we do not take
into consideration the traffic matrix, that is very hard
to estimate, and we target a specific and widely used
routing protocol for mesh networks, OLSR, whose
features, we discovered, allow betweenness inference
with no signalling or computation overhead. More-
over, as we explored in [14], OLSR MPR selection can
be modified and improved to obtain global character-
istics of the network, and the TC messages of OLSR
can be easily extended to support signalling for wa-
terwall coordination. The approach based on dis-
tributing the filtering function along the route from
the source to the destination, has never been explored
before.

6 Conclusions

In this paper we have introduced a new model to per-
form distributed firewalling in mesh networks that
takes advantage of the multi-hop nature of those net-
works to share the load needed for the filtering func-
tion. To stress the difference with a traditional fire-
wall, we chose the term waterwall indicating a fluid
and distributed network function, instead of a single
filtering host. We proposed two approaches to en-
force the waterwall in a wireless mesh network, both
can be used to greatly reduce the unwanted traffic in
a mesh network.

We used two different ways to validate the pro-
posed techniques, graph analysis for large networks
and computer simulation for smaller networks that
are more computationally tractable. In both cases
we show significant improvements over a traditional
firewalling approach, being able to scale up to thou-
sands of rules. The source code used will be made

available on the main website financing this project,
www.pervacy.eu.

As future work we intend to port the first filter-
ing approach to the network simulator, in order to
test and optimize the enhancement described in 3.3.
Moreover we will merge the two approaches in a single
configurable platform and embed it in some widely
used routing protocol implementation, such as OLSR
in order to make tests on real networks.
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