
UNIVERSITÀ DEGLI STUDI DI MILANO

Dipartimento di Scienze dell’Informazione

RAPPORTO INTERNO N◦ 313-07

Combination Methods for Satisfiability and

Model-Checking of Infinite-State Systems

Silvio Ghilardi, Enrica Nicolini, Silvio Ranise, Daniele Zucchelli

Combination Methods for Satisfiability and Model-Checking of

Infinite-State Systems

Silvio Ghilardi1, Enrica Nicolini2, Silvio Ranise2, and Daniele Zucchelli1,2

1Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano (Italy)
2LORIA & INRIA-Lorraine

March 1, 2007

Abstract

Manna and Pnueli have extensively shown how a mixture of first-order logic (FOL)

and discrete Linear time Temporal Logic (LTL) is sufficient to precisely state verification

problems for the vast class of reactive systems. Theories in FOL model the (possibly

infinite) data structures used by a reactive system while LTL specifies its (dynamic) be-

havior. The combination of LTL and FOL allows us to specify infinite state systems and

the subtle ways in which their data flow influences the control flow. Indeed, the capabil-

ity of automatically solving satisfiability and model-checking problems is of paramount

importance to support the automation of verification techniques using this framework.

In this paper, we derive undecidability and decidability results for both the satisfia-

bility of (quantifier-free) formulae and the model-checking of safety properties by lifting

combination methods for (non-disjoint) theories in FOL. The proofs of our decidability

results suggest how decision procedures for the constraint satisfiability problem of theories

in FOL and algorithms for checking the satisfiability of propositional LTL formulae can be

integrated. This paves the way to employ efficient Satisfiability Modulo Theories solvers

in the model-checking of infinite state systems, as previous proposals have suggested their

use for bounded model-checking. We exemplify our techniques on some examples.

Contents

1 Introduction 4

2 Formal Preliminaries 6

2.1 First-Order Logic . 6

2.2 Background on Combination . 8

2.2.1 Compatible Theories . 8

2.2.2 Locally Finite and Noetherian Theories 9

2.2.3 A Combination Schema for Non-Disjoint Theories 11

2.3 Propositional Discrete Linear Time Temporal Logic 13

2.4 First-Order Discrete Linear Time Temporal Logic 14

2.4.1 LTL-Theories and the Satisfiability Problem 16

2.4.2 Some Classes of LTL-Theories . 17

3 The Satisfiability Problem 18

3.1 Undecidability . 19

3.2 Decidability and Locally Finite LTL-Theories 20

3.2.1 Eager Reduction to Propositional LTL-Satisfiability 21

3.2.2 A Lazy Tableau Procedure . 25

3.3 Decidability and Noetherian LTL-Theories . 27

3.3.1 The Procedure NSat . 28

3.3.2 Correctness of NSat . 29

4 The Model-Checking Problem 32

4.1 LTL-System Specifications and the Model-Checking Problem 32

4.1.1 The Seriality Property . 34

4.1.2 Some Classes of LTL-Systems and further Assumptions 35

4.2 Undecidability and Noetherian LTL-Theories 36

4.3 Decidability and Locally Finite LTL-Theories 39

4.4 Examples . 44

5 Related Work 50

6 Conclusions and Future Work 52

A Appendix 58

A.1 More Background . 58

A.2 Structure Amalgamations . 60

2

A.3 More on Noetherian Theories . 64

3

1 Introduction

In [33] and many other writings, Manna and Pnueli have extensively shown how a mixture of

first-order logic (FOL) and discrete Linear time Temporal Logic (LTL) is sufficient to precisely

state verification problems for the class of reactive systems. Theories in FOL model the

(possibly infinite) data structures used by a reactive system while LTL specifies its (dynamic)

behavior. The combination of LTL and FOL allows one to specify infinite state systems and

the subtle ways in which their data flow influences the control flow. Indeed, the capability of

automatically solving satisfiability and model-checking problems is of paramount importance

to support the automation of verification techniques using this framework.

A lot of efforts addressed both the satisfiability and the model-checking problem of Propo-

sitional LTL. The former has been attacked using a range of techniques from tableaux [26] to

extensions of resolution [30]. More recently, extensions of resolutions have also been used to

solve the satisfiability problem of the Monodic fragment of First-Order LTL (see, e.g., [31]).

Techniques based on automata [29] or symbolic methods (see, e.g., [10]) have been put for-

ward to solve the model-checking problem of finite-state systems. Significant work has been

done also in the context of model-checking for infinite-state systems (see, e.g., [46, 39, 7] to

name but a few). An integration of classic tableaux and automated deduction techniques is

presented in [40]. The so-called “abstract-check-refine” techniques for model-checking of infi-

nite state systems combine finite-state model checking and decision procedures for first-order

theories (see, e.g., [27, 28]). Also, bounded model-checking of infinite state systems based on

the use of Satisfiability Modulo Theories (SMT) solvers have been investigated more recently

(see, e.g., [13]).

We briefly describe here our framework for integrating LTL operators with theories in FOL

(see Section 2.4 for more): we fix a theory T in a first-order signature Σ and consider as a

temporal model a successionM1,M2, . . . of ordinary models of T , provided such models share

the same carrier (otherwise said, the domain of the temporal model is ‘constant’). Following

[38], we also declare symbols from a subsignature Σr of Σ to be rigid : this means that in

a temporal model M1,M2, . . . the Σr-restrictions of the Mi’s must coincide (free variables

are similarly divided into ‘rigid’ and ‘flexible’ ones). For model-checking purposes, first-order

initial and transition formulae are specified, whose role is that of (non-deterministically)

restricting the temporal model evolution (see Section 4 for details).

We derive undecidability and decidability results for both the satisfiability of quantifier-

free formulae and the model-checking of safety properties by lifting combination methods for

(non-disjoint) theories in FOL. As pointed out by Manna and Pnueli in [33], although the

restriction to quantifier-free formulae decreases the expressive power of the logic, such a class

4

of formulae is sufficient for many verification problems.

The first contribution of the paper is a reduction of the satisfiability problem for quantifier-

free LTL formulae modulo the background theory T to an instance of the Nelson-Oppen

combination problem for first-order theories (the combination being disjoint if the rigid sub-

signature is empty). More precisely, we consider a theory T whose constraint satisfiability

problem consists of non-deterministically solving one of the (decidable) constraint satisfia-

bility problem of two signature-disjoint theories T1, T2. It is not difficult to see that the

constraint satisfiability problem of T is decidable. Although the satisfiability problem of T is

decidable, it is possible to write a quantifier-free LTL formula whose satisfiability is equivalent

to the satisfiability of a constraint in T1 ∪T2, which turns out to be undecidable, if T1 and T2

are chosen as shown in [5]. The undecidability of the safety model-checking problem follows

(under mild hypotheses) by a well-known reduction to the reachability problem for Minsky

machines [35].

Since the satisfiability problem for quantifier-free LTL formulae modulo a background

theory T looks very much like a non-disjoint combination problem, the hope is that the same

(or similar) requirements yielding the decidability of the constraint satisfiability problem in

unions of theories [23], will also give decidability here. The second contribution of the paper

is to show that this is indeed the case: we have decidability of the satisfiability problem for

quantifier-free LTL formulae modulo T , in case T has decidable universal fragment and is Tr-

compatible, where Tr is the restriction of the universal fragment of T to the rigid subsignature

(for termination, one must also assume Tr to be locally finite or noetherian).

The third (and main) contribution of the paper is that (under the same Tr-compatibility

and local finiteness hypotheses) the model-checking problem for quantifier-free safety prop-

erties is also decidable. The proof of this result suggests how decision procedures for the

constraint satisfiability problem of theories in FOL and algorithms for checking the satisfia-

bility of propositional LTL formulae can be integrated. This paves the way to employ efficient

Satisfiability Modulo Theories solvers in the model-checking of infinite state systems, as pre-

vious proposals have suggested their use for bounded model-checking. We exemplify our

techniques on some examples.

Plan of the paper. Section 2 introduces the background notions on first-order logic, com-

bination methods for non-disjoint theories, propositional and first-order (quantifier-free) tem-

poral logic. Section 3 and Section 4 give the undecidability and decidability results for the

satisfiability problem of quantifier-free formulae of first-order temporal logic and the model-

checking problem of safety properties, respectively. Section 5 discusses related work and

Section 6 concludes the paper with a discussion of the achieved results and some future work.

5

The Appendix contains some more background materials and technical results on non-disjoint

combination.

2 Formal Preliminaries

2.1 First-Order Logic

A signature Σ is a set of functions and predicate symbols (each endowed with the corre-

sponding arity). We assume the binary equality predicate symbol ‘=’ to be always present

in any signature Σ (so, if Σ = ∅, then Σ does not contain other symbols than equality). To

avoid confusion, we use the symbol ≡ (instead of =) in the metalanguage to mean identity

of syntactic expressions. The signature obtained from Σ by adding a set a of new constants

(i.e., 0-ary function symbols) is denoted by Σa. Σ-terms, Σ-atoms, Σ-literals, Σ-clauses, and

(elementary) Σ-formulae are defined in the usual way (we will omit the prefix Σ when it

is clear from the context). A positive clause is a disjunction of atoms. A constraint is a

conjunctions of literals. Terms, literals, clauses and formulae are called ground whenever no

variable appears in them. Formulae without free variables are sentences. A Σ-theory T is a

set of sentences (called the axioms of T) in the signature Σ. A formula is quantifier-free (or

open) iff it does not contain quantifiers. The universal (resp., existential) closure of a formula

ϕ is the sentence obtained by adding to ϕ a prefix of universal (resp., existential) quantifiers

binding all variables which happen to have a free occurrence in ϕ.

Below, letters ϕ,ψ, . . . are used for formulae; the following notations will be used below:

ϕ(x) means that the set of free variables in ϕ is contained in the finite set x whereas ϕ(a/x)

(or, simply, ϕ(a) leaving the x implicit) means that ϕ(a) is the formula obtained from ϕ(x)

by the componentwise replacement of the free variables in x by the constants in a.

From the semantic side, we have the standard notion of a Σ-structureM = (M,I): this is

nothing but a support set M endowed with an arity-matching interpretation I of the function

and predicate symbols from Σ. We use fM (resp. PM) to denote the interpretation of the

function symbol f (resp. predicate symbol P) in the structureM (the equality predicate = is

always interpreted as the identity relation over M). Truth of a Σ-formula in M is defined in

any one of the standard ways (so that truth of a formula is equivalent to truth of its universal

closure). We let ⊥ denote an arbitrary formula which is true in no structure. A formula ϕ is

satisfiable in M iff its existential closure is true in M.

A Σ-structureM is a model of a Σ-theory T (in symbols M |= T) iff all the sentences of

T are true in M. If ϕ is a formula, T |= ϕ (‘ϕ is a logical consequence of T ’) means that ϕ

is true in all the models of T (T |= ϕ is equivalent to T |= ∀xϕ, where ∀xϕ is the universal

closure of ϕ). A Σ-theory T is complete iff for every Σ-sentence ϕ, either ϕ or ¬ϕ is a logical

6

consequence of T ; T is consistent iff it has a model, i.e., T 6|= ⊥. A sentence ϕ is T -consistent

iff T ∪ {ϕ} is consistent.

A theory is universal iff it has universal closures of open formulae as axioms. A Σ-theory T

admits quantifier elimination iff for every formula ϕ(x) there is a quantifier-free formula ϕ′(x)

such that T |= ϕ(x)↔ ϕ′(x). There are many well-known theories eliminating quantifiers [9];

e.g., Linear (Integer1 or Rational) Arithmetics, Real Arithmetics, acyclic lists, and any theory

axiomatizing enumerated datatypes.

The constraint satisfiability problem for the constraint theory T is the problem of deciding

whether a Σ-constraint is satisfiable in a model of T (or, equivalently, T -satisfiable).2 In

the following, we use free constants instead of variables in constraint satisfiability problems,

so that we (equivalently) redefine a constraint satisfiability problem for the theory T as the

problem of establishing the consistency of T ∪Γ for a finite set Γ of ground Σa-literals (where

a is a finite set of new constants). For the same reason, from now on, by a ‘Σ-constraint’ we

mean a ‘ground Σ(a)-constraint’, where the finite set of free constants a should be clear from

the context (if not explicitly mentioned).

If Σ0 ⊆ Σ is a subsignature of Σ and ifM is a Σ-structure, the Σ0-reduct ofM is the Σ0-

structure M|Σ0
obtained from M by forgetting the interpretation of function and predicate

symbols from Σ \Σ0.

A Σ-embedding (or, simply, an embedding) between two Σ-structures M = (M,I) and

N = (N,J) is any mapping µ : M −→ N among the corresponding support sets satisfying

the condition

M |= ϕ iff N |= ϕ (1)

for all ΣM -atoms ϕ (here M is regarded as a ΣM -structure, by interpreting each additional

constant a ∈M into itself andN is regarded as a ΣM -structure by interpreting each additional

constant a ∈M into µ(a)). Notice the following facts: (a) as we have equality in the language,

an embedding is an injective function; (b) an embedding µ :M−→ N must be an algebraic

homomorphism, that is for every n-ary function symbol f and for every a1, . . . , an ∈ M ,

we must have fN (µ(a1), . . . , µ(an)) = µ(fM(a1, . . . , an));
3 (c) for an n-ary predicate symbol

P we must have (a1, . . . , an) ∈ PM iff (µ(a1), . . . , µ(an)) ∈ PN . It is easily seen that an

embedding µ : M −→ N can be equivalently defined as a mapping µ : M −→ N satisfying

(a)-(b)-(c) above.

1For integer arithmetic, infinite predicates expressing equivalence modulo nmust be included in the language

in order for quantifiers to be eliminable.
2Notice that the complementary constraint unsatisfiability problem (i.e. the problem of deciding whether

a finite set of Σ-literals is unsatisfiable in all the models of T) is easily reduced to the problem of deciding

whether T |= ϕ holds, for quantifier-free ϕ.
3To see this, apply (1) to the ΣM -atom f(a1, . . . , an) = a, where a ∈M is just fM(a1, . . . , an).

7

If M ⊆ N and if the embedding µ :M−→ N is just the identity inclusion M ⊆ N , we say

that M is a substructure of N or that N is an extension of M. In case (1) holds for all first

order formulae, the embedding µ is said to be an elementary embedding. Correspondingly, in

case µ is also an inclusion, we say that M is an elementary substructure of N or that N is

an elementary extension of M.

2.2 Background on Combination

We recall some notions used to develop results [23, 25, 2, 1, 24] for the non-disjoint combination

of theories. This paper is self-contained, in the sense that proofs of all model-theoretic facts

which are needed for our results on temporal logic are fully given in Appendix A. However, we

refer the reader to [23] for more information and for the proofs of side claims we are making

in this section (these side claims will never be used within the paper, but might be useful for

a better insight into the notions we are going to introduce).

2.2.1 Compatible Theories

Definition 2.1 (T0-compatibility [23]). Let T be a theory in the signature Σ and let T0 be

a universal theory in a subsignature Σ0 ⊆ Σ. We say that T is T0-compatible iff T0 ⊆ T and

there is a Σ0-theory T ∗
0 such that

(i) T0 ⊆ T
⋆
0 ;

(ii) T ⋆0 has quantifier elimination;

(iii) every model of T0 can be embedded into a model of T ⋆0 ;

(iv) every model of T can be embedded into a model of T ∪ T ⋆0 .

The requirements (i)-(iii) make the theory T ⋆0 unique, provided it exists (T ⋆0 is nothing

but the so called model completion of T0 [9]).4

In principle, we do not need to have a characterization of T ⋆0 , the mere information of its

existence is enough for our decision procedures to be sound and complete and to implement

them. As for T0 itself, it is usually sufficient to take as T0 the set of universal Σ0-sentences

which are logical consequence of T (for instance, this will be always the case for the temporal

logic decision problems analyzed in this paper). No information will be needed on axiomati-

zations of T0 to run our decision procedures too, we shall just need qualitative information

on properties of T0, like local finiteness, noetherianity, etc. (see below).

4The standard definition of model completion (adopted also in [23]) is slightly different, but can be proved

to be equivalent to the above one in the case of universal theories, see the Appendix B of [22] for details.

8

A lot of examples of theories fitting Definition 2.1 can be easily obtained as follows:

suppose that T ∗
0 is a Σ0-theory that eliminates quantifiers and take T be any theory whatsoever

in a bigger signature such that T ⊇ T ∗
0 . Then T is T0-compatible, if we take as T0 the theory

having as axioms all the universal Σ0-sentences which are logical consequences of T ⋆0 .

Of course, the key requirements in Definition 2.1 are requirements (iii)-(iv). Such require-

ments trivialize in the case considered in the last paragraph; to understand what they mean,

notice that (by Robinson diagram theorem and by compactness) they are equivalent to the

following statements:

(iii’) every Σ0-constraint which is satisfiable in a model of T0 is satisfiable also in a model of

T ⋆0 ;5

(iv’) every Σ-constraint which is satisfiable in a model of T is satisfiable also in a model of

T ⋆0 ∪ T .6

These requirements are nothing but a generalization of the stable infiniteness requirement of

the Nelson-Oppen combination procedure [36], [44]: in fact, if T0 is the empty theory in the

empty signature, T ⋆0 is the theory axiomatizing an infinite domain, so that (iii’) holds trivially

and (iv’) is precisely stable infiniteness.

Other examples of T0-compatible theories are given in [23]: for instance, any extension

(in a richer functional signature and by means of equational axioms) of the theory BA of

Boolean algebras is BA-compatible.

2.2.2 Locally Finite and Noetherian Theories

T0-compatibility is used in order to obtain the completeness of combination algorithms; for

termination, local finiteness and noetherianity are the relevant requirements.

Definition 2.2 (Local Finiteness). We say that Σ0-theory T0 is locally finite iff Σ0 is finite

and, for every finite set of free constants a, there are finitely many ground Σ
a
0-terms t1, . . . , tka

such that for every further ground Σ
a
0-term u, we have that T0 |= u = ti (for some i ∈

{1, . . . , ka}). If such t1, . . . , tka are effectively computable from a, then T0 is said to be

effectively locally finite.

If Σ0 is finite and does not contain any function symbol, then any Σ0-theory is effec-

tively locally finite; among effectively locally finite theories we have Boolean algebras, linear

arithmetic modulo a fixed integer, and theories axiomatizing enumerated datatypes.

5Equivalently, T0 and T ⋆
0 entail the same universal Σ0-sentences.

6Equivalently, T and T ∪ T ⋆
0 entail the same universal Σ-sentences.

9

The main way in which local finiteness is exploited lies in the computation of finite repre-

sentatives sets of ground atoms, clauses and formulae7 in finitely expanded signatures. This

means the following (e.g. in the case of atoms): consider the signature Σ
a
0, obtained from Σ0

by expanding it with finitely many free constants a. Thanks to effective local finiteness of T0,

it is possible to compute finitely many Σ
a
0-atoms ψ1(a), . . . , ψm(a) such that for any further

Σ
a
0-atom ψ(a) there is some i such that T0 |= ψi(a) ↔ ψ(a). These atoms ψ1(a), . . . , ψm(a)

are called representatives (modulo T0-equivalence) because they can freely replace arbitrary

Σ
a
0-atoms in computational considerations.

Local finiteness is a quite strong requirement: in many cases a much weaker requirement

is sufficient. This requirement is called a ’noetherianity’ requirement, because it generalizes

standard conditions from abstract algebra.

Definition 2.3 (Noetherian Theory). A Σ0-theory T0 is noetherian if and only if for every

finite set of constants a, every infinite ascending chain

Θ1 ⊆ Θ2 ⊆ · · · ⊆ Θn ⊆ · · ·

of sets of ground Σ
a
0-atoms is eventually constant modulo T0 (meaning that there is an n such

that for all m and A ∈ Θm, we have T0 ∪Θn |= A).

Examples of noetherian theories are linear integer and linear rational arithmetic (pro-

vided ordering is not included in the language). The reason why rational linear arithmetic

is noetherian is simple and is due to the fact that there cannot be infinitely many linearly

independent linear equations in finitely many unknowns (notice that this theory is far from

being locally finite, though).

A new interesting example of a noetherian theory which is presented in Appendix A is

the empty theory over the signature Σ containing only a unary function symbol. Notice that

if we add further axioms to a noetherian theory (while keeping the signature fixed), we still

result in a noetherian theory:8 thank to this observation, the theory of on injective function,

or of a cycle-free unary function, etc. are easily seen to be noetherian.

For the last three definitions below, we fix two signatures Σ0 ⊆ Σ, a Σ0-theory T0, and a

Σ-theory T such that T0 ⊆ T . Moreover, in this context it is useful to include the inconsistent

proposition ⊥ among atoms.

Definition 2.4 (T0-basis). Given a finite set of ground Σ-clauses Θ and a finite set of free

constants a, a T0-basis for Θ w.r.t. a is a set ∆ of positive ground Σ
a
0-clauses such that:

7Recall that when we say that a formula is ground we mean that it does not contain variables, neither free

nor bounded.
8The same observation applies to the property of being effectively locally finite.

10

(i) T ∪Θ |= C for all C ∈ ∆;

(ii) if T ∪Θ |= C then T0 ∪∆ |= C for every positive ground Σ
a
0-clause C.

We point out that Θ from Definition 2.4 is a finite set of ground Σ-clauses that may

contain free constants other from a; however only the a may occur in a T0-basis for Θ w.r.t.

a.9

Definition 2.5 (Noetherian Residue Enumerator). Given a finite set of free constants a, a

T -residue enumerator for T0 w.r.t. a is a computable function Res
a
T (Θ) mapping a finite set

of Σ-clauses Θ to a T0-basis of Θ w.r.t. a.

An argument based on König lemma (see [24] or Lemma A.11 from Appendix A) shows

that if T0 is a noetherian theory, then for every finite set of Σ-clauses Θ and for every a,

there always exists a finite T0-basis for Θ w.r.t. a. However, such a basis is not necessarily

computable; to this aim we introduce the following

Definition 2.6. A theory T is an effectively noetherian extension of T0 if and only if T0 is

noetherian and, for every finite set of free constants a, there is a T -residue enumerator for T0

w.r.t. a.

Examples of effectively noetherian extensions of a noetherian theory T0 can be found in

computational algebra (e.g. by using Gröbner bases [24]). The further example given by the

pair (T = real linear arithmetic, T0 = real linear arithmetic without <) is considered in [37]

(notice that since T0 eliminates quantifiers, T is not only effectively noetherian in T0, but also

T0-compatible).

2.2.3 A Combination Schema for Non-Disjoint Theories

In this section, we review the combination results of [23], taking into consideration also further

extensions from [24]: these results will not be used in the remaining part of the paper (hence

we omit proofs), nevertheless they might be useful in order to understand the role played

within combination problems by the notions introduced so far.

Suppose we are given theories T1, T2 in signatures Σ1,Σ2 and suppose that constraint

satisfiability problem is decidable for both T1 and T2; what can we say about constraint

satisfiability problem for the (Σ1 ∪ Σ2)-theory T1 ∪ T2? In general, not so much: constraint

satisfiability problem in T1 ∪ T2 can be undecidable, even if the shared signature Σ1 ∩ Σ2 is

9Notice that, once residue enumerators for Σ-constraints are known, one can get also residue enumerators

for finite sets of Σ-clauses (thus, there is no real difference among the definitions we give here and those

introduced in [24]).

11

empty [5]. We look for sufficient conditions making this ‘decidability transfer result’ available.

We first state the following basic combination result from [23]:

Theorem 2.7. Suppose that the theories T1, T2 (in signatures Σ1,Σ2) both have decidable

constraint satisfiability problem; then the (Σ1∪Σ2)-theory T1∪T2 also has decidable constraint

satisfiability problem in case T1, T2 are both T0-compatible for some universal and effectively

locally finite (Σ1 ∩ Σ2)-theory T0 contained in T1, T2.

As pointed out in Section 2.2.1, to get concrete applications of Theorem 2.7 it is sufficient

to take any theories T1, T2 extending a locally finite quantifier eliminating theory T ⋆0 in the

shared signature Σ1 ∩ Σ2 (the T0 fitting the hypotheses of Theorem 2.7 is then the theory

whose axioms are all the universal consequences of T ⋆0): examples of such a T ⋆0 include linear

arithmetic modulo n, the theory of dense total orders without endpoints, or any theory

axiomatizing enumerated datatypes. Another family of applications (covering the fusion

decidability transfer result for global consequence relation in modal logic [47]) arises by taking

as T1, T2 equational extensions of the theory BA of Boolean algebras (in this case, the hidden

T ⋆0 is the theory of atomless Boolean algebras, see [23] for details). Finally, it should be clear

that Theorem 2.7 extends Nelson-Oppen combination result for disjoint signatures (take T0

to be the empty theory and T ⋆0 to be the theory of an infinite domain).

The algorithm suggested by the plain proof of Theorem 2.7 consists in the following three

steps:

Step 1. The input (Σ1∪Σ2)-constraint Γ is purified, in the sense that, by repeatedly adding

to it equations like a = t (here t is a term occurring in Γ and a is a fresh constant), an

equi-satisfiable constraint Γ1 ∪ Γ2 is produced, where Γi is a Σi-constraint for i = 1, 2;

Step 2. A maximal Σ
a
0-constraint ∆ is guessed (here Σ0 is the shared signature Σ1 ∩ Σ2,

whereas the a’s are the free constants occurring in both Γ1 and Γ2). A Σ
a
0-constraint ∆

is maximal iff for every Σ
a
0-atom ψ, ∆ contains a literal which is T0-equivalent either to

ψ or to ¬ψ (notice that maximal constraints are computable, and finitely many modulo

T0, thanks to effective local finiteness of T0).

Step 3. Return “Satisfiable” iff Γ1∪∆ is T1-satisfiable and Γ2∪∆ is T2-satisfiable; return

“Unsatisfiable” iff all guessing ∆ fail.

A slightly different proof of Theorem 2.7 suggests an alternative algorithm, based on propa-

gation instead of guessing. Even better, instead of propagating entailed positive clauses (like

in [23]), a splitting mechanism with backtracking can be used, as suggested in [24]. To this

aim, instead of Steps 2-3, the following Loop is executed after Step 1:

12

Loop. Pick a positive Σ
a
0-clause C (let C be A1 ∨ · · · ∨ An, for n ≥ 1) such that Γi ∪

{¬A1, . . . ,¬An} is Ti-unsatisfiable but Γj ∪ {¬A1, . . . ,¬An} is Tj-satisfiable (for i, j ∈

{1, 2}, j 6= i); choose nondeterministically k ∈ {1, . . . , n} and update the current con-

straints by Γ1 := Γ1 ∪ {Ak} and Γ2 := Γ2 ∪ {Ak}.

Since T0 is locally finite, there are only finitely many Σ
a
0-positive clauses, hence the Loop

cannot be executed forever; when exiting the Loop, the procedure returns “Satisfiable”

iff Γ1 ∪∆ is T1-satisfiable and Γ2 ∪∆ is T2-satisfiable, otherwise it backtracks (and returns

“Unsatisfiable” if backtracking has been completed).10

As remarked in [24], the backtracking version of the combined decision algorithm is sound

and complete (although not terminating) even in case T0 lacks the local finiteness require-

ment: in fact, T0-compatibility requirements and a fair selection strategy for the positive

clause examined in the Loop are sufficient to guarantee completeness. In order to re-gain

termination, a noetherianity requirement can be used, witness the following Theorem proved

in [24]:

Theorem 2.8. Suppose that the theories T1, T2 (in signatures Σ1,Σ2) both have decidable

constraint satisfiability problem; then the (Σ1∪Σ2)-theory T1∪T2 also has decidable constraint

satisfiability problem in case there is some universal and noetherian (Σ1 ∩Σ2)-theory T0 such

that T1, T2 are both T0-compatible effectively noetherian extensions of T0.

The algorithm underlying the proof of Theorem 2.8 is analogous to the backtracking

version of the combined decision algorithm in the effectively locally finite case: the main Loop

is executed by a fair strategy based on the Ti-residue enumerators for T0 and termination is

guaranteed by noetherianity.

2.3 Propositional Discrete Linear Time Temporal Logic

Propositional L-formulae (or PLTL-formulae or simply propositional formulae) are built up

from a set of propositional letters L by using boolean connectives and the temporal operators

X,�,♦, U . We use letters α, β, . . . for propositional formulae. The semantics for PLTL is the

standard one: we recall it for the sake of completeness. A PLTL-Kripke model V = {Vn}n

for L is a sequence of boolean assignments

Vn : L −→ {0, 1} (n ∈ N).

Given such a Kripke model and a propositional formula α, the notion of α being true at

instant t ∈ N in V is recursively defined as follows (this is parallel to Definition 2.10):

10Notice that backtracking is not needed if T1, T2 are both Σ0-convex theories (in the sense of [43]), because

in this case we can limit ourselves to positive unit clauses in the Loop.

13

– if p ∈ L, V |=t p iff Vt(p) = 1;

– V |=t ¬α iff V 6|=t α;

– V |=t α ∧ β iff V |=t α and V |=t β;

– V |=t α ∨ β iff V |=t α or V |=t β;

– V |=t Xα iff V |=t+1 α;

– V |=t �α iff for each t′ ≥ t, V |=t′ α;

– V |=t ♦α iff for some t′ ≥ t, V |=t′ α;

– V |=t αUβ iff there exists t′ ≥ t such that V |=t′ β and for each t′′, t ≤ t′′ < t′ ⇒

V |=t′′ α.

We say that α is satisfied in V iff V |=0 α (in general, if the subscript of |= is omitted, it is

intended to be equal to 0).

2.4 First-Order Discrete Linear Time Temporal Logic

The aim of this paper is that of studying reactive systems descriptions by combining temporal

operators and first-order languages. As argued in [33] (p. 48), for most applications it is

sufficient to fix a first-order signature Σ and to deal with formulae obtained by applying

temporal and boolean operators (but no quantifiers) to first-order Σ-formulae: the resulting

formulae are called state-quantified formulae in [33] and are formally introduced as follows.

Definition 2.9 (LTL(Σa)-Sentences). Given a signature Σ and a (finite or infinite) set of

free constants a, the set of LTL(Σa)-sentences is inductively defined as follows:

– if ϕ is an first-order Σa-sentence, then ϕ is an LTL(Σa)-sentence;

– if ψ1, ψ2 are LTL(Σa)-sentence, so are ψ1 ∧ ψ2, ψ1 ∨ ψ2, ¬ψ1, Xψ1, �ψ1, ♦ψ1, ψ1Uψ2.

Notice that free constants are allowed in the definition of an LTL(Σa)-sentence. This is quite

conventional: since we prefer not to use free variables, free constants handle variables and

parameters of the system to be modeled.

Let us now discuss semantic issues. It is clear that an LTL(Σa)-structure must be a family

of Σa-structures M = {Mn = (Mn,In)}n∈N indexed by the natural numbers; when we fix

also a background Σ-theory T , these structures will be taken to be models of T . The main

question is the following: what should the variousMn share? A first requirement is that they

should share their domains, that is we assume the Mn to be constant, i.e. all equal to each

14

other. Although different semantics, with increasing and even distinct domains, have been

proposed in the literature [6], the constant domain assumption is rather common in computer

science applications.

Definition 2.10. Given a signature Σ and a set a of free constants, an LTL(Σa)-structure

(or simply a structure) is a sequenceM = {Mn = (M,In)}n∈N of Σa-structures. The set M

is called the domain (or the universe) and In is called the n-th level interpretation function

of the LTL(Σa)-structure.11

The mere requirement of domains to be constant is rather poor for our applications, but

it is sufficient to formalize the following definition of semantics.

Definition 2.11. Given an LTL(Σa)-sentence ϕ and t ∈ N, the notion of “ϕ being true in

the LTL(Σa)-structure M = {Mn = (M,In)}n∈N at the instant t” (in symbols M |=t ϕ) is

inductively defined as follows:

– if ϕ is an first-order sentence, M |=t ϕ iff Mt |= ϕ;

– M |=t ¬ϕ iffM 6|=t ϕ;

– M |=t ϕ ∧ ψ iffM |=t ϕ and M |=t ψ;

– M |=t ϕ ∨ ψ iffM |=t ϕ or M |=t ψ;

– M |=t Xϕ iffM |=t+1 ϕ;

– M |=t �ϕ iff for each t′ ≥ t, M |=t′ ϕ;

– M |=t ♦ϕ iff for some t′ ≥ t,M |=t′ ϕ;

– M |=t ϕUψ iff there exists t′ ≥ t such that M |=t′ ψ and for each t′′, t ≤ t′′ < t′ ⇒

M |=t′′ ϕ.

The definition above is well given because, if the main connective of the formula is a

boolean operator, the definition of truth of an LTL(Σa)-sentence coincides with truth clause

of Tarski semantics for first order languages. Let ϕ be an LTL(Σa)-sentence; ϕ is true in M

or, equivalently, that M satisfies ϕ (in symbolsM |= ϕ) iff M |=0 ϕ.

11In more detail, In is such that In(P) ⊆ Mk for every predicate symbols P ∈ Σ of arity k, and In(f) :

Mk −→M for each function symbol f ∈ Σ of arity k.

15

2.4.1 LTL-Theories and the Satisfiability Problem

Let us now better examine the problem of the relationship between the interpretations In in

an LTL(Σa)-structure: there are two radically opposite alternatives to cope with this prob-

lem. The customary Kripkean semantics for modal logics mostly deals with purely relational

signatures and leave the interpretation of the predicate symbols flexible, i.e. time-dependant:

no relationship among Im(P) and In(P) is assumed for n 6= m. By contrast, constants are

usually interpreted rigidly according to the orthodox Kripkean viewpoint, that is we have

Im(c) = In(c) for all m,n and for all constants c.

On the other hand, the verification literature tends to consider the opposite solution:

free constants are flexible (because the system variables are subject to change during runs)

and symbols from Σ are rigidly interpreted, because they are supposed to model datatypes

endowed with the corresponding time-independent operations (like sum and successor for

integers, read/write for arrays, etc.).

While keeping the same motivations of the verification literature, we adopt here a more

elaborated point of view, according to which certain symbols are declared rigid and the re-

maining ones are declared flexible (i.e. time-dependent). We believe that there are various

reasons supporting this choice. First of all, flexible interpretations are already used within

the verification literature, where not only variables, but also propositions expressing program

locations are in fact interpreted in a time-dependent way (to this aim, the booleans sort is

introduced in order to assimilate program locations to flexible variables). Moreover, reac-

tive systems are supposed to interact with the environment and the environment action is

somewhat unpredictable, to the point that it is better to model it through flexible function

symbols - these function symbols obeying only to the constraints expressed by the background

theory T or by the nondeterministic transition relation of the system (to see an example of

what we mean, see the functions in and out within the water level controller example dis-

cussed in Subsection 4.4 below). Even predicates or function symbols expressing the internal

evolution of the system may be subject to time change. Consider for instance a mutual ex-

clusion protocol, like the ‘bakery’ protocol: here the set of processors wanting to enter into

the critical section is variable and the ticket-assigning function is time-dependent too, e.g.

because it need complete reset once the resource have been obtained (see again Subsection

4.4 for details). In these examples, the constrained flexibility approach we propose identifies

the good abstraction level for the specification of the system behavior. Finally, there are also

technical reasons supporting our proposal: big decidability problems in model-checking arise

when even minimal infinite states descriptors enter into the picture (see the proof of Theorem

4.10 below) and our setting allows to model the system by grouping problematic descriptors

16

into two categories, the rigid and the flexible ones. As we shall see, if we succeed in keeping

the rigid part of the specification relatively simple (e.g. ‘locally finite’), then we do not loose

the nice properties of the reasoning about finite-state specifications.

The above discussion leads to the following notions.

Definition 2.12. An LTL-theory is a 5-tuple T = 〈Σ, T,Σr, a, c〉 where

– Σ is a signature;

– T is a Σ-theory (called the underlying theory of T);

– Σr is a subsignature of Σ;

– a, c are sets of free constants.

Σr is said to be the rigid subsignature of the LTL-theory; the constants c will be rigidly in-

terpreted, whereas the constants a will be interpreted in a time-dependant way. The constants

a are (slightly improperly) called the system variables of the LTL-theory, and the constants

c are called its system parameters.

An LTL-theory T = 〈Σ, T,Σr, a, c〉 is said to be totally flexible iff Σr is empty and is said

to be totally rigid iff Σr = Σ. Thus, parameters are the only rigid symbols of a totally flexible

LTL-theory and system variables are the only flexible symbols of a totally rigid LTL-theory.

Definition 2.13. An LTL(Σa,c)-structure M = {Mn = (M,In)}n∈N is appropriate for an

LTL-theory T = 〈Σ, T,Σr, a, c〉 iff for all m,n ∈ N, for all function symbol f ∈ Σr, for all

relational symbol P ∈ Σr, and for all constant c ∈ c, we have

Mn |= T, In(f) = Im(f), In(P) = Im(P), In(c) = Im(c).

The satisfiability problem for T is the following: given an LTL(Σa,c)-sentence ϕ, decide

whether there is an LTL(Σa,c)-structureM appropriate for T such thatM |= ϕ. The ground

satisfiability problem for T is similarly introduced, but ϕ is assumed to be ground.

Notice that our definition agrees with the requirement that the equality symbol is always

interpreted as the identity relation, because the equality is included in every signature (hence

also in the rigid signature Σr).

2.4.2 Some Classes of LTL-Theories

To study the ground satisfiability problem for LTL-theories, it is useful to distinguish three

different classes of LTL-theories of increasing expressiveness and to lift to the temporal level

17

the properties of (first-order) theories ensuring modularity (with respect to unions of theories)

of decidability of constraint satisfiability problem (cf. Section 2.2.2).

Let Σ be a finite signature; an enumerated datatype theory in the signature Σ is the theory

consisting of the set of sentences which are true in a finite given fixed Σ-structureM = (M,I)

(we requireM to have the additional property that for every m ∈M there is c ∈ Σ such that

cM = m). It is easy to see that an enumerated datatype theory has a finite set of universal

axioms and enjoys quantifier elimination.

Definition 2.14. An LTL-theory T = 〈Σ, T,Σr, a, c〉 is said to be finite state iff it is totally

rigid and T is an enumerated datatype theory.

Notice that enumerated datatype theories are locally finite, but not conversely;12 thus,

in order to generalize finite state systems, one can require the underlying theory to be lo-

cally finite. We also want to drop the total rigidity requirement and weaken the quantifier

elimination property of enumerated datatype theories to a compatibility requirement (recall

Definition 2.1):

Definition 2.15. An LTL-theory T = 〈Σ, T,Σr, a, c〉 is said to be locally finite compatible iff

there is a universal and effectively locally finite Σr-theory Tr such that T is Tr-compatible.

Notice that, from our discussion in Section 2.2.1, it follows that a totally flexible LTL-

theory is locally finite compatible in case its underlying theory is stably infinite.

We can get a further generalization by weakening local finiteness to noetherianity (in the

sense of Definition 2.6):

Definition 2.16. An LTL-theory T = 〈Σ, T,Σr, a, c〉 is said to be noetherian compatible iff

there is a Σr-universal theory Tr such that T is an effectively noetherian and Tr-compatible

extension of Tr.

Definitions 2.15 and 2.16 refers to a Σr-theory Tr such that T is Tr-compatible. Although

this is not relevant for the proofs of the results in this paper, we notice that if such a theory Tr

exists, then one can always take Tr to be the theory axiomatized by the universal Σr-sentences

which are logical consequences of T .

3 The Satisfiability Problem

We completed our conceptual setting: we need however to restrict it considerably, in order to

be able to provide positive results. This is partially done by means of the following further

assumption, to be kept in mind for the whole paper.

12For instance, the theory of dense linear orders is locally finite but cannot be the theory of a single finite

structure, because finite linear orders are not dense.

18

Assumption 3.1. We shall concentrate on ground satisfiability problems. For this reason,

we assume the underlying theory T of an LTL-theory T = 〈Σ, T,Σr, a, c〉 to have decidable

constraint satisfiability problem.

We will see that this assumption alone is not sufficient to guarantee the decidability of

the ground satisfiability problem for LTL-theories (cf. Section 3.1). Fortunately, the problem

becomes decidable (cf. Sections 3.2 and 3.3) when the underlying theory T of an LTL-theory

T = 〈Σ, T,Σr, a, c〉 satisfies the same requirements for the correctness of the combination

schema of Section 2.2.3.

3.1 Undecidability

We show that the decidability of the satisfiability problem for (totally flexible) LTL-theories

implies the decidability of the constraint satisfiability problem for unions of (signature dis-

joint) theories in a first-order framework. This reduction proves undecidability, as shown in

[5] (in fact, both recent and long standing literature [36, 44] impose further requirements,

such as stable infiniteness, on the component theories to obtain positive decidability transfer

results of the constraint satisfiability problem).

Theorem 3.2. There exists a totally flexible LTL-theory T whose ground satisfiability problem

is undecidable.

There are two key observations underlying the proof of this undecidability result. First,

we build a theory T whose constraint satisfiability problem consists of non-deterministically

solving the constraint satisfiability problem among two signature-disjoint theories T1, T2. It

is easy to see that the constraint satisfiability problem of T is decidable, if it is decidable for

both T1 and T2. The second observation is that it is possible to write an LTL(Σa)-sentence

whose satisfiability is equivalent to the satisfiability of a constraint in T1 ∪ T2. In [5], it is

shown that such a problem is undecidable for suitable T1 and T2.

Proof. We must define an LTL-theory T = 〈Σ, T,Σr, a, c〉 such that Σr = ∅, i.e. T is totally

flexible, and the constraint satisfiability problem of T is decidable, according to Assump-

tion 3.1.

To define a suitable T , the following two facts about combinations of theories are crucial.

(i) There exist theories T1, T2 whose constraint satisfiability problem is decidable, whose

signatures Σ1,Σ2 are disjoint and such that the constraint satisfiability problem of T1∪T2

is undecidable (this is shown in [5]).

19

(ii) Let T be a Σ-theory whose constraint satisfiability problem is decidable and Σ′ be

a signature such that Σ′ ⊇ Σ. If we consider T as a Σ′-theory, then the constraint

satisfiability problems of T is still decidable (this is proved in, e.g., [21, 45]).

Consider now theories T1, T2 as in (i) above and let us define a new Σ-theory T as follows:

Σ := Σ1 ∪ Σ2 ∪ {P} and T := {P → ψ | ψ ∈ T1} ∪ {¬P → ψ | ψ ∈ T2},

where P is a fresh 0-ary predicate symbol (or, otherwise said, a fresh propositional letter). We

claim that the constraint satisfiability problem for the Σ-theory T is decidable. In fact, given

a Σ1∪Σ2∪{P} constraint Γ, we first guess the truth value of P and add either P or ¬P to Γ,

accordingly. At this point, we are left with the problem of solving a constraint satisfiability

problem of the (Σ1 ∪ Σ2 ∪ {P})-theory Ti for either i = 1 or i = 2. This is decidable by fact

(ii) above: the constraint satisfiability problem of the Σi-theory Ti is decidable by assumption

and the symbols from Σj ∪ {P} (j 6= i) are free for Ti.

We now show that the ground satisfiability problem for T is undecidable by identifying

a particular class of ground LTL(Σa,c)-sentences whose satisfiability cannot be decided. We

assume that there are infinitely many system parameters (whereas the cardinality of the set

of system variables is irrelevant). We claim that it is not possible to decide the T -satisfiability

of the following type of ground LTL(Σc)-sentences:

P ∧ Γ1 ∧X(¬P ∧ Γ2), (2)

where Γi is a finite conjunction of Σ
c
i -literals (for i = 1, 2) and the c are the free constants

of the LTL-theory T (i.e. the rigid system parameters). In fact, if (2) is satisfiable (in the

sense of Definition 2.13) then it is easy to build a model (in first-order semantics) for T1 ∪ T2

satisfying Γ1 ∪ Γ2, and also the converse holds. Thus the satisfiability of the sentences of the

kind described in (2) is reduced to the satisfiability w.r.t. T1 ∪ T2 of the arbitrary constraint

Γ1∪Γ2: this is undecidable by fact (i) above (notice that the satisfiability of pure constraints,

like Γ1 ∪ Γ2 is equivalent to satisfiability of arbitrary (Σ1 ∪ Σ2)-constraints, because every

constraint is equi-satisfiable with an effectively built pure constraint, see Step 1 from Section

2.2.3).

3.2 Decidability and Locally Finite LTL-Theories

Let T = 〈Σ, T,Σr, a, c〉 be a given LTL-theory. The arguments underlying the proof of The-

orem 3.2 suggest that the undecidability of the ground satisfiability problem for T arises

precisely for the same reasons leading to the undecidability of combined constraint satisfiabil-

ity problems in the first-order framework. The hope is that the same (or similar) requirements

20

yielding the decidability of the constraint satisfiability problem in unions of theories will also

give the decidability of the ground satisfiability problem for T . It turns out that this is indeed

the case for both locally finite and noetherian theories (cf. Section 2.2.2).

Theorem 3.3. The ground satisfiability problem for a locally finite compatible LTL-theory is

decidable.

Below, we give two constructive proofs of this Theorem. The former is based on an

eager reduction to the satisfiability problem for propositional LTL. The latter consists in

a lazy integration between a standard tableau algorithm for the satisfiability problem of

propositional LTL and a decision procedure for the constraint satisfiability problem in the

background (first-order) theory T .

3.2.1 Eager Reduction to Propositional LTL-Satisfiability

In the rest of this Subsection, let T = 〈Σ, T,Σr, a, c〉 be a locally finite compatible LTL-theory.

We prove Theorem 3.3 by a reduction to satisfiability in propositional linear temporal logic

(PLTL, from now on). The syntactic relationship between first-order and propositional LTL-

formulae is given by the notion of abstraction.

Definition 3.4 (PLTL-Abstraction). Given a signature Σa and a set of propositional letters

L of the appropriate cardinality, let [[·]] be a bijection from the set of ground Σa-atoms into L.

By translating identically boolean and temporal connectives, the map is inductively extended

to a bijective map (also called [[·]]) from the set of ground LTL(Σa)-sentences onto the set of

propositional L-formulae.

Given a ground LTL(Σa)-sentence ϕ, we call [[ϕ]] the PLTL-abstraction of ϕ. Given a set

Θ of ground LTL(Σa)-sentences, [[Θ]] denotes the set {[[ϕ]] | ϕ ∈ Θ}.

The following straightforward Lemma explains why PLTL-abstractions are relevant for

satisfiability checking of LTL(Σa)-sentences.

Lemma 3.5. Let L be a set of propositional letters, Σ be a signature, a be a set of free

constants, and [[·]] be a PLTL-abstraction function mapping ground LTL(Σa)-sentences into

propositional L-formulae. Suppose we are given a ground LTL(Σa)-sentence ϕ, a Kripke

model V for L and an LTL(Σa)-structure M = {Mn}n∈N such that for every t ∈ N and for

every Σa-ground atom ψ occurring in ϕ we have

Mt |= ψ iff Vt([[ψ]]) = 1.

Then we have also

M |=t ϕ iff V |=t [[ϕ]],

21

for every t ∈ N.

The key to define a reduction to the satisfiability problem in PLTL is guessing.

Definition 3.6 (Guessing). Given a signature Σ and a finite set of Σ-atoms S, an S-guessing

G is a boolean assignment to members of S (we view G as the set {ϕ | ϕ ∈ S and G(ϕ) is

assigned to true} ∪ {¬ϕ | ϕ ∈ S and G(ϕ) is assigned to false}).

Indeed, guessing must take into account rigid constants: each guessing of atoms over flex-

ible symbols must be “compatible” with the guessing of atoms over rigid symbols. Formally,

this is ensured as follows.

By definition of locally finite compatible LTL-theory T = 〈Σ, T,Σr, a, c〉, there must exist

a theory Tr such that Tr ⊆ T is effectively locally finite. So, given a finite subset c0 of c, it

is possible to compute a finite set S of ground Σ
c
0

r -atoms which are representative modulo

T -equivalence of all ground Σ
c
0
r -atoms: for this choice of S, an S-guessing is called a rigid

c0-guessing. Now, let S̃ be any finite set of Σa,c-atoms and G be a rigid c0-guessing: an

S̃-guessing G̃ is G-compatible iff G ∪ G̃ is T -satisfiable. The set of G-compatible S̃-guessing is

denoted by C(S̃,G).

Theorem 3.3 is an immediate consequence of the well-known fact that PLTL-satisfiability

is decidable and the following Proposition.

Proposition 3.7. Let T = 〈Σ, T,Σr, a, c〉 be a locally finite compatible LTL-theory. Let L be a

set of propositional letters and [[·]] be a PLTL-abstraction function mapping ground LTL(Σa,c)-

sentences into propositional L-formulae. A ground LTL(Σa,c)-sentence ϕ is satisfiable in an

LTL(Σa,c)-structure M appropriate for T iff there exists a rigid c0-guessing G such that the

propositional formula

[[ϕ]] ∧�
∧

ψ∈G

[[ψ]] ∧� (
∨

G̃∈C(At(ϕ),G)

∧

ψ∈G̃

[[ψ]]) (3)

is satisfiable in a PLTL-Kripke model (here c0 is the subset of the set c of system parameters

occurring in ϕ and At(ϕ) is the set of Σa,c-atoms occurring in ϕ).

Proof. The ‘only if’ is immediate from Lemma 3.5. The converse can be derived from Lemma

A.7 from the Appendix. Suppose that the PLTL-formula (3) is satisfiable in a Kripke model

V = {Vn}n∈N for a certain rigid c0-guessing G. This means that for every n there is G̃n ∈

C(At(ϕ),G) such that V |=n

∧

ψ∈G [[ψ]] ∧
∧

ψ∈G̃n
[[ψ]]. Since G̃n is G-compatible, there is a

Σa,c
0-structure Mn which is a model of T ∪ G̃n ∪ G; by Lemma A.7, the Mn can be Σa,c

0-

embedded into Σa,c-structures M′
n such that M′ := {M′

n}n∈N is appropriate for T .13 The

13Lemma A.7 is used with I := N, and Ti := T , but symbols from Σ \ Σr are disjointly renamed when

22

Mn can be seen as Σa,c-structures by interpreting rigid parameters c \ c0 arbitrarily (but in

the same way in all Mn). Since truth of ground literals is preserved through embeddings,

M′
n is again a model of G̃n for every n. But then Lemma 3.5 ensures that M′ |= ϕ, given

that V |= [[ϕ]].

Example 3.8 ([38]). Let T = 〈{>}, Tlo, {>}, a, c〉 be an LTL-theory, where Tlo is the theory

of strict linear orders and > is a binary predicate symbol. Since Tlo (i) is universal, (ii)

admits as a model completion the theory of dense linear order without endpoints and (iii) is

effectively locally finite, then T is a locally finite compatible LTL-theory; moreover, it is easy

to check that the constraint satisfiability problem for Tlo is decidable. We are interested to

check the satisfiability of the following LTL(Σa)-sentence:14

ϕ :≡ a > b ∧ b > c ∧ (♦a = c ∨ ♦c > a)

Indeed, the solution to this satisfiability problem depends on how we classify the symbols a, b,

and c. Notice that the set At(ϕ) of atoms in ϕ is {a > b, b > c, a = c, c > a}. Now, let us

consider two cases according to how a, b, c are considered as flexible or rigid.

1. a = {b} and c = {a, c}. The set of representative Σc-atoms is {a > c, a = c, c > a}. The

rigid c-guessings which are consistent w.r.t. Tlo are therefore the following:

G1 :={a > c, a 6= c, c 6> a},

G2 :={a 6> c, a = c, c 6> a},

G3 :={a 6> c, a 6= c, c > a}.

We omitted to consider the rigid c-guessings which are not Tlo-satisfiable because every

Tlo-unsatisfiable c-guessing G leads to the inconsistency of the formula (3) since there is

no G-compatible At(ϕ)-guessing. Consider now the first two conjuncts of (3) for each

Gi:

G1: from

[[a > b]] ∧ [[b > c]] ∧ (♦[[a = c]] ∨ ♦[[c > a]]) ∧

∧ �([[a > c]] ∧ ¬[[a = c]] ∧ ¬[[c > a]])

building the signature Σi for the i-th copy of T (the same observation applies also to the flexible constants

a). In this way, a model of
S

i Ti is the same thing as a sequence of models {M′
n}n∈N of T whose Σr-reducts

coincide.
14The formula is obtained by negating a > b ∧ b > c→ �(a > c)

23

we obtain

([[a > b]] ∧ [[b > c]] ∧ ♦[[a = c]] ∧�[[a > c]] ∧�¬[[a = c]] ∧�¬[[c > a]])∨

∨([[a > b]] ∧ [[b > c]] ∧ ♦[[c > a]] ∧�[[a > c]] ∧�¬[[a = c]] ∧�¬[[c > a]])

Each disjunct is easily found PLTL-unsatisfiable because of the inconsistency be-

tween the underlined part of the formula.

G2: from

[[a > b]] ∧ [[b > c]] ∧ (♦[[a = c]] ∨ ♦[[c > a]]) ∧

∧ �(¬[[a > c]] ∧ [[a = c]] ∧ ¬[[c > a]])

we obtain

([[a > b]] ∧ [[b > c]] ∧ ♦[[a = c]] ∧�¬[[a > c]] ∧�[[a = c]] ∧�¬[[c > a]])∨

∨([[a > b]] ∧ [[b > c]] ∧ ♦[[c > a]] ∧�¬[[a > c]] ∧�[[a = c]] ∧�¬[[c > a]])

The second disjunct is easily found PLTL-unsatisfiable because of the inconsistency

between the underlined part of the formula. We are left to check the PLTL-

unsatisfiable of the following formula obtained by considering all G2-compatible

guessings:

[[a > b]] ∧ [[b > c]] ∧ ♦[[a = c]] ∧�¬[[a > c]] ∧�[[a = c]] ∧�¬[[c > a]]∧

∧ �

(
¬[[a > b]] ∧ [[b > c]] ∧ [[a = c]] ∧ ¬[[c > a]]

)
∨

∨
(
[[a > b]] ∧ ¬[[b > c]] ∧ [[a = c]] ∧ ¬[[c > a]]

)
∨

∨
(
¬[[a > b]] ∧ ¬[[b > c]] ∧ [[a = c]] ∧ ¬[[c > a]]

)

which is easily found PLTL-inconsistent by observing the underlined literals.

G3: from

[[a > b]] ∧ [[b > c]] ∧ (♦[[a = c]] ∨ ♦[[c > a]]) ∧

∧ �(¬[[a > c]] ∧ ¬[[a = c]] ∧ [[c > a]])

we obtain

([[a > b]] ∧ [[b > c]] ∧ ♦[[a = c]] ∧�¬[[a > c]] ∧�¬[[a = c]] ∧�[[c > a]])∨

∨([[a > b]] ∧ [[b > c]] ∧ ♦[[c > a]] ∧�¬[[a > c]] ∧�¬[[a = c]] ∧�[[c > a]])

24

The first disjunct is easily found PLTL-unsatisfiable because of the inconsistency

between the underlined part of the formula. We are left to check the PLTL-

unsatisfiable of the following formula obtained by considering all the G3-compatible

guessings:

[[a > b]] ∧ [[b > c]] ∧ ♦[[c > a]] ∧�¬[[a > c]] ∧�¬[[a = c]] ∧�[[c > a]]∧

∧�

(
¬[[a > b]] ∧ [[b > c]] ∧ ¬[[a = c]] ∧ [[c > a]]

)
∨

∨
(
[[a > b]] ∧ ¬[[b > c]] ∧ ¬[[a = c]] ∧ [[c > a]]

)
∨

∨
(
¬[[a > b]] ∧ ¬[[b > c]] ∧ ¬[[a = c]] ∧ [[c > a]]

)

which is easily found PLTL-inconsistent by observing the underlined literals.

Since there is no rigid guessing such that the formula (3) is PLTL-satisfiable, we are

entitled to conclude that ϕ is unsatisfiable in any LTL(Σ{b},{a,c})-structure appropriate

for T .

2. a = {a, b, c} and c = ∅. Since there are no system parameters, all the At(ϕ)-guessings

which are Tlo-satisfiable are trivially compatible with every rigid c-guessing. It easy to

check that the corresponding instance of (3) is PLTL-satisfiable. Hence, by Theorem

3.3, we conclude that ϕ is satisfiable in an LTL(Σ{a,b,c},∅)-structure appropriate for T .

Proposition 3.7 gives an algorithm to solve the ground satisfiability problem for T , when

T is a locally finite compatible LTL-theory. For the PLTL-satisfiability test, one may use

any decision procedure for PLTL-satisfiability based on tableaux, automata, or temporal

extensions of resolution. Such an algorithm can be regarded as an eager reduction algorithm,

in the sense that it produces an instance of a PLTL-satisfiability problem. The drawback

is that the resulting PLTL-satisfiability problem may be quite large. The main advantage

is that both decision procedures for the constraint satisfiability problem of the underlying

locally finite theory and decision procedures for PLTL can be used ‘off-the-shelf’. In the next

Subsection, we consider a procedure which is likely to scale up more smoothly at the price of

a finer grain integration between the constraint reasoner in the background theory and the

PLTL satisfiability solver.

3.2.2 A Lazy Tableau Procedure

We describe a lazy approach to solve the ground satisfiability problem for LTL-theories by

extending the classic approach to temporal propositional satisfiability adopted in the Tableaux

community. The key idea is to lift the definition of Hintikka sets to ground LTL(Σa,c)-

sentences of the form (3). The soundness and completeness proof of the resulting algorithm

25

(cf. Corollary 3.12 below) is immediate from Proposition 3.7 and basic properties of tableaux

for PLTL (see, e.g., [33], Section 5.5).

As before, let us fix a locally finite compatible LTL-theory T = 〈Σ, T,Σr, a, c〉. A ground

LTL(Σa,c)-sentence is in Negation Normal Form (NNF) iff it is built up from LTL(Σa,c)-

literals by using ∨,∧,X,�, U . It can be shown that every ground LTL(Σa,c)-sentence is

logically equivalent to a formula in NNF.15

Definition 3.9. Given a ground LTL(Σa,c)-sentence ϕ in NNF, the closure of ϕ is the set

cl(ϕ) containing:

(i) all subformulae of ϕ and all negations of atoms occurring in ϕ;

(ii) a representative set (modulo T -equivalence) of Σ
c
0

r -literals, where c0 is the finite set of

system parameters occurring in ϕ;

(iii) formulae of the form X(ψUχ), where ψUχ is a subformula of ϕ;

(iv) formulae of the form X�ψ, where �ψ is a subformula of ϕ.

Notice that cl(ϕ) is finite and has cardinality O(max(n, k(c0))), if n is the length of ϕ and

k(c0) is the cardinality of a representative set of Σ
c
0
r -literals.

Definition 3.10. Given a ground LTL(Σa,c)-sentence ϕ in NNF, a Hintikka set for ϕ is a

subset H ⊆ cl(ϕ) such that:

(i) for every atom ψ ∈ cl(ϕ), H contains either ψ or ¬ψ;

(ii) the set of literals from H is T -satisfiable;

(iii) if ψ1 ∧ ψ2 ∈ H, then (ψ1 ∈ H and ψ2 ∈ H);

(iv) if ψ1 ∨ ψ2 ∈ H, then (ψ1 ∈ H or ψ2 ∈ H);

(v) if ψ1Uψ2 ∈ H, then (ψ2 ∈ H or (ψ1 ∈ H and X(ψ1Uψ2) ∈ H));

(vi) if �ψ ∈ H, then (ψ ∈ H and X�ψ ∈ H).

We are now in the position to define a Hintikka graph, which will be used as the key data

structure to define the tableau procedure.

Definition 3.11. The Hintikka graph H(ϕ) of ϕ is the directed graph having as nodes the

Hintikka sets for ϕ and as edges the pairs H → H ′ such that

15For simplicity (and ignoring efficiency problems), we include � but not the ‘release operator’ ϕRψ :=

¬(¬ϕU¬ψ) (this operator can be defined in terms of � and U as �ψ ∨ (ψU(ϕ ∧ ψ))).

26

(i) H ′ ⊇ {ψ | Xψ ∈ H};

(ii) H and H ′ contain the same ground Σ
c
0
r -literals.

A strongly connected subgraph (scs) of H(ϕ) is a set C of nodes of H(ϕ) such that for every

H,H ′ ∈ C there is a (non-empty) H(ϕ)-path from H to H ′ whose nodes all belong to C.16 An

scs C is fulfilling [33] iff for every ψ1Uψ2 ∈ cl(ϕ) there is H ∈ C such that either ψ1Uψ2 6∈ H

or ψ2 ∈ H. A node H in H(ϕ) is initial iff ϕ ∈ H.

Corollary 3.12. A ground LTL(Σa,c)-sentence ϕ in NNF is satisfiable in an LTL(Σa,c)-

structure M appropriate for T iff there is an H(ϕ)-path leading from an initial node into a

fulfilling scs.

An observation about the complexity of the lazy procedure is in order. When the set of

representative Σ
c
0
r -atoms has polynomial size, one can derive a PSPACE-decision procedure

(provided that the T -constraint satisfiability problem is also PSPACE) from the above Corol-

lary. The crucial point is to avoid the explicit construction of the Hintikka graph and explore

it ‘on-the-fly’ by using well-known techniques of the PLTL literature (see, e.g., [41])

3.3 Decidability and Noetherian LTL-Theories

We now extend Theorem 3.3 to the noetherian compatible case. This is a more difficult task:

since no apriori rigid guessing can be performed, we shall need positive constraint propagation

along the model to be built.

Suppose α is a PLTL-formula in NNF; we define the closure clP (α) of α, the notion of a

Hintikka set for α, and the Hintikka graph HP (α) for α, simply by dropping clause (ii) from

Definitions 3.9, 3.10, 3.11 (we use the subscript ‘P ’ to stress that these definitions refer to

PLTL-formulae and not to ground LTL(Σa,c)-sentences, like in the previous subsection). We

can similarly define initial nodes, scs’s, and fulfilling scs’s for HP (α).

Definition 3.13 (pc-model). Given a PLTL-formula α in NNF, a pair 〈P, C〉 is a pc-model

for α iff

(i) P is a path H0 → H1 → · · · → Hk in HP (α) such that H0 is an initial node of HP (α)

and the nodes H1, . . . ,Hk are all distincts;

(ii) C is a fulfilling scs containing Hk.

Notice that, given a PLTL-formula α, there are only finitely many pc-models for α. Corol-

lary 3.12 now reads as the following well-known result (cf., e.g., [33]):17

16In particular, for H = H ′, we see that an scs cannot consist of a single not self-accessible node.
17Theorem 3.14 (like Corollary 3.12) can be refined by asking the scs of a pc-model to be maximal.

27

Theorem 3.14. A PLTL-formula α in NNF is satisfiable iff there is a pc-model for α.

3.3.1 The Procedure NSat

Let T = 〈Σ, T,Σr, a, c〉 be a noetherian compatible LTL-theory. The procedure NSat takes

in input a ground LTL(Σa,c)-sentence ϕ and returns “satisfiable” if there is an LTL(Σa,c)-

structureM appropriate for T such that M |= ϕ, “unsatisfiable” otherwise.

The procedure NSat relies on a procedure Dp-ltl which, given a ground LTL(Σa,c)-

sentence ϕ, is able to enumerate all pc-models 〈P, C〉 for [[ϕ]]. Moreover, the decision pro-

cedure Dp-t is a DPLL(T)-based decision procedure for the constraint satisfiability problem

for the theory T (i.e., it is able to cope with T -satisfiability of sets of ground Σa,c-clauses

instead of only sets of ground Σa,c-literals). Finally, Res
c
T is the T -residue enumerator for Tr

w.r.t. c. In the outer loop of the NSat procedure, pc-models for [[ϕ]] are enumerated; let

Algorithm 1 The satisfiability procedure for the noetherian compatible case

Require: ϕ ground LTL(Σa,c)-sentence

1: procedure NSat(ϕ)

2: for all 〈P, C〉 ∈ Dp-ltl([[ϕ]]) do

3: B′ ← ∅

4: repeat

5: B ← B′

6: for all Hi ∈ 〈P, C〉 do

7: Bi ← Res
c
T (Γi ∪ B) ⊲ Γi := {ℓ | ℓ is a literal and [[ℓ]] ∈ Hi}

8: end for

9: B′ ←
⋃

i Bi

10: until Dp-t(B ∧ ¬B′) = “unsatisfiable”

11: if Dp-t(B) = “satisfiable” then

12: return “satisfiable”

13: end if

14: end for

15: return “unsatisfiable”

16: end procedure

〈P, C〉 be the current one and let H1, . . . ,Hn be the Hintikka sets occurring in either P or C.

For each i = 1, . . . , n, the procedure sets

Γi := {ℓ | ℓ is a literal and [[ℓ]] ∈ Hi}

and begins the inner loop. In the inner loop, the local variable B is initialized to the empty set

28

and updated as follows: for i = 1, . . . , n, the sets Bi which are the Tr-bases for Γi ∪B w.r.t. c

are computed and the new value B′ of B is
⋃

i Bi. If B′ is T -consistent and logically equivalent

to B modulo T , the procedure stops and returns “satisfiable”; if B′ is not T -consistent, the

procedure exit the inner loop and tries with another pc-model; finally, if B′ is T -consistent

but not logically equivalent to B modulo T , the inner loop is continued.

3.3.2 Correctness of NSat

Theorem 3.15 (Termination). The procedure NSat always terminates.

Proof. Since Dp-t is a decision procedure, and Dp-ltl enumerates a finite number of pc-

models for [[ϕ]], they terminate. So, it remains to prove that the inner loop of lines 4-10 of

Algorithm 1 terminates; to this aim we recall the fact (proved in Lemma A.11) that every

infinite ascending chain of sets of positive ground Σ
c
r-clauses is eventually constant for logical

consequence w.r.t. a noetherian theory Tr. The test on line 10 eventually have to succeed by

the following reason: if we let B0,B1,B2, . . . be the values of the local variable B after each

execution of the loop, we have that Tr ∪ B
i+1 |= Bi, for each i, by Definition 2.4(ii). Thus, if

we let Di :=
⋃

j≤i Bj, then the succession

D1,D2,D3, . . .

is increasing and hence eventually constant modulo Tr ⊆ T , which means that also the above

mentioned test eventually succeeds.

Theorem 3.16 (Soundness). Let T = 〈Σ, T,Σr, a, c〉 be a noetherian compatible LTL-theory

and ϕ be a ground LTL(Σa,c)-sentence. If NSat(ϕ) returns “satisfiable”, then there is an

LTL(Σa,c)-structure M appropriate for T such that M |= ϕ.

Proof. If NSat(ϕ) returns “satisfiable”, then for some pc-model 〈P, C〉 for [[ϕ]] (containing

the n Hintikka sets H1, . . . ,Hn), NSat(ϕ) will produce the list of sets of positive ground

Σ
c
r-clauses

B0
1, . . . ,B

0
n,B

1
1 , . . . ,B

1
n, . . . ,B

h
1 , . . . ,B

h
n,

such that:

– B0, . . . ,Bh,Bh+1 are the values of the local variable B in the iterations of the inner loop

(we have B0 = ∅,B1 =
⋃

i B
0
i , . . . ,B

h+1 =
⋃

i B
h
i);

– for j = 0, . . . , h and for i = 1, . . . , n, the set Bji is a Tr-basis for Γi ∪ B
j w.r.t. c (here

Γi := {ℓ | ℓ is a literal and [[ℓ]] ∈ Hi});

– Bh+1 is T -consistent and logically equivalent to Bh modulo T .

29

Let B := {C | T ∪ Bh |= C and C is a positive ground Σ
c
r-clause}; notice that B does not

contain the empty clause, moreover we claim that for every positive ground Σ
c
r-clause C and

for each i ∈ {0, . . . , n}, we have

T ∪ Γi ∪ B |= C ⇒ C ∈ B. (4)

In fact, if T ∪ Γi ∪ B |= C, then T ∪ Γi ∪ B
h |= C and so, by Definition 2.4(ii) Tr ∪ B

h
i |= C;

but then Tr ∪ B
h+1 |= C, meaning that T ∪ Bh |= C (because Bh+1 is logically equivalent to

Bh) and finally C ∈ B by the definition of the latter.

Recall that we are considering the pc-model 〈P, C〉; let us now choose a path H0 → · · · →

Hk → · · · → Hk+s in H([[ϕ]]) such that {H0 → · · · → Hk} = P and Hk → · · · → Hk+s is a

path in the scs C covering, possibly with repetitions, all the elements from it. We extend this

finite path from H0 to Hk+s into an infinite path

H0 → · · · → Hk → · · · → Hk+s → · · · → Hn → · · ·

within H([[ϕ]]) by cyclically repeating Hk, . . . ,Hk+s in the tail (that is, we take, for i > k+s,

the Hintikka set Hi to be Hk+p, where p is the reminder of the integer division between i− k

and s+ 1).

By (4) and by Lemma A.8,18 we obtain an infinite sequence M0, . . . ,Mi, . . . of Σa,c-

structures such that (i) they all have the same support M andMi|Σ
c
r

=Mj |Σ
c
r

(i, j ∈ N); (ii)

Mi |= T ∪ Γi. TheseMi consequently form an LTL(Σa,c)-structureM := {Mi}i∈N.

We show thatM |= ϕ, i.e. we prove by induction on the complexity of ψ (where ψ ∈ cl(ϕ))

that for every i it holds that:

[[ψ]] ∈ Hi ⇒ M |=i ψ (5)

In particular, we get M |=0 ϕ, because [[ϕ]] ∈ H0 (H0 initial in HP ([[ϕ]])).

We need the following ‘PLTL-like’ argument (which is reported for the sake of complete-

ness). The condition (5) is obvious if ψ is a literal or if it is of the kind ψ1 ∧ ψ2, ψ1 ∨ ψ2

(see (ii) above and the definition of a Hintikka set for PLTL). If ψ is of the kind Xψ1, then

[[Xψ1]] ∈ Hi implies that [[ψ1]] ∈ Hi+1, so it follows thatM |=i+1 ψ1 by induction hypothesis,

and thus M |=i Xψ1 obtains. If ψ is of the kind �ψ1, then [[�ψ1]] ∈ Hi implies [[ψ1]] ∈ Hj

for each j ≥ i, so it follows that M |=j ψ1 for each j ≥ i by induction hypothesis, and thus

M |=i �ψ1.

Suppose now ψ is of the kind ψ1Uψ2. Let us consider the following two cases:

– If i < k there are two subcases to consider: (i) [[ψ1Uψ2]] ∈ Hk and [[ψ1]] ∈ Hj for every

i ≤ j < k; (ii) there exists l < k such that [[ψ2]] ∈ Hl and [[ψ1]] ∈ Hj for every i ≤ j < l.

18See the remark in footnote 13.

30

For the case (i) we can conclude thatM |=i ψ1Uψ2 by induction hypothesis and by the

fact that M |=k ψ1Uψ2 (see the case i ≥ k below), whereas for (ii) we can conclude by

induction hypothesis that M |=i ψ1Uψ2;

– If i ≥ k, since [[ψ1Uψ2]] ∈ Hi and since the scs C is fulfilling, there exists H ∈ C

such that [[ψ2]] ∈ H.19 Such an H occurs in the infinite list Hi,Hi+1, . . . , because this

list includes all the nodes from C. Thus there exists the minimum j ≥ i such that

[[ψ2]] ∈ Hj; for this j, the definition of a Hintikka set and of an edge in the Hintikka

graph gives [[ψ1]] ∈ Hl for every i ≤ l < j, thus by induction hypothesis M |=i ψ1Uψ2

obtains.

Theorem 3.17 (Completeness). Let T = 〈Σ, T,Σr, a, c〉 be a noetherian compatible LTL-

theory and ϕ be a ground LTL(Σa,c)-sentence. If there is an LTL(Σa,c)-structure M appro-

priate for T such that M |= ϕ, then NSat(ϕ) returns “satisfiable”.

Proof. LetM = {Mn = (M,In)}n∈N be an LTL(Σa,c)-structure appropriate for T such that

M |= ϕ. Let us consider the sequence of the Hintikka sets H0,H1, . . . where

Hi = {[[ψ]] ∈ clP ([[ϕ]]) | M |=i ψ}.

We obtain an infinite path H0 → H1 → H2 → · · · in HP ([[ϕ]]). Let Hk be the first Hintikka

set which occurs infinitely many times in such a path. The set C := {Hj | j ≥ k} is an scs

of HP ([[ϕ]]); we prove that C is also fulfilling. To this aim, we take [[ψ1Uψ2]] ∈ clP ([[ϕ]])

and show that either [[ψ1Uψ2]] 6∈ Hk or there is j ≥ k such that [[ψ2]] ∈ Hj: in fact this is

obvious, because it means that either M 6|=k ψ1Uψ2 or there is j ≥ k such that Mj |= ψ2.

We now take P to be a path from H0 to Hk, whose nodes are pairwise distinct and

included among {H0, . . . ,Hk}. Thus the pair 〈P, C〉 is a pc-model for [[ϕ]] satisfying the

following property:

(i) for every H ∈ P ∪ C there is i such that H = {[[ψ]] ∈ clP ([[ϕ]]) | M |=i ψ}.

When examining the pc-model 〈P, C〉, the procedure Dp-ltl produces a list of sets of positive

ground Σ
c
r-clauses

B0
1, . . . ,B

0
n,B

1
1 , . . . ,B

1
n, . . . ,B

h
1 , . . . ,B

h
n,

such that:

19This is by the definition of a Hintikka set and of an edge in the graph HP ([[ϕ]]): notice that [[ψ1Uψ2]] is

inherited by all the nodes of a path within HP ([[ϕ]]) starting with Hi, unless the path meets a node to which

[[ψ2]] belongs. Now a path covering the whole C must meets such a node, because C is fulfilling.

31

– B0, . . . ,Bh,Bh+1 are the values of the local variable B in the iterations of the inner loop

(we have B0 = ∅,B1 =
⋃

i B
0
i , . . . ,B

h+1 =
⋃

i B
h
i);

– for j = 0, . . . , h and for i = 1, . . . , n, the set Bji is a Tr-basis for Γi ∪ B
j w.r.t. c, (here

Γi := {ℓ | ℓ is a literal and [[ℓ]] ∈ Hi});

– Bh+1 is logically equivalent to Bh modulo T .

We need to show that Bh is T -consistent. To this aim it is sufficient to observe (by induction

on j ≤ h) that the a Σ
c
r-clause belonging to Bj is true inM0 (in fact in all theMn, because

the symbols of Σ
c
r are rigidly interpreted): this is obvious for j = 0 and for j > 0 it is a direct

consequence of (i) above, induction hypothesis and Definition 2.4(i).

As an immediate corollary we obtain:

Theorem 3.18. The ground satisfiability problem for a noetherian compatible LTL-theory is

decidable.

4 The Model-Checking Problem

4.1 LTL-System Specifications and the Model-Checking Problem

In order to introduce model-checking problems, we need some preliminary notions.

Definition 4.1. Given two signatures Σr and Σ such that Σr ⊆ Σ, we define the one-step

signature as follows:

Σ ⊕
Σr

Σ := ((Σ \ Σr) ⊎ (Σ \ Σr)) ∪ Σr,

where ⊎ denotes disjoint union.

In order to build the one-step signature Σ⊕Σr Σ, we first consider two copies of the symbols

in Σ \Σr; the two copies of r ∈ Σ \Σr are denoted by r0 and r1, respectively. Notice that the

symbols in Σr are not renamed. Also, arities in the one-step signature Σ⊕Σr Σ are defined

in the obvious way: the arities of the symbols in Σr are unchanged and if n is the arity of

r ∈ Σ \ Σr, then n is the arity of both r0 and r1. The one-step signature Σ ⊕Σr Σ will be

also written as
⊕2

Σr
Σ; similarly, we can define the n-step signature

⊕n+1
Σr

Σ for n > 1 (our

notation for the copies of Σ \ Σr-symbols extends in the obvious way, that is we denote by

r0, r1, . . . , rn the n+ 1 copies of r).

Given an LTL-theory T = 〈Σ, T,Σr, a, c〉, the one-step signature Σa,c⊕Σ
c
r
Σa,c is appro-

priate to express constraints about the dynamic behavior of a system during one time unit.

32

In fact, the transition relation of a system must be able to simultaneously refer to the struc-

tures representing the state of the system in two consecutive time instants. In this respect,

non-rigid symbols are duplicated whereas rigid symbols are left unchanged.

We now define the concepts of one-step structure and one-step theory, which are the

semantic counterparts of the one-step signature introduced above (cf. Definition 4.1).

Definition 4.2. Given two signatures Σr and Σ such that Σr ⊆ Σ, two Σ-structures M0 =

〈M,I0〉 andM1 = 〈M,I1〉 whose Σr-reducts are the same,20 the one-step (Σ⊕Σr Σ)-structure

M0 ⊕
Σr

M1 = 〈M,I0 ⊕
Σr

I1〉

is defined as follows:

– for each function or predicate symbol s ∈ Σ \ Σr, we have (I0⊕Σr I1)(s
0) := I0(s) and

(I0⊕Σr I1)(s
1) := I1(s);

– for each function or predicate symbol r ∈ Σr, we have (I0⊕Σr I1)(r) := I0(r).

If ϕ is a Σ-formula, the (Σ⊕Σr Σ)-formulae ϕ0, ϕ1 are obtained from ϕ by replacing each

symbol r ∈ Σ\Σr by r0 and r1, respectively. The one-step theory is nothing but a combination

of a theory T with a partially renamed copy of itself.

Definition 4.3. Given two signatures Σr and Σ such that Σr ⊆ Σ, the theory T ⊕Σr T is

defined by {ϕ0 ∧ ϕ1 | ϕ ∈ T}.

We will write
⊕2

Σr
T instead of T ⊕Σr T ; the n-step theories

⊕n+1
Σr

T (for n > 1) are similarly

defined.

Let now T = 〈Σ, T,Σr, a, c〉 be an LTL-theory whose parameters and whose system vari-

ables are finite. A transition relation for the LTL-theory T is a (Σa,c⊕Σ
c
r
Σa,c)-sentence δ:

we usually write such formula as δ(a0, a1) to emphasize that it contains the two copies of the

system variables a (on the other hand, the system parameters c that are not duplicated will

never be displayed). Examples of transition relations are the tautological transition δ⊤ := ⊤

and the idle transition:

δI :=
∧

a

(a0 = a1) ∧
∧

P

∀x(P 0(x)↔ P 1(x)) ∧
∧

f

∀x(f0(x) = f1(x)),

where a ranges over free constants in a, P over predicate symbols in Σ \ Σr, and f over

function symbols in Σ \ Σr.

An initial state description for an LTL-theory T = 〈Σ, T,Σr, a, c〉 - with finitely many sys-

tem variables and parameters - is simply a Σa,c-sentence ι(a) (as it was the case for transition

relations, the system parameters c will not be displayed also for state descriptions).

20Recall from Section 2 that this means that I0(s) = I1(s) for all s ∈ Σr.

33

Definition 4.4 (LTL-System Specification and Model-Checking). An LTL-system specifica-

tion is an LTL-theory T = 〈Σ, T,Σr, a, c〉 (having finitely many system variables and system

parameters) endowed with a transition relation δ(a0, a1) and with an initial state description

ι(a). An LTL(Σa,c)-structure M = {Mn = (M,In)}n∈N is a run for such an LTL-system

specification iff it is appropriate for T and moreover it obeys the transition δ and the initial

state description ι, meaning that:

(i) Mn⊕Σ
c
r
Mn+1 |= δ(a0, a1), for every n ≥ 0;

(ii) M0 |= ι(a).

The model-checking problem for the system specification (T , δ, ι) is the following: given an

LTL(Σa,c)-sentence ϕ, decide whether there is a run for (T , δ, ι) such that M |= ϕ.21 The

ground model-checking problem for (T , δ, ι) is similarly introduced, but ϕ is assumed to be

ground.

Roughly speaking, the satisfiability problem for LTL-theories (cf. Definition 2.13) is equiv-

alent to the model-checking problem for LTL-system specifications endowed with tautological

transition and tautological initial state description (there is a little difference, however, due

to the fact that the satisfiability problem is relative to LTL-theories having possibly infinitely

many system parameters and variables, whereas LTL-system specifications must have finitely

many system variables and parameters).

An important subclass of model-checking problems is the following: the (syntactic) safety

model-checking problem is the model-checking problem for formulae of the form

♦υ,

where υ is a Σa,c-sentence. Since υ is meant to describe the set of unsafe states, we say that

the system specification (T , δ, ι) is safe for υ iff the model-checking problem for ♦υ has a

negative solution. This implies that �¬υ is true for all runs of (T , δ, ι).

4.1.1 The Seriality Property

In the literature about model-checking (especially, for finite-state systems), it is usually as-

sumed the seriality of the transition relation, i.e. that every state of the system must have

21Notice that usually the model-checking problem is taken to be the complement of our model-checking

problem, i.e. it is taken to be the problem of deciding whether a given sentence is true in all runs. As far as we

are concerned with decidability/undecidability issues, the difference is immaterial (for complexity questions,

one must take the complementary classes). Our choice is motivated by the need of having a homogeneous

terminology with satisfiability problems.

34

at least one successor state (see, e.g., [11] for more details). Unfortunately, it is difficult to

find an effective formulation of such a requirement in our framework because the states of

the system (T , δ, ι) are the models of the (first-order) theory underlying T . Below, we give

a non-effective formulation for seriality in our framework. Fortunately, as we shall see, there

exist simple and effective methods to ensure it.

Definition 4.5. A system specification (T , δ, ι), based on the LTL-theory T = 〈Σ, T,Σr, a, c〉,

is said to be serial iff for every Σa,c-structure M0 = (M,I0) which is a model of T , there is

another Σa,c-structure M1 = (M,I1) (still a model of T) such that (M1)|Σc
r

= (M2)|Σc
r

and

M0⊕Σ
c
r
M1 |= δ(a0, a1).

In order to be able to ensure the above requirement for concrete situations, the following

observations are useful:

(i) if the transition relation δ consists of the conjunction of (possibly guarded) assignments

of the form P ∧ a1 = t0(a0) where P is the condition under which the assignment is

executed, then δ is serial (this is the case, for instance, of the water level controller

example discussed in Section 4.4);

(ii) δ is serial when it is implied by the idle transition, i.e. in case T ⊕Σr T |= δI → δ (this is

equivalent to T |= δ♯, where δ♯ is obtained from δ by replacing the copies r1, r2 of every

flexible symbol by r);22

(iii) every transition δ can be ‘adjusted’ in order to make it serial; to this end, it is sufficient

to add a fresh 0-ary relational symbol E (standing for ‘error’) to Σ and replace δ by

δE := (¬E0 ∧ δ ∧ ¬E1) ∨ (¬E0 ∧ E1) ∨ (E0 ∧E1).

4.1.2 Some Classes of LTL-Systems and further Assumptions

In Section 2.4.2, we have introduced three different classes of LTL-theories of increasing

expressiveness so to study the satisfiability problem for LTL-theories. Here, we introduce the

corresponding classes of LTL-systems so to study the decidability of the safety model-checking

problem.

Definition 4.6. An LTL-system specification based on an LTL-theory T = 〈Σ, T,Σr, a, c〉 is

said to be finite state iff T is totally rigid and T is an enumerated datatype theory.

Finite state system specifications are investigated by traditional symbolic model-checking

literature [11] and are efficiently handled by state-of-the-art tools like NuSMV [10].

22If the constraint satisfiability problem of T is decidable and if δ is ground (as it is the case for some of the

examples considered in this paper), the condition T |= δ♯ can be effectively checked.

35

Definition 4.7. An LTL-system specification based on an LTL-theory T = 〈Σ, T,Σr, a, c〉

is said to be locally finite compatible iff there is a Σr-universal and effectively locally finite

theory Tr such that T is Tr-compatible.

As for compatible theories, from our discussion in Section 2.2.1, it follows that an LTL-

system based on totally flexible LTL-theory is locally finite compatible in case its underlying

theory is stably infinite.

Definition 4.8. An LTL-system specification based on an LTL-theory T = 〈Σ, T,Σr, a, c〉

is said to be noetherian compatible iff there is a Σr-universal theory Tr such that T is an

effectively noetherian and Tr-compatible extension of Tr.

Since we are interested in positive results for safety model-checking problems, we need to

make some restrictions; we first of all assume the following (which completes the Assump-

tion from Section 3.1):

Assumption 4.9. For any LTL-system specification (T , δ, ι) (considered in the rest of this

paper) we assume that: (i) the underlying theory of T has decidable constraint satisfiability

problem; (ii) the transition relation δ and the initial state description ι are ground sentences;

(iii) (T , δ, ι) is serial.

4.2 Undecidability and Noetherian LTL-Theories

Even under the above assumption, the ground model-checking problem for an LTL-system

specification based on a totally rigid LTL-theory is undecidable: this is a folklore result that

can be obtained through a simple reduction to the (undecidable) reachability problem of

Minsky machines [35, 17]. We give details below for the sake of completeness.

A two registers Minsky machine is a finite set P of instructions (also called a program) for

manipulating configurations seen as triples (s,m, n) of natural numbers, where s represents

the machine state and m,n the contents of the two registers. There are four possible kinds

of instructions, inducing transformations on the configurations as explained in Table 1. A P-

transformation is a transformation induced by an instruction of P on a certain configuration.

For a Minsky machine P, we write (s,m, n)→⋆
P

(s′,m′, n′) to say that it is possible to reach

configuration (s′,m′, n′) from (s,m, n) by applying finitely many P-transformations. Given a

Minsky machine P and an initial configuration (s0,m0, n0), the problem of checking whether

a configuration (s′,m′, n′) is reachable from (s0,m0, n0) (i.e., if (s0,m0, n0) →
⋆
P

(s′,m′, n′)

holds or not) is called the (second) reachability (configuration) problem. It is well-known [8]

that there exists a (two-register) Minsky machine P and a configuration (s0,m0, n0) such that

the second reachability configuration problem is undecidable.

36

N. Instruction Transformation

I s→ (t, 1, 0) (s,m, n)→ (t,m+ 1, n)

II s→ (t, 0, 1) (s,m, n)→ (t,m, n+ 1)

III s→ (t,−1, 0)[t′] if m 6= 0 then (s,m, n)→ (t,m− 1, n)

else (s,m, n)→ (t′,m, n)

IV s→ (t, 0,−1)[t′] if n 6= 0 then (s,m, n)→ (t,m, n− 1)

else (s,m, n)→ (t′,m, n)

Table 1: Instructions and related transformations for (two-registers) Minsky Machines

Theorem 4.10. There exists a totally rigid and noetherian compatible LTL-system specifi-

cation (T , δ, ι), whose ground safety model-checking problem is undecidable.

Proof. The proof consists of two steps. First, we need to define a totally rigid LTL-theory T

which is expressive enough to encode unbounded counters and which satisfies our Assumption

(i) above. Second, we must define the encoding of a Minsky machine into an LTL-system

based on T so that the second reachability problem of such machine can be represented as

a safety model-checking problem. This immediately gives the undecidability of the latter, as

desired.

Let us consider the ΣC-theory TC , where

– ΣC consists of two unary function symbols s, p and a constant 0;

– TC contains all ΣC-sentences which are true in the structure (Z, s, p, 0) of the Integers

with zero, successor, and predecessor.23

Notice that TC is noetherian, though not locally finite. Indeed, the noetherianity of TC can be

argued from the following arguments: (i) the pure theory of equality over the signature con-

taining a unary function symbol is noetherian (see Appendix A.12); (ii) any extension (over

a signature augmented of a finite number of constant symbols) of a noetherian theory re-

mains noetherian; (iii) every ΣC-formula is TC-logically equivalent to a (ΣC \{p})-formula).24

Moreover, the constraint satisfiability problem of TC is decidable by quantifier elimination

(it is straightforward to adapt the algorithm for the naturals in [18]). TC can be seen as a

‘minimal’ theory where to encode an unbounded counter as it is required in order to express

23It is possible to use also the structure given by N, 0, successor, and predecessor (the latter is turned into

a total function by putting p(0) := 0).
24In particular, every chain of sets of ΣC -atoms is TC -equivalent to a chain of sets of (ΣC \{p})-atoms. Since

this latter has to be eventually constant for logical consequence w.r.t. TC , so it is the former.

37

the instructions of the Minsky machines of Table 1. (Below, we abbreviate s(· · · (s
︸ ︷︷ ︸

n times

(0) · · ·))

with the numeral n.)

We define the totally rigid LTL-theory T as follows: TC is underlying theory, there are

three system variables {a1, a2, a3}, and no parameters. Since T is totally rigid, it is completely

determined by its underlying theory, its systems variables, its parameters, and there is no need

to specify a rigid subsignature, because all predicate and function symbols are rigid.

We are now in the position to define the encoding of a second reachability problem for a

Minsky machine into an LTL-system based on T : we do it for a Minski machine P and for a

configuration (s0,m0, n0) such that P-reachability from (s0,m0, n0) is undecidable.

The transition δ is the disjunction of the following ground sentences:

– for each P-instruction s→ (t, 1, 0) of the first kind, δ contains the disjunct

a0
1 = s ∧ a1

1 = t ∧ a1
2 = s(a0

2) ∧ a
1
3 = a0

3;

– for each P-instruction s→ (t, 0, 1) of the second kind, δ contains the disjunct

a0
1 = s ∧ a1

1 = t ∧ a1
2 = a0

2 ∧ a
1
3 = s(a0

3);

– for each P-instruction s→ (t,−1, 0)[t′] of the third kind, δ contains the disjuncts

(
a0

2 6= 0 ∧ a0
1 = s ∧ a1

1 = t ∧ a1
2 = p(a0

2) ∧ a
1
3 = a0

3

)
∨

∨
(
a0

2 = 0 ∧ a0
1 = s ∧ a1

1 = t′ ∧ a1
2 = a0

2 ∧ a
1
3 = a0

3

)
;

– for each P-instruction s→ (t, 0,−1)[t′] of the fourth kind, δ contains the disjuncts

(
a0

3 6= 0 ∧ a0
1 = s ∧ a1

1 = t ∧ a1
2 = a0

2 ∧ a
1
3 = p(a0

3)
)
∨

∨
(
a0

3 = 0 ∧ a0
1 = s ∧ a1

1 = t′ ∧ a1
2 = a0

2 ∧ a
1
3 = a0

3);

– finally, δ contains also the idle disjunct

a0
1 = a1

1 ∧ a
1
2 = a0

2 ∧ a
1
3 = a0

3

(this disjunct is added in order to make the transition serial).

Let ι be the ground sentence a1 = s0 ∧ a2 = m0 ∧ a3 = n0. We claim that, for a given

configurations (s′,m′, n′), we have that (s0,m0, n0)→
⋆
P

(s′,m′, n′) iff the formula

♦(a1 = s′ ∧ a2 = m′ ∧ a3 = n′)

38

is satisfied in a run of (T , δ, ι). The ‘only if’ implication of the claim is trivial. For the

converse, suppose that there is a runM of (T , δ, ι) such that

M |=k a1 = s′ ∧ a2 = m′ ∧ a3 = n′

for some k ≥ 0. First, notice that one may freely assume that a non-idle disjunct of δ is true

in the i-th transition step for 0 ≤ i ≤ k − 1 (otherwise we can simply remove that step and

get a smaller k). Second, as the LTL-theory T is totally rigid, only the interpretation of the

system variables a1, a2, a3 can be different at each time instant - the ΣC-reduct of the various

Mi being always the same. Such a reduct contains an (elementary) substructure which is

isomorphic to the standard model (Z, s, p, 0) of integers (this is the substructure whose support

is the collection of the interpretations of the numerals); moreover, as the system variables take

values in the positive subset of that substructure at the initial instant, it is impossible for them

to get values outside it for the whole run (to see this, just make an inspection to the definition

of the transition δ). This immediately yields (s0,m0, n0)→
⋆
P

(s′,m′, n′), as desired.

4.3 Decidability and Locally Finite LTL-Theories

According to Theorem 4.10, the safety model-checking problem is undecidable in the noethe-

rian compatible case, but we shall prove decidability in the locally finite compatible case.

In the following, let T = 〈Σ, T,Σr, a, c〉 be a locally finite compatible LTL-theory, (T , δ, ι)

be an LTL-system specification based on T , and υ(a) be a ground Σa,c-sentence. The re-

lated safety model-checking problem amounts to checking whether there exists a run M =

{Mn}n∈N for (T , δ, ι) such that M |=n υ(a) for some n ≥ 0: if this is the case, we say that

the system is unsafe because there is a bad run of length n.

We can ignore bad runs of length n = 0, because the existence of such runs can be

preliminarily decided by checking the ground sentence ι(a) ∧ υ(a) for T -consistency. So, for

n ≥ 1, taking into account the seriality of the transition, a run of length n + 1 exists iff the

ground (
⊕n+2

Σ
c
r

Σa,c)-sentence

ι0(a0) ∧ δ0,1(a0, a1) ∧ δ1,2(a1, a2) ∧ · · · ∧ δn,n+1(an, an+1) ∧ υn+1(an+1) (6)

is
⊕n+2

Σ
c
r
T -satisfiable, where the formulae ι0, δi,i+1, υn+1 are defined as follows:

– ι0(a0) is obtained by replacing each flexible symbol r ∈ Σ \ Σr with r0 in ι(a) (the

system variables a are similarly renamed as a0);

– δi,i+1(ai, ai+1) is obtained by replacing in δ(a0, a1) the copy r0 and r1 of each flexible

symbol r ∈ Σ \ Σr with ri and ri+1 respectively (the two copies a0, a1 of the system

variables a are similarly renamed as ai, ai+1);

39

– υn+1(an+1) is obtained by replacing each flexible symbol r ∈ Σ \ Σr with rn+1 in υ(a)

(the system variables a are similarly renamed as an+1).

For the sake of simplicity and to improve readability, formula (6) will be written as

ι(a0) ∧ δ(a0, a1) ∧ δ(a1, a2) ∧ · · · ∧ δ(an, an+1) ∧ υ(an+1), (7)

i.e., only the renaming operation for system variables is explicitly displayed.

Now, for a given n+1, an iterated application of Theorem 2.7 (through Proposition A.10)

yields the decidability of the satisfiability of formula (7). Unfortunately, this observation

is not sufficient to solve the model-checking problem for LTL-system specifications since the

length of a run is not known apriori. In the following, we show how to replace the computation

of an explicit bound on the length of the runs by a reachability analysis in a finite graph,

called the safety graph (thus, the reachability diameter [4] of the safety graph gives also a

desired bound, if one wants to determine it). We need some preliminary notions.

Definition 4.11 (Pure formula). A quantifier-free Σa,c⊕Σ
c
r
Σa,c-formula δ is said to be

– purely left iff for each symbol r ∈ Σ \ Σr, we have that r1 does not occur in δ;

– purely right iff for each symbol r ∈ Σ \ Σr, we have that r0 does not occur in δ;

– pure iff δ is a boolean combination of purely left and purely right atoms.

First, we transform the ground sentence δ into an existential sentence whose matrix is pure.

To this end, it is sufficient to notice that any first-order formula ϕ is logically equivalent to

∃y (y = ϕ|p ∧ ϕ[y]p), (8)

where y is a “fresh” variable (i.e. not occurring in ϕ) and p is a term position in ϕ.25 So, by

repeatedly applying (8), we may consider an equivalent formula like

∃x δ̃(a0, a1, x), (9)

instead of δ, where ∃x is a sequence of existential quantifiers and δ̃ is pure. This preprocessing

step is analogous to the purification step of combination procedures [3] - to see the relationship,

recall that the signature of δ is the union of Σa,c with a partial copy of itself over the shared

signature Σ
c
r. Formula (9) is also called the purification of the transition δ and the formula

δ̃(a0, a1, d0) (10)

(where d0 are fresh constants replacing the x) is called the skolemized purification of the

transition δ.
25We use here standard notations from the rewriting literature: ϕ|p is the subterm at position p and ϕ[y]p

is the formula obtained from ϕ by replacing the subterm at position p by y.

40

Definition 4.12 (δ̃-assignment). Let A1, . . . , Ak be the atoms occurring in δ̃(a0, a1, d0). A

δ̃-assignment is a conjunction of the kind

B1 ∧ · · · ∧Bk

(where Bi is either Ai or ¬Ai, for 1 ≤ i ≤ k) such that B1 ∧ · · · ∧ Bk → δ̃ is a propositional

tautology.

In other words, δ̃-assignments are just boolean assignments satisfying δ̃; since δ̃ is pure, we

can represent a δ̃-assignment V in the form V l(a0, a1, d0)∧V r(a0, a1, d0), where V l is a purely

left conjunction of literals and V r is a purely right conjunction of literals. As a consequence,

a run of length n+ 1 exists iff the ground sentence

ι(a0) ∧ V l
1 (a0, a1, d0) ∧ V r

1 (a0, a1, d0) ∧ · · · ∧ V l
n+1(a

n, an+1, dn) ∧ V r
n+1(a

n, an+1, dn) ∧ υ(an+1)

(11)

is
⊕n+2

Σr
T -satisfiable (here d0, d1, . . . , dn are n + 1-copies of the Skolem constants d0 and

V1, . . . , Vn+1 range over the set of δ̃-assignments).

We reduce the existence of a satisfiable formula of the kind (11) to a reachability problem

in the safety graph defined below. Recall that, since Tr is locally finite, there are finitely many

ground Σ
c,a0,a1,d0

r -literals which are representative (modulo Tr-equivalence) of all Σ
c,a0,a1,d0

r -

literals. Furthermore, a guessing G(a0, a1, d0) (in the sense of Definition 3.6) over such literals

will be called a transition Σr-guessing.

Definition 4.13. The safety graph associated to the LTL-system specification (T , δ, ι) based

on the locally finite compatible LTL-theory T is the directed graph defined as follows:

– the nodes are the pairs (V,G) where V is a δ̃-assignment and G is a transition Σr-

guessing;

– there is an edge (V,G)→ (W,H) iff the ground sentence

G(a0, a1, d0) ∧ V r(a0, a1, d0) ∧W l(a1, a2, d1) ∧H(a1, a2, d1) (12)

is T -consistent.26

26Here we still follow our convention of writing only the system variable renamings (flexible symbols being

renamed accordingly). In more detail: we make three copies r0, r1, r2 of every flexible symbol r ∈ Σ\Σr . Both

V r and W l might contain in principle two copies r0, r1 of r: the two copies in V r keep their original names,

whereas the two copies in W l are renamed as r1, r2, respectively. However, V r is a right formula (hence it

does not contain r0) and W l is a left formula (hence it does not contain r1): the moral of all this is that only

the copy r1 of r occurs after renaming, which means that (12) is after all just a plain Σa0,a1,a2,d0,d1

-sentence

(thus, it makes sense to test it for T -consistency). Notice that the Skolem constants d0 of V r are renamed as

d1 in W l.

41

The initial nodes of the safety graph are the nodes (V,G) such that ι(a0) ∧ V l(a0, a1, d0) ∧

G(a0, a1, d0) is T -consistent; the terminal nodes of the safety graph are the nodes (V,G) such

that V r(a0, a1, d0) ∧ υ(a1) ∧G(a0, a1, d0) is T -consistent.

Our decision procedure for the safety model-checking problem relies on the following

proposition.

Proposition 4.14. The system is unsafe iff either ι(a) ∧ υ(a) is T -satisfiable or there is a

path in the safety graph from an initial to a terminal node.

Proof. Preliminary to the main argument of the proof, which is based on interpolations, let

us better analyze the shape of the formula (11) with particular attention to symbols occurring

in the various literals. In formula (11), each symbol r ∈ Σ \ Σr can occur in n + 2-copies

r0, r1, . . . , rn+1 and the locations of these copies are the following:

(i) r0 can only occur in ι(a0) ∧ V l
1 (a0, a1, d0);

(ii) ri can only occur in V r
i (ai−1, ai, di−1) ∧ V l

i+1(a
i, ai+1, di), for i = 1, . . . , n;

(iii) rn+1 can only occur in V r
n+1(a

n, an+1, dn) ∧ υ(an+1).

Now, we are ready to develop the main argument of the proof. Suppose that the system

is unsafe. Then, either there is a bad run of length 0 or the formula (11) is satisfiable in

a model N of
⊕n+2

Σr
T for some n > 0. For i = 0, . . . , n, let Gi+1(a

0, a1, d0) be the Σr-

transition guessing realized by (ai, ai+1, di) in N (by this, we mean the set of representative

Σ
c,a0,a1,d0

r -literals ψ(a0, a1, d0) such that N |= ψ(ai, ai+1, di)). With this choice for the Gi’s,

the satisfiability of (11) in N guarantees the existence of the path

(V1, G1)→ (V2, G2)→ · · · → (Vn+1, Gn+1) (13)

from the initial node (V1, G1) to the terminal node (Vn+1, Gn+1) within the safety graph.

Viceversa, suppose that there is a path like (13) and that, by contradiction, the system is

safe. In particular, this means that the formula

ι(a0) ∧ V l
1 (a0, a1, d0) ∧ V r

1 (a0, a1, d0) ∧ · · · ∧ V l
n+1(a

n, an+1, dn) ∧ V r
n+1(a

n, an+1, dn) ∧ υ(an+1)

is not
⊕n+2

Σr
T -satisfiable. If we apply the interpolation Lemma A.9 to the T0-compatible

theories T and
⊕n+1

Σr
T (the hypotheses of Lemma A.9 hold by the modularity Proposition

A.10), we get a ground Σ
c,a0,a1,d0

r -sentence ψ1(a
0, a1, d0) such that

T |= ι(a0) ∧ V l
1 (a0, a1, d0)→ ψ1(a

0, a1, d0) (14)

42

and such that

ψ1(a
0, a1, d0) ∧ V r

1 (a0, a1, d0) ∧ · · · ∧ V l
n+1(a

n, an+1, dn) ∧ V r
n+1(a

n, an+1, dn) ∧ υ(an+1) (15)

is not
⊕n+1

Σr
T -satisfiable. Since G1(a

0, a1, d0) is a transition Σr-guessing, G1 represents a

maximal choice of representative Σ
a0,a1,d0

r -literals, hence we must have either T |= G1 → ψ1

or T |= G1 → ¬ψ1 (that is, T |= ψ1 → ¬G). The latter contradicts (14) and the fact that the

node (V1, G1) is initial in the safety graph. The former, together with (15) implies that the

formula

G1(a
0, a1, d0) ∧ V r

1 (a0, a1, d0) ∧ · · · ∧ V l
n+1(a

n, an+1, dn) ∧ V r
n+1(a

n, an+1, dn) ∧ υ(an+1) (16)

is not
⊕n+1

Σr
T -satisfiable. We now repeat the argument: we apply the interpolation Lemma

A.9 to the T0-compatible theories T and
⊕n

Σr
T and we get a ground Σ

c,a1,a2,d1

r -sentence

ψ2(a
1, a2, d1) such that

T |= G1(a
0, a1, d0) ∧ V r

1 (a0, a1, d0) ∧ V l
2 (a1, a2, d1)→ ψ2(a

1, a2, d1) (17)

and such that

ψ2(a
1, a2, d1) ∧ V r

2 (a1, a2, d1) ∧ · · · ∧ V l
n+1(a

n, an+1, dn) ∧ V r
n+1(a

n, an+1, dn) ∧ υ(an+1) (18)

is not
⊕n

Σr
T -satisfiable. Since G2(a

1, a2, d1) is a transition Σr-guessing, we must have that

either T |= G2 → ψ2 or T |= G2 → ¬ψ2. The latter contradicts (17) and the existence of an

edge (V1, G1)→ (V2, G2). The former, together with (18) implies that the formula

G2(a
1, a2, d1) ∧ V r

2 (a1, a2, d1) ∧ · · · ∧ V l
n+1(a

n, an+1, dn) ∧ V r
n+1(a

n, an+1, dn) ∧ υ(an+1) (19)

is not
⊕n

Σr
T -satisfiable. Continuing in this way, we obtain the T -unsatisfiability of the

formula

Gn+1(a
n, an+1, dn) ∧ V r

n+1(a
n, an+1, dn) ∧ υ(an+1) (20)

thus contradicting the fact that the node (Vn+1, Gn+1) is final in the safety graph.

Proposition 4.14 implies the decidability of the safety model-checking problem for locally

finite LTL-system specifications.

Theorem 4.15. The ground safety model-checking problem for a locally finite compatible

LTL-system specification is decidable.

Regarding complexity, the same remarks following the proof of Corollary 3.12 apply here

too.

43

4.4 Examples

In this subsection, we provide examples to which the algorithm suggested by Proposition 4.14

can successfully be applied in order to formally verify safety properties. For the convenience

of the reader, we recall the axioms of the theory Tdlo of dense linear order since the examples

below rely on suitable extensions of it (here and in the following x < y stands for x ≤ y∧x 6= y)

∀x∀y∀z (x ≤ y ∧ y ≤ z → x ≤ y)

∀x∀y (x ≤ y ∨ y ≤ x)

∀x∀y (x ≤ y ∧ y ≤ x→ x = y)

∀x∀y (x < y → ∃z (x < z ∧ z < y))

Example 4.16 ([42]). Consider a water level controller modeled as follows:

– changes in the water level by inflow/outflow are represented as functions in and out

depending on the water level l and on the time instant; alarm and overflow levels

lalarm < loverflow are known;

– if the water level l is such that l ≥ lalarm at a given state, then a valve is opened and

the water level changes at the next observable time by l′ = in(out(l));

– if l < lalarm then the valve is closed; the water level changes at the next observable time

by l′ = in(l).

The dependency of the functions in and out on the time instant means precisely that they

can be modeled as flexible function symbols depending only on the water level. However,

functions in and out cannot be completely uninterpreted, we impose the following restrictions

on them:

∀x (x < lalarm → in(x) < loverflow) (21)

∀x (x < loverflow → out(x) < lalarm) (22)

Under such restrictions we want to show that from an initial state where l < lalarm the water

level always remains below loverflow.

Let us fix the notation in order to formalize the problem in our framework. We consider

the LTL-theory T = 〈Σ, T,Σr, a, c〉 such that

– Σ = {in, out, lalarm, loverflow, <} where in, out are two unary function symbols, lalarm,

loverflow are two constant symbols, < is a binary predicate symbol;

– Σr = {lalarm, loverflow, <};

44

– T = T ⋆r ∪ {(21), (22)} where T ⋆r is the theory of dense linear orders without endpoints

endowed with the further axiom lalarm < loverflow. In other words, T ⋆r is made of the

axioms of Tdlo and of the following axioms:

∀x∃y x < y

∀x∃y y < x

lalarm < loverflow

– l is the only system variable and there are no system parameters (that is, a := {l} and

c := ∅).

It can be shown that the constraint satisfiability problem for T is decidable, that T ⋆r admits

quantifier elimination (thus it is the model completion of its universal fragment Tr), and that

Tr is effectively locally finite: hence it follows that T is a locally finite compatible LTL-theory.

We consider now the LTL-system specification (T , δ, ι) where δ is

δ :≡
(
lalarm ≤ l

0 → l1 = in0(out0(l0))
)
∧

∧
(
l0 < lalarm → l1 = in0(l0)

)

and ι is l < lalarm. Finally, notice that δ is a purely left (Σa⊕Σr Σa)-formula.

We are interested in the safety model-checking problem in which the unsafe state is de-

scribed by the formula υ given by loverflow < l. Using the procedure suggested by Theorem

4.15 we can prove that the the system is safe, i.e. that there is no run M for (T , δ, ι) such

that M |= ♦υ. We can observe that the task in practice is not extremely hard from a

computational point of view, even if, accordingly to Definition 4.13, the graph is made of

232 × 21 nodes. In fact, since an edge of the safety graph can connect only T -consistent

nodes (i.e, nodes (V,G) such that V ∧ G is T -consistent) and since there are just 50 nodes

(modulo T -equivalence) which are T -consistent, at most 502 satisfiability tests are required to

check whether a terminal node is reachable from an initial one. Moreover, by using suitable

heuristics and strategies, the problem becomes computationally even easier: indeed, instead

of considering all the edges of the safety graph, it is sufficient to build just the paths starting

from the initial nodes or ending in a terminal node (namely applying a forward/backward

search strategy). In the former case, it turns out that 26 nodes (modulo T -equivalence) of

the safety graph are reachable from an initial node, none of them being a terminal node. In

the latter, just 12 nodes are reachable from a terminal node, obviously none of them being an

initial node. Hence the dimension of the problem is tractable, although we cannot obviously

report full details here.

45

One might ask if the axioms (21) and (22) are really needed in order to guarantee the

safety of the system, or, instead, if it is sufficient to consider just the instantiations of the two

axioms above to the water level at the current time. In such a case, T is simply the theory of

dense linear order without endpoints endowed with the axiom lalarm < loverflow; moreover, we

have to insert the instances into the transition in such a way they are always satisfied during

the flow of time, thus obtaining the new transition

δ′ :≡ lalarm ≤ l
0 → l1 = in0(out0(l0)) ∧

∧ l0 < lalarm → l1 = in0(l0) ∧

∧ l0 < lalarm → in0(l0) < loverflow ∧

∧ l0 < loverflow → out0(l0) < lalarm

In such a system, it is straightforward to see that there is a path into the safety graph

from an initial to a terminal node. Consider for example the following path:

(V0, G0) −→ (V1, G1)

where

V0(a
0, a1) :≡ l0 < lalarm ∧ l

0 < loverflow ∧ l
1 = in0(out0(l0)) ∧ l1 = in0(l0)∧

∧ in0(l0) < loverflow ∧ out
0(l0) < lalarm

G0(a
0, a1) :≡ l0 < lalarm < l1 < loverflow

and

V1(a
0, a1) :≡ lalarm < l0 ∧ l0 < loverflow ∧ l

1 = in0(out0(l0)) ∧ l1 = in0(l0)∧

∧ ¬(in0(l0) < loverflow) ∧ out0(l0) < lalarm

G1(a
0, a1) :≡ lalarm < l0 < loverflow < l1.

It is easy to check that (V0, G0) is an initial node and that (V1, G1) is a terminal node;

moreover G0(a
0, a1)∧V1(a

1, a2)∧G1(a
1, a2) is T -consistent (when checking details, remember

that our transition δ is a purely left formula).

Example 4.17 (Bakery algorithm). The aim of this example is to use our techniques to

analyze the safety of the well-known Lamport’s mutual exclusion “Bakery” algorithm. This

algorithm can be modeled by a locally finite compatible (and also totally rigid) LTL-system

specification in case the number of processors is known.27 If the number of involved processors

27Finite state system specifications are - at least in principle - not enough because the number of tickets is

unbounded.

46

is unknown, we can build for the problem an appropriate T , which is ‘almost’ a locally finite

compatible (not totally rigid anymore) LTL-system specification. We said ‘almost’ because T

violates our Assumption from Section 4.1.2 in that it has a non-ground transition (some first-

order variables are universally quantified in it). We then produce out of T (by skolemization

and instantiation) a locally finite compatible LTL-system specification T ′ which is safe iff T

is safe. Safety of T ′ can then be easily checked through our techniques. Before analyzing

formal details, we point out that the peculiar features of T that make the whole construction

to work are purely syntactic in nature and do not need human intervention to be noticed:

they basically consist of the finiteness of the set of terms of certain sorts in the skolemized

Herbrand universe.

We deal with a sorted language:28 indeed, we have two sorts, namely P and O. The former

is the sort representing the individuals (i.e the involved processes), whereas the latter is used

in order to represent tickets. Let us consider the following LTL-theory T = 〈Σ, T,Σr, a, c〉:

– Σ is a sorted signature containing a unary predicate symbol S of sort P , a binary

predicate symbol <: O × O, two constant symbols 0 and 1 of sort O, and a unary

function symbol f : P → O;

– T axiomatizes, over the sort O, the theory of dense total orders with named distinct

endpoints; in other words, T is made of the axioms of Tdlo and of the following axioms

∀x (0 ≤ x)

∀x (x ≤ 1)

0 < 1

Moreover, the behavior of the function f is constrained by the following further axioms

for T :

∀x∀y (f(x) = f(y)→ x = y ∨ f(x) = 1) (f is “almost-injective”)

∀x (f(x) = 1→ ¬S(x))

– Σr contains the symbols {0, 1, <};

– there are no system parameters (i.e. c := ∅) and there is just one system variable t,

which is of sort O (i.e. a := {t}).

In order to give an intuitive explanation of what we are modeling, we can think of the values

of t at two consecutive instants as the range in which the values of the tickets produced by

28There are no problems in extending our results to the many-sorted case.

47

the “ticket machine” in that interval of time can vary, whereas f can be seen as the function

that associates to every individual its current ticket (f is time-dependent, hence flexible,

because the ticket is changed after it has been used). We have at our disposal an infinite

amounts of tickets whose values are in the interval [0, 1]; every individual is inserted into a

queue according to the the value of its ticket (the value 1 has the meaning of being out of

the queue). Finally, the predicate S models the set of the individuals that are in the critical

section.

We leave the reader to check that the constraint satisfiability problem for T is decidable

and that T is Tr-compatible for a suitable universal locally finite Σr-theory Tr:
29 it follows

that T is a locally finite compatible LTL-theory.

We can associate to T an LTL-system specification (T , δ, ι) in the following manner: the

initial condition is described by the formula

ι :≡ ∀x (f(x) = 1) ∧ t = 0,

whereas the transition δ is obtained from the conjunction of the following (implicitly univer-

sally quantified) formulae:

t0 < t1 < 1 (23)

S0(x)→ f1(x) = 1 (24)

¬S0(x) ∧ f0(x) 6= 1→ f1(x) = f0(x) (25)

f0(x) < f0(y)→ ¬S1(y) (26)

f0(x) = 1→ f1(x) = 1 ∨ (t0 ≤ f1(x) ∧ f1(x) < t1 ∧ ¬S1(x)) (27)

The meaning of the above formulae is the following:

(23) the range of the values of the tickets produced by the “ticket machine” is strictly in-

creasing during the flow of time;

(24) an individual is removed from the queue immediately after having joined the critical

section;

(25) if an individual is in the queue and it is not in the critical section, then its ticket is

preserved;

(26) if an individual is not the first in the queue, it cannot enter the critical section;

29Take as Tr the theory of linear orders with named distinct endpoints (this admits as a model completion

T ⋆
r , which is the theory of an infinite set over the sort P and of dense linear orders with named distinct

endpoints over the sort O).

48

(27) if an individual is not in the queue, it can remain out of the queue or it can take a ticket

(without being immediately served).

The unsafe states are described by the formula

ν :≡ ∃x∃y (x 6= y ∧ S(x) ∧ S(y)).

Since ι, δ, ν all violate our Assumption from Section 4.1.2 because they are not ground, the

problem needs to be reformulated (in a safety/unsafety preserving way!) in order to become

tractable with our techniques.

Consider the LTL-theory T ′ = 〈Σ, T,Σr, {t}, {c1, c2}〉, which is like T except that two

new system parameters c1, c2 of sort P have been added. We first skolemize the formula ν

into the ground formula

ν ′ :≡ c1 6= c2 ∧ S(c1) ∧ S(c2),

then we instantiate the initial condition ι obtaining

ι′ :≡ t = 0 ∧ f(c1) = 1 ∧ f(c2) = 1.

Finally we instantiate also the transition δ, thus getting the ground formula δ′ which is the

conjunctions of (28)-(34) below:30

t0 < t1 < 1 (28)

(S0(c1)→ f1(c1) = 1) ∧ (S0(c2)→ f1(c2) = 1) (29)

(¬S0(c1) ∧ f
0(c1) 6= 1→ f1(c1) = f0(c1)) ∧ (¬S0(c2) ∧ f

0(c2) 6= 1→ f1(c2) = f0(c2)) (30)

f0(c1) < f0(c2)→ ¬S
1(c2) (31)

f0(c2) < f0(c1)→ ¬S
1(c1) (32)

f0(c1) = 1→ f1(c1) = 1 ∨ (t0 ≤ f1(c1) ∧ f
1(c1) < t1 ∧ ¬S1(c1)) (33)

f0(c2) = 1→ f1(c2) = 1 ∨ (t0 ≤ f1(c2) ∧ f
1(c2) < t1 ∧ ¬S1(c2)) (34)

(T ′, δ′, ι′) is now an LTL-system specification matching the assumptions of Section 4.1.2;

moreover (T ′, δ′, ι′) is locally finite compatible for the reasons explained above.

It is not difficult to see that there exists a bad run for (T , ι, δ) (w.r.t. ν) if and only if

there exists a bad run for (T ′, ι′, δ′) (w.r.t. ν ′): the key observation to show this is that one

can restrict the interpretation of the sort P in a bad run for (T ′, ι′, δ′) so that it consists only

on the two individuals c1, c2. By applying the algorithm from Proposition 4.14, since ι′ ∧ ν ′

is T -inconsistent and since δ′ ∧ ν ′ is (T ⊕Σr T)-inconsistent, it follows that (T ′, ι′, δ′) is safe

w.r.t. ν ′: consequently, (T , ι, δ) is safe w.r.t. ν too.

30Observe that all quantifiers in ι, δ are of sort P and that there are no ground terms in the signature of

T ′ of that sort, apart from the Skolem constants c1, c2. Notice that some instances of δ have been removed,

because they are tautological modulo T .

49

5 Related Work

The high undecidability level of quantified modal logics over the natural numbers flow was

realized very early in the sixties by D. Scott; nevertheless, recent literature isolated quite

interesting and expressive fragments of quantified LTL which are better behaved from a

computational point of view and which can also be decidable in case their extensional part is

further restricted to some well-known decidable elementary class: this is the case for instance

of the so-called ‘monodic fragment’ (see [20] for a survey). From another point of view,

one can improve the situation by avoiding any interplay between quantifiers and temporal

operators [16]; in addition, being especially motivated by verification applications, we were

also interested in enriching the extensional part of the language in order to be able to talk

about numerical or symbolic data structures. Thus we were naturally lead to consider, from

the syntactic point of view, satisfiability of quantifier-free LTL formulae built up from a first-

order signature Σ and, from the semantic point of view, we concentrated on LTL constant

domain models consisting of a succession {Mi}i of models of a Σ-theory T . Symbols of Σ

and free variables were divided into two groups, the first group being rigidly (i.e. equally)

interpreted in all the Mi’s and the second group being possibly differently interpreted in

these models. This approach was taken long time ago by [38], who established a decidability

result in case the quantifier-free fragment of T is decidable and in case the flexible symbols

are free symbols for the theory T (see the Assumption on p.185 of [38]).31

By using recent techniques and results from the combination literature, we were able

to attack the problem in its full generality and to realize both the undecidability in the

unrestricted case (by reduction to combined constraint satisfiability problems for first-order

theories) and the decidability within well-known ‘combinability’ hypotheses [23] for T .

These hypotheses, besides decidability of the universal first-order fragment, were compat-

ibility over a locally finite subtheory in the rigid subsignature (local finiteness was replaced

by weaker noetherian requirements in Section 2.2.2).

In the second part of the paper we considered model-checking problems, within the same

framework (i.e. under the same hypotheses on T). We got positive decidability results for

the safety properties and we plan to extend soon our results to different kinds of properties

(liveness, etc.) and finally to the unrestricted LTL model-checking case. Our framework

generalizes finite state model-checking for two reasons: first, because the rigid symbols are

31Besides a fixed point algorithm, [38] gives also a more simple algorithm on p. 188, lines 15 ff. The latter

algorithm consists of a propositional tableaux reduction: while making such a reduction, flexible symbols in

the various Hintikka sets are disjointly renamed and a unique T -satisfiability test is performed over the selected

candidate regular path (this test involves alien symbols, but decidability is maintained if the additional symbols

are all free).

50

governed by a locally finite theory which is not necessarily an enumerated datatypes theory

and secondly because there are no limitations at all on the flexible symbols, whose interpre-

tation is only constrained by the axioms of T .

The literature on infinite state model-checking is extremely vast (e.g., [46, 39, 7, 19] exem-

plify just some different approaches), we shall make here a comparison only with the literature

which is somewhat related to our model-theoretic viewpoint inspired on combination.

The paper [14] makes an extensive review on constrained LTL, which can be seen as a

form of model checking for possibly infinite state systems. This form of model-checking does

not allow flexible symbols (apart from system variables); moreover specific fixed purely re-

lational structures plays there the role played by the models of the elementary theory T in

our approach. Results in [14] are not limited to safety properties; in case our results can be

extended beyond safety (as it looks likely to be), some of the results in [14] could be seen

as specializations of our results to totally rigid system specifications. Other results and tech-

niques from [14] (and also from the recent paper [15]) should nevertheless be seriously taken

into account for integration in our settings. A similar observation applies to the rewriting

techniques used in [12] in order to obtain decision procedures for interesting (but very special)

classes of formulae.

An integration of classic tableaux and automated deduction techniques is presented in [40].

While sharing the goal of combining model-checking algorithms and deductive techniques, [40]

provides a uniform framework in which performing such combination with no guarantee on

the complete automation of the resulting combination. Similarly, [32] describes a combination

of tableaux and automated deduction techniques to automatically solve the model-checking

problem of classes of parametrized theories. Although we share some use of tableaux and

automated deduction techniques, [32] does not reduce the problem to combination problems

in first-order theories.

We discuss the approach in [13] which shares an important distinguishing feature with

ours, namely the reduction of safety model-checking problems to satisfiability-modulo-theory

constraints. In a sense, our main contribution (Theorem 4.15) identifies precise conditions

under which this reduction yields a complete decision procedure (but notice that our safety

graph is not just an approximation of the graph of the states of the system, because pairs of

states are taken into account when building it).

Finally, a long line of research in model-checking infinite-state systems goes under the

name of “abstract-check-refine”, featuring a combination of finite-state model-checking and

decision procedures for first-order theories beginning with the seminal work in [27]. A common

feature with our work is emphasis on using decision procedures for the satisfiability problem

in first-order theories. However, we are more concerned with precisely characterizing the

51

termination of the model-checking algorithm while the abstract-check-refine techniques focus

on practical usability. Furthermore, for such techniques to scale-up, the decision procedures

are required to compute interpolants (see, e.g., [28, 34]) and this may be indeed a difficult

task. Instead, our approach should allow one to more easily leverage SMT solvers by designing

suitable refinements of the algorithm suggested by Proposition 4.14.

6 Conclusions and Future Work

In this paper, we considered first-order LTL. We studied the decidability of the satisfiabil-

ity and model-checking problems for various fragments of quantifier-free formulae (modulo a

background first-order theory axiomatizing the extensional part of the language). The key

technique to obtain our results was a reduction to constraint satisfiability problems in unions

of non-disjoint first-order theories: this reduction allowed us to derive undecidability results,

but also decidability results through suitable adaptations of extensions of the Nelson-Oppen

schema [23, 5]. We also recalled the undecidability of the model-checking problem by a reduc-

tion to the reachability problem of Minsky machines [35]. Finally, we gave the decidability

of the model-checking problem, when this is restricted to safety properties modulo locally

finite and compatible [23] background theories. We also exemplified our techniques on some

examples.

There are two main lines of future work. First, we intend to investigate how to exploit

SMT solvers to solve model-checking problems with more examples than those considered

in this paper. The design of suitable heuristics to efficiently explore the safety graph (cf.

Definition 4.13) should be the key to show the viability of our approach. Second, we intend

to find termination results for model checking (i) of arbitrary temporal properties (besides

those of safety) and (ii) modulo richer background theories (e.g., Presburger Arithmetic).

Regarding (i), we envisage to incorporate the Hintikka sets of arbitrary LTL(Σa)-sentences

into the safety graph and to extend the algorithm suggested by Proposition 4.14. We believe

that (ii) can be achieved by considering transition relations satisfying certain requirements as

it is done in, e.g., [15].

References

[1] Franz Baader and Silvio Ghilardi. Connecting many-sorted theories. Journal of Symbolic

Logic. To appear.

52

[2] Franz Baader, Silvio Ghilardi, and Cesare Tinelli. A new combination procedure for the

word problem that generalizes fusion decidability results in modal logics. Information

and Computation, 204(10):1413–1452, 2006.

[3] Franz Baader and Cesare Tinelli. Deciding the word problem in the union of equational

theories. Information and Computation, 178(2):346–390, 2002.

[4] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan

Zhu. Bounded model checking. Advances in Computers, 58:118–149, 2003.

[5] Maria Paola Bonacina, Silvio Ghilardi, Enrica Nicolini, Silvio Ranise, and Daniele Zuc-

chelli. Decidability and undecidability results for Nelson-Oppen and rewrite-based deci-

sion procedures. In U. Furbach and N. Shankar, editors, Proceedings of the 3rd Interna-

tional Joint Conference on Automated Reasoning (IJCAR 2006), volume 4130 of Lecture

Notes in Computer Science, pages 513–527, Seattle (WA, USA), 2006. Springer.

[6] Torben Bräuner and Silvio Ghilardi. First-order modal logic. In J. van Benthem, P. Black-

burn, and F. Wolter, editors, Handbook of Modal Logic, pages 549–620. Elsevier, Ams-

terdam, 2007.

[7] Olaf Burkart, Didier Caucal, Faron Moller, and Bernhard Steffen. Verification of infinite

state structures. In J. A. Bergstra, A. Ponse, and S. A. Smolka, editors, Handbook of

Process Algebras, pages 545–623. Elsevier, Amsterdam, 2001.

[8] Alexander Chagrov and Michael Zakharyaschev. Modal Logic. Clarendon Press, Oxford,

1997.

[9] Chen-Chung Chang and Jerome H. Keisler. Model Theory. North-Holland Publishing

Co., Amsterdam-London, third edition, 1990.

[10] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco

Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. NuSMV 2: An

opensource tool for symbolic model checking. In E. Brinksma and K. G. Larsen, edi-

tors, Proceedings of 14th International Conference on Computer Aided Verification (CAV

2002), volume 2404 of Lecture Notes in Computer Science, pages 359–364, Copenhagen

(Denmark), 2002. Springer.

[11] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT Press,

2000.

53

[12] David Cyrluk and Paliath Narendran. Ground temporal logic: A logic for hardware

verification. In D. L. Dill, editor, Proceedings of the 6th International Conference on

Computer Aided Verification (CAV 1994), volume 818 of Lecture Notes in Computer

Science, pages 247–259, Stanford (CA, USA), 1994. Springer-Verlag.

[13] Leonardo de Moura, Harald Rueß, and Maria Sorea. Lazy theorem proving for bounded

model checking over infinite domains. In A. Voronkov, editor, Proceedings of the 18th

International Conference on Automated Deduction (CADE 2002), volume 2392 of Lecture

Notes in Computer Science, pages 438–455, Copenhagen (Denmark), 2002. Springer.

[14] Stéphane Demri. Linear-time temporal logics with Presburger constraints: An overview.

Journal of Applied Non-Classical Logics, 16(3–4):311–347, 2006.

[15] Stéphane Demri, Alain Finkel, Valentin Goranko, and Govert van Drimmelen. Towards

a model-checker for counter systems. In S. Graf and W. Zhang, editors, Proceedings of

the 4th International Symposium on Automated Technology for Verification and Analysis

(ATVA 2006), volume 4218 of Lecture Notes in Computer Science, pages 493–507, Beijing

(ROC), 2006. Springer.

[16] Alin Deutsch, Liying Sui, and Victor Vianu. Specification and verification of data-driven

web services. In A. Deutsch, editor, Proceedings of the 23rd ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems (PODS 2004), pages 71–82,

Paris (France), 2004. ACM.

[17] Heinz-Dieter Ebbinghaus, Jörg Flum, and Wolfgang Thomas. Mathematical logic. Un-

dergraduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1994.

[18] Herbert B. Enderton. A Mathematical Introduction to Logic. Academic Press, New

York-London, 1972.

[19] Javier Esparza, Alain Finkel, and Richard Mayr. On the verification of broadcast proto-

cols. In Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science

(LICS 1999), pages 352–359, Trento (Italy), 1999. IEEE Computer Society.

[20] Dov M. Gabbay, Agi Kurucz, Frank Wolter, and Michael Zakharyaschev. Many-

Dimensional Modal Logics: Theory and Applications, volume 148 of Studies in Logic and

the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam-London,

2003.

54

[21] Harald Ganzinger. Shostak light. In A. Voronkov, editor, Proceedings of the 18th In-

ternational Conference on Automated Deduction (CADE 2002), volume 2392 of Lecture

Notes in Computer Science, pages 332–346, Copenhagen (Denmark), 2002. Springer.

[22] Silvio Ghilardi. Reasoners’ cooperation and quantifiers elimination. Technical Report

288-03, Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano, Mi-

lano (Italy), 2003. Available at http://homes.dsi.unimi.it/~ghilardi.

[23] Silvio Ghilardi. Model theoretic methods in combined constraint satisfiability. Journal

of Automated Reasoning, 33(3-4):221–249, 2004.

[24] Silvio Ghilardi, Enrica Nicolini, and Daniele Zucchelli. A comprehensive framework

for combined decision procedures. ACM Transactions on Computational Logic. To ap-

pear. Technical Report version available at http://homes.dsi.unimi.it/~zucchell/

publications/techreport/GhiNiZu-RI304-05.pdf.

[25] Silvio Ghilardi and Luigi Santocanale. Algebraic and model theoretic techniques for

fusion decidability in modal logics. In M. Vardi and A. Voronkov, editors, Proceedings

of the 10th International Conference on Logic for Programming, Artificial Intelligence,

and Reasoning (LPAR 2003), volume 2850 of Lecture Notes in Computer Science, pages

152–166, Almaty (Kazakhstan), 2003. Springer.

[26] Rajeev Goré. Handbook of Tableau Methods, chapter Tableau Methods for Modal and

Temporal Logics, pages 297–396. Kluwer Academic Publishers, 1999.

[27] Susanne Graf and Hassen Säıdi. Verifying invariants using theorem proving. In R. Alur

and T. A. Henzinger, editors, Proceedings of 8th International Conference on Computer

Aided Verification (CAV 1996), volume 1102 of Lecture Notes in Computer Science,

pages 196–207, New Brunswick (NJ, USA), 1996. Springer.

[28] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Lazy ab-

straction. In Proceedings of the 29th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL 2002), pages 58–70, Portland (OR, USA),

2002. ACM Press.

[29] Gerard J. Holzmann. The SPIN model checker: Primer and reference manual. Addison

Wesley, 2004.

[30] Ullrich Hustadt and Boris Konev. TRP++: A temporal resolution prover. In M. Baaz,

J. Makowsky, and A. Voronkov, editors, Collegium Logicum, volume 8, pages 65–79. Kurt

Gödel Society, 2004.

55

http://homes.dsi.unimi.it/~ghilardi
http://homes.dsi.unimi.it/~zucchell/publications/techreport/GhiNiZu-RI304-05.pdf
http://homes.dsi.unimi.it/~zucchell/publications/techreport/GhiNiZu-RI304-05.pdf

[31] Ullrich Hustadt, Boris Konev, and Renate A. Schmidt. Deciding monodic fragments by

temporal resolution. In R. Nieuwenhuis, editor, Proceedings of the 20th International

Conference on Automated Deduction (CADE 2005), volume 3632 of Lecture Notes in

Computer Science, pages 204–218, Tallinn (Estonia), 2005. Springer.

[32] Monika Maidl. A unifying model checking approach for safety properties of parameter-

ized systems. In G. Berry, H. Comon, and A. Finkel, editors, Proceedings of the 13th

International Conference on Computer Aided Verification (CAV 2001), volume 2102 of

Lecture Notes in Computer Science, pages 311–323, Paris (France), 2001. Springer.

[33] Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems: Safety.

Springer-Verlag, New York, 1995.

[34] Kenneth L. McMillan. Applications of craig interpolants in model checking. In N. Halb-

wachs and L. D. Zuck, editors, Proceedings of the 11th International Conference on Tools

and Algorithms for the Construction and Analysis of Systems (TACAS 2005), volume

3440 of Lecture Notes in Computer Science, pages 1–12, Edinburgh (UK), 2005. Springer.

[35] Marvin L. Minsky. Recursive unsolvability of Post’s problem of “tag” and other topics

in the theory of Turing machines. Annals of Mathematics, 74(3):437–455, 1961.

[36] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision procedures.

ACM Transaction on Programming Languages and Systems, 1(2):245–257, 1979.

[37] Enrica Nicolini. Combined decision procedures for constraint satisfiability. PhD thesis,

Dipartimento di Matematica, Università degli Studi di Milano, Milano (Italy), 2007.

[38] David A. Plaisted. A decision procedure for combination of propositional temporal logic

and other specialized theories. Journal of Automated Reasoning, 2(2):171–190, 1986.

[39] Amir Pnueli, Sitvanit Ruath, and Lenore D. Zuck. Automatic deductive verification

with invisible invariants. In T. Margaria and W. Yi, editors, Proceedings of 7th Interna-

tional Conference in Tools and Algorithms for the Construction and Analysis of Systems

(TACAS 2001), volume 2031 of Lecture Notes in Computer Science, pages 82–97, Genova

(Italy), 2001. Springer.

[40] Henny B. Sipma, Tomás E. Uribe, and Zohar Manna. Deductive model checking. Formal

Methods in System Design, 15(1):49–74, 1999.

[41] A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional linear temporal

logics. Journal of the ACM, 32(3):733–749, 1985.

56

[42] Viorica Sofronie-Stokkermans. Interpolation in local theory extensions. In U. Furbach

and N. Shankar, editors, Proceedings of the 3rd International Joint Conference on Au-

tomated Reasoning (IJCAR 2006), volume 4130 of Lecture Notes in Computer Science,

pages 235–250, Seattle (WA, USA), 2006. Springer.

[43] Cesare Tinelli. Cooperation of background reasoners in theory reasoning by residue

sharing. Journal of Automated Reasoning, 3(1):1–31, 2003.

[44] Cesare Tinelli and Mehdi T. Harandi. A new correctness proof of the Nelson-Oppen

combination procedure. In F. Baader and K.U. Schulz, editors, Proceedings of the 1st In-

ternational Workshop in Frontiers of Combining Systems (FroCoS 1996), Applied Logic,

pages 103–120, Munich (Germany), 1996. Kluwer Academic Publishers.

[45] Cesare Tinelli and Calogero G. Zarba. Combining non-stably infinite theories. Journal

of Automated Reasoning, 34(3):209–238, 2005.

[46] Moshe Y. Vardi. Verification of concurrent programs: the automata-theoretic framework.

Annals of Pure and Applied Logic, 51(1–2):79–98, 1991.

[47] Frank Wolter. Fusions of modal logics revisited. In M. Kracht, M. de Rijke, H. Wansing,

and M. Zakharyaschev, editors, Advances in Modal Logic. CSLI, Stanford (CA, USA),

1998.

57

A Appendix

This appendix contains some technical facts concerning first-order model theory of classical

logic used in completeness proofs for our satisfiability and model-checking algorithms. Most

of these facts are straightforward extensions to the case of the combination of infinitely many

theories32 of analogous facts shown in [23] for the case of the combination of two theories.

Although one may try to draw these extensions directly from [23] by applying, say, compact-

ness arguments, we give here full proofs from scratch in order to keep this paper completely

self-contained.

A.1 More Background

We first recall some further standard background. Given a Σ-structure M = (M,I) and a

subset C ⊆M , the substructure of M generated by C is the substructure obtained from M

by restricting I to the subset {tM(c) | c ⊆ C and t(x) is a Σ-term} (here tM is the function

interpreting the term t in M). In case this substructure coincides with M, we say that C is

a set of generators for M.

If C is a set of generators for M, the diagram ∆(M) of M (w.r.t. Σ, C) consists of all

ground ΣC-literals that hold inM; analogously, the elementary diagram ∆e(M) ofM (w.r.t.

Σ, C) consists of all ground ΣC-sentences that hold in M (often C is not specified at all, in

these cases it is assumed to coincide with the whole carrier set of M).

Diagrams (in combination with the compactness of the logical consequence relation) will

be repeatedly used. A typical standard use is the following: suppose that we want to embed

M into a model of a theory T , then it is sufficient to check that T ∪ ∆(M) is consistent.

This argument is justified by Robinson’s Diagram Lemma [9], which relates embeddings and

diagrams as follows.

Lemma A.1 (Robinson’s Diagram Lemma). Let M be a Σ-structure generated by a set C,

and let N be another Σ-structure; then M can be embedded (resp. elementarily embedded)

into N iff N can be expanded to ΣC-model of the diagram ∆(M) (resp. of the elementary

diagram ∆e(M)) of M w.r.t. Σ, C.

The technique used for proving Lemma A.1 is simple, we sketch it. If we have an expansion

of N to a ΣC-structure (to be called N again for simplicity), then, since every element of

the support of M is of the kind tM(c) for some c ⊆ C, we can define the embedding µ by

putting µ(tM(c)) := tN (cN): this is well-defined and it is an embedding precisely because

32More precisely, the relevant case is the case of the combination of countably many partially renamed copies

of the same theory.

58

N |= ∆(M). Conversely, if we have the embedding µ, then we can get the desired expansion

by taking cN := µ(c) for all c ∈ C.

Since a surjective embedding is just an isomorphism, the argument just sketched shows

also the following fact:

Lemma A.2. If two Σ-structures M, N are both generated by a set C and if one of them,

say N , satisfies the other’s diagram (w.r.t. Σ, C), then the two structures are ΣC-isomorphic.

Ground formulae are invariant under embeddings in the following sense.

Lemma A.3. LetM = (M,I) be a Σ-structure that can be embedded into another Σ-structure

N . For all ground ΣM -sentences ϕ, we have that

M |= ϕ ⇔ N |= ϕ,

where N is extended to a ΣM -structure by interpreting each a ∈ M by its image under the

embedding.

Next lemma states the well-known property (called submodel-completeness) of theories

enjoying quantifier-elimination:

Lemma A.4. Suppose that T ⋆ is a Σr-theory enjoying quantifier elimination and that ∆ is

a diagram of a substructure R = (R,J) of a model M of T ⋆; then the ΣR-theory T ⋆ ∪∆ is

complete.

Proof. By Robinson Diagram Lemma A.1, the models of T ⋆∪∆ are the models of T ⋆ endowed

with a Σr-embedding from R. One such model isM; we show that any other modelM′ sat-

isfies the same ΣR-sentences as M (we assume without loss of generality the Σr-embedding

from R into M′ to be an inclusion). Pick an arbitrary ΣR-sentence ϕ(c) (where the c are

parameters from the set of generators of R used in order to build ∆): this sentence is equiva-

lent, modulo T ⋆, to a ground ΣR-sentence ϕ⋆(c). Since truth of ground sentences is preserved

by substructures (see Lemma A.3), we have the following chain of equivalences

M′ |= ϕ(c) ⇔ M′ |= ϕ⋆(c) ⇔ R |= ϕ⋆(c) ⇔ M |= ϕ⋆(c) ⇔ M |= ϕ(c),

showing our claim.

Next result is also part of basic classical model theory: a proof of it can be easily de-

duced from Craig’s Interpolation Theorem (alternatively, a direct proof using a double chain

argument is possible, see [9], pp. 141-142):

Theorem A.5 (Robinson’s Joint Consistency Theorem). Let H1,H2 be, respectively, consis-

tent Θ1,Θ2-theories and let Θ0 be the signature Θ1 ∩ Θ2. Suppose that there is a complete

Θ0-theory H0 such that H0 ⊆ H1 and H0 ⊆ H2; then H1 ∪H2 is a consistent Θ1 ∪Θ2-theory.

59

A.2 Structure Amalgamations

The statement of next Lemma extends the statement of Lemma 9.3 from [23] (and is proved

in the same way):

Lemma A.6. Let Ti be Σi-theories (for i ∈ I) and let Σr be a subsignature of all the Σi’s.

Let

Γ1, . . . ,Γi, . . . (i ∈ I)

be sets of ground Σ
ai,c

i -clauses (here ai, c are free constants); a set B of positive ground Σ
c
r-

clauses is said to be saturated iff for every i ∈ I and for every positive ground Σ
c
r-clause C it

happens that:

Ti ∪ Γi ∪ B |= C ⇒ C ∈ B.

Suppose now that B is saturated and does not contain the empty clause. Then there are Σ
ai,c

i -

structures Mi such that Mi |= Ti ∪ Γi ∪ B; moreover, the Σ
c
r-substructures generated by the

elements (denoted by) c coincide for all the Mi’s.

Proof. A set of ground Σ
c
r-literals is said to be exhaustive iff it contains, for every ground

Σ
c
r-literal A, either A itself or its negation. The statement of the lemma is proved if we are

able to find an exhaustive set ∆ of ground Σ
c
r-literals which is consistent with Ti ∪ Γi ∪ B

for each i ∈ I. In this case, in fact, given models Mi |= Ti ∪ Γi ∪ B ∪∆, we have that the

Σ
c
r-substructures generated by c in all the Mi’s all have diagram ∆, consequently they are

Σ
c
r-isomorphic (and can be made coincident by suitable renaming).

We shall adapt the notion of productive clause used in nowadays refutational complete-

ness proofs for e.g. resolution or paramodulation based calculi. Consider any strict total

terminating order on ground Σ
c
r-atoms and extend it to a strict total terminating order > for

positive ground Σ
c
r-clauses by taking standard multiset extension. We shall define increasing

sets ∆+
C (varying C ∈ B) of ground Σ

c
r-atoms as follows. Recall that, as the empty clause is

not in B, all positive clauses in B are of the kind A ∨A1 ∨ · · · ∨An (n ≥ 0).

The definition is by transfinite induction on >. Say that the clause C ≡ A∨A1 ∨ · · · ∨An

from B is productive iff (i) {A} > {A1, . . . , An} and (ii) A1, . . . , An 6∈ ∆+
<C (where ∆+

<C is
⋃

D<C ∆+
D). Now, if C is productive, we let ∆+

C to be ∆+
<C ∪ {A}, otherwise ∆+

C is simply

∆+
<C .

Let ∆+ be
⋃

C∈B ∆+
C and ∆ be ∆+ ∪{¬A | A is a ground Σ

c
r-atom not belonging to ∆+}.

By construction, ∆ |= B, so we simply need to show that Ti ∪ Γi ∪∆ is consistent for each

i ∈ I. We need a preliminary claim.

60

Claim: if the clause A ∨ A1 ∨ · · · ∨ An is productive and A is the maximum atom in it,

then A1, . . . , An 6∈ ∆+: this is evident, as the Ai’s could only be produced by clauses smaller

than A ∨A1 ∨ · · · ∨An.

Suppose now that Ti∪Γi∪∆ is not consistent. Then there are ground atoms B1, . . . , Bm 6∈

∆+ and productive clauses

C1 ≡ A1 ∨A11 ∨ · · · ∨A1k1

· · ·

Cn ≡ An ∨An1 ∨ · · · ∨Ankn

(with maximum atoms A1, . . . , An, respectively), such that

Ti ∪ Γi ∪ {A1, . . . , An} |= B1 ∨ · · · ∨Bm.

By trivial logical manipulations, it follows that

Ti ∪ Γi ∪ {C1, . . . , Cn} |=
∨

i,j

Aij ∨B1 ∨ · · · ∨Bm.

As C1, . . . , Cn are clauses in B and as B is saturated, the clause

D ≡
∨

i,j

Aij ∨B1 ∨ · · · ∨Bm

is also in B. By construction (anyway, either D is productive or not) some of the atoms

{A11, . . . , Ankn , B1, . . . , Bm} are in ∆+. By the claim, A11, . . . , Ankn cannot be there, so one

of the Bj ’s is in ∆+, contradiction.

Next Lemma also extends a fact (namely Lemma 9.4) established in [23]:

Lemma A.7. Let Σ
c,ai
i (for i ∈ I) be signatures (expanded with free constants c, ai), whose

pairwise intersections are all equal to a certain signature Σ
c
r (that is, we have Σ

c,ai

i ∩Σ
c,aj

j = Σ
c
r

for all distinct i, j ∈ I). Suppose we are also given Σi-theories Ti which are all Tr-compatible,

where Tr ⊆
⋂

i Ti is a universal Σr-theory; let finally {Mi = (Mi,Ii)}i∈I be a sequence of

Σ
c,ai
i -structures which are models of Ti and satisfy the same Σ

c
r-atoms. In these hypotheses,

there exist a
⋃

i(Σ
c,ai
i)-structure M |=

⋃

i Ti such that for each i, Mi has a Σ
c,ai
i -embedding

into M.

Proof. By Robinson Diagram Lemma A.1 and by Lemma A.2 (and up to a partial renaming

of the support sets), the fact that theMi satisfy the same Σ
c
r-atoms is another way of saying

that they share the same Σ
c
r-substructure generated by the c (let us call R = (R,J) this

substructure); by Tr-compatibility, we may also freely assume that Mi |= Ti ∪ T
⋆
r . Notice

61

also that, by Lemma A.4 above, the theory T ⋆r ∪∆ is complete, where ∆ is the diagram of R

as a Σr-structure.

Again by Robinson Diagram Lemma, we only need to show that the union of the elemen-

tary diagrams ∆e
i (Mi) is consistent:33 here ∆e

i (Mi) is the elementary diagram of Mi as a

Σ
c,ai

i -structure.

By compactness, we can freely assume that the index set I is finite, let it be {1, . . . , k}

and let us argue by induction on k. For k = 1, there is nothing to prove and for k > 1, we

use Robinson’s Joint Consistency Theorem as follows.

By renaming some elements in the supports if needed, we can freely suppose that the sets

M1 \ R and (M2 ∪ · · · ∪Mk) \ R are disjoint. Given the hypotheses of the Lemma on the

signatures Σ
c,ai
i , we can apply the Joint Consistency Theorem to the theories ∆e(M1) and

∆e(M2)∪ · · · ∪∆e(Mk): in fact, they are both consistent (the latter by induction) and their

both contain the complete subtheory T ⋆r ∪ ∆ in the shared subsignature. This proves that

∆e(M1) ∪ · · · ∪∆e(Mk) is consistent, as desired.

If we put together the two previous lemmas, we get the following fact:

Lemma A.8. Suppose we are given the following data:

(i) I is a (possibly infinite) set of indexes;

(ii) Σ
c,ai
i (for i ∈ I) are signatures (expanded with free constants c, ai), whose pairwise

intersections are all equal to a certain signature Σ
c
r (that is, we have Σ

c,ai
i ∩ Σ

c,aj

j = Σ
c
r

for all distinct i, j ∈ I);

(iii) Ti are Σi-theories (for i ∈ I) which are all Tr-compatible, where Tr ⊆
⋂

i Ti is a universal

Σr-theory;

(iv) {Γi}i∈I are sets of ground Σ
ai,c

i -clauses;

(v) B is a set of positive ground Σ
c
r-clauses not containing the empty clause and satisfying

the following condition for every i ∈ I and for every positive ground Σ
c
r-clause C:

Ti ∪ Γi ∪ B |= C ⇒ C ∈ B.

If the above data are given, then there exists a
⋃

i(Σ
c,ai

i)-structure M |=
⋃

i(Ti ∪Γi). Equiva-

lently: there exist Σ
c,ai

i -structures Mi (i ∈ I) satisfying Ti ∪ Γi, whose Σ
c
r-reducts coincide.

Next Lemma is a variant of Theorem 5.2 from [23] (but the proof below is different):

33We need the elementary diagrams here, and not just diagrams, because we want the model to be built to

be a model of
S

i Ti.

62

Lemma A.9. Suppose that T0, T1, T2 are Σ0,Σ1,Σ2-theories (respectively) such that Σ0 =

Σ1 ∩ Σ2, T1 is T0-compatible, and T2 is T0-compatible; if the ground Σ
a,b
1 -sentence ψ1(a, b)

and the ground Σ
b,c
2 -sentence ψ2(b, c) (here the tuples of free constants a, b, c are pairwise

disjoint) are such that ψ1(a, b) ∧ ψ2(b, c) is T1 ∪ T2-inconsistent, then there is a ground Σ
b
0-

sentence ψ0(b) such that T1 |= ψ1(a, b)→ ψ0(b) and T2 |= ψ0(b)→ ¬ψ2(b, c).

Proof. By compactness, it is sufficient to show that the set Ψ of ground Σ
b
0-sentences ψ0(b)

such that T1 |= ψ1(a, b)→ ψ0(b) is not T2-consistent with ψ2(b, c). Suppose it is, hence there

is a T2-modelM2 of Ψ∪ {ψ2(b, c)}. Let R be the Σ0-substructure ofM generated by the b’s

and let ∆ be its diagram. We claim that ∆ is T1-consistent with ψ1(a, b): this is because, if

ψ0(b) is a ground Σ
b
0-sentence true in R and not consistent with ψ1(a, b), then ¬ψ0(b) would

be in Ψ and hence would be true in R, contradiction. Since ∆ is T1-consistent with ψ1(a, b),

there is a modelM1 of T1 (having R as a substructure) in which ψ1(a, b) is true. By Lemma

A.7 (take I = {1, 2}), the models M1,M2 embeds over R into a model M of T1 ∪ T2; but

then M is also a model of ψ1(a, b) ∧ ψ2(b, c) (because ψ1(a, b) and ψ2(b, c) are ground, see

Lemma A.3), a contradiction.

Proposition A.10. If T0, T1, T2 are Σ0,Σ1,Σ2-theories (respectively) such that Σ0 = Σ1∩Σ2,

T1 is T0-compatible, and T2 is T0-compatible, then T1 ∪ T2 is T0-compatible too.

Proof. This is Proposition 4.4 from [23]: we report the proof here. Take a modelM = (M,I)

of T1 ∪ T2 and embeds its Σi-reducts into models Mi = (Mi,Ii) of Ti ∪ T
⋆
0 (i = 1, 2). We

can freely suppose that the embeddings are inclusions and that we have M = M1 ∩ M2

for supports. Now T ⋆0 ∪ ∆(M) is a complete theory by Lemma A.4 (here ∆(M) is the

diagram of M as a Σ0-structure), hence by Robinson Joint Consistency Theorem A.5 there

is a model N = (N,J) of ∆e(M1) ∪∆e(M2). It follows that N is a (Σ1 ∪ Σ2)
M1∪M2-model

of T1 ∪ T2 ∪ T
⋆
0 and that there are ΣM

i -embeddings µi :Mi −→ N . In particular, for b ∈M ,

we have µ1(b) = bN = µ2(b); let us call µ the common restriction of µ1 and µ2 to M . We

show that µ is a (Σ1 ∪ Σ2)-embedding of M into N . Observe in fact that for every n-ary

Σi-function symbol f and for every n-tuple b of elements from the support ofM, we have34

µ(fM(b)) = µi(f
Mi(b)) = fN (µi(b)) = fN (µ(b));

analogously, for every n-ary Σi-predicate symbol P , we have

M |= P (b) iff Mi |= P (b) iff N |= P (µi(b)) iff N |= P (µ(b)).

This proves that µ :M−→ N is a (Σ1 ∪ Σ2)-embedding.

34Here, if b = (b1, . . . , bn), we write e.g. µ(b) for the tuple (µ(b1), . . . , µ(bn)).

63

A.3 More on Noetherian Theories

We conclude this Appendix by giving the proof of a couple of statements concerning noetherian

theories. The following lemma transfers the termination property from sets of atoms to sets

of positive clauses:

Lemma A.11. Every infinite ascending chain of sets of positive ground Σ
c
r-clauses is even-

tually constant for logical consequence modulo a noetherian Σ-theory Tr.

Proof. By contradiction, suppose not; in this case it is immediate to see that there are in-

finitely many positive ground Tr-clauses C1, C2, . . . such that for all i the clause Ci is not a

logical consequence of Tr ∪ {C1, . . . , Ci−1}.

Let us build a chain of trees T0 ⊆ T1 ⊆ T2 ⊆ · · · , whose nodes are labeled by positive

ground Σ
c
r-atoms as follows. T0 consists of the root only, which is labeled ⊤. Suppose Ti−1

is already built and consider the clause Ci ≡ B1 ∨ · · · ∨ Bm. To build Ti, do the following

for every leaf K of Ti−1 (let the branch leading to K be labeled by A1, . . . , Ak): append new

sons to K labeled B1, . . . , Bm, respectively, if Ci is such that Tr ∪ {A1, . . . , Ak} 6|= Ci (if this

is not the case, do nothing for the leaf K).

Consider now the union tree T =
⋃
Ti: since, whenever a node labeled Ak+1 is added,

Ak+1 is not a logical consequence w.r.t. Tr of the formulae labeling the predecessor nodes,

by the noetherianity of Tr all branches are then finite and by König lemma the whole tree is

itself finite. This means that for some index j, the examination of clauses Ci (for i > j) did

not yield any modification of the already built tree. Now, Cj+1 is not a logical consequence

of Tr ∪ {C1, . . . , Cj}: this means that there is a Σ
c
r-structure M which is a model of Tr

and in which all atoms of Cj+1 are false and the C1, . . . , Cj are all true. By induction on

i = 0, . . . , j, it is easily seen that there is a branch in Ti whose labeling atoms are true inM:

this contradicts the fact that the tree Tj has not been modified in step j + 1.

Proposition A.12. The empty theory T over the signature Σ containing only the unary

function symbol f is noetherian.

Proof. By contradiction, suppose that there is a chain Θ1 ⊆ Θ2 ⊆ · · · ⊆ Θn ⊆ · · · of sets of

ground Σa-atoms which is not eventually constant for logical consequence w.r.t. T . Without

loss of generality, we can assume that Θ1 ⊆ Θ2 ⊆ · · · ⊆ Θn ⊆ · · · is such that for each i there

exists a Σa-atom ℓi such that T ∪Θi−1 6|= ℓi.

Notice that, since f is a unary function symbol, each element of the infinite sequence

{ℓi}i∈N of Σa-atoms is a Σai,aj -atom (for some ai, aj ∈ a). Thus, since a is finite, we can extract

an infinite subsequence of ground Σa,b-atoms (for some fixed elements a, b ∈ a) inducing an

infinite ascending chain Θ1|Σa,b ⊆ Θ2|Σa,b ⊆ · · · ⊆ Θn|Σa,b ⊆ · · · which is not eventually

64

constant for logical consequence w.r.t. T (here Θi|Σ is the collection of all the ground Σ-

atoms occurring in Θi).

Suppose that a Σa,b-atom of the kind ℓ := fm(a) = fn(a) occurs in such an infinite

subsequence (here m 6= n otherwise T |= ℓ, contrary to our choice of these atoms). Notice

that T ∪ ℓ is such that there are only finitely many Σa-terms that are not logically equivalent

w.r.t. T ∪ ℓ, which implies that every infinite ascending chain of sets of ground Σa-atoms is

eventually constant for logical consequence w.r.t. T ∪ ℓ (the same argument apply to atoms

of the kind ℓ := fm(b) = fn(b)).

Suppose now that a Σa,b-atom of the kind ℓ := fm(a) = fn(b) belongs to such an infinite

chain of Σa,b-atoms. The only Σa,b-atoms of the form fm
′
(a) = fn

′
(b) not implied by T ∪ ℓ

are such that either (i) m− n 6= m′ − n′ or (ii) m′ < m and n′ < n. It is clear that there are

only finitely many atoms of the kind (ii); for (i), notice that fm(a) = fn(b)∧ fm
′
(a) = fn

′
(b)

implies that fm+n′
(a) = fn+n′

(b) = fm
′+n(a) and that fn+m′

(b) = fm+m′
(a) = fn

′+m(b)

(where m+ n′ 6= m′ + n by (i)), so we are reduced to the first case.

The arguments above imply that the chain Θ1|Σa,b ⊆ Θ2|Σa,b ⊆ · · · ⊆ Θn|Σa,b ⊆ · · · is

eventually constant for logical consequence w.r.t. T . Contradiction.

65

	Introduction
	Formal Preliminaries
	First-Order Logic
	Background on Combination
	Compatible Theories
	Locally Finite and Noetherian Theories
	A Combination Schema for Non-Disjoint Theories

	Propositional Discrete Linear Time Temporal Logic
	First-Order Discrete Linear Time Temporal Logic
	LTL-Theories and the Satisfiability Problem
	Some Classes of LTL-Theories

	The Satisfiability Problem
	Undecidability
	Decidability and Locally Finite LTL-Theories
	Eager Reduction to Propositional LTL-Satisfiability
	A Lazy Tableau Procedure

	Decidability and Noetherian LTL-Theories
	The Procedure NSat
	Correctness of NSat

	The Model-Checking Problem
	LTL-System Specifications and the Model-Checking Problem
	The Seriality Property
	Some Classes of LTL-Systems and further Assumptions

	Undecidability and Noetherian LTL-Theories
	Decidability and Locally Finite LTL-Theories
	Examples

	Related Work
	Conclusions and Future Work
	Appendix
	More Background
	Structure Amalgamations
	More on Noetherian Theories

