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2LORIA & INRIA-Lorraine, Nancy (France)

April 20, 2008

Abstract

We introduce the notion of array-based system as a suitable abstraction of infinite state

systems such as broadcast protocols or sorting programs. By using a class of quantified

first-order formulae to symbolically represent array-based systems, we propose methods

to check safety (invariance) and liveness (recurrence) properties on top of Satisfiability

Modulo Theories solvers. We find hypotheses under which the verification procedures for

such properties can be fully mechanized.
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1 Introduction

Model checking of infinite state systems manipulating arrays – e.g., broadcast protocols, lossy

channel systems, or sorting programs – is a hot topic in verification. The key problem is to

verify the correctness of such systems regardless of the number of elements (processes, data,

or integers) stored in the array, called uniform verification problem. In this paper, we propose

array-based systems as a suitable abstraction of broadcast protocols, lossy channel systems, or,

more in general, programs manipulating arrays (Section 3). The notion of array-based system

is parametric with respect to a theory of indexes (which, for parameterized systems, specify

the topology of processes) and a theory of elements (which, again for parameterized systems,

specify the data manipulated by the system). Then (Section 3.1), we show how states and

transitions of a large class of array-based systems can be symbolically represented by a class

of quantified first-order formulae whose satisfiability problem is decidable under reasonable

hypotheses on the theories of indexes and elements (Section 4). We also sketch how to extend

the lazy Satisfiability Modulo Theories (SMT) techniques [26] by a suitable instantiation

strategy to handle universally quantified variables (over indexes) so as to implement the

satisfiability procedure for the class of quantified formulae under consideration (Figure 1).

The capability to handle a (limited form) of universal quantification is crucial to reduce

entailment between formulae representing states to satisfiability of a formula in the class of

quantified formulae previously defined. This observation together with closure under pre-

image computation of the kind of formulae representing unsafe states allows us to implement

a backward reachability procedure (see, e.g., [19], or also [25] for a declarative approach) for

checking safety properties of array-based systems (Section 5). In general, the procedure may

not terminate; but, under some additional assumptions on the theory of elements, we are

able to prove termination by revisiting the notion of configuration (see, e.g., [1]) in first-order

model-theory (Section 5.2). Finally (Section 6), we show the flexibility of our approach by

studying the problem of checking the class of liveness properties called recurrences [21]. We

devise deductive methods to check such properties based on the synthesis of so-called progress

conditions at quantifier free level and we show how to fully mechanize our technique under

the same hypotheses for the termination of the backward reachability procedure.

All proofs have been put in Appendix A. Concerning examples, our framework covers

all examples discussed in [2, 3];1 in addition, we have further applications (e.g. to sorting

algorithms), because our approach is parametric with respect to the theory describing process

‘topology’ (we can arrange processes as a set, as a linear order, as a tree, as a graph, etc.).

Examples of various kinds are all discussed in the final Section 7, where it is also shown how

1For some of them, we need the approximated transition trick introduced in these papers.
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to recover well-known decidability results for broadcast protocols and lossy channels systems

as corollaries of our Theorem 5.7.

2 Formal Preliminaries

We assume the usual first-order syntactic notions of signature, term, formula, quantifier free

formula, and so on; equality is always included in our signatures. If x is a finite set of

variables and Σ is a signature, by a Σ(x)-term, -formula, etc. we mean a term, formula,

etc. in which at most the x occur free (notations like t(x), ϕ(x) emphasize the fact that the

term t or the formula ϕ in in fact a Σ(x)-term or a Σ(x)-formula, respectively). The notions

of interpretation, satisfiability, validity, and logical consequence are also the standard ones;

when we speak about satisfiability (resp. validity) of a formula containing free variables, we

mean satisfiability of its existential (resp. universal) closure. IfM = (M,
∫

) is a Σ-structure,

a Σ-substructure ofM is a Σ-structure having as domain a subset of M which is closed under

the operations of Σ (in a Σ-substructure, moreover, the interpretation of the symbols of Σ is

given by restriction). The Σ-structure generated by a subset X of M (which is not assumed

now to be closed under the Σ-operations) is the smallest Σ-substructure ofM whose domain

contains X and, if this Σ-substructure coincides with the wholeM, we say that X generates

M. A Σ-embedding (or, simply, an embedding) between two Σ-structures M = (M,
∫

) and

N = (N,J ) is any mapping µ : M −→ N among the corresponding support sets which is an

isomorphism betweenM and the Σ-substructure of N whose underlying domain is the image

of µ (thus, in particular, for µ to be an embedding, the image of µ must be closed under the

Σ-operations). A class C of structures is closed under substructures iff whenever M ∈ C and

N is (isomorphic to) a substructure ofM, then N ∈ C.

Contrary to previous papers of ours, like [17], we prefer to have here a more liberal notion

of a theory, so we identify a theory T with a pair (Σ, C), where Σ is a signature and C is a

class of Σ-structures (the structures in C are called the models of T ).

The notion of T -satisfiability of ϕ means satisfiability of ϕ in a Σ-structure from C; sim-

ilarly, T -validity of a sentence ϕ (noted T |= ϕ) means truth of ϕ in all M ∈ C. The

Satisfiability Modulo Theory T , SMT(T ), problem amounts to establish the T -satisfiability

of an arbitrary first-order formula (hence possibly containing quantifiers), w.r.t. some back-

ground theory T . A theory solver for the theory T (T -solver) is any procedure capable

of establishing whether any given finite conjunction of literals is T -satisfiable or not. The

so-called lazy approach to solve SMT(T ) problems for quantifier-free formulae consists of in-

tegrating a Boolean enumerator (usually based on a refinement of the DPLL algorithm) with

a T -solver (see [22, 26] for an overview). Hence, by assuming the existence of a T -solver,
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it is always possible to build a (lazy SMT) solver capable of checking the T -satisfiability

of arbitrary Boolean combinations of atoms in T (or, equivalently, quantifier-free formulae).

For efficiency, a T -solver is required to provide a more refined interface, such as returning a

sub-set of a T -unsatisfiable input set of literals which is still T -unsatisfiable, called conflict

set (again see [26] for details).

We say that T admits quantifier elimination iff for every formula ϕ(x) one can compute

a quantifier-free formula ϕ′(x) which is T -equivalent to it (i.e. such that T |= ∀x (ϕ(x) ↔

ϕ′(x))). Linear Arithmetics, Real Arithmetics, acyclic lists, and enumerated datatype theories

(see below) admit elimination of quantifiers.

A theory T = (Σ, C) is said to be locally finite iff Σ is finite and, for every finite set of

variables x, there are finitely many Σ(x)-terms t1, . . . , tkx
such that for every further Σ(x)-term

u, we have that T |= u = ti (for some i ∈ {1, . . . , kx}). The terms t1, . . . , tkx
are called Σ(x)-

representative terms; if they are effectively computable from x (and ti is computable from u),

then T is said to be effectively locally finite (in the following, when we say ‘locally finite’, we

in fact always mean ‘effectively locally finite’). If Σ is finite and does not contain any function

symbol (i.e. Σ is a purely relational signature), then any Σ-theory is effectively locally finite;

other effectively locally finite theories are Boolean algebras and Linear Arithmetic modulo a

fixed integer.

Let Σ be a finite signature; an enumerated datatype theory in Σ is the theory whose class

of models contains only a single finite Σ-structure M = (M, I); we require M to have the

additional property that for every m ∈ M there is a constant c ∈ Σ such that cI = m. It is

easy to see that an enumerated datatype theory admits quantifier elimination (since ∃xϕ(x)

is T -equivalent to ϕ(c1) ∨ · · · ∨ ϕ(cn), where c1, . . . , cn are interpreted as the finitely many

elements of the enumerated datatype) and is effectively locally finite.

In the following, it is more natural to adopt a many-sorted language. All notions intro-

duced above (such as term, formula, structure, and satisfiability) can be easily adapted to

many-sorted logic, see e.g. Chapter XX of [13].

3 Array-based Systems and their Symbolic Representation

We develop a framework to state and solve model checking problems for safety and liveness of a

particular class of infinite state systems by using deductive (more precisely, SMT) techniques.

We focus on the class of systems whose state can be described by a finite collections of arrays,

which we call array-based systems. As an example, consider parameterized systems, i.e.

systems consisting of an arbitrary number of identical finite-state processes organized in a

linear array: a state a of such a parameterized system can be seen as a state of an array-based
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system (in the formal sense of Definitions 3.2, 3.3 below), where the indexes of the domain

of the function assigned to the state variable a are the identifiers of the processes and the

elements of a are the data describing one of the finitely many states of each process.

Array-based Systems. To develop our formal model, we introduce three theories. We use

two mono-sorted theories TI = (ΣI , CI) (of indexes) and TE = (ΣE , CE) (of elements), whose

only sort symbol are called INDEX and ELEM, respectively. TI specifies the “topology” of the

processes, e.g., in the case of parameterized systems informally discussed above, ΣI contains

only the equality symbol ‘=’ and CI is the class of all finite sets. Other interesting examples

of TI can be obtained by taking ΣI to contain a binary predicate symbol R (besides =) and

CI to be the class of structures where R is interpreted as a total order, a graph, a forest, etc.

For parameterized systems with finite-state processes, TE can be the theory of an enumerated

datatype. For the larger class of parameterized systems (e.g., the one considered in [2, 3])

admitting integer (or real) variables local to each process, TE can be the theory whose class

of models consists of a single structure (like real numbers under addition and/or ordering).

Notice that in concrete applications, TE has a single model (e.g. an enumerate datatype, or

the structure of real/natural numbers under suitable operations and relations), whereas TI

has many models (e.g. it has as models all sets, all finite sets, all graphs, all finite graphs,

etc.). The technical hypotheses we shall need in Sections 4 and 5 on TI and TE are fixed in

the following:

Definition 3.1. An index theory TI = (ΣI , CI) is a mono-sorted theory (let us call INDEX its

sort) which is locally finite, closed under substructures and whose quantifier free fragment is

decidable for TI -satisfiability. An element theory TE = (ΣE , CE) is a mono-sorted theory (let

us call ELEM its sort) which admits quantifier elimination and whose quantifier free fragment

is decidable for TE-satisfiability.

One may wonder how restrictive are the assumptions of the above definition: it turns out

that they are very light (for instance, they do not rule out any of the examples considered

in [2, 3]). In fact, quantifier elimination holds for common datatype theories (integers, reals,

enumerated datatypes, etc.) and the hypotheses on index theory are satisfied for most process

‘topologies’ (a case in which they fail is when processes are arranged in a ring, like in the

’dining philosophers’ example: such rings require a unary function symbol to be formalized

and the bijectivity constraint to be imposed on it is insufficient to make the theory locally

finite).

The third theory AE
I = (Σ, C) we need is obtained by combining an index theory TI and an

element theory TE as follows. First, AE
I has three sort symbols: INDEX, ELEM, and ARRAY; the
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signature Σ contains all the symbols in the disjoint union ΣI∪ΣE and a further binary function

symbol apply of sort ARRAY × INDEX −→ ELEM. (In the following, we abbreviate apply(a, i)

with a[i], for a term of sort ARRAY and i term of sort INDEX.) Second, a three-sorted structure

M = (INDEXM, ELEMM, ARRAYM,
∫

) is in the class C iff ARRAYM is the set of (total) functions

from INDEXM to ELEMM, the function symbol apply is interpreted as function application (i.e.

as the standard reading operation for arrays), and (INDEXM,
∫

|ΣI
), (ELEMM,

∫

|ΣE
) are models

of TI and TE , respectively – here
∫

|ΣI
,
∫

|ΣE
are the restriction of

∫

to the symbols of ΣI ,ΣE .

(In the following, we use the notations MI and ME for (INDEXM,
∫

|ΣI
) and (ELEMM,

∫

|ΣE
),

respectively.) If the model M of AE
I is such that INDEXM is a finite set, then M is called a

finite index model.

For the remaining part of the paper, we fix an index theory TI = (ΣI , CI) and an

element theory, TE = (ΣE , CE) (we also let AE
I = (Σ, C) be the corresponding combined

theory).

Once the theories constraining indexes and elements are fixed, we need the notions of

state, initial state and state transition to complete our picture. In a symbolic setting, these

are provided by the following definitions:

Definition 3.2. An array-based (transition) system (for (TI , TE)) is a triple S = (a, I, τ)

where

– a is a tuple of variables of sort ARRAY (these are the state variables);

– I(a) is a Σ(a)-formula (this is the initial state formula);

– τ(a, a′) is a Σ(a, a′)-formula – here a′ is a renamed copy of the tuple a (this is the

transition formula).

Definition 3.3. Let S = (a, I, τ) be an array-based transition system. Given a model M

of the combined theory AE
I , an M-state (or, simply, a state) of S is an assignment mapping

the state variables a to total functions s from the domain of MI to the domain of ME . A

run of the array-based system is a (possibly infinite) sequence s0, s1, ... of states such that2

M |= I(s0) andM |= τ(sk, sk+1) for k ≥ 0.

For simplicity, below, we assume that the tuple of array state variables is a single variable

a: all definitions and results of the paper can be easily generalized to the case of finitely

many array variables (one can also prove that the limitation to a single array variable is not

formally restrictive, provided TE is allowed to be many sorted as well – see Section 7 for a

discussion on this topic and also on how to model global variables).

2Notations like M |= I(s0) means that the formula I(a) is true in M under the assignment mapping the

a’s to the s’s.
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3.1 Symbolic Representation of States and Transitions

The next step is to identify suitable syntactic restrictions for the formulae I, τ appearing in the

definition of an array-based system. Preliminarily, we introduce some notational conventions

that alleviate the burden of writing and understanding the various formulae for states and

transitions: d, e, . . . range over variables of sort ELEM, a, b . . . over variables of sort ARRAY,

i, j, k, . . . over variables of sort INDEX, and α, β, . . . over variables of either sort ELEM or

sort INDEX. An underlined variable name abbreviates a tuple of variables of unspecified (but

finite) length; by subscripting with an integer an underlined variable name, we indicate the

corresponding component of the tuple (e.g., i may abbreviate i1, . . . , in and ik indicates ik,

for 1 ≤ k ≤ n). We also use a[i] to abbreviate the tuple of terms a[i1], . . . , a[in]. If j

and i are tuples with the same length n, then i = j abbreviates
∧n

k=1(ik = j
k
). Possibly

sub/super-scripted expressions of the forms φ(α), ψ(α), . . . (with sub-/super-scripts) always

denote quantifier-free (ΣI ∪ ΣE)-formulae in which at most the variables α occur

(notice in particular that no array variable and no apply constructor a[i] can occur here).

Also, φ(α, t/β) (or simply φ(α, t)) abbreviates the substitution of the terms t for the variables

β (now apply constructors may appear in t). Thus, for instance, when we write φ(i, a[i]), we

mean the formula obtained by the replacements e 7→ a[i] in the quantifier free formula φ(i, e)

(the latter contains at most the element variables e and at most the index variables i).

We are now ready to introduce suitably restricted classes of formulae for representing

states and transitions of array-based systems.

States. An ∃I-formula is a formula of the form ∃i φ(i, a[i]): such a formula may be used to

model sets of unsafe states of parameterized systems, such as violations of mutual exclusion:

∃i∃j (i 6= j ∧ a[i] = critical ∧ a[j] = critical),

where critical is a constant symbol of sort ELEM in an enumerated datatype theory.

A ∀I-formula is a formula of the form ∀i φ(i, a[i]): this is logically equivalent to the

negation of an ∃I -formula and may be used to model initial sets of states of parameterized

systems, such as “all processes are in a given state”:

∀i (a[i] = idle),

where idle is a constant symbol of sort ELEM in an enumerated datatype theory. We mention

that ∀I -formulae can also be used to model invariant assertions (like “every process in critical

section must have a nonzero ticket”).

8



Transitions. The intuition underlying the class of formulae representing transitions of

array-based systems can be found by analyzing the structure of transitions of parameterized

systems. In such systems, a transition has typically two components. The local component

specifies the transitions of a given fixed number of processes; e.g., one of the transitions of

the Bakery protocol for mutual exclusion requires that a process with process identifier i may

return to the state idle upon exiting the critical section. The global component specifies

the transitions done by all the other process in the array as a reaction to those taken by the

processes involved in the local component; e.g., continuing with the transition of the Bakery

protocol, any other process j 6= i persists in the same state after process i is returned to

state idle after having been in state critical. The transition of the Bakery protocol can

be specified by the following formula:

∃i

(

(a[i] = critical ∧ a′[i] = idle)∧

∀j
(

(j = i ∧ a′[j] = a′[i]) ∨ (j 6= i ∧ a′[j] = a[j])
)

)

.

If we abbreviate the first conjunct with φL(i, a[i], a′[i]) and the quantifier-free part of the

second with φG(j, a[j], a′[j]), the above formula can be written as

∃i (φL(i, a[i], a′[i]) ∧ ∀j φG(i, a[i], a′[i], j, a[j], a′[j])),

where φL is called the local component formula and φG is the global component formula. We

generalize this format by allowing a tuple i of existentially quantified variables (instead of a

single variable i). Thus we are lead to the following

Definition 3.4. Suppose we are given formulae φL(i, d, d′) and φG(i, d, d′, j, e, e′), where φG

satisfies the following seriality requirement:

AE
I |= ∀i∀d ∀d

′ ∀j ∀e∃e′ φG(i, d, d′, j, e, e′). (1)

The T-formula with local component φL and global component φG is the formula

∃i (φL(i, a[i], a′[i]) ∧UpdateG(i, a, a′)), (2)

where we used the explicit definition (i.e. the abbreviation)

UpdateG(i, a, a′) :⇔ ∀j φG(i, a[i], a′[i], j, a[j], a′[j]). (3)

Recall that, according to our conventions, the local component φL and the global com-

ponent φG are quantifier-free (ΣI ∪ ΣE)-formulae. In φG(i, d, d′, j, e, e′) the variables i, d, d′

are called side parameters (these variables are instantiated in (2)-(3) by i, a[i], a′[i], respec-

tively) and the variables j, e, e′ are called proper parameters (these variables are instantiated
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in (2)-(3) by j, a[j], a′[j], respectively). The intuition underlying the formula UpdateG(i, a, a′)

defined by (3) is that the array a′ is obtained as a global update of the array a according to φG.

In fact, in (3), the proper parameters of φG are instantiated as j, a[j], a′[j], i.e. as the index

to be updated, the old, and the new content of that index. Notice also that this updating is

largely non-deterministic, because a T -formula like (2) does not univocally characterize the

system evolution: this is revealed by the fact that φG is not a definable function, and by the

fact that the side parameters d′ that may occur in φG are instantiated as the updated values

a′[i] (this circularity makes sense only if we view the T -formula (2) as expressing a constraint

– not necessarily an assignment – for the updated array a′).

We say that φG is functional if it satisfies the further requirement

AE
I |= ∀i∀d ∀d

′ ∀j ∀e∀e′ ∀e′′ (φG(i, d, d′, j, e, e′)∧φG(i, d, d′, j, e, e′′)→ e′ = e′′). (4)

Many global component formulae arising in the applications are indeed functional; for exam-

ple, it is easy to see that the transition relation of the Bakery formalized above is functional.

In Section 7 we shall see significant examples, where serial but not functional transitions

naturally arise.

In the remaining part of the paper, we fix an array-based system S = (a, I, τ),

in which the initial formula I is a ∀I-formula and the transition formula τ is a

disjunction of T-formulae.

4 Symbolic Representation and SMT Solving

To make effective use of our framework, we need to be able to check whether certain require-

ments are met by a given array-based system. In other words, we need a powerful reasoning

engine: it turns out that AE
I -satisfiability of ∃A,I∀I -sentences introduced below is just what

we need.3

Theorem 4.1. The AE
I -satisfiability of ∃A,I∀I-sentences, i.e. of sentences of the kind

∃a1 · · · ∃an ∃i∀j ψ(i, j, a1[i], . . . , an[i], a1[j], . . . , an[j]), (5)

is decidable.

We leave to Appendix A the detailed proof of the above Theorem, here we focus on a

discussion oriented to the employment of SMT-solvers in the decision procedure: Figure 1

depicts an SMT-based decision procedure for ∃A,I∀I -sentences (in the simplified case in which

only one variable of sort ARRAY occurs).

3Decidability of AE
I -satisfiability of ∃A,I∀I -sentences plays in this paper a role similar to the Σ0

1-decidability

result employed in [7] (our decidability result is however peculiar, because we are in a declarative multi-sorted

context, with two input theories, namely TI and TE).
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function AE
I -check(∃a ∃i ∀j ψ(i, j, a[i], a[j]))

t←− compute-repsTI
(i); φ←− t = l; Atoms ←− IE(l)

for each substitution σ mapping the j into the t’s do

φ′ ←− purify(ψ(i, jσ, a[i], a[jσ])); φ←− φ ∧ φ′; Atoms ←− Atoms ∪ atoms(φ′);

end for each

while Bool(φ) = sat do

βI ∧ βE ∧ ηI ←− pick-assignment(Atoms, φ)

(ρI , πI)←− TI -solver(βI ∧ ηI)

(ρE , πE)←− TE-solver(βE ∧
∧

ls1
=ls2

∈ηI
(es1

= es2
))

if ρI = sat and ρE = sat then return sat

if ρI = unsat then φ←− φ ∧ ¬πI

if ρE = unsat then φ←− φ ∧ ¬πE

end while

return unsat

end

Figure 1: The SMT-based decision procedure for ∃A,I∀I -sentences

The set t of representative terms over i is computed by compute-repsTI
(to simplify the

matter, we can freely assume t ⊇ i). This function is guaranteed to exist since TI is effectively

locally finite (for example, when ΣI contains no function symbol, compute-repsTI
is the identity

function). In order to purify formulae, we shall need below fresh index variables l abstracting

the t and fresh element variables e abstracting the terms a[l]: the conjunction of the ‘defining

equations’ t = l is stored as the formula φ, whereas the further defining equations a[l] = e

(not to be sent to the Boolean solver) will be taken into account inside the second loop body.

Then, the first loop is entered where we instantiate in all possible ways the universally

quantified index variables j with the representative terms in the set t. For every such sub-

stitution σ, the formula ψ(i, jσ, a[i], a[jσ]) is purified by replacing the terms a[t] with the

element variables e; after such purification, the resulting formula is added as a new conjunct

to φ. Notice that this φ is a quantifier-free formula whose atoms are pure, i.e. they are

either ΣI - or ΣE-atoms. The function IE(l) returns the set of all possible equalities among

the index variables l. Such equalities are added to the set of atoms occurring in φ as the TI -

and TE-solvers need to take into account an equivalence relation over the index variables l so

as to synchronize.

We can now enter the second (and main) loop: the Boolean solver, by invoking the

interface function pick-assignment inside the loop, generates an assignment over the set of
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atoms occurring in φ and IE(l). The loop is exited when φ is checked unsatisfiable (test of

the while). The TI -solver checks for unsatisfiability the set βI of ΣI -literals in the Boolean

assignment and the literals of the possible partition ηI on l. Then, only the equalities
∧

{es1
=

es2
| (ls1

= ls2
) ∈ ηI} (and not also inequalities) among the purification variables e induced

by the partition ηI on l are passed to the TE-solver together with the set βE of ΣE-literals

in the Boolean assignment (this is to take into account the congruence of a[l] = e). If both

solvers detect satisfiability, then the loop is exited and AE
I -check also returns satisfiability.

Otherwise (i.e. if at least one of the solvers returns unsat), the negation of the computed

conflict set (namely, πI or πE) is conjoined to φ so as to refine the Boolean abstraction and

the loop is resumed. If in the second loop, satisfiability is never detected for all considered

Boolean assignments, then AE
I -check returns unsatisfiability. The second loop can be seen as

a refinement of the Delayed Theory Combination technique [8].

The critical point of the above procedure is the fact that the first loop may produce a

very large φ: in fact, even in the most favourable case in which compute-repsTI
is the identity

function, the purified problem passed to the solvers of the second loop has exponential size.

This is consequently the dominating cost of the whole procedure. In fact, in order to better

evaluate the complexity, we can reformulate the second loop as follows (see the proof of

Theorem 4.1 in the Appendix A): guess in advance a partition ηI (this is just a polynomial

guess) and simply check φI ∧ ηI for TI -satisfiability and φE ∧
∧

ls1
=ls2

∈ηI
(es1

= es2
) for TE-

satisfiability (here we assumed that φ is splitted into the pure components φI ∧ φE). These

TE-satisfiability and TI -satisfiability problems have both exponential size, because φI∧φE is of

exponential size (in the most favourable case in which compute-repsTI
is the identity function):

this means that if both TI , TE-satisfiability are in P (resp. NP, PSPACE, EXPTIME), then

the whole complexity of our procedure is one exponential higher, i.e. it is EXPTIME (resp.

NEXPTIME, EXPSPACE, 2EXPTIME, etc.). This is because the total number of guesses is

exponential and each guess leads to an expsize instance of a satisfiability problem modulo TI

and TE .

To improve performances, an incremental approach is desirable: in the incremental ap-

proach, the second loop may be entered before all possible substitution have been examined.

If the second loop returns unsat, one can exit the whole algorithm and only in case it returns

sat further substitutions (producing new conjuncts for φ) are taken into consideration. Since

when AE
I -check is called in conclusive steps of our model checking algorithms (for fixpoint,

safety, or progress checks), the expected answer is unsat, this incremental strategy may be con-

siderably convenient. Other promising suggestions for reducing the number of instantiations

(in the case of particular index and elements theories) come from recent decision procedures

for fragments of theories of arrays, see [9, 18].
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5 Safety Model Checking

Checking safety properties means checking that a set of ‘bad states’ (e.g., of states violating

the mutual exclusion property) cannot be reached by a system. This can be formalized in our

settings as follows:

Definition 5.1. Let K(a) be an ∃I -formula (whose role is that of symbolically representing

the set of bad states). The safety model checking problem for K is the problem of deciding

whether there is an n ≥ 0 such that the formula

I(a0) ∧ τ(a0, a1) ∧ · · · ∧ τ(an−1, an) ∧K(an) (6)

is AE
I -satisfiable. If such an n does not exist, K is safe; otherwise, it is unsafe.

Notice that the AE
I -satisfiability of (6) means precisely the existence of a finite run leading

from a state in I to a state in K.

5.1 Backward Reachability

If a bound for n in the safety model checking is known a priori, then safety can be decided

by checking the AE
I -satisfiability of suitable instances of (6) (this is possible because each

formula (6) is equivalent to a ∃A,I∀I -formula). Unfortunately, this is rarely the case and we

must design a more refined method. In the following, we adapt algorithms that incrementally

maintain a representation of the set of reachable states in an array-based system.

Definition 5.2. Let K(a) be an ∃I -formula. An M-state s0 is backward reachable from K

in n steps iff there exists a sequence of M-states s1, . . . , sn such that

M |= τ(s0, s1) ∧ · · · ∧ τ(sn−1, sn) ∧K(sn).

We say that s0 is backward reachable from K iff it is backward reachable from K in n steps

for some n ≥ 0.

Before designing our backward reachability algorithm, we must give a symbolic repre-

sentation of the set of backward reachable states. Preliminarily, notice that if K(a) is an

∃I -formula, the set of states which are backward reachable in one step from K can be repre-

sented as follows:

Pre(τ,K) := ∃a′ (τ(a, a′) ∧K(a′)). (7)

Although Pre(τ,K) is not an ∃I -formula anymore, we are capable of finding an equivalent

one in the class:

13



function BReach(K)

i←− 0; BR0(τ,K)←− K; K0 ←− K

if AE
I -check(BR0(τ,K) ∧ I) = sat then return unsafe

repeat

Ki+1 ←− Pre(τ,Ki)

BRi+1(τ,K)←− BRi(τ,K) ∨Ki+1

if AE
I -check(BRi+1(τ,K) ∧ I) = sat then return unsafe

else i←− i+ 1

until AE
I -check(¬(BRi+1(τ,K)→ BRi(τ,K)) = unsat

return safe

end

Figure 2: Backward Reachability for Array-based Systems

Proposition 5.3. Let K(a) be an ∃I-formula; then Pre(τ,K) is AE
I -equivalent to an (effec-

tively computable) ∃I-formula K ′(a).

The proof of this Proposition can be obtained by a tedious syntactic computation while

using (1) together with the fact that TE admits quantifier elimination.

Abstractly, the set of states that can be backward reachable from K can be recursively

characterized as follows: (a) Pre0(τ,K) := K and (b) Pren+1(τ,K) := Pre(τ, Pren(τ,K)).

The formula BRn(τ,K) :=
∨n

s=0 Pre
s(τ,K) (having just one free variable of type ARRAY)

symbolically represents the states that can be backward reached from K in n steps. The

sequence of BRn(τ,K) allows us to rephrase the safety model checking problem (Definition

5.1) using symbolic representations by saying that K is safe iff the formulae I∧BRn(τ,K) are

all not AE
I -satisfiable. This still requires infinitely many tests, unless there is an n such that

the formula ¬(BRn+1(τ,K) → BRn(τ,K)) is AE
I -unsatisfiable.4 The key observation now

is that both I ∧ BRn(τ,K) and ¬(BRn+1(τ,K) → BRn+1(τ,K)) can be easily transformed

into ∃A,I∀I -formulae so that their AE
I -satisfiability is decidable and checked by the procedure

AE
I -check of Figure 1.

This discussion suggests the adaptation of a standard backward reachability algorithm

(see, e.g., [19]) depicted in Figure 2, where Pre takes a formula, it computes Pre as defined in

(7), and then applies the required syntactic manipulations to transform the resulting formula

into an equivalent one according to Proposition 5.3.

4Notice that the AE
I -unsatisfiability of ¬(BRn(τ, K) → BRn+1(τ, K)) is obvious by definition. Hence, the

AE
I -unsatisfiability of ¬(BRn+1(τ, K) → BRn(τ, K)) implies that AE

I |= BRn+1(τ, K) ↔ BRn(τ, K).
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Theorem 5.4. Let K(a) be an ∃I-formula; then the function BReach in Figure 2 semi-decides

the safety model checking problem for K.

5.2 Termination of Backward Reachability

Indeed, the main problem with the semi-algorithm of Figure 2 is termination; in fact, it

may not terminate when the system is safe. In the literature, termination of infinite state

model checking is often obtained by defining a well-quasi-ordering (wqo – see, e.g., [1]) on

the configurations of the system. Here, we adapt this approach to our setting, by defining

model-theoretically a notion of configuration and then introducing a suitable ordering on con-

figurations: once this is done, it will be immediate to prove that termination follows whenever

the ordering among configurations is a wqo.

An AE
I -configuration (or, briefly, a configuration) is anM-state in a finite index modelM

of AE
I : a configuration is denoted as (s,M), or simply as s, leavingM implicit. Moreover, we

associate a ΣI -structure sI and a ΣE-structure sE with an AE
I -configuration (s,M) as follows:

the ΣI -structure sI is simply the finite structure MI , whereas sE is the ΣE-substructure of

ME generated by the image of s (in other words, if INDEXM = {c1, . . . , ck}, then sE is

generated by {s(c1), . . . , s(ck)}).

We remind few definitions about preorders. A preorder (P,≤) is a set endowed with a

reflexive and transitive relation; an upset of such a preorder is a subset U ⊆ P such that

(p ∈ U and p ≤ q imply q ∈ U). An upset U is finitely generated iff it is a finite union

of cones, where a cone is an upset of the form ↑ p = {q ∈ P | p ≤ q} for some p ∈ P . A

preorder (P,≤) is a well-quasi-ordering (wqo) iff every upset of P is finitely generated (this

is equivalent to the standard definition, see Appendix A). We define now a preorder among

our configurations:

Definition 5.5. Let s, s′ be configurations; s′ ≤ s holds iff there are a ΣI -embedding µ :

s′I −→ sI and a ΣE-embedding ν : s′E −→ sE such that the set-theoretical compositions of µ

with s and of s′ with ν are equal.

s′E sE
--

ν

s′I sI
--

µ

?

s′

?

s

Let K(a) be an ∃I -formula: we denote by [[K]] the set of AE
I -configurations satisfying K;

in symbols, [[K]] := {(M, s) | M |= K(s)}.
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Proposition 5.6. For every ∃I-formula K(a), the set [[K]] is upward closed; moreover, for

every ∃I-formulae K1,K2, we have [[K1]] ⊆ [[K2]] iff AE
I |= K1 → K2.

The set of configurations B(τ,K) which are backward reachable from a given ∃I -formula

K is thus an upset, being the union of infinitely many upsets; however, even in case the latter

are finitely generated, B(τ,K) needs not be so. Under the hypothesis of local finiteness of

TE , this is precisely what characterizes termination of backward reachability search:

Theorem 5.7. Assume that TE is locally finite; let K be an ∃I-formula. If K is safe, then

BReach in Figure 2 terminates iff B(τ,K) is a finitely generated upset.5 As a consequence,

BReach always terminates when the preorder on AE
I -configurations is a wqo.

Theorem 5.7 covers many well-known terminating cases (for some of them, a primitive

recursive lower bound does not even exist). We just give few examples here.

– Take TE to be an enumerated datatype theory and TI to be the pure equality theory

in the signature ΣI = {=} (in this setting one can formalize broadcast protocols): the

preorder on AE
I -configurations is a wqo by Dikson’s Lemma.

– Take TE to be an enumerated datatype theory and TI to be the theory of total or-

ders (in this setting one can formalize Lossy Channel Systems): the preorder on AE
I -

configurations is a wqo by Higman’s Lemma.

– Take TE to be the theory of rationals (under the natural ordering <) and TI to be

the pure equality theory in the signature ΣI = {=} (in this setting one can formalize

the version of the Bakery algorithm mentioned in [2]): using Kruskal’s theorem, it is

possible to show that the preorder on AE
I -configurations is a wqo.6

6 Progress Formulae for Recurrence Properties

Liveness problems are difficult and even more so for infinite state systems. In the following, we

consider a special kind of liveness properties, which falls into the class of recurrence properties

5If K is unsafe, we already know that BReach terminates because it detects unsafety (cf. Theorem 5.4).
6We give details for the last example (for the first two, see Section 7 below). In the third example, we

can represent a configuration (M, s) as a list n1, . . . , nk of natural numbers (of variable length k): such a list

encodes the information that sE is a k-element chain and that n1 elements from sI are mapped by s into

the first element of the chain, n2 elements from sI are mapped by s into the second element of the chain,

etc. If w is the list for s and v is the list for s′, we have s′ ≤ s iff w is componentwise less or equal to a

subword of v. We can get termination by Kruskal’s theorem by representing numbers as numerals and by

using a binary function symbol f to encode the precedence (thus, for instance, the list 1,2,2 is represented as

f(s(0), f(s(s(0)), s(s(0)))): in fact, it is easily seen that, on these terms, the homeomorphic embedding behaves

like our configuration ordering.
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in the classification introduced in [21]. Our method for dealing with such properties consists

in synthesizing progress functions definable at quantifier free level.

A recurrence property is a property which is infinitely often true in every infinite run of a

system; in other words, to check that R is a recurrence property it is sufficient to show that

it cannot happen that there is an infinite run s0, s1, . . . , si, . . . such that R is true at most in

the states from a finite prefix s0, . . . , sm. This can be formalized in our framework as follows.

Definition 6.1. Suppose that R(a) is a ∀I -formula; let us use the abbreviations K(a) for

¬R(a) and τK(a, a′) for τ(a, a′) ∧K(a) ∧K(a′).7 We say that R is a recurrence property iff

for every m the infinite set of formulae

I(b1), τ(b1, b2), . . . , τ(bm, a0), τK(a0, a1), τK(a1, a2), . . . (8)

is not satisfiable in a finite index model of AE
I .

The finite prefix I(b1), τ(b1, b2), . . . , τ(bm, a0) in (8) above ensures that the states assigned

to a0, a1, . . . are (forward) reachable from an initial state, whereas the infinite suffix τK(a0, a1),

τK(a1, a2), . . . expresses the fact that property R is never attained. Observe that, whereas

it can be shown that the AE
I -satisfiability of (6) for safety problems (cf. Definition 5.1) is

equivalent to its satisfiability in a finite index model of AE
I , this is not the case for (8). This

imposes the above explicit restriction to finite index models since, otherwise, recurrence might

unnaturally fail in many concrete situations.

Example 6.2. In a mutual exclusion protocol, we can choose K to be

∃i (i = c ∧ a[i] = waiting)

(here c is a fresh constant8 of type ΣI and, of course, TE |= waiting 6= critical). Then the

AE
I -satisfiability of (8) implies that the protocol cannot guarantee absence of starvation.

Let R be a recurrence property; we say that R has polynomial complexity iff there exists

a polynomial f(n) such that for every m and for k > f(n) the formulae

I(b1) ∧ τ(b1, b2) ∧ · · · ∧ τ(bm, a0) ∧ τK(a0, a1) ∧ · · · ∧ τK(ak−1, ak) (9)

are all unsatisfiable in the modelsM of AE
I such that the cardinality of the support ofMI is

at most n (in other words, f(n) gives an upper bound for the waiting time needed to reach

R by a system consisting of less then n processes).

7Notice that τK is easily seen to be equivalent to a disjunction of T -formulae, like the original τ .
8Notice that the addition of free constants preserves the hypotheses (local finiteness, closure under sub-

structures) we have for TE .
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Definition 6.3. Let R(a) be a ∀I -formula and let K and τK be as in Definition 6.1. A

formula ψ(t(j), a[t(j)]) is an index invariant iff there exists a safe ∃I -formula H such that

AE
I |= ∀a0 ∀a1 ∀j

(

¬H(a0) ∧ τK(a0, a1)→ (ψ(t, a0[t])→ ψ(t, a1[t]))
)

. (10)

A progress condition for R is a finite set of index invariant formulae

ψ1(t(j), a[t(j)]), . . . , ψc(t(j), a[t(j)])

for which there exists a safe ∃I -formula H such that

AE
I |= ∀a0 ∀a1

(

¬H(a0) ∧ τK(a0, a1)→ ∃j
c
∨

k=1

(¬ψk(t, a0[t])) ∧ ψk(t, a1[t])
)

(11)

Suppose there is a progress condition as above for R; ifM is a model of AE
I such that the

support ofMI has cardinality at most n, then the formula (9) cannot be satisfiable inM for

k > c · nℓ (here ℓ is the length of the tuple j). This argument shows the following.

Proposition 6.4. If there is a progress condition for R, then R is a recurrence property with

polynomial complexity.

We provide significant examples (like the Bakery protocol) of application of Proposition

6.4 in Section 7 below; let us now discuss how to mechanize it. The validity tests (10) and

(11) can be reduced to unsatisfiability tests covered by Theorem 4.1; however, the search

space for progress conditions looks to be unbounded for various reasons (the number of the

ψ’s of Definition 6.3, the length of the string j, the ‘oracle’ safe H’s, etc.). Nevertheless, the

proof of the following unexpected result shows (in the appropriate hypotheses) how to find

progress conditions whenever they exist:

Theorem 6.5. Suppose that TE is locally finite and that safety of ∃I-formulae can be ef-

fectively checked. Then the existence of a progress condition for a given ∀I-formula R is

decidable.

7 Case Analysis and Further Examples

In this section, we first give a complete analysis of two examples and then we show how

two well-known classes of problems (broadcast protocols and lossy channel systems) can be

formalized in our framework. The claims we make about the Simplified Bakery Algorithm and

the Insertion Sort Algorithm below have been checked by a tool generating proofs obligations

for the SMT solver Yices: the tool is currently still under development and it has been assisted

with manual simplifications steps.

We first make few notational remarks which are useful when formalizing the examples:
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Remark 7.1. Sometimes it happens that the index signature ΣI contains some constant c.

In this case we would not be allowed in principle to use the term a[c] in an ∃I -formula like

∃i φ(i, a[i]) (12)

This is because, according to our conventions, φ(i, a[i]) should be obtained from a quantifier

free ΣI ∪ ΣE-formula φ(i, e) by replacing the e by the terms a[i]. Nevertheless, the term a[c]

can be used in practice, because if it occurs in φ, we can replace (12) by

∃i∃j (j = c ∧ φ′(i, j, a[i], a[j])) (13)

where φ′ is obtained from φ by substituting c with j (one should be aware, however, that

algorithms like that of Proposition 5.3 apply not to (12) but to the amended version (13)).

A similar remark applies to ∀I -formulae and to T -formulae (on the contrary, we recall that

in the index invariant formulae of Definition 6.3, the above transformation is not needed,

because ψ(t, a[t]) is the legal format for such formulae).

Remark 7.2. When we specify global components of T -formulae we need a formula of the

kind φG(i, d, d′, j, e, e′) satisfying the seriality requirement (1). In practice, the parameters

e, e′ are instantiated to a[j], a′[j], respectively, and moreover the side parameters d, d′ are

instantiated to a[i], a′[i]. Thus, for clarity, we directly use the format

φG(i, a[i], a′[i], j, a[j], a′[j])

when introducing global components.

Remark 7.3. In Definition 3.2, we assumed that array-based systems can have multiple

local variable arrays; however, in the remaining part of the paper, we limited ourselves for

simplicity to array based systems with only one local variable array. In order to formalize the

examples, however, we need multiple local variable arrays: this can be achieved by restoring

the original Definition 3.2, but can be achieved also by allowing a multisorted TE , in the way

sketched below. If we want for instance each process to have two local variables of sorts E1

and E2, respectively, we can take as TE a three-sorted theory where, in addition to E1, E2

we have a third sort representing the cartesian product of E1 and E2 (the signature ΣE will

include symbols for projections and pairing). It can be shown that this multisorted TE has

quantifier elimination in case the component theories have quantifier elimination. Whatever

formal solution is adopted, in case of multiple local variable arrays, we shall use the notation

a[i].1, . . . , a[i].n to access the content of the n local variables of the process i (thus, depending

on the formal solution the reader prefers, a[i].k may be the k-th projection of the content of

the unique local variable of the process i or the real k-th local variable of the process i).
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Remark 7.4. Global variables can be modeled by adding extra local variables: if the transi-

tion (and the initial condition) are suitably chosen, one can obtain the effect that processes

keep, among their local variables, an identical copy of each global variable. Global variables

will be needed only in Subsection 7.4 below.

7.1 The Simplified Bakery Algorithm

We present here the formalization into our framework of the Simplified Bakery Algorithm that

can be found for instance in [3]. When formalizing the component transitions τ1, τ2 below,

we use the approximation trick (see [3, 2]): transitions τ1, τ2, in order to fire, would require

a universally quantified guard which cannot be expressed in our format. We circumvent the

problem, by imposing that all the processes that are counterexamples to the guard go into

a ‘crash’ state: this trick augments the possible runs of the system by introducing ‘spurious

runs’, however if a safety property holds for the augmented ‘approximate’ system, then it also

holds for the original system (the same is true for the recurrence properties of Section 6).9

We specify suitable theories TI and TE for the formalization of (the approximate version of)

the Simplified Bakery Algorithm. The theory TI is the pure equality theory in the signature

ΣI = {=}; to introduce TE , we analyze which kind of local data we need. The data e

appearing in an array of processes are records consisting of the following two fields:

– the field e.s represents the status (e.s ∈ {idle, wait, use, crash});

– the field e.t represents the ticket (tickets range in the real interval [0,∞), seen as a

linear order with first element 0).

Thus we need a two-sorted TE and two array variables in the language (or, a single array

variable and a three-sorted TE).10

The transition τ(a, a′) is the disjunction τ1(a, a
′)∨τ2(a, a

′)∨τ3(a, a
′), where the T -formulae

τn (n ≤ 3) have the standard format from Definition 3.4

∃i (φn
L(i, a[i], a′[i]) ∧Updaten

G(i, a, a′));

and the local and the global components φn
L, φ

n
G are specified below.

9The approximate transition trick has also a rationale coming from textbooks on distributed algorithms

[20], where the so called ‘stopping failures’ assumption is widely discussed: in the stopping failures assumption,

every process can go into a crash state at any time. If you like, you can add a fourth T -formula disjunct to

our formalization below in order to take into account unlimited stopping failures: our analysis of the simplified

bakery algorithm carries out without substantial modification within such full stopping failures assumption.
10In the latter case ΣE contains constants for idle, wait, use, crash, the linear order relation <, the constant

0, projections and pairing functions (all these symbols are appropriately sorted). The class of models of TE is

formed by the unique three-sorted structure given by the set {idle, wait, use, crash}, the interval [0,∞), and

the cartesian product of the latter. Notice that this TE has quantifier elimination and is locally finite.
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Local Components. The local components φn
L are

– φ1
L :≡ a[i].s = idle∧ a′[i].s = wait∧ a′[i].t > 0 (the selected process goes from the

state idle to wait and takes a nonzero ticket);

– φ2
L :≡ a[i].s = wait ∧ a′[i] = 〈use, a[i].t〉 (the selected process goes from the state

wait to use and keeps the same ticket);

– φ3
L :≡ a[i].s = use ∧ a′[i] = 〈idle, 0〉 (the selected process goes from the state use

to idle and the ticket is reset to zero).

Global Components. The global components φn
G(i, a[i], a′[i], j, a[j], a′[j]) make case dis-

tinction as follows (the first case delegates the update to the local component):

– φ1
G :≡ (j = i∧ a′[j] = a′[i])∨ (j 6= i∧ a[j].t < a[i].t∧ a′[j] = a[j])∨ (j 6= i∧ a[j].t ≥

a[i].t ∧ a′[j] = 〈crash, a[j].t〉) (if the selected process i goes from idle to wait, then

any other process j keeps the same state/ticket, unless it has a ticket bigger or equal to

the ticket of i – in which case j crashes);

– φ2
G :≡ (j = i∧a′[j] = a′[i])∨(j 6= i∧(a[j].t > a[i].t∨a[j].t = 0)∧a′[j] = a[j])∨(j 6=

i ∧ ¬(a[j].t > a[i].t ∨ a[j].t = 0) ∧ a′[j] = 〈crash, a[j].t〉) (if the selected process i goes

from wait to use, then any other process j keeps the same state/ticket, unless it has a

nonzero ticket smaller than the ticket of i – in which case j crashes);

– φ3
G :≡ (j = i ∧ a′[j] = a′[i]) ∨ (j 6= i ∧ a′[j] = a[j]) (if the selected process i goes

from use to idle, then any other process keeps the same state/ticket).

Safety Problem. The safety problem we want to consider is mutual exclusion. We impose

the initial condition ∀i (a[i].s = idle) and ask whether it is possible to reach states satisfying

the ∃I -formula:

∃i∃j (i 6= j ∧ a[i].s = use ∧ a[j].s = use).

The backward analysis algorithm of Theorem 5.4 terminates after 4 steps saying that the

unsafe states cannot be reached. Subsumption and simplification tests help calculations (for

instance, they keep the number of existentially quantified variables in the current ∃I -formula

always equal to 2). The fixpoint describing backward reachable states is symbolically de-

scribed (up to AI
E-equivalence) by the existential closure following formula written in SMT-

LIB syntax [24]:

( or

( and ( not ( = i j ) ) ( = ( a0.s i ) use ) ( = wait ( a0.s j ) ) ( = 0 ( a0.t j ) ) )

( and ( not ( = i j ) ) ( = ( a0.s i ) idle ) ( = wait ( a0.s j ) ) ( = 0 ( a0.t j ) ) )
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( and ( not ( = i j ) ) ( = idle ( a0.s i ) ) ( = ( a0.s j ) use ) ( = ( a0.t j ) 0 ) )

( and ( not ( = i j ) ) ( = wait ( a0.s i ) ) ( = ( a0.s j ) wait ) ( = ( a0.t j ) 0 ) )

( and

( not ( = i j ) ) ( = ( a0.s i ) wait ) ( = use ( a0.s j ) )

( or ( = ( a0.t j ) 0 ) ( < ( a0.t i ) ( a0.t j ) ) )

)

( and ( not ( = i j ) ) ( = ( a0.s i ) use ) ( = ( a0.s j ) use ) )

)

Recurrence Problem. We introduce a free index constant d and inquire about the exis-

tence of an infinite run keeping the system in the starvation state

a[d].s = wait.

We use, as a progress condition, the following four index invariant formulae:

a[j].s = crash

a[j].t > a[d].t

¬(a[j].t < a[d].t ∧ a[j].s = wait)

a[j].t = 0 ∨ a[j].t > a[d].t.

To check that these four formulae are a progress condition, we need further safety checks (as

explained in Definition 6.3): in fact, the information concerning unreachability of the states

satisfying the following ∃I -formulae is needed when checking conditions (10), (11):

∃i (a[i].s = use ∧ a[i].t = 0)

∃i (a[i].s = idle ∧ a[i].t 6= 0)

∃i (a[i].s = wait ∧ a[i].t = 0)

∃i∃j (a[i].s = use ∧ a[j].s = wait ∧ a[j].t ≤ a[i].t).

Recurrence of a[d].s 6= wait (with a linear complexity bound) follows, as explained in Section

6: this proves that each non faulty process d is guaranteed to get the resource each time it

asks for it (in fact, if d does not crashes, it can exit the wait state only by going to use).

7.2 The Insertion Sort Algorithm

We analyze here a simple algorithm inserting an element a[0] into a sorted array a[1], . . . , a[n].

We take as TI the theory in the signature ΣI = {0, S} whose class of models are disjunct
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unions11 of finite linear-like structures of the kind

i0 S i1 S · · ·S ik−1 S ik

satisfying the further condition that 0 does not have predecessor (i.e. ∀i¬S(i, 0) must hold).

For local data, we need pairs, whose first component in a Boolean flag and whose second

component is an element from a linear order with quantifier elimination (let us take for

example the linear order over rationals): we write e.1 and e.2 for the first and the second field

of the record e.

The algorithm is initialized to a situation where S(i, j)→ a[i].2 ≤ a[j].2 holds for all i, j,

except for the case i = 0; moreover, in the initial situation, the Boolean flag is set as a[i].1 = 0,

except for i = 0 where we have a[0].1 = 1. This means that everything is arranged in an

increasing order (as far as second field data is concerned), except for the index 0; however, the

index 0 owns a token which will be passed to the right till the insertion of a[0].2 is completed.

The node i getting the token changes its flag from a[i].1 = 0 to a[i].1 = 1; the node passing

the token to its successor keeps its flag set to 1. We want to check that this algorithm halts

in polynomial time and ends into a situation where the second field data are appropriately

sorted.

The transition specifying our array based system has local component φL(i1, i2, a[i1], a[i2])

given by

S(i1, i2) ∧ a[i1].1 = 1 ∧ a[i2].1 = 0 ∧ a[i1].2 > a[i2].2∧

∧ a′[i1] = 〈1, a[i2].2〉 ∧ a
′[i2] = 〈1, a[i1].2〉

and global component given by

(j 6= i1 ∧ j 6= i2 ∧ a
′[j] = a[j]) ∨ (j = i1 ∧ a

′[j] = a′[i1]) ∨ (j = i2 ∧ a
′[j] = a′[i2]).

The initial state description is the following

∀i (a[i].1 = 0↔ i 6= 0) ∧ ∀i1∀i2 (S(i1, i2)→ i1 = 0 ∨ a[i1].2 ≤ a[i2].2).

We specify a safety and a recurrence problem for this system: the conjunction of the

claims of the two problems states precisely that the system behaves as intended.

The recurrence problem is simply termination: we take the contradictory formula false

as R (so that the τK of Definition 6.3 is τ) and apply Proposition 6.4, by using the progress

condition

a[j].1 = 1.

11We need disjoint unions because closure under substructures is required by Definition 3.1 of an index

theory (this enlargement of the class of intended models widens – but in a non significant way – our total

correctness results below).
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Thus, we know that the system must halt12 (actually in linear time because our progress

condition has just one free variable).

For the safety problem, we use the following ∃I -formula for describing unsafe states:

∃i1 ∃i2 (S(i1, i2) ∧ ¬(a[i1].1 = 1 ∧ a[i2].1 = 0) ∧ a[i1].2 > a[i2].2). (14)

Once this safety problem is positively solved, we know that the array of every reachable state

cannot possibly be sorted just because there is an order inversion between the state owning

the token and its immediate neighbour: this is precisely the situation in which the transition

can fire. Thus, when the transition cannot fire, the array is sorted (and we know by the above

recurrence check that the system always reaches a state in which the transition cannot fire).

Unfortunately, the backward analysis of the algorithm of Theorem 5.4 applied to (14)

diverges:13 the reason for non termination is the lack of the information that configurations

satisfying S(i, j) ∧ a[i].1 = 0 ∧ a[j].1 = 1 are not reachable (during execution, the flag array

is always of the kind 1∗0∗). Thus we replace the original unsafe states description by the

following stronger one:

∃i∃i2 ((S(i1, i2) ∧ a[i1].1 = 0 ∧ a[i2].1 = 1)∨

∨ (S(i1, i2) ∧ ¬(a[i1].1 = 1 ∧ a[i2].1 = 0) ∧ a[i1].2 > a[i2].2)).

Now backward reachability analysis terminates in two steps and safety can be tested (thus

completing the formal proof of the total correctness of our insertion algorithm). The fixpoint

describing backward reachable states is symbolically described (up to AI
E-equivalence) by the

existential closure following formula written in SMT-LIB syntax:

( or

( and ( S x y ) ( = (a0.1 x) 1 ) ( = ( a0.1 y ) 0 ) ( > ( a0.2 x ) ( a0.2 y ) ) )

( and ( S x y ) ( = ( a0.1 x ) 0 ) ( = ( a0.1 y ) 1 ) )

( and

( S x y ) ( S y z ) ( = 1 ( a0.1 x ) ) ( = ( a0.1 y ) 1 ) ( = ( a0.1 z ) 0 )

( > ( a0.2 y ) ( a0.2 z ) ) ( > ( a0.2 x ) ( a0.2 z ) )

)

)

The same formula is a fixpoint also in case TI is replaced by the weaker theory having

(disjoint unions of) finite trees as models: notice that, in this case, the algorithm becomes

non deterministic and does a less trivial job.

7.3 The Formalization of Broadcast Protocols

A broadcast protocol (following the formalization in [14, 12]) is a triple (S,L,R) where:

12The fact that the contradiction false is recurrent means precisely that there are no infinite runs at all.
13This shows that local finiteness of TE is not sufficient for guaranteeing termination of backward search.
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– S is a finite set of locations;14

– L is a set of labels, composed out of a set Σl of local labels, two sets Σr × {?} and

Σr × {!} of input and output rendez-vous labels, and two sets Σb × {??} and Σb × {!!}

of input and output broadcast labels, where Σl,Σr,Σb are disjoint finite sets;

– R ⊆ S × L × S is a set of transitions satisfying the following properties: (a) for every

a ∈ Σb and every location ℓ ∈ S there exists a location ℓ′ ∈ S such that (ℓ, a??, ℓ′)

belongs to R; (b) every label of the kind a, a!, a?, a!! appears in exactly one transition.

The system evolves according three types of moves: local (meaning that a single pro-

cess moves in isolation to a new location), rendez-vous (two processes exchange a message

and move to new locations) and broadcast (a process send a message to all other processes

and all processes move to new locations). More precisely, shortening the formalism for the

translations (ℓ, l, ℓ′) ∈ R into ℓ
l
−→ ℓ′:

(i) the meaning of the transition ℓi
a
−→ ℓj is that a single process moves from the location ℓi

to the location ℓj ;

(ii) the meaning of the rendez-vous ℓi
a!
−→ ℓj and ℓk

a?
−→ ℓl is that a process moves from the

location ℓi to the location ℓj , another process moves from ℓk to ℓl, and all the other

processes keep their location;

(iii) the meaning of the broadcast ℓi
a!!
−→ ℓj is that a process leaves ℓi and reaches ℓj and

all the other processes moves from their locations according to transitions of the kind

ℓl
a??
−−→ ℓk.

We can translate this description into our settings as follows: first of all, we choose as TI

the theory (ΣI , C), where ΣI = {=} and C is the class of all finite sets; as TE , we take the

theory of the enumerated data-type that describes the finite set of locations S.

In order to specify the transition τ(a0, a1) of our system, we take a disjunction of T -

formulae, one disjunct for each local, rendez-vous and broadcast transition. These T -formulae

are specified as follows.

Let us consider first a local transition of the kind ℓl
a
−→ ℓr: this is translated into the

T -formula:

∃i
(

a0[i] = ℓl ∧ a1[i] = ℓr ∧ ∀j ((j = i ∧ a1[j] = a1[i]) ∨ (j 6= i ∧ a1[j] = a0[j]))
)

.

14We use the name ‘location’ here (and not ‘state’ as in [14, 12]), because the word ‘state’ is used in this

paper to denote the state of an array-based system in the sense of Definition 3.3.
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A rendez-vous of the kind ℓl
a!
−→ ℓr and ℓk

a?
−→ ℓw is translated into the T -formula:

∃i, j
(

i 6= j ∧ a0[i] = ℓl ∧ a0[j] = ℓk ∧ a1[i] = ℓr ∧ a1[j] = ℓw∧

∧∀h
(

(h = i ∧ a1[h] = a1[i]) ∨ (h = j ∧ a1[h] = a1[j]) ∨ (h 6= i ∧ h 6= j ∧ a1[h] = a0[h])
)

)

.

The T -formula that represents a broadcast of the kind ℓl
a!!
−→ ℓr is the following:

∃i
(

a0[i] = ℓl ∧ a1[i] = ℓr ∧ ∀j
(

(j = i ∧ a1[j] = a1[i])∨

∨
∨

ℓk

a??
−−→ℓw

(j 6= i ∧ a0[j] = ℓk ∧ a1[j] = ℓw)
)

)

,

varying the last big disjunction over all the transitions of the kind ℓk
a??
−−→ ℓw in R. Notice

that the requirement that for every a ∈ Σb and every location ℓ ∈ S there exists a location

ℓ′ ∈ S such that ℓ
a??
−−→ ℓ′ belongs to R is sufficient here to guarantee the seriality requirement

for the global component contained in the T -formula above (but, since we do not require in

principle the uniqueness of such an ℓ′, the functionality property may not hold).

In order to specify the initial set of states of our array-based system, we would like to use

formulae of the kind

∃i∀j φ(i, j, a[i], a[j]), (15)

because only with the help of such formulae we can say that the initial states are precisely

those that belong to a given parameterized configuration in the sense of [14, 12].15 Formulae

(15) are not ∀I -formulae, hence they do not fit the requirement of Definition 3.2 for being

initial formulae. However, this is not a real problem: one could for instance skolemize (15)

and expand the signature of TI with finitely many free constants (the new TI is trivially again

an index theory). Alternatively, one can simply observe that the initial formula I is needed

only in the consistency tests AE
I -check(BRi(τ,K)∧I) of the algorithm of Figure 2: such tests

fall within the decision problem of Theorem 4.1 even in case I is of the form (15). Thus,

we can freely assume our initial formula I to have the desired form (15) and complete the

specification of our array-based systems S = (a, I, τ) for broadcast protocols.

Before analyzing safety problems, let us investigate what kind of configurations we get as

a consequence of our current choice of TI and TE . Suppose S = {ℓ1, . . . , ℓk}; now, an AE
I -

configuration (s,M) is determined uniquely by a k-tuple of integers n1, . . . , nk (these integers

are the cardinalities of the sets of indices which are mapped by s onto ℓ1, . . . , ℓk, respectively).

15According to [14, 12], a parameterized configuration is the set Xp of states (in the formal sense of our

Definition 3.3) which is induced by a partial function p : S −→ N as follows. A state s belongs to Xp iff it

satisfies the following condition: (*) if ℓ is in the domain of p, then there are exactly p(ℓ) indexes i such that

s(i) = ℓ.
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If (n1, . . . , nk) is the k-tuple for s and (n′1, . . . , n
′
k) is the k-tuple for another configuration s′,

we have s′ ≤ s iff n′1 ≤ n1 & · · ·& n′k ≤ nk. This preorder among configurations is a wqo,

by Dikson’s lemma, hence the backward search algorithm of Figure 2 terminates by Theorem

5.7.

Safety problems for broadcast protocols are formulated in [14, 12] as reachability problems

for upsets of configurations; since all upsets of configurations are finitely generated by Dikson’s

Lemma, safety problems as formulated in [14, 12] coincide with safety problems for ∃I-formulae

in the sense of the present paper, by Proposition A.6.

The decidability argument in [12] is based on Dikson’s Lemma, as our argument coming

from a direct application of Theorem 5.7;16 the formalization of broadcast protocols employed

in [14, 12] is however different, less declarative but more efficient, and directly based on the

formalism of configurations. We sketch how to reproduce this alternative formalization in

our setting too. We take as TI the enumerated datatype theory of the set S and as TE

the theory (ΣE , C), where ΣE = {0, S,≤} and C = {N} (this is the set of natural numbers

equipped here with the natural interpretation of zero, successor and ordering). To specify

the T -formulae which are the disjunctions of the transition τ , we use formulae expressing

the values a′[ℓ1], . . . , a
′[ℓk] in terms of suitable affine transformations applied to the values

a[ℓ1], . . . , a[ℓk] (see again [14, 12] for the affine transformations corresponding to local, rendez-

vous and broadcast transitions). As initial formulae we now use formulae of the kind17

a[ℓi1 ] = n1 ∧ · · · ∧ a[ℓih ] = nh, whereas the safety problems we are interested in are expressed

by formulae of the kind18 a[ℓ1] ≥ m1∧· · ·∧a[ℓk] ≥ nk. This formal settings fits our framework:

termination of the backward search algorithm of Figure 2 cannot be justified by Theorem 5.7

anymore, however it follows anyway because this new formalization is ‘semantically equivalent’

to the previous one.

7.4 The Formalization of Lossy Channels Systems

The formalization of Lossy Channels Systems in our framework is indirect and up to bisimu-

lation, but it is still sufficient to formulate relevant model checking problems. Decidability of

reachability problems follows as a direct application of Theorem 5.7 and of Higman’s lemma;

our argument is similar (but not quite the same) to the argument used for the proof of the

same result in [5] (the latter argument is also based on Higman’s lemma, but the ordering

employed for S-configurations is in a sense dual to ours).

16As mentioned in [14, 12] however, the complexity of the reachability problem is quite high, because the

only known upper bound for the number of iterations needed until termination is non-primitive recursive.
17Here n is the numeral of n, that is the term obtained by applying n-times S to 0.
18Notice that we do not even need quantified index variables in order to deal with these safety model checking

problems.
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We first recall the standard definition of a channel system, but for simplicity, we limit

ourselves to a single automaton using a single channel as a fifo buffer (for more information

the reader is referred to [5]).

A channel system is a triple S = (Q,Σ, δ), where Q is a finite set of control locations, Σ is

a finite alphabet and δ ⊆ Q×{!, ?}×Σ∗×Q is a set of transitions. We also assume (without

loss of generality for the problems we are interested in) that δ contains the idle transitions

(q, ∗, ε, q) for all q ∈ Q (here ε is the empty word and ∗ is either ! or ?).

An S-configuration is a pair γ = (q, w), where q ∈ Q is a control state and w ∈ Σ∗ is a

word over Σ. We say that γ has a perfect step to γ′ (in symbols γ → γ′) iff the following

happens: (i) γ is of the kind (q, w); (ii) γ′ is of the kind (q′, w′) and either (iii.1) there is

(q, !, u, q′) ∈ δ such that w′ = wu or (iii.2) there is (q, ?, u, q′) ∈ δ such that w = uw′. That is,

in case (iii.1) the word u has been written to the tail of the channel, whereas in the case (iii.2)

the word u has been read from the head of the channel; in both cases, the control location

changes from q to q′.

Lossy steps simulate unreliability of the channel. Recall that v is said to be a subword

of w (in symbols, v ⊑ w) iff v results from w by deleting some (possibly zero, possibly non

consecutive) occurrences of letters. We say that γ = (q, w) has a lossy step to γ′ = (q′, w′) (in

symbols γ  γ′) iff there are v, v′ such that v ⊑ w and w′ ⊑ v′ and (q, v)→ (q′, v′). That is,

in a lossy step, the channel again performs an exact step but it may loose data both before

and after it.

From the algorithmic point of view, we are interested in the following lossy reachability

problem:19 given a channel system S and given S-configurations γI , γf , is there a finite lossy

run from γI to γf , i.e. are there γ0, . . . , γn such that γ0 = γI , γn = γf and

γ0  γ1  · · · γn ? (16)

Notice that, since we allow idle transitions (possibly causing loss of data in a lossy step), we

can relax the above conditions γ0 = γI and γn = γf a little: if γI = (qI , wI) and γf = (qf , wf ),

we can equivalently ask γ = (q0, w0) (resp. γf = (qf , wf )) to be only such that q0 = qI and

w0 ⊑ wI (resp. qn = qf and wf ⊑ wn).

In order to formalize the lossy reachability problem in our framework, we first identify

suitable theories TI and TE . The theory TI must describe the cells of the channel, hence a

natural choice is the theory whose signature contains only a binary predicate symbol < and

whose models are all linear orders.20

19Another interesting problem is termination: given γI , are all lossy runs (not involving identical idle steps)

starting from γI finite? This problem is decidable, however our methods for liveness are unable to solve it,

because termination can have no primitive recursive bound, as shown in [23].
20Only a finite part of the linear order which is a model of TI will be used in a finite run, see below.
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Before making our choice for TE , we recall that an S-configuration γ = (q, w) as described

above, consists of an array of letters from Σ and of a global control variable ranging over Q.

For simplicity, we did not model global variables in our setting,21 but we can indirectly model

them by asking indexes to keep identical copies of global variables. Thus local data modeled

by TE are records e, having a field e.g ∈ Q and a field e.d ∈ Σ+{b} (we added to the alphabet

Σ the ‘blank’ symbol b); in other words, TE is just the enumerated datatype theory of the set

Q × (Σ + {b}). The reason why we added the blank symbol b to the alphabet Σ is because

the content of the channel is a word of variable length: in our setting we must choose a model

of TI and keep it constant for a whole run, that’s why we need to fill with b the cells whose

content is empty.

Given the above choices for TI and TE , a state of an array-based system built up on them

(see Definition 3.3) is a function s : L −→ Q× (Σ + {b}), where L is a linear order (we recall

that, when L is finite, such a state s is also called a configuration, see Subsection 5.2). After

transition and initial conditions are introduced, it will be clear that only very special states

will be reachable, namely those for which we have

(i) a(i).d = b for all but finitely many i;

(ii) a(i).g = a(j).g for all i, j.

The states satisfying (i)-(ii) are called standard. With a standard state s we can associate an

S-configuration π(s) = (q, w) as follows: q is the common value of the s(i).g’s, whereas w is

the ordered sequence – alias the Σ-word – s(i1).d, . . . , s(ik).d of the values of the s(i).d’s which

are different from b (the sequence is ordered by the L-linear order of the cells i1 < · · · < ik).

We are now ready to introduce a suitable transition formula τ , a suitable initial formula

I and to show that runs of the resulting array-based system bisimulate lossy runs.

Given a channel system S = (Q,Σ, δ), our transition τ(a0, a1) is a disjunction of T -

formulae and to form this disjunction we need one T -formula for each transition of the kind

(q, !, u, q′) ∈ δ and one T -formula for each transition of the kind (q, ?, u, q′) ∈ δ. Let us first

examine the first kind of transitions: these transitions write the word u to the tail of the

channel (and change the control location from q to q′). If we had to express exactly this, we

would be in trouble, because a universally quantified condition would be unavoidable (“to be

in the channel’s tail” is expressible by something like “the content of all cells to the right is

b”). However, the universal condition is not needed: since the channel may loose cells content,

we can equivalently say that we write (up to message lost) u to the right of a certain cell i of

the channel and that everything on the right of i gets lost or overwritten by u (the latter is

21A direct modeling of global variables is possible and not difficult, our choice of avoiding them in this paper

was motivated only by notational simplicity.
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the same as ’lost and then re-written’). To sum up, if u = σ1 · · ·σk (k > 0),22 the T -formula

associated with (q, !, u, q′) has the existentially quantified index variables i1, . . . , ik, the local

component formula

i1 < i2 ∧ i2 < i3 ∧ · · · ∧ ik−1 < ik ∧
k
∧

s=1

(a0[is].g = q ∧ a1[is].g = q′)∧

∧
k
∧

s=1

(a1[is].d = σs ∨ a1[is].d = b)

and the global component formula

a1[j].g = q′ ∧
k
∨

s=1

(j = is ∧ a1[j].d = a1[is].d)∨

∨(j < i1 ∧ (a1[j].d = a0[j].d ∨ a1[j].d = b)) ∨ (j > i1 ∧
k
∧

s=1

(j 6= is) ∧ (a1[j].d = b))

(notice that the above global component formula is serial but not functional).

For the second kind of transitions (those of the kind (q, ?, u, q′) with u = σ1 · · ·σk and

k > 0), the local component is

i1 < i2 ∧ i2 < i3 ∧ · · · ∧ ik−1 < ik ∧
k
∧

s=1

(a0[is].g = q ∧ a1[is].g = q′)∧

∧
k
∧

s=1

(a0[is].d = σs ∧ a1[is].d = b)

and the T -update formula is

a1[j].g = q′ ∧ (j > ik ∧ (a1[j].d = a0[j].d ∨ a1[j].d = b)) ∨ (j < ik ∧ (a1[j].d = b)).

We have to treat separately the case k = 0, i.e. the case in which u is the empty word:

in that case, we have one existentially quantified index variable i, the local component is

a0[i].g = q ∧ a1[i].g = q′ and global component is

a1[j].g = q′ ∧ (a1[j].d = a0[j].d ∨ a1[j].d = b)

(that is, the control location goes from q to q′, the content of some cells gets lost, and the

content of the remaining cells is not varied).

The following facts (concerning ‘bisimulation’ of our standard states and S-configurations)

should be clear. Consider a standard state s (taken from a model M) and its projected S-

configurations π(s):

22The case k = 0 is treated separately below.
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(a) for every s′ such thatM |= τ(s, s′), we have that π(s) π(s′);

(b) for every γ such that π(s)  γ there exists s′ such that M |= τ(s, s′) and π(s′) = γ,

provided INDEXM is sufficiently large (this is always the case when INDEXM is infinite);

(c) for every S-configuration γ there exists a standard state t such that π(t) = γ: actually,

there are many such t and we can always succeed in picking such a t from every model

M such that INDEXM is sufficiently large, e.g. infinite.

The initial condition can be expressed as the ∀I -formula I below, given a choice γI =

(qI , wI) for an initial S-configuration (let wI be σ1 · · ·σk):

∀i (a[i].g = qI) ∧ ∀i1 · · · ∀ik ∀ik+1

(

k
∧

s=1

is < is+1 →
k+1
∨

s=1

a[is].d = b
)

∧

∧
∧

l≤k

∀i1 · · · ∀il
(

l
∧

s=1

is < is+1 ∧
l
∧

s=1

a[s].d 6= b→
∨

ρ1···ρk⊑wI

l
∧

s=1

a[is].d = ρs

)

.

This formula says that the global variable is set to qI , that there is no non-blank sequence

of cells whose length is bigger than the length of wI , and that the content of all non-blank

sequences of cells whose length is smaller or equal to the length of wI must be a subword

of wI : in other words, every status s satisfying this formula is standard and its projected

configuration π(s) must be of the kind (qI , w) with w ⊑ wI .

Suppose we are now given an S-configuration γf = (qf , wf ) (let wf be σ1 · · ·σk); from

(a)-(b)-(c) above it follows that lossy unreachability of γf from γI can be equivalently stated

as the safety of the ∃I-formula K given by

∃i1 · · · ∃ik
(

a[i1].g = qf ∧
k−1
∧

s=1

(is < is+1 ∧ a[is].d = σs) ∧ a[ik].d = σk

)

(for k = 0, simply use ∃i(a[i].g = qf ) as K).

We now apply Theorem 5.7 to prove that safety of the above K is decidable.23 To this aim,

it is sufficient to show that the ordering among configurations is a wqo. Since TI is the theory

of total orders and TE is the enumerated datatype theory for the set Y := Q × (Σ + {b}),

an AE
I -configuration (M, s) is determined by a finite word over Y (a word over Y is in fact

a map from a finite totally ordered set into Y ). If w is the word for s and v is the word for

s′, we have s ≤ s′ iff w is a subword of v: Higman’s lemma immediately implies that this is

a wqo.

23As shown in [23], however, the complexity of the problem is quite high, being non primitive recursive.
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8 Related Work and Conclusions

A popular approach to uniform verification (e.g., [2, 3, 7]) consists of defining a finitary rep-

resentation of the (infinite) set of states and then to explore the state space by using such a

suitable data structure. Although such a data structure may contain declarative information

(e.g., constraints over some algebraic structure or first-order formulae), a substantial part is

non-declarative. Typically, the part of the state handled non-declaratively is that of indexes

(which, for parameterized systems, specify the topology), thereby forcing to re-design the

verification procedures whenever their specification is changed (for the case of parameterized

systems, whenever the topology of the systems changes). Since our framework is fully declara-

tive, we avoid this problem altogether.24 In this perspective, the expressivity potential of our

approach is really considerable, as exemplified by the following considerations: we have seen in

Section 7, how one can profitably include many array variables and/or many-sorted elements

theories in our settings. The inclusion of many-sorted index theories is also important (and

straightforward): suppose for instance we have in the signature ΣI two sorts called INDEX,

INDEX2, together with pairing and projection function symbols, and suppose that the sort

INDEX2 is constrained to be interpreted in the models of TI as the cartesian square of INDEX

(notice that this is locally finite and closed under substructures, so it matches Definition 3.1).

Now, an array variable a indexed by INDEX2 with value in an enumerated datatype element

sort ELEM represents an edge-labelled graph on INDEX: in fact a[< i, j >] = e expresses the

existence of an edge i
e
→ j labelled e between i and j (a special label, say 0, may represent

the absence of an edge). This observation can be used to formalize the sophisticated (and

more realistic) protocols with non-atomic global conditions recently introduced in [4].

There has been some attempts to use a purely logical techniques to check both safety

and liveness properties of infinite state systems (e.g., [11, 15]). The hard part of these ap-

proaches is to guess auxiliary assertions (either invariants, for safety, or ranking functions,

for liveness). Indeed, finding such auxiliary assertions is not easy and automation requires

techniques adapted to specific domains (e.g., integers). In this paper, we have shown how

our approach does not require auxiliary invariants for safety and proved that the search for

certain progress conditions can be fully mechanized (Theorem 6.5).

In order to test the viability of our approach, we have built a prototype implementation

of the backward reachability algorithm of Figure 2. The function AE
I -check has been im-

plemented by using a naive instantiation algorithm and a state-of-the art SMT solver. We

have also implemented the generation of the proof obligations (10) and (11) for recognizing

24As a precursor of our approach, we can quote e.g. [16], where however formal developments leading to the

relevant technical results are not pursued.

32



progress conditions. This allowed us to automatically verify all the examples discussed in this

paper. We are currently planning to build a robust implementation of our techniques.
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A Appendix: Proofs of the Main Results

In this appendix, we collect the proofs of the technical results of the paper, by grouping them

according to the section in which they were stated.

Results from Section 4

The following result implies Theorem 4.1 and proves also soundness and correctness of the

procedure AE
I -check of Figure 1:25

Theorem A.1. The AI
E-satisfiability of a sentence of the kind

∃a1 · · · ∃an ∃i ∃e ∀j ψ(i, j, e, a1[i], . . . , an[i], a1[j], . . . , an[j]) (17)

is decidable. Moreover, the following conditions are equivalent:

(i) the sentence (17) is AI
E-satisfiable;

(ii) the sentence (17) is satisfiable in a finite index model of AI
E;

(iii) the sentence

∃a1 · · · ∃an ∃i ∃e
∧

σ

ψ(i, jσ, e, a1[i], . . . , an[i], a1[jσ], . . . , an[jσ]) (18)

is AI
E-satisfiable (here σ ranges onto the substitutions mapping the variables j into the

set of representative ΣI(i)-terms and jσ means the simultaneous application of σ to the

variables of the tuple j).

Proof. In order to prevent notational complications, we limit to the case n = 1 (the reader

may check that there is no loss of generality in that).26 We first show that AI
E-satisfiability

of

∃a ∃i ∃e ∀j ψ(i, j, e, a[i], a[j]) (19)

is equivalent to AI
E-satisfiability of

∃a ∃i ∃e
∧

σ

ψ(i, jσ, e, a[i], a[jσ]) (20)

25The sentences of the kind (17) are slightly more general than the ∃A,I∀I -sentences mentioned in Theorem

4.1, because elements quantifiers ∃e occur now. We do not need decidability of this larger class of sentences in

the paper, but we nevertheless report this more general result too.
26Since the addition of vacuous existential quantifiers does not affect satisfiability, we can also assume that

the tuple i is not empty (this observation is needed if we want to prevent the structure N defined below from

having empty index domain).
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where σ ranges onto the substitutions mapping the variables j into the set of representative

ΣI(i)-terms.

That AI
E-satisfiability of (19) implies AI

E-satisfiability of (20) follows from trivial logical

manipulations, so let us assume AI
E-satisfiability of (20) and show AI

E-satisfiability of (19).

Let M be a model of (20); we can assign elements in this model to the variables a, i, e in

such a way that (under such an assignment a) we have M, a |=
∧

σ ψ(i, jσ, e, a[i], a[jσ]).

Consider the model N which is obtained fromM by restricting the interpretation of the sort

INDEX (and of all function and relation symbols for indexes) to the ΣI -substructure generated

by the elements assigned by a to the i: since models of TI are closed under substructures,

this substructure is a model of TI and consequently N is still a model of AI
E . Now let

s be the restriction of a(a) to the new smaller index domain and let ã be the assignment

differing from a only for assigning s to a (instead of a(a)); since ψ is quantifier free and since,

varying σ, the elements assigned to the terms jσ covers all possible j-tuples of elements in the

interpretation of the sort INDEX in N , we have N , ã |= ∀jψ(i, j, a[i], a[j]). This shows that

N |= ∃a ∃i ∀j ψ(i, j, a[i], a[j]), i.e that (19) holds. Notice that N is a finite index model,27

hence we proved also the equivalence between (i) and (ii).

We now need to decide AI
E-satisfiability of sentences (20). Let t be the representative

Σ(i)-terms and let us put them in bijective correspondence with fresh variables l of sort

INDEX; let ψσ(i, l, e, a[i], a[l]) be the formula obtained by replacing in ψ(i, jσ, e, a[i], a[jσ]) the

Σ(i)-terms jσ by the corresponding l. We first rewrite (20) as

∃a ∃i ∃e ∃l (l = t ∧
∧

σ

ψσ(i, l, e, a[i], a[l])) (21)

Notice that TI and TE are disjoint (they do not have even any sort in common), which

means that l = t ∧
∧

σ ψσ(i, l, e, a[i], a[l]) is a boolean combination of ΣI -atoms and of ΣE-

atoms (in the latter kind of atoms, the variables for elements are replaced by the terms

a[i], a[l]). This means that our decision problem can be further rephrased in terms of the

problem of deciding for AI
E-satisfiability formulae like

ψI(j) ∧ a[j] = d ∧ ψE(d, e) (22)

where ψI(j) is a conjunction of ΣI -literals and ψE(e) is a conjunction of ΣE-literals.28

Since we are looking for a model of TI , a model of TE and for a function connecting their

domains (the function interpreting the variable a), this is a satisfiability problem for a theory

27This is because TI is locally finite and the ΣI reduct of N is a structure which is generated by finitely

many elements.
28We renamed the concatenation of the tuples i, l as j, to have a more compact notation.
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connection (in the sense of [6]):29 since the signatures of TI , TE are disjoint, the problem is

decided by propagating equalities.30 In other words, to decide (22), just apply the following

steps:

– guess an equivalence relation Π on the index variables j (let us assume j = j1, . . . .jn);

– check ψI(j) ∪ {jk = jl | (jk, jl) ∈ Π} ∪ {jk 6= jl | (jk, jl) 6∈ Π} for TI -satisfiability;

– check ψE(d, e) ∪ {dk = dl | (jk, jl) ∈ Π} for TE-satisfiability;

– return ‘unsatisfiable’ iff failure is reported in the previous two steps for all possible

guesses.

Soundness and completeness of the above procedure are easy.

Results from Section 5

Lemma A.2. Every formula of the kind ∃e φ(i, a[i], e) is AI
E-equivalent to a (effectively com-

putable) quantifier-free formula ψ(i, a[i]).

Proof. We show that for every formula of the kind ∃e φ(i, d, e) there is a quantifier-free formula

ψ(i, d) such that AI
E |= ψ(i, d)↔ ∃e φ(i, d, e) (the result then follows by replacing d with a[i]).

By distributing existential quantifiers over disjunctions, we can freely assume that φ(i, d, e)

is primitive, i.e. that it is a conjunction of ΣI∪ΣE-literals; since the variables e do not occur in

ΣI -literals, we can further push the existential quantifiers so that their scope is a conjunction

of ΣE-literals and finally apply quantifier elimination in TE .

We begin by proving Proposition 5.3:

Proposition 5.3. Let K(a) be an ∃I-formula; then Pre(τ,K) is AE
I -equivalent to an (effec-

tively computable) ∃I-formula K ′(a).

Proof. We can freely assume that τ consists of a single disjunction of a T -formula: from

this special case, the general case follows immediately because ∃I -formulae are closed under

disjunctions (modulo trivial logical manipulations).

Let K(a) be ∃k φ(k, a[k]) and let τ(a, a′) be

∃j (φL(j, a[j], a′[j]) ∧ ∀l φG(j, a[j], a′[j], l, a[l], a′[l])).

29Strictly speaking, one cannot directly apply the results from [6], because we have a ‘semantically driven’

notion of a theory (otherwise said, the classes of the models we consider need not be elementary).
30This is different from disjoint Nelson-Oppen combination, where also inequalities must be propagated.
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In the following, we shall use the abbreviation31

UpG(j, a, a′) :⇔ ∀l φG(j, a[j], a′[j], l, a[l], a′[l]). (23)

We need to show that a formula like

∃a′ ∃j ∃k
(

φL(j, a[j], a′[j]) ∧UpG(j, a, a′) ∧ φ(k, a′[k])
)

is AI
E-equivalent to an ∃I -formula. We proceed by equivalent transformations as follows: we

first replace the terms a′[j] in the subformula φL(j, a[j], a′[j]) by the fresh constants e, thus

getting

∃a′ ∃j ∃k ∃e
(

e = a′[j] ∧ φL(j, a[j], e) ∧UpG(j, a, a′) ∧ φ(k, a′[k])
)

We also explicitly name the a′[k] as d and get

∃a′ ∃j ∃k ∃e∃d
(

e = a′[j] ∧ d = a′[k] ∧ φL(j, a[j], e) ∧UpG(j, a, a′) ∧ φ(k, d)
)

Now the formulae e = a′[j] and UpG(j, a, a′), according to (23), entail
∧

r φG(j, a[j], e, j
r
,

a[j
r
], er), where the index r ranges over the components of the tuple j; similarly, the formulae

e = a′[j]∧d = a′[k] and UpG(j, a, a′) entail the formula
∧

s φG(j, a[j], e, ks, a[ks], ds), with the

index s ranging over the components of the tuple k. In we insert this extra information into

our formula, we get

∃a′ ∃j ∃k ∃e∃d
(

e = a′[j] ∧ d = a′[k] ∧ φL(j, a[j], e) ∧UpG(j, a, a′)∧

∧φ(k, d) ∧
∧

r

φG(j, a[j], e, j
r
, a[j

r
], er) ∧

∧

s

φG(j, a[j], e, ks, a[ks], ds)
)

Rearranging the conjuncts and pushing inside the existential quantifiers ∃a′, we obtain

∃j ∃k ∃e∃d
(

φL(j, a[j], e) ∧ φ(k, d) ∧
∧

r

φG(j, a[j], e, j
r
, a[j

r
], er)∧

∧
∧

s

φG(j, a[j], e, ks, a[ks], ds) ∧ ∃a
′
(

e = a′[j] ∧ d = a′[k] ∧UpG(j, a, a′)
)

)

Consider now a partition Π on the set j ∪ k and let j
0
∪ k0 be a choice of representative

elements: we pick one element from each equivalence class, thus we have j
0
⊆ j, k0 ⊆ k.32

Let Π(j, e, k, d) be the formula saying that each index is equal to the representative index of

its own equivalence class, that representative indexes are distinct from each other and that

31Modulo the alphabetic change i 7→ j, this is the same abbreviation as (3) from Definition 3.4. We only

preferred to write UpG instead of UpdateG to save space when writing long formulae.
32Nothing prevents from j

0
or k0 to be in principle empty (e.g. j

0
is empty in case all representatives are in

k).
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elements in e∪d corresponding to equivalent indexes are equal too. Our formula is equivalent

to the disjunction

∨

Π

∃j ∃k ∃e∃d
(

φL(j, a[j], e) ∧ φ(k, d) ∧Π(j, e, k, d) ∧
∧

r

φG(j, a[j], e, j
r
, a[j

r
], er)∧

∧
∧

s

φG(j, a[j], e, ks, a[ks], ds) ∧ ∃a
′
(

e0 = a′[j
0
] ∧ d0 = a′[k0] ∧UpG(j, a, a′)

)

)

where e0, d0 componentwise match i0, j0, respectively.

Now notice that the formula

Π(j, e, k, d) ∧
∧

r

φG(j, a[j], e, j
r
, a[j

r
], er) ∧

∧

s

φG(j, a[j], e, ks, a[ks], ds)→

→ ∃a′(e0 = a′[j
0
] ∧ d0 = a′[k0] ∧UpG(j, a, a′))

(⋆)

is a logical consequence of AI
E : to see it, argue as follows. Fix an assignment in a model

M of AI
E making the antecedents of (⋆) true (for simplicity, we denote the elements assigned

to a, j, k, e, d again by a, j, k, e, d, respectively); we define the array a′ as follows. We first

write the e0 in the positions i0 and the d0 in the positions k0 (this is well-defined by the fact

that the j
0
, k0 are pairwise distinct, as implied by the truth of the antecedent Π(j, e, k, d));

for the indices l which are different from i0 and k0, we define a′(l) by taking an element e′

satisfying φG(j, a[j], e, l, a[l], e′) in M (this e′ exists by the seriality condition (1)). This a′

fits the desired requirements because the antecedents of (⋆) are true. In more detail, notice

that:

(i) e0 = a′[j
0
] ∧ d0 = a′[k0] is true by construction;

(ii) e = a′[j] ∧ d = a′[k] follows from (i) and the fact that Π(j, e, k, d) holds;

(iii)
∧

r φG(j, a[j], e, j
r
, a[j

r
], er) and (ii) imply

∧

r φG(j, a[j], a′[j], j
r
, a[j

r
], a′[j

r
]);

(iv)
∧

s φG(j, a[j], e, ks, a[ks], ds) and (ii) imply
∧

s φG(j, a[j], a′[j], ks, a[ks], a
′[ks]);

(v) from (ii), (iii), (iv), and the definition of a′, we get φG(j, a[j], a′[j], l, a[l], a′[l]) for every

l, which means that UpG(j, a, a′) holds.

Having established that (⋆) is AI
E-valid, we can simplify our big disjunction to

∨

Π

∃j ∃k ∃e∃d
(

φL(j, a[j], e) ∧ φ(k, d) ∧Π(j, e, k, d)∧

∧
∧

r

φG(j, a[j], e, j
r
, a[j

r
], er) ∧

∧

s

φG(j, a[j], e, ks, a[ks], ds)
)
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Since the quantifiers ∃e∃d can be eliminated by Lemma A.2, we eventually get a formula of

the desired shape, namely of the kind

∨

Π

∃j ∃k ψΠ(j, k, a[j], a[k])

(notice also that ∃I -formulae are closed under disjunctions, modulo trivial logical manipula-

tions).

Observe that, according to the above proof, the formula Pre(τ,K) may have an existential

quantifier prefix longer than K.

Remark A.3. Quite often, in the applications, the global component formulae φG are not

only serial but also functional, meaning that the uniqueness requirement (4) is satisfied. In

that case, the algorithm suggested by the proof of Proposition 5.3 greatly simplifies (there is

no need of taking a disjunction over the partitions on indexes). Since this simplified procedure

can be very useful in the implementations, we report it. The key observation is that now we

can prove, instead of (⋆), directly the stronger entailment

∧

r

φG(j, a[j], e, j
r
, a[j

r
], er) ∧

∧

s

φG(j, a[j], e, ks, a[ks], ds)→

→ ∃a′(e = a′[j] ∧ d = a′[k] ∧UpG(j, a, a′))

(⋆⋆)

To show (⋆⋆), define a′ as follows (again let a model M and elements a, j, k, e, d from its

supports be fixed, so that the antecedent of (⋆⋆) is true): for every l, we let a′(l) be the

unique e′ so that φG(j, a[j], e, l, a[l], e′) is true inM. Now
∧

r φG(j, a[j], e, j
r
, a[j

r
], er) implies

a′[j] = e by the uniqueness requirement (4); similarly
∧

s φG(j, a[j], e, ks, a[ks], ds) implies

a′[k] = d. Having established that a′[j] = e holds, by the construction of a′, we can also get

φG(j, a[j], a′[j], l, a[l], a′[l]) for every l, which means that UpG(j, a, a′) holds.

Once (⋆⋆) is proved, the formula

∃j ∃k ∃e∃d
(

φL(j, a[j], e) ∧ φ(k, d) ∧
∧

r

φG(j, a[j], e, j
r
, a[j

r
], er)∧

∧
∧

s

φG(j, a[j], e, ks, a[ks], ds) ∧ ∃a
′
(

e = a′[j] ∧ d = a′[k] ∧UpG(j, a, a′)
)

)

directly simplifies to

∃j ∃k ∃e∃d
(

φL(j, a[j], e) ∧ φ(k, d)∧

∧
∧

r

φG(j, a[j], e, j
r
, a[j

r
], er) ∧

∧

s

φG(j, a[j], e, ks, a[ks], ds)
)

which has the desired shape, once elements quantifiers have been eliminated.
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The proof of Theorem 5.4 reduces to few simple observations which have already been

made in Section 5. In detail, notice that: (i) thanks to Proposition 5.3 above, BRn(τ,K)

is AI
E-equivalent to an ∃I -formula; (ii) after prenexing quantifiers, the consistency of J ∧H

(where J is a ∀I -formula andH is a ∃I -formula) falls within the decision procedure of Theorem

4.1. Observations (i)-(ii) guarantee that the algorithm of Figure 1 is a real algorithm (in the

sense that the AI
E-consistency tests it requires are effective), which is precisely what we need

to prove.

We now supply proofs for Propositions 5.6 and Theorem 5.7:

Proposition 5.6. For every ∃I-formula K(a), the set [[K]] is upward closed; moreover, for

every ∃I-formulae K1,K2, we have [[K1]] ⊆ [[K2]] iff AE
I |= K1 → K2.

Proof. Let us first show that the set [[K]] is upward closed. By using disjunctive normal forms

and by distributing existential quantifiers over disjunctions, we can freely suppose that K(a)

is of the kind ∃iφ(i, a[i]),33 where φ is a conjunction of ΣI ∪ ΣE-literals. If we also separate

ΣI - and ΣE-literals, we can suppose that φ(i, a[i]) is of the kind φI(i) ∧ φE(a[i]), where φI

is a conjunction of ΣI -literals and φE is a conjunction of ΣE-literals. Suppose now that

(M, s) and (N , t) are configurations such that s ≤ t and M |= K(s): we wish to prove that

N |= K(t). From M |= K(s), it follows that there are elements i from INDEXM such that

M |= φI(i) ∧ φE(s[i]), i.e. such that sI |= φI(i) and sE |= φE(s(i)) (to infer the latter, recall

that the operations a[i] are interpreted as functional applications in our models and also that

truth of quantifier free formulae is preserved when passing to substructures). Now s ≤ t says

that there are embeddings µ : sI −→ tI and ν : sE −→ tE such that ν ◦ s = t ◦ µ. Since truth

of quantifier free formulae is preserved when passing to superstructures, we get tI |= φI(µ(i))

and tE |= φE(ν(s(i)) (that is, tE |= φE(t(µ(i))) and also N |= φI(µ(i)) ∧ φE(t[µ(i)]), which

implies N |= K(t), as desired.

Let us now prove the second claim of the Proposition. That AI
E |= K1 → K2 implies

[[K1]] ⊆ [[K2]] is trivial. Suppose conversely that AI
E 6|= K1 → K2, which means that

K1(a)∧¬K2(a) is AI
E-satisfiable: since, by Lemma A.1(ii), this implies that K1(a)∧¬K2(a)

is satisfiable in a finite index model of AI
E , we immediately get that [[K1]] 6⊆ [[K2]].

Before continuing, we need some standard model-theoretic background on Robinson dia-

grams [10]. Let M = (M,
∫

) be a Σ-structure which is generated by G ⊆ M . Let us take a

free variable xg for every g ∈ G34 and let us call Gx the set {xg | g ∈ G}. The ΣG-diagram

33Notice that a union of upsets is an upset.
34One may complain because there are only countable many variables and G may not be countable: this

trouble can be disposed of either by using free constants instead of variables (this is the standard approach),

or by realizing that we won’t need in the paper an uncountable G (actually, in all our applications, G is always
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δM(G) of M is the set of all Σ(Gx)-literals L such M, a |= L, where a is the assignment

mapping xg to g.

The following celebrated result [10] is simple, but nevertheless very powerful:

Lemma A.4 (Robinson Diagram Lemma). Let M = (M,
∫

) be a Σ-structure which is gen-

erated by G ⊆ M and let N = (N,J ) be a further Σ-structure. Then there is a bijective

correspondence given by

µ(g) = a(g) (24)

(for all g ∈ G)35 between assignments a on N such that N , a |= δM(G) and Σ-embeddings

µ :M−→ N .

The diagram δM(G) usually contains infinitely many literals, however there are important

cases where we can keep it finite:

Lemma A.5. Suppose thatM is a Σ-structure (where Σ is a finite signature), whose support

M is finite; then for every set of generators G ⊆ M , there are finitely many literals from

δM(G) having all remaining literals of δM(G) as a logical consequence.

Proof. Choose Σ(Gx)-terms t1, . . . , tn such that (under the assignment a : xg 7→ g), M is

equal to the set of the elements assigned by a to t1, . . . , tn (this is possible because the G are

generators and M is finite); we also include the xg varying g ∈ G among the t1, . . . , tn. We

can get the desired finite set S of literals by taking the set of atoms of the form

R(ti1 , . . . , tik), f(ti1 , . . . , tik) = tik+1

(as well as their negations), which are true in M under the assignment a. In fact, modulo

S, it is easy to see by induction on u that every Σ(Gx)-term u is equal to some ti; it follows

that every literal from δM(G) is a logical consequence of S.

Whenever the conditions of the above Lemma are true, we can take a finite conjunction

and treat δM(G) as a single formula: notice that we are allowed to do so whenever G is finite

andM is a model of a locally finite theory.

Proposition A.6. Suppose that TE is locally finite; the following hold:

(i) with every AI
E-configuration (M, s) one can effectively associate an ∃I-formula Ks such

that [[Ks]] = {s′ | s ≤ s′};

finite).
35In other words, (24) can be used to define µ from a and conversely. Notice that an embedding µ : M −→ N

is uniquely determined, in case it exists, by the image of the set of generators G: this is because the fact that

G generates M implies (and is equivalent to) the fact that every c ∈ M is of the kind t
∫

(g), for some term t

and some g from G.
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(ii) with every ∃I-formula K one can effectively associate a finite set {s1, . . . , sn} of AI
E-

configurations such that K is AI
E-equivalent to Ks1

∨ · · · ∨Ksn.

As a consequence of (i)-(ii), finitely generated upsets of AI
E-configurations coincide with sets

of AI
E-configurations of the kind [[K]] (for some ∃I-formula K).

Proof. Ad (i): we take G,G′ to be the support of sI and the image of the support of sI under

the function s, respectively; clearly G is a set of generators for sI and G′ is a set of generators

for sE . Let us call the set of variables Gx, G
′
x as i := {i1, . . . , in} and e := {e1, . . . , en},

respectively. We take Ks to be

∃i (δsI
(i) ∧ δsE

(a0[i]))

(in other words, we take the diagrams δsI
(G), δsE

(G′), make in the latter the replacement

e 7→ a0[i], take conjunction, and quantify existentially over the i). For every configuration

(N , t), we have that t ∈ [[Ks]] iff δsI
(i) ∧ δsE

(a0[i]) is true in N under some assignment a

mapping the array variable a0 to t, that is iff that there are embeddings µ : sI −→ tI and

ν : sE −→ tE as prescribed by Robinson Diagram Lemma. These embeddings map the

generators G onto the indexes assigned to the i by a and the generators G′ to the elements

assigned by a to the terms a0[i], which means precisely that t ◦ µ = ν ◦ s. Thus t ∈ [[Ks]] is

equivalent to s ≤ t, as wanted.

Ad (ii): modulo taking disjunctive normal forms, we can suppose that K(a0) is

∃i
∨

k(φk(i) ∧ ψk(a0[i])) (where the φk are ΣI -formulae, the ψk are ΣE-formulae and we

let, for instance, i be i1, . . . , im). Now, in a locally finite theory, every quantifier free formula

θ having at most m free variables, is equivalent to a disjunction of diagram formulae δM(G),

where M is a substructure of a model of the theory and G is a set of generators for M of

cardinality at most m.36 If we apply this to both TI and TE , we get that our K(a0) can be

rewritten as
∨

A,B

∃i (δA(i) ∧ δB(a0[i]))

where A ranges over the m-generated models of TI and B over the m-generated submodels

of TE .37 Every such pair (A,B) is either AI
E-inconsistent (in case some equality among the

generators of A is not satisfied by the corresponding generators of B) or it gives raise to a

configuration a such that ∃i (δA(i) ∧ δB(a0[i])) is precisely Ka.

36Since the theory is locally finite, there are finitely many atoms whose free variables are included in a given

set of cardinality m. Maximal conjunctions of literals built on these atoms are either inconsistent (modulo the

theory) of satisfiable in an m-generated substructure of a model of the theory. By maximality, these maximal

conjunctions must be diagrams.
37Recall that TI is closed under substructures.

44



Theorem 5.7. Assume that TE is locally finite; let K be an ∃I-formula. If K is safe, then

BReach in Figure 2 terminates iff B(τ,K) is a finitely generated upset.

Proof. Suppose that B(τ,K) is a finitely generated upset. Notice that

B(τ,K) =
⋃

n

[[BRn(τ,K)]],

consequently (since we have [[BR0(τ,K)]] ⊆ [[BR1(τ,K)]] ⊆ [[BR2(τ,K)]] ⊆ · · · ) we have

B(τ,K) = [[BRn(τ,K)]] = [[BRn+1(τ,K)]], which means by the second claim of Proposition

5.6 that AI
E |= BRn(τ,K) ↔ BRn+1(τ,K), i.e. that the Algorithm halts. Vice versa,

if the Algorithm halts, we have AI
E |= BRn(τ,K) ↔ BRn+1(τ,K), hence [[BRn(τ,K)]] =

[[BRn+1(τ,K)]] = B(τ,K) and the upset B(τ,K) is finitely generated by Proposition A.6.

Remark A.7. In the model checking literature, an important property relating configuration

ordering and transitions (called ‘monotonicity’ in [1]) ensures that the preimage of an upset

is still an upset. Such a property does not appear in the above proofs (we do not need to

mention it because we work symbolically with definable upsets), however it is possible to

formulate it in our framework in the following way:

– let (M, s), (M′, s′), (M, t) be configurations such that s ≤ s′ and M |= τ(s, t); then

there exists (M′, t′) such that t ≤ t′ andM′ |= τ(s′, t′).

The proof that such a property holds is easy and left to the reader (it basically depends on

the seriality property (1) of our T -formulae).

In the paper, we used a definition of a wqo which is different from the standard one: we

recall here how to prove the equivalence.

Proposition A.8. The following are equivalent for a preordered set (P,≤):

(i) every upset of P is finitely generated;

(ii) for every sequence

p0, p1, . . . , pi, . . .

of elements from P there are i < j with pi ≤ pj.

Proof. Assume (i) and take U to be the upset {q ∈ P | pi ≤ q for some i}: since U must be

finitely generated, (ii) follows immediately.

Conversely, assume (ii) and take an upset U . Pick the set S of the minimal elements

from U38 and build S0 by taking from S one representative for each equivalence class modulo

38An element m from S is minimal iff for all s ∈ S, we have that s ≤ m implies m ≤ s (notice that we do

not assume antisymmetry of ≤).
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≤ ∩ ≥ (S0 is finite, otherwise we can build an infinite sequence of mutually incomparable

elements of S, which cannot be). Given r0 ∈ U , if there is no minimal element m from S0

such that m ≤ r0, then we can build an infinite descending chain r0 ≥ r1 ≥ · · · where there

is no i < j with ri ≤ rj , contradicting (ii).

Results from Section 6

Before proving results from Section 6, we make a little remark which was implicit in the

notation used in Definition 6.3. The remark concerns the shape of index invariant formulae.

These formulae are of the kind ψ(t(j), a[t(j)]): according to our conventions from Section 3,

ψ(t(j), a[t(j)]) means the result of replacing i with t(j) and e with a[t(j)] in the quantifier-

free ΣI ∪ ΣE-formula ψ(i, e).39 When dealing with ∃I -formulae (or also with ∀I -formulae),

we do not need such a more liberal format because e.g. ∃j ψ(t(j), a[t(j)]) can be rewritten as

∃j ∃i (i = t(j) ∧ ψ(i, a[i])). The more liberal format is needed here because the formulae we

are using for progress conditions are quantifier-free.

The relevant hint for the proof of Proposition 6.4 has already been sketched in Section 6:

let us repeat the argument in full detail.

Proposition 6.4. If there is a progress condition for R, then R is a recurrence property with

polynomial complexity.

Proof. Suppose that ψ1(t(j), a[t(j)]), . . . , ψc(t(j), a[t(j)]) are a progress condition for R and

let ℓ be the length of the tuple j. By reductio, letM be a model such that the cardinality of

INDEXM is at most n and such that

M, a |= I(b1) ∧ τ(b1, b2) ∧ · · · ∧ τ(bm, a0) ∧ τK(a0, a1) ∧ · · · ∧ τK(ak−1, ak) (25)

holds for a suitable assignment a, where we have that k > c · nℓ (let s0, . . . , sk be the states

assigned by a to the array variables a0, . . . , ak, respectively). Now, for every r < k, there are

a formula ψr ∈ {ψ1, . . . , ψc} and an ℓ-tuple jr of elements from INDEXM such that

M |= ¬ψr(t(jr), sr[t(j
r)]), M |= ψr(t(jr), sr+1[t(j

r)]) (26)

(this is according to (11), because M |= τK(sr, sr+1) and because M |= ¬H(sr) is true since

sr is a reachable state and H is safe). Now, k > c ·nℓ, hence the conditions (26) must be true

at least twice for the same ψr ∈ {ψ1, . . . , ψc} and for the same tuple jr from INDEXM: this is

in contradiction to (10).

39The notation t(j), in turn, means that at most the index variables j occur in the terms t. These terms t

must be ΣI -terms because they denote an element of sort INDEX and employ only variables of sort INDEX: by

construction of our signatures, this means that they cannot employ non ΣI -symbols.
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Lemma A.9. Entailment tests (10) and (11) are both effective (for any K,H,ψ, ψ1, . . . , ψc).

Proof. Both tests in (10) and (11) are special cases of Theorem 4.1. Let us check this in

more detail; in both tests the transition τK(a0, a1) introduced in Definition 6.1 occurs: it is

easy to see that this τK(a0, a1) is logically equivalent to a disjunction of n formulae of the

kind ∃i (φL(i, a0[i], a1[i]) ∧UpG(i, a0, a1)).
40 For simplicity (the reader can realize that there

is no loss of generality in that), we assume that n = 1. We also let ¬H(a0) be the ∀I -formula

∀r χ(r, a0[r]).

For (10) we need to decide

AI
E |= ∀a0∀a1∀j (∀r χ(r, a0[r]) ∧ τK(a0, a1)→ (ψ(t, a0[t])→ ψ(t, a1[t]))) (27)

(here the t are ΣI(j)-terms), which is the same as deciding AI
E-validity of

∀r χ(r, a0[r]) ∧ ∃i
(

φL(i, a0[i], a1[i]) ∧UpG(i, a0, a1)
)

→ ∀h
(

h = t ∧ ψ(h, a0[h])→ ψ(h, a1[h])
)

where the external universal quantifiers ∀a0∀a1∀j have been omitted. If we put the latter

formula in prenex normal form (using (3)), we immediately realize that its negation falls

within the (un)satisfiability procedure of Theorem 4.1.

For (11), we need to check the AI
E-validity of (we omit the outside quantified variables

a0, a1)

∀r χ(r, a0[r]) ∧ ∃i
(

φL(i, a0[i], a1[i]) ∧UpG(i, a0, a1)
)

→ ∃j
c
∨

k=1

(¬ψk(t, a0[t]) ∧ ψk(t, a1[t])),

where the t are ΣI(j)-terms. Abstracting out the t as h and moving quantifiers in front, we

get (we use (3) and again we remove the outside universal quantifiers ∀i)

∃j ∃h ∃r ∃l
(

χ(r, a0[r]) ∧ φL(i, a0[i], a1[i]) ∧ φG(i, a0[i], a1[i], a0[l], a1[l])→

→ h = t(j) ∧
∨

k

(¬ψk(h, a0[h]) ∧ ψk(h, a1[h]))
)

.

which is a formula falling into the decision procedure of Theorem 4.1. For future use, we

recall that, according to Theorem A.1(iii),41 this formula is AI
E-valid iff so is the universal

formula (we still omit quantifiers ∀a0∀a1∀i in front of it)

∨

σ

∨

σ′

∨

σ′′

∨

v

(

χ(rσ′′, a0[rσ
′′]) ∧ φL(i, a0[i], a1[i]) ∧ φG(i, a0[i], a1[i], a0[v], a1[v])→

→ hσ′ = t(jσ) ∧
∨

k

(

¬ψk(hσ
′, a0[hσ

′]) ∧ ψk(hσ
′, a1[hσ

′])
)

)

.
(28)

40This is the general shape of T -formulae according to Definition 3.4 (again, we write UpG(i, a0, a1) instead

of UpdateG(i, a, a′) for shortness).
41We use here the dual formulation of Theorem 4.1 (i.e. the formulation in terms of AI

E-validity instead of

the formulation in terms of AI
E-satisfiability).
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where v ranges over the set of representative ΣI(i)-terms and σ, σ′, σ′′ over the substitutions

mapping the variables j, h, r into representative ΣI(i)-terms.

Theorem 6.5. Suppose that TE is locally finite and that safety of ∃I-formulae can be ef-

fectively checked. Then the existence of a progress condition for a given ∀I-formula R is

decidable.

Proof. If not only TI but also TE is locally finite, we show that there is a finite search space for

determining whether a progress conditions exists or not. Local finiteness implies that there

are only finitely many invariant index formulae involving the j, once the j are fixed (simply

because there are only finitely many quantifier free formulae of the kind ψ(j, e) at all – recall

that here the e are placeholders for the a[j]). In view of the decidability statement of Lemma

A.9, in order to prove the theorem, we must: (I) give a bound to the length of the tuple j

appearing in the index invariant formulae composing a progress condition for R; (II) limit

the search space for the safe formulae H used in the tests (10) and (11). Our proof below is

divided into two parts (dealing with problems (I) and (II), respectively).

Part (I). Here we show that there is no need to consider tuples j whose cardinality is bigger

than the cardinality of the i (here the i are the variables which are existentially quantified in

the formula τK). Suppose we got invariant index formulae ψ1(t, a[t]), . . . , ψc(t, a[t]) involving

a tuple t of ΣI(j)-terms where the j are index variables of unspecified length: for these

formulae, the tests (10) and (11) are both successful. This means that for all k = 1, . . . , c we

have

AI
E |= ∀a0∀a1∀j (∀rk χk(r

k, a0[r
k]) ∧ τK(a0, a1)→ (ψk(t, a0[t])→ ψk(t, a1[t]))) (29)

for some safe ∃rk ¬χk(r
k, a0[r

k]). Moreover, we have AI
E-validity of (11) (for some safe

∃r ¬χ(r, a0[r])); since we proved that the AI
E-validity of (11) implies (in fact it is equivalent

to) the AI
E-validity of the universal closure of the formula (28), we can rearrange the latter

and get the AI
E-validity of the universal closure of

∧

σ′′

χ(rσ′′, a0[rσ
′′]) ∧ φL(i, a0[i], a1[i]) ∧

∧

v

φG(i, a0[i], a1[i], a0[v], a1[v])→

→
∨

σ

∨

σ′

(

hσ′ = t(jσ) ∧
∨

k

(¬ψk(hσ
′, a0[hσ

′]) ∧ ψk(hσ
′, a1[hσ

′]))
)

hence also of

∀r χ(r, a0[r]) ∧ φL(i, a0[i], a1[i]) ∧UpG(i, a0, a1)→

→
∨

σ

∨

σ′

(

hσ′ = t(jσ) ∧
∨

k

(¬ψk(hσ
′, a0[hσ

′]) ∧ ψk(hσ
′, a1[hσ

′]))
)
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and of42

∀r χ(r, a0[r]) ∧ φL(i, a0[i], a1[i]) ∧UpG(i, a0, a1)→

→
∨

σ

∨

k

(¬ψk(t(jσ), a0[t(jσ)]) ∧ ψk(t(jσ), a1[t(jσ)])).

If we introduce the existential quantifiers ∃i both in the antecedent and in the consequent,

we get

AI
E |= ∀a0∀a1

(

∀r χ(r, a0[r]) ∧ τK(a0, a1)→

→
∨

σ

∨

k

∃i(¬ψk(t(jσ), a0[t(jσ)]) ∧ ψk(t(jσ), a1[t(jσ)]))
)

.

This, together with (29),43 shows that we found appropriate invariant index formulae

ψk(t(jσ), a[t(jσ)])

(varying k, σ) involving at most the variables i.

Part (II). Here our problem is that of making deterministic the search for the safe ∃I -formula

H needed for the tests (10) and (11). This is a special case of the following problem: suppose

we are given a ∀I -formula J(a0) such that ¬J is safe and that

AI
E |= ∀a0 (J(a0)→ ∀a1 ∀i∃j ψ(i, j, a0[i], a0[j], a1[i], a1[j])) (30)

holds for a given ψ;44 we want to compute (out of ψ only, i.e. independently on J) another

∀I -formula J∗(a0) such that

AI
E |= ∀a0 (J(a0)→ J∗(a0)) (31)

and that

AI
E |= ∀a0 (J∗(a0)→ ∀a1 ∀i∃j ψ(i, j, a0[i], a0[j], a1[i], a1[j])). (32)

Once this is achieved, we are done because safety of ¬J implies safety of ¬J∗ by (31) and

hence J can be replaced by J∗.

Assume that (30) holds; by Lemma A.10 below, we have that

AI
E |= ∀a0

(

J(a0)→ ∀a1 ∀i
∨

σ

ψ(i, jσ, a0[i], a0[jσ], a1[i], a1[jσ])
)

(33)

42This passage (like the former) is up to logical implication, not up to logical equivalence.
43More precisely, we need to apply the exemplification schema to (29) (through the substitutions j 7→ jσ)

and to take the universal closure ∀i again.
44Notice that (10) and (11) are both of the kind (30), modulo standard logical manipulations.
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where σ ranges as usual over the substitutions having the representative ΣI(i)-terms in the

codomain. Notice now that

AI
E |= ∀a0

(

∀a1 ∀i
∨

σ

ψ(i, jσ, a0[i], a0[jσ], a1[i], a1[jσ])→

→ ∀a1 ∀i∃j ψ(i, j, a0[i],a0[j], a1[i], a1[j])
)

hence we reach our goal if we show that ∀a1 ∀i
∨

σ ψ(i, jσ, a0[i], a0[jσ], a1[i], a1[jσ])) is AI
E-

equivalent to a universal T -constraint formula J∗(a0). To this aim, first notice that the

formula ∀a1 ∀i
∨

σ ψ(i, jσ, a0[i], a0[jσ], a1[i], a1[jσ])) is AI
E-equivalent to

∀a1 ∀i∀h (
∨

σ

(h = jσ → ψ(i, h, a0[i], a0[h], a1[i], a1[h])))

and then apply Lemma A.11 below (take negation on both sides of (34) and let k and e be

i, h and a0[i], a0[h], respectively).

Lemma A.10. Condition (30) is equivalent to condition (33).

Proof. By Lemma A.1, the AI
E-satisfiability of the negations of both formulae (30) and (33)

is equivalent to the AI
E-satisfiability of the formula

∃a0 ∃a1 ∃i
∧

σ

∧

σ′

(

φ(kσ′, a0[kσ
′]) ∧ ¬ψ(i, jσ, a0[i], a0[jσ], a1[i], a1[jσ])

)

.

where we assumed that J(a0) is ∀k φ(k, a0[k]).

Lemma A.11. Given any φ(k, e, a1[k]) it is possible to compute φ∗(k, e) such that the formula

∃a1 ∃k φ(k, e, a1[k]) ↔ ∃k φ
∗(k, e) (34)

is AI
E-valid.

Proof. Observe that ∃a1 ∃k φ(k, e, a1[k]) is logically equivalent to

∃a1 ∃k ∃d (a1[k] = d ∧ φ(k, e, d))

and to

∃k ∃d (∃a1 (a1[k] = d) ∧ φ(k, e, d)).

The formula ∃a1 (a1[k] = d) is AI
E-equivalent to the quantifier-free formula Π(k, d) saying

that if two components of the tuple k are equal, so are the corresponding components of the

tuple d. We get the desired φ∗ by eliminating the elements quantifiers d from

∃k ∃d (Π(k, d) ∧ φ(k, e, d)).

(as usual, see Lemma A.2 for such quantifier elimination).
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