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Abstract

In the context of combinations of theories with disjoint signatures, we classify the compo-

nent theories according to the decidability of constraint satisfiability problems in finite and

infinite models, respectively. We exhibit a theory T1 such that satisfiability is decidable, but

satisfiability in infinite models is undecidable. It follows that satisfiability in T1 ∪ T2 is unde-

cidable, whenever T2 has only infinite models, even if signatures are disjoint and satisfiability

in T2 is decidable.

In the second part of the paper we strengthen the Nelson-Oppen decidability transfer

result, by showing that it applies to theories over disjoint signatures, whose satisfiability

problem, in either finite or infinite models, is decidable. We show that this result covers

decision procedures based on rewriting, generalizing recent work on combination of theories

in the rewrite-based approach to satisfiability.

1 Introduction

We investigate the requirement of being stably-infinite for a (decidable) theory to be combined
with others, by using the well-known Nelson-Oppen combination schema. Recently, relaxing this
requirement has received a lot of attention in order to design combination schemas handling
theories that are not stably-infinite. For instance,5 Tinelli and Zarba [26] have shown how to
combine an arbitrary theory with one satisfying requirements which are stronger than stable-
infiniteness. Thus, contrary to the combination schema by Nelson-Oppen [16], such a schema is
asymmetric in the sense that the requirements on the component theories are not the same.

5For lack of space, we only discuss results which are closely related to ours (see, e.g., [23] for an overview on
combination of decision procedures and references).
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In this paper, we consider combinations of theories whose signatures are disjoint and classify the
component theories according to the decidability of their satisfiability problems in finite and infinite
models, respectively (notice that such problems coincide for stably-infinite theories). Assume that
the satisfiability problem in a theory T1 is decidable in arbitrary models but not in infinite models.
Then, any combination of such a T1 with a theory T2 that does not have finite models yields an
undecidable satisfiability problem. This holds even if T1 and T2 have disjoint signatures and even if
satisfiability in T2 is decidable in arbitrary models. As a consequence of this observation, we obtain
the first (undecidability) result of the paper, by exhibiting a theory such that the satisfiability
problem is decidable, whereas the satisfiability problem in infinite models is undecidable.

The second result of the paper is related to decision procedures based on rewriting. Armando et
al [1] recently showed how to use a rewrite-based inference system to obtain decision procedures for
(disjoint) unions of variable-inactive theories, when there exist rewrite-based decision procedures
for the component theories. Here, we explain the relationship between variable-inactivity and
stable-infiniteness. We show that if a theory is not stably infinite, then the inference system is
guaranteed to generate clauses that constrain the cardinality of its models, so that the theory is
not variable-inactive. This result has two applications: first, it generalizes the combination schema
of [1] for (disjoint) unions of theories that have a rewrite-based satisfiability procedures. Second,
it suggests a simple way to combine the rewrite-based approach with constraint-solving techniques
that check satisfiability in finite models.

2 Preliminaries

A signature Σ is an (at most countable) set of functions and predicate symbols, each of them
endowed with the corresponding arity. We assume the binary equality predicate symbol ‘=’ to
be always present in any signature Σ. The signature obtained from Σ by the addition of a set
of new constants (that is, 0-ary function symbols) K is denoted by Σ ∪ K or by ΣK; when the
set of constants is finite, we use letters a, b, c, etc. in place of K. We have the usual notions
of Σ-term, (full first order) -formula, -atom, -literal, -clause, -positive clause, etc.: e.g., an atom
is an atomic formula, a literal is an atom or the negation of an atom, a clause is a multiset
of literals, a positive clause is a multiset of atoms, etc. Abusing notation, we write a clause C
either as the disjunction of its literals or as a sequent ∆1 ⇒ ∆2, meaning that ∆1 (resp. ∆2)
contains the negative (resp. positive) literals of C. Terms, literals, clauses and formulæ are called
ground whenever variables do not appear. Formulæ without free variables are called sentences.
The universal (resp. existential) closure of a formula φ is the sentence obtained from φ by adding
a prefix of universal (resp. existential) quantifiers binding all variables occurring free in φ. A
Σ-theory T is a set of sentences (called the axioms of T ) in the signature Σ. If T is finite, the
theory is said to be finitely axiomatized. A universal theory is a theory whose axioms are universal
closures of quantifier-free sentences.

From the semantic side, we have the standard notion of a Σ-structure A: this is a support set
endowed with an arity-matching interpretation of the function and predicate symbols from Σ. We
use fA (resp. PA) to denote the interpretation of the function symbol f (resp. predicate symbol
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P ) in the structure A. The support set of a structure A is indicated by the notation |A|. We say
that A is finite when there exists an integer N > 0 such that the cardinality of |A| is less than N ;
if such an integer does not exist, we say that A is infinite. The truth of a Σ-formula in A is defined
in the standard way (so that truth of a formula is equivalent to truth of its universal closure). A
formula φ is satisfiable in A iff its existential closure is true in A.

A Σ-structure A is a model of a Σ-theory T (in symbols A |= T ) iff all axioms of T are true
in A. For models of a Σ-theory T we shall use the letters M,N , . . . to distinguish them from
arbitrary Σ-structures. If φ is a formula, T |= φ (‘φ is a logical consequence of T ’) means that φ

is true in any model of T . A Σ-theory T is complete iff for every Σ-sentence φ, either φ or ¬φ is a
logical consequence of T ; T is consistent iff it has a model.

A Σ-constraint in a signature Σ is a finite set of ground Σa-literals (where a is a finite set
of new free constants); the constraint satisfiability problem for a Σ-theory T is the problem of
deciding a Σ-constraint is satisfiable in a model of T : if this problem is decidable, we say that the
theory T is ∃-decidable. Notice that, equivalently, T is ∃-decidable iff it is decidable whether a
universal Σ-formula is entailed by the axioms of T .

3 Satisfiability in Finite and Infinite Models

Let T1 and T2 be theories such that the signature Σ1 of T1 is disjoint from the signature Σ2 of
T2, i.e., Σ1 ∩Σ2 contains only the equality symbol. We consider the decidability of the constraint
satisfiability problem of the theory T1 ∪ T2. We are especially interested in establishing the
relationships between the decidability of the constraint satisfiability problems in the component
theories T1 and T2, and the decidability of the constraint satisfiability problem in T1 ∪ T2.

3.1 Undecidability Result

Let us recall two simple facts. First, combined word problems are decidable whenever the word
problems for the component theories are decidable [21]. Second, it is commonly believed that
combining word problems is more difficult than combining constraint satisfiability problems -
the reason is that the algorithms to be combined are less powerful, as they can handle only
constraints formed by a single negative literal. From these two observations, one may conjecture
that the decidability of the constraint satisfiability problem in T1 ∪ T2 always follows from the
decidability of the constraint satisfiability problem in T1 and T2. Contrary to expectation, all
known combination results for the decidability of the constraint satisfiability problems in unions
of theories (such as [16, 26]) assume that the component theories satisfy certain requirements. The
key observation is that such requirements are related to the satisfiability of constraints in infinite
models of a component theory. For example, the Nelson-Oppen combination schema [16] requires
the component theories to be stably-infinite. A Σ-theory T is stably infinite iff every Σ-constraint
satisfiable in a model of T is satisfiable in an infinite model of T . Motivated by this observation,
we introduce the following definition.

Definition 3.1. Let T be a Σ-theory.
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– T is ∃-decidable iff it is decidable whether any Σ-constraint Γ is satisfiable in an arbitrary
model of T ;

– T is ∃∞-decidable iff it is ∃-decidable and moreover it is decidable whether any Σ-constraint
Γ is satisfiable in an infinite model of T .

Notice that for stably infinite theories ∃-decidability is equivalent to ∃∞-decidability. To illus-
trate the interest of studying the decidability of satisfiability in the infinite models of a theory, we
state the following

Theorem 3.2. Let Ti be a Σi-theory (for i = 1, 2) and let the signatures Σ1,Σ2 be disjoint. If
T1 is ∃-decidable but it is not ∃∞-decidable and if T2 is consistent, ∃-decidable but does not admit
finite models, then the constraint satisfiability for T1 ∪ T2 is undecidable.

Proof. We simply show that a Σ1-constraint Γ is T1∪T2-satisfiable iff it is satisfiable in an infinite
model of T1. One side is obvious; for the other side, pick infinite models M1 of T1 ∪ Γ and M2

of T2 (the latter exists by consistency of T2). By Löwhenheim-Skolem theorem, we can assume
that both models are countable, i.e. that they have the same support (up to isomorphism). But
then, we can simply put together the interpretations of functions and predicate symbols and get
a model of T1 ∪ T2 ∪ Γ.

We notice that there are many theories which are ∃-decidable and have only infinite models.
One such theory is Presburger Arithmetic [22], another one is the theory of acyclic lists [20]. More
interestingly, one could ask the following

QUESTION 1: Are there ∃-decidable that are not ∃∞-decidable?

If the answer is positive, then Theorem 3.2 implies that there exist theories which are ∃-decidable
and whose union is not ∃-decidable. In Section 4, we exhibit some theories that are ∃-decidable
but not ∃∞-decidable, thereby answering QUESTION 1 positively.

3.2 Decidability Result

Notwithstanding the negative result implied by Theorem 3.2, we observe that when both T1 and
T2 are ∃∞-decidable, we are close to get the decidability of constraint satisfiability in T1 ∪ T2. To
understand why, recall the following well-known fact.

Lemma 3.3. Let Λ be a set of first-order sentences. If Λ does not admit infinite models, then
there must exist an integer N > 0 such that, for each model M of Λ, the cardinality of the support
set of M is bounded by N .

For a proof, the interested reader is referred to any introductory textbook about model theory
(see, e.g., [27]). The key idea is to apply compactness to infinitely many ‘at-least-n-elements’
constraints (these are the constraints expressed by the formulæ ∃x1, . . . , xn

∧
i 6=j xi 6= xj). It is

interesting to notice that the above bound on the cardinality of finite models can be effectively
computed for ∃-decidable theories.
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Lemma 3.4. Let T be an ∃-decidable Σ-theory; whenever it happens6 that a given Σ-constraint Γ

is not satisfiable in an infinite model, one can compute a natural number N such that all models
of T ∪ Γ have cardinality at most N .

Proof. For h = 2, 3, . . . , add the following set δh := {ci 6= cj | 1 ≤ i < j ≤ h} of literals to T ∪ Γ,
where the constants c1, . . . , ch are fresh.7 Clearly, if T ∪ Γ ∪ δh is unsatisfiable, then we get a
bound for the cardinality of the models of T ∪ Γ. Since, by Lemma 3.3, such a bound exists, the
process eventually terminates.

Definition 3.5. An ∃∞-decidable Σ-theory T is said to be strongly ∃∞-decidable iff for any finite
Σ-structure A, it is decidable whether A is a model of T .

It is not difficult to find strongly ∃∞-decidable theories. For example, any finitely axiomatizable
∃∞-decidable Σ-theory with a finite Σ is strongly ∃∞-decidable, since it is sufficient to check the
truth of the axioms for finitely many valuations. Now, we are in the position to state and prove
the following modularity property for ∃∞-decidable theories.

Theorem 3.6. Let Ti be a strongly ∃∞-decidable Σi-theory (for i = 1, 2) such that Σ1,Σ2 are
finite and disjoint. Then the combined theory T1 ∪ T2 is ∃-decidable.8

Proof. Let Γ be a finite set of ground Σ1 ∪ Σ2-literals containing free constants. By well-known
means (see, e.g., [5]), we can obtain an equisatisfiable set Γ1 ∪ Γ2 such that Γi contains only
Σa

i -symbols, for i = 1, 2 and for some free constants a. Let Γ0 be an arrangement of the constants
a, i.e. a finite set of literals such that either ai = aj ∈ Γ0 or ai 6= aj ∈ Γ0, for i 6= j and ai, aj ∈ a.
Clearly, Γ1∪Γ2 is satisfiable iff Γ1∪Γ0∪Γ2 is satisfiable for some arrangement Γ0 of the constants
a. From the fact that theories T1, T2 are both ∃∞-decidable, the following case analysis can be
effectively performed:

– If Γ0 ∪ Γi is satisfiable in an infinite model of Ti (for both i = 1, 2), then Γ0 ∪ Γ1 ∪ Γ2 is
satisfiable in an infinite model of T1∪T2 by the standard argument underlying the correctness
of the Nelson-Oppen combination schema (see, e.g., [25, 13]).

– If Γ0 ∪ Γi is unsatisfiable in any infinite model of Ti (for either i = 1 or i = 2), then
(by Lemma 3.4) we can effectively compute an integer N > 0 such that each model M of
T ∪Γi∪Γ0 has cardinality less than N . Hence, it is sufficient to exhaustively search through
Σ1 ∪Σ2 ∪ a-structures up to cardinality N . The number of these structures is finite because
Σ1 and Σ2 are finite and, by Definition 3.5, it is possible to effectively check whether each
such a structure is a model of T1 and T2, and hence also of T1 ∪T2 ∪Γ0 ∪Γ1 ∪Γ2. If a model
is found, the procedure returns ‘satisfiable’, otherwise another arrangement Γ0 (if any) is
tried.

6There is a subtle point here: Lemma 3.4 applies to all ∃-decidable theories, but it is really useful only for
∃∞-decidable theories, because only for these theories the hypothesis ‘Γ in not satisfiable in an infinite model of T ’
can be effectively checked.

7Notice that the literals in δh are simply the Skolemization of the ‘at-least-h-elements’ constraint.
8This result can be easily generalized to the combination of n > 2 theories.
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Theorem 3.6 raises the following

QUESTION 2: Is there a practical sufficient condition for a theory to be strongly ∃∞-
decidable?

Clearly, stably infinite ∃-decidable theories are ∃∞-decidable. More interesting examples are given
in Section 5, where we will show that, whenever a finitely axiomatized theory T admits a rewrite-
based decision procedure for its constraint satisfiability problem [2, 1], T is not only ∃-decidable
but also strongly ∃∞-decidable.

4 Undecidability

In this section, we give an affirmative answer to QUESTION 1 by defining some ∃-decidable theories
that are not ∃∞-decidable. Let ΣTM∞ be the signature containing (in addition to the equality
predicate) the following (infinite) set of propositional letters {P(e,n) | e, n ∈ N}. Consider the
propositional letter P(e,n): we regard e as the index (i.e. the code) of a Turing Machine and
n as the input to the Turing machine identified by e (this coding is possible because of basic
results about Turing machines, see, e.g., [19]). We indicate by k : N × N → N ∪ {∞} the (non-
computable) function associating to each pair (e, n) the number k(e, n) of computation steps of
the Turing Machine e on the input n. We write k(e, n) = ∞ when the computation does not halt.
The axioms of the theory TM∞ are the universal closures of the following formulæ:

P(e,n) →
∨

i<j≤m

xi = xj , if k(e, n) < m. (1)

Two observations are in order. First, the property “being an axiom of TM∞” is decidable, because
the ternary predicate k(e, n) < m is recursive. Indeed, it is sufficient to run the Turing Machine e

on input n and wait at most m computation steps to verify whether e halts. Second, the consequent
of implication (1) is an at-most cardinality constraint, i.e. it is a formula of the form∨

i 6=j

xi = xj (2)

where xi, xj are (implicitly universally quantified) distinct variables for i, j = 1, . . . , n, which
constrain the domain of any model to contain at most n elements. Thus, axioms of the form
(1) tells us that if P(e,n) holds and the the Turing Machine e halts in at most m steps, then the
cardinality of the domains of a model is bounded by m. These properties allow us to state and
prove the following key result:

Proposition 4.1. The theory TM∞ is ∃-decidable but it is not ∃∞-decidable.

Proof. To show that the theory is ∃-decidable, consider a constraint Γ over the signature Σa
TM∞ .

First, guess an arrangement Γ0 for the constants a and check the set of equations and inequations
from Γ∪Γ0 for consistency in the pure theory of equality. Then, if the satisfiability check succeeds,
Γ0 explicitly gives the minimum cardinality m for Γ ∪ Γ0 to be satisfied. Clearly, Γ ∪ Γ0 is
unsatisfiable if it contains both P(e,n) and ¬P(e,n). If this is not the case, we still have to consider
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the constraints represented by axiom (1), which states that if a literal of the kind P(e,n) is in a
ΣTM∞ -constraint, such a constraint can be only satisfied in a model whose cardinality is at most
k(e, n). Thus, if P(e,n) ∈ Γ ∪ Γ0, we only need to check that m ≤ k(e, n), which can be effectively
done since the ternary predicate k(e, n) < m is recursive.

To see that TM∞ is not ∃∞-decidable, notice that the constraint {P(e,n)} is TM∞-satisfiable in
an infinite structure iff k(e, n) = ∞. In turn, this is equivalent to check whether the computation
of the Turing Machine e on the input n does not terminate, which is obviously undecidable, being
the complement of the Halting problem.

The theory TM∞ is defined on an infinite signature. However, it is possible to introduce
two theories TMω and TM∀ω over finite signatures, with the same characteristics as TM∞ as far
as decidability in finite and infinite models is concerned, and such that TM∀ω is also universal.
Since the proofs that such theories are ∃-decidable but not ∃∞-decidable are similar to that of
Proposition 4.1, modulo some technical details, we report their development in Appendix A. Thus,
we are ready to state our first main result:

Theorem 4.2. There exist two ∃-decidable universal theories over finite and disjoint signatures,
whose union is not ∃-decidable.

This result follows from Theorem 3.2 and the fact that TM∀ω is ∃-decidable but not ∃∞-de-
cidable (cf. Proposition A.2 in Appendix A).

5 Decidability

The answer to QUESTION 2 rests on showing that (under suitable assumptions) rewrite-based
methods give practical sufficient conditions for a theory to be strongly ∃∞-decidable. First, we
need to introduce some technical definitions. In Section 5.1, we recall some basic notions underlying
the superposition calculus [18] and we introduce superposition modules as suitable abstractions for
the subsequent technical development. Then, in Section 5.2, we introduce the notion of invariant
superposition modules and, in Section 5.3, we show that they can generate an “at most” cardinality
constraint (cf. (2) in Section 4) whenever a theory does not admit infinite models. Last, in Section
5.4, we describe how to combine rewrite-based procedures [1, 2] with Satisfiability Modulo Theory
(SMT) tools, such as [10, 3, 11, 12], in order to obtain automatic methods to solve constraint
satisfiability problems involving theories admitting only finite models (e.g., enumerated data-
types).

5.1 Superposition Calculi and Superposition Modules

From now on, we consider only universal, finitely axiomatized theories, whose signatures are
finite. Without loss of generality, we assume that signatures contain only function symbols.9 A
fundamental assumption of superposition-based inference systems [18] is that the universe of terms

9Any atom P (t1, . . . , tn) with predicate symbol P other than equality can be written as an equation
p(t1, . . . , tn) = true, where p is a fresh function symbol and true a fresh constant symbol. This transformation
preserves satisfiability (see, e.g., [18]).
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is ordered by a reduction ordering. A reduction ordering on terms can be extended to literals and
clauses by using standard techniques. The most commonly used orderings are the Knuth-Bendix
ordering (KBO) and the lexicographic path ordering (LPO). Definitions, results, and references
on orderings can be found in, e.g., [4]. Since we have to deal with constraints involving finitely
(but arbitrarily) many new constants, we consider a countable set10 K disjoint from Σ to form the
expanded signature ΣK. We collect all needed data in the following:

Definition 5.1 (Suitable Ordering Triple). A suitable ordering triple is a triple (Σ,K,�) where:
(a) Σ is a finite signature; (b) K := {c1, c2, c3, . . . } is a countably infinite set of constant symbols
such that Σ and K are disjoint; (c) � is a reduction ordering over ΣK-terms satisfying the following
conditions:

(i) � is total on ground ΣK-terms;

(ii) for every ground ΣK-term t with root symbol f ∈ Σ and for every ci ∈ K, we have t � ci;

(iii) for ci, cj ∈ K, we have ci � cj iff i > j.

The above conditions on the reduction ordering are similar to those adopted in [2, 1] to build
rewrite-based decision procedures for the constraint satisfiability problem in theories of data struc-
tures, fragments of integer arithmetic, and their combinations. It is indeed very easy and natural
to produce suitable ordering triples: for instance, if an LPO is adopted, it is sufficient to take a
total precedence >p satisfying the condition f >p ci >p cj , for f ∈ Σ, ci ∈ K, cj ∈ K and i > j.

Another key characteristic of a rewrite-based inference system is the possibility of associating a
model to the set of derived clauses, defined by building incrementally a convergent term rewriting
system.

Let (Σ,K,�) be a suitable ordering triple and let S be a set of ΣK-clauses not containing the
empty clause. The set gr(S) contains all ground ΣK-clauses that are instances of clauses in S.
By transfinite induction on C ∈ gr(S), we simultaneously define Gen(C) and the ground rewrite
system RC as follows:

(a) RC :=
⋃

D∈gr(S),C�D Gen(D);

(b) Gen(C) := {l → r} in case C is of the kind ∆1 ⇒ l = r, ∆2 and the following conditions are
satisfied:

1. RC 6|= ∆1 ⇒ ∆2, i.e. (i) for each l = r ∈ ∆1, l and r have the same normal form with
respect to RC (in symbols, l ↓RC

r) and (ii) for each s = t ∈ ∆2, s 6↓RC
t;

2. l � r, l � u (for all u occurring in ∆1), {l, r} �ms {u, v}, for every equation u = v

occurring in ∆2, where �ms is the multi-set extension [4] of �;

3. l is not reducible by RC , and

4. RC 6|= r = t′, for every equation of the kind l = t′ occurring in ∆2;
10Usual results on orderings can be extended to infinite signatures, see [15]; notice however that one can keep the

signature ΣK finite, by coding ci as si(0) (for new symbols s, 0), like e.g. in [9].
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(c) Gen(C) := ∅, otherwise.

We say that C is productive if Gen(C) 6= ∅. Finally, let RS :=
⋃

C∈gr(S) Gen(C). Note that RS

is a convergent rewrite system, by conditions 2 and 3 above.
A set of clauses is saturated with respect to an inference system, if any clause that can be

inferred from S is redundant in S (see, e.g., [7]). In a more abstract treatment, that makes
saturation independent of the inference system and only requires a well-founded ordering on proofs,
a set of formulæ is saturated if it contains all the premises of all normal-form proofs in the theory
[6]. For the purposes of this paper, we are interested in a semantic notion of saturation based on
model generation.

Definition 5.2. A set S of ΣK-clauses is model-saturated iff the rewrite system RS is a model
of S (i.e. the quotient of the Herbrand universe of ΣK modulo RS-convergence is a model of the
universal closures of the clauses in S).

The following definition of reasoning module is precisely what we need to prove the main
technical Lemma 5.9 below.

Definition 5.3 (Superposition Module). Let (Σ,K,�) be a suitable ordering triple. A superpo-
sition module SP(Σ,K,�) is a computable function which takes a finite set S0 of ΣK-clauses as
input and returns a (possibly infinite) sequence

S0, S1, . . . , Sn, . . . (3)

of finite sets of ΣK-clauses, called an S0-derivation, such that ( i) if S0 is unsatisfiable, then there
exists k ≥ 0 such that the empty clause is in Sk; ( ii) if S0 is satisfiable, then the set

S∞ :=
⋃
j≥0

⋂
i≥j

Si

of persistent clauses is model-saturated, and ( iii) the sets Si and Sj are logically equivalent for
(0 ≤ i, j ≤ ∞). We say that SP(Σ,K,�) terminates on the set of ΣK-clauses S0 iff the S0-
derivation (3) is finite.

Superposition modules are deterministic, i.e. there exists just one S0-derivation starting with
a given finite set S0 of clauses. Any implementation of the superposition calculus [18] together
with a fair strategy satisfies Definition 5.3.

5.2 Superposition Modules and Rewrite-based Decision Procedures

For the proofs below, we need a class of superposition modules which are invariant (in a sense
to be made precise) under certain renamings of finitely many constants. Formally, an n-shifting
(where n is an integer such that n > 0) is the operation that applied to a ΣK-expression E returns
the ΣK-expression E+n obtained from E by simultaneously replacing each occurrence of the free
constant ci ∈ K by the free constant ci+n, for i > 0 (where the word ‘expression’ may denote a
term, a literal, a clause, or a set of clauses). In practice, an n-shifting enlarges the set of free
constants occurring in the set of clauses by adding the extra constants c1, . . . , cn that are not in
the range of the function (·)+n.
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Example 5.4. Let us consider the set S := {f(c1, c4) = c1, f(f(c1, c4), c4) = c2} of ground
ΣK-literals where Σ := {f} and K := {c1, c2, . . . }. Then, we have that S+5 := {f(c6, c9) =

c6, f(f(c6, c9), c9) = c7}.

Definition 5.5 (Invariant Superposition Module). Let (Σ,K,�) be a suitable ordering triple. A
superposition module SP(Σ,K,�) is invariant iff for every S0-derivation S0, S1, . . . , Sj , . . . (with
S0 being a set of ΣK-clauses), we have that (S0)+n, (S1)+n, . . . , (Sj)+n, . . . is an (S0)+n-derivation,
for all n ≥ 0.

Most of the actual implementations of superposition are stable under signature extensions (this
is so because they need to handle Skolem symbols) and hence, the behavior of a superposition
prover is not affected by any proper extension of the signature and the ordering. The property
of producing derivations being invariant under shifting is weaker than stability under signature
extensions. As a consequence, any superposition prover can be turned into an invariant superposi-
tion module. However, not all possible implementations of the superposition calculus are invariant
superposition modules, as we shall discuss in Appendix B.

Example 5.6. Suppose that in the suitable ordering triple (Σ,K,�), the term ordering � is an
LPO whose precedence satisfies f >p ci >p cj (for f ∈ Σ, ci ∈ K, cj ∈ K, i > j). Let us consider
the superposition module given by the standard superposition calculus (see Appendix B) and let
us take again the situation in Example 5.4. The (model-)saturated set output by SP(Σ,K,�)

when taking S as input is Ss := {f(c1, c4) = c1, c2 = c1}. It is not difficult to see that the
set (Ss)+5 := {f(c6, c9) = c6, c7 = c6} is exactly the set that we would obtain as output by the
superposition module SP(Σ,K,�) when taking as input the set (S)+5 (see Example 5.4).

Definition 5.7. Let (Σ,K,�) be a suitable ordering triple. A universal and finitely axioma-
tized Σ-theory T is ∃-superposition-decidable iff there exists an invariant superposition module
SP(Σ,K,�) that is guaranteed to terminate when taking as input T∪Γ, where Γ is a ΣK-constraint.

From the termination results for superposition given in [2, 1], it follows that theories such as
equality, (possibly cyclic) lists, arrays, and so on are ∃-decidable by superposition. According to
Definition 5.7, any theory T which is ∃-superposition-decidable is ∃-decidable. In the following,
we show that T is also ∃∞-decidable, which is the second main result of the paper.

5.3 Invariant Superposition Modules and Cardinality Constraints

A variable clause is a clause containing only equations between variables or their negations. The
antecedent-mgu (a-mgu, for short) of a variable clause ∆1 ⇒ ∆2 is the most general unifier of the
unification problem {x ?= y | x = y ∈ ∆1}. A cardinality constraint clause is a variable clause
∆1 ⇒ ∆2 such that ⇒ ∆2µ does not contain any trivial equation like x = x, where µ is the a-mgu
of ∆1 ⇒ ∆2; the number of free variables of ∆2µ is called the cardinal of the cardinality constraint
clause ∆1 ⇒ ∆2. For example, the clause x = y ⇒ y = z1, x = z2 is a cardinality constraint clause
whose cardinal is 3 (notice that this clause is true only in the one-element model).

Lemma 5.8. If a satisfiable set S of clauses contains a cardinality constraint clause ∆1 ⇒ ∆2,
then S cannot have a model whose domain is larger than the cardinal of ∆1 ⇒ ∆2.
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Proof. Let µ be the a-mgu of ∆1 ⇒ ∆2. By definition of a cardinality constraint clause, the clause
⇒ ∆2µ does not contain trivial equations; if n is the number of distinct variables in ⇒ ∆2µ, then
there cannot be more than n− 1 distinct elements in any model of S.

The next crucial lemma expresses the property that an invariant superposition module will
discover a cardinality constraint clause whenever the input set of clauses does not admit infinite
models. In Appendix B, we illustrate this behaviour by showing how the superposition calculus
can derive a cardinality constraint clause from ⇒ x = a, x = b.

Lemma 5.9. Let (Σ,K,�) be a suitable ordering triple. Let SP(Σ,K,�) be an invariant su-
perposition module. If S0 is a satisfiable finite set of clauses, then the following conditions are
equivalent:

(i) the set S∞ of persistent clauses in an S0-derivation of SP(Σ,K,�) contains a cardinality
constraint clause;

(ii) S0 does not admit infinite models.

Proof. The implication (i) ⇒ (ii) is proved by Lemma 5.8. To show (ii) ⇒ (i), assume that the
set S0 does not have a model whose domain is infinite. By Lemma 3.3, there must exist a natural
number N such that every model M of S0 has a domain with at most N elements. Since a
cardinality constraint clause does not contain constants, it is in S∞ iff it is in (S∞)+N . Hence,
by Definition 5.5 of an invariant superposition module (considering (S0)+N rather than S0, if
needed) we are free to assume that the constants {c1, . . . , cN} do not occur in S∞. Recall also
that, according to the definition of a suitable ordering triple, the constants {c1, . . . , cN} are the
smallest ground ΣK-terms.

According to the definition of superposition module (cf. Definition 5.3), since S0 is assumed
to be satisfiable, S∞ is model-saturated, which means that the convergent rewrite system RS∞ is
a model of S∞ (hence also of S0, which is logically equivalent to S∞). Now, since S0 does not
have a model whose domain is of cardinality N or greater, there is at least one constant among
c1, . . . , cN which is not in normal form (with respect to RS∞). Assume that ci is not in normal
form (with respect to RS∞) and that each cj (for j < i) is. By model generation (see section 5.1),
to reduce ci we need a rule l → r from a productive clause C of the kind ∆1 ⇒ l = r, ∆2 ∈ gr(S∞);
furthermore, ci can be reduced only to cj for j < i. The maximality condition 2 of model generation
in Section 5.1 on l implies that l is ci and that the remaining terms in C are of the kind cj for
j ≤ i.11 By condition 1 of model generation in Section 5.1, the fact that all terms cj (j < i)
are in RS∞ -normal form, and the fact that RS∞ is a convergent rewrite system extending RC , it
follows that each equation in ∆1 is of the form cj = cj . Furthermore, again by condition 1 of
model generation in Section 5.1, there is no (trivial) equality of the form cj = cj in ∆2. Since the
constants {c1, . . . , cN} do not occur in S∞, we are entitled to conclude that the productive clause
∆1 ⇒ l = r, ∆2 is the ground instance of a variable clause, i.e. there must exist a variable clause
C̃ of the form ∆̃1 ⇒ l̃ = r̃, ∆̃2 in S∞ such that C̃θ ≡ C for some ground substitution θ. Since the

11More precisely (this is important for the proof): terms occurring positively can only be cj for j ≤ i and terms
occurring negatively can only be cj for j < i.
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antecedent of C consists of trivial equalities, θ is less general than µ, where µ is the a-mgu of C̃,
i.e. we have that θ = µθ′ for some substitution θ′. Furthermore, since there are no positive trivial
equalities in C ≡ C̃µθ′, there are no positive trivial equalities in C̃µ either, which implies that C̃

is a cardinality constraint clause belonging to S∞.

The following result immediately follows from Lemma 5.9 above, because unsatisfiability in
infinite models can be detected by looking for a cardinality constraint clause among the finitely
many final clauses of a terminating derivation:

Theorem 5.10. Let T be a finitely axiomatized universal Σ-theory where Σ is finite. If T is
∃-superposition-decidable, then T is strongly ∃∞-decidable.

5.4 Combining Superposition Modules and SMT Procedures

Invariant superposition modules provide us with means to check whether a theory is strongly
decidable or not (and this answers QUESTION 2 in Section 3.2). However, the situation is not
really clear in practice. By using available state-of-the-art implementations of the superposition
calculus, such as SPASS [28] or E [24], with suitable ordering, we have run concrete invariant
superposition modules for a theory T≤k, admitting only finite models with at most k−1 elements,
axiomatized by an appropriate “at most” cardinality constraint, see (2). Indeed, according to
Definition 5.5, the hard part is to prove termination for arbitrary input clauses of the form T≤k∪Γ,
where Γ is a set of ground literals. Our preliminary experiments were quite discouraging. In fact,
both SPASS and E were able to handle only the trivial theory T≤1 (axiomatized by ⇒ x = y).
Already for T≤2 (axiomatized by ⇒ x = y, x = z, y = z), the provers do not terminate in a
reasonable amount of time although we experimented with various settings. For example, while
SPASS is capable of finding a saturation for T≤2 ∪ Γ when Γ := ∅, it seems to diverge when
Γ := {a 6= b}. This seems to dramatically reduce the scope of applicability of Theorem 5.10 and
hence of Theorem 3.6.

Fortunately, this problem can be solved by the following two observations. First, although
a superposition module may not terminate on instances of the constraint satisfiability problem
of the form T ∪ Γ, where Γ is a constraint and T does not admit infinite models (such as T≤k,
above), Lemma 5.9 ensures that a cardinality constraint clause will eventually be derived in a
finite amount of time: if a clause C is in the set S∞ of persistent clauses of a derivation S0, S1, . . . ,
then there must exists an integer k ≥ 0 such that C ∈ Sk (recall Definition 5.3). Second, when a
cardinality constraint clause C is derived from T ∪Γ, a bound on the cardinality of the domains of
any model can be immediately obtained by the cardinal associated to C. It is possible to use such
a bound to build an equisatisfiable set of clauses (see Figure 1) and pass it to an efficient decision
procedure for the pure theory of equality, based on congruence closure, such as those provided
by many SMT tools (see, e.g., [10, 3, 11, 12]). The observations above motivate the following
relaxation of the notion of an ∃-superposition-decidable theory.

Definition 5.11. Let (Σ,K,�) be a suitable ordering triple. A universal and finitely axiomatized
Σ-theory T is weakly-∃-superposition-decidable iff there exists an invariant superposition module
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function Grounding (N : integer, T : axioms, Γ: Ground literals)

1 introduce fresh constants c1, . . . , cN ;

2 for every k-ary function symbol f in Γ ∪ T (with k ≥ 0), generate the positive

clauses
N∨

i=1

f(a1, . . . , ak) = ci

for every a1, . . . , ak ∈ {c1, . . . , cN} and let E be the resulting set of clauses;

3 for every clause C ∈ T , instantiate C in all possible ways by ground substitutions

whose range is the set {c1, . . . , cN} and let Tg be the resulting set of clauses;

4 return the set Tg ∪ E ∪ Γ.

end

Figure 1: Computing equisatisfiable sets of ground clauses for instances of the constraint satisfia-
bility problem of theories with no infinite models

SP(Σ,K,�) such that for every ΣK-constraint Γ, any T ∪ Γ-derivation either (i) terminates or
(ii) generates a cardinality constraint clause.

We can easily adapt Theorem 5.10 to this new definition.

Theorem 5.12. Let T be a universal and finitely axiomatized Σ-theory, where Σ is finite. If T is
weakly-∃-superposition-decidable, then T is strongly ∃∞-decidable.

Proof. Decidability of Σ-constraints in models of T can be obtained by halting the invariant
superposition module and then using any SMT procedure for the theory of equality with the set of
clauses obtained by the function Grounding of Figure 1. Decidability in infinite models is answered
negatively if a cardinality constraint clause is generated; otherwise, we have termination of the
invariant superposition module and if the empty clause is not produced, satisfiability is reported
by Lemma 5.9.

6 Conclusion and Future Work

By classifying the component theories according to the decidability of constraint satisfiability prob-
lems in finite and infinite models, respectively, we exhibited a theory T1 such that T1-satisfiability
is decidable, but T1-satisfiability in infinite models is undecidable. It follows that satisfiability in
T1 ∪ T2 is undecidable, whenever T2 has only infinite models, even if signatures are disjoint and
satisfiability in T2 is decidable. In the second part of the paper we strengthened the Nelson-Oppen
combination result, by showing that it applies to theories over disjoint signatures, whose satisfia-
bility problem, in either finite or infinite models, is decidable. We showed that this result covers
decision procedures based on superposition, generalizing the recent approach of [1].

An interesting line of future work consists of finding ad hoc simplification rules which allow
the superposition calculus to terminate on theories that do not admit infinite models such as the
T≤k’s considered in Section 5.4.
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A Refined Undecidability Results

Here we refine Proposition 4.1 by avoiding the use of an infinite signature like ΣTM∞ .

A.1 A Variant of Theory TM∞: TMω

Consider the signature ΣTMω
consisting of a constant symbol 0, a unary predicate symbol P , and

two binary predicate symbols < and S. The axioms of the theory TMω are the universal closures
of the following formulæ:

¬x < x (4)

x < y ∧ y < z → x < z (5)

x < y ∨ x = y ∨ y < x (6)

0 = x ∨ 0 < x (7)

S(x, y) ↔ (x < y ∧ ¬∃z(x < z ∧ z < y)) (8)

x < y → ∃z(S(x, z) ∧ (z < y ∨ z = y)) (9)

P (xa) ∧ S(0, x1) ∧ · · · ∧ S(xa−1, xa) ∧ S(xa, xa+1) ∧ · · · ∧ S(xa+m−1,xa+m) → ⊥,

if a = 〈e, n〉 and k(e, n) < m (10)

P (x) ∧ P (y) → x = y (11)

where 〈·, ·〉 is a primitive recursive coding for pairs, i.e. a computable bijection from N × N to N
(we are guaranteed that the primitive recursive coding function 〈·, ·〉 exists because of basic results
about primitive recursive functions, see again [19] for details).

Two remarks are in order. First, because of axioms (4)-(9), any model of TMω is a ΣTMω -
structure endowed with a strict linear order with first element; moreover, every element (except
the last one, if any) has an immediate successor. Second, finite models of TMω are initial segments
of N, whereas infinite models admit N as an initial segment. It is also worth to consider the last
two axioms of TMω:

– axiom (10) means that, given a Turing Machine e, its input n, and the coding h of the pair
(e, n), the atom P (h) can be satisfied only in models of cardinality at most h + k(e, n) + 1;

– axiom (11) states that there is no model satisfying two atoms P (a) and P (b) if a 6= b. This
axiom simplifies the technical development below.

Proposition A.1. The theory TMω is ∃-decidable but it is not ∃∞-decidable.

Proof. Let Γ be a constraint over the signature Σc. We define a TMω-guessing G on Γ as a finite set
of ground Σc-literals such that (i) Γ ⊆ G and (ii) for every pair of distinct constants a, b ∈ c∪{0},
either a < b ∈ G, b < a ∈ G, or a = b ∈ G. Clearly, Γ is TMω-satisfiable iff some TMω-guessing G
on Γ is TMω-satisfiable. As a consequence, we consider the problem of deciding the satisfiability
of a TMω-guessing G.

Given such a TMω-guessing G, notice that for G to be consistent, the equations belonging to G
must induce an equivalence relation on the constants occurring in it. Let us pick a representative
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constant for each equivalence class (with 0 being the representative for its class). Furthermore, let
us replace all terms in G with the representative constants of their equivalence classes. After this
transformation, without loss of generality, we can delete all equalities and inequalities from G. Let
us denote the result of such transformations still with G. For each negative literal ¬S(c1, c2) in G
such that c1 < c2 ∈ G and {c1 < a, a < c2} 6⊆ G for some constant a, we add c1 < c3, c3 < c2 to
G, where c3 is a fresh constant. After this step, the literals of the form a < b that are in G should
put the constants in G in a linear order, i.e.

c0 < c1 < c2 < · · · < cs−1 < cs.

Here c0 is 0, ci and cj are distinct for i 6= j, and only inequalities of the form ci < cj (0 ≤ i < j ≤ s)
are in G (if it is not so, it is because G contains inconsistencies from the point of view of the theory
of strict linear orders with first element). Furthermore, if S(ci, cj) ∈ G, then j = i + 1; otherwise,
G is inconsistent. Thus, all literals in G (not containing P ) are satisfied, for instance, in the
linearly ordered structure containing s elements. Clearly, G is inconsistent if it contains a pair of
complementary literals, so we suppose this is not the case. Because of axiom (11), it can contain
at most one positive literal involving the predicate P and, at this point, G can be unsatisfiable
only because of the presence of such a literal. Let this literal be P (ca); for m = s−a, the following
inequalities

0 < c1 < c2 < · · · < ca−1 < ca < ca+1 < · · · < ca+m

are in G. If there is j < a such that S(cj , cj+1) /∈ G, then G is satisfiable. To see this, consider a
non standard model of Arithmetic and interpret cj+1, . . . , ca+m as elements greater than all the
standard natural numbers: if the predicate P is interpreted as the singleton subset formed by
(the interpretation of) ca, axiom (10) is true because the a-th successor of 0 is not in P . On the
other hand, if {S(0, c1), S(c1, c2), . . . , S(ca−1, ca)} ⊆ G, then G is satisfiable iff m ≤ k(e, n) where
a = 〈e, n〉. Since 〈e, n〉 and the relation m ≤ k(e, n) are computable, we have a decision procedure
for the constraint satisfiability problem in TMω.

To see that TMω is not ∃∞-decidable, notice that the TMω-constraint

{S(0, c1), S(c1, c2), . . . , S(ca−1, ca), P (ca)},

(for a = 〈e, n〉) is TMω-satisfiable in an infinite structure iff the computation of the Turing Machine
e over the input n diverges, which is obviously undecidable.

A.2 A Variant of Theory TMω: TM∀ω

Theory TMω is not universal. However, it is not difficult to find an alternative axiomatization over
a finite signature ΣTM∀ω

so to define a universal theory TM∀ω which is ∃-decidable but it is not
∃∞-decidable. With this theory in mind, the full claim of Theorem 4.2 is proved: now the ∃-decid-
able component theories leading to undecidable combined problems are universal and signatures
are always finite and disjoint (the theory of acyclic lists [20] is universal, has only infinite models
and its signature is finite, so it satisfies all needed requirements for the undecidable combination
with TM∀ω).
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The main ideas used in the definition of TM∀ω are the following: (a) we replace the binary
predicate symbol S of TMω with a unary function symbol s; (b) we re-use axioms (4)-(7) and (c)
we introduce new axioms to constrain the unary symbol s to be such that s(x) = x holds iff the
order < has a last element which is precisely x.

In more detail, the signature of the theory TM∀ω coincides with the signature of the theory
TMω with the exception that the binary predicate symbol S is replaced by the unary function
symbol s. The axioms for TM∀ω are divided into three groups. In the first group we have axioms
(4)-(7) and in the second group the following ones:

x = s(x) ∨ x < s(x) (12)

¬(x < y ∧ y < s(x)) (13)

x < y → s(x) < y ∨ s(x) = y (14)

s(x) = x ∧ x < y → ⊥ (15)

Axioms (12)-(15), together with (4)-(7), state that the function s behaves like a successor
function with the exception that fixed points of s are allowed (see (12)). Axiom (15) however says
that the only possible fixed point of the function s is the maximum element with respect to the
order <.

In addition to the axioms of the first two groups (namely (4)-(7) and (12)-(15)), in the third
group, we have axiom (11) and the following one (which replaces (10)):

P (sa(0)) ∧ sa+m−1(0) < sa+m(0) → ⊥ if a = 〈e, n〉 and k(e, n) < m (16)

Proposition A.2. The theory TM∀ω is ∃-decidable but it is not ∃∞-decidable.

Proof. The argument is similar to the argument used in the proof of Proposition A.1, with the
proviso that the constraint Γ should be flattened. Moreover, once the linear order

c0 < c1 < · · · < cs−1 < cs

is obtained, we notice that if the literal cj = s(ci) belongs to the guessing G, then this is inconsistent
if j 6= i+1 or if j = i 6= s. The other steps in the proof of Proposition A.1 remain unchanged.

It is still an open problem to find an ∃-decidable, non ∃∞-decidable theory (in a finite signa-
ture), which is universal and finitely axiomatized.

B Deriving a Cardinality Constraint Clause in Practice

In this Appendix we give an example showing the content of Lemma 5.9 and we further dis-
cuss invariance as stated in Definition 5.5. Figure 2 shows the expansion inference rules of the
superposition calculus used in [2, 1].

This calculus is refutationally complete: model generation technique is the main tool to show
this result. However, the completeness proof in [18] makes clear that the calculus is complete as
well if the ordering constraints are interpreted as symbolic constraint solving problems (see, e.g.,
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Superposition
C ∨ l[u′] = r D ∨ u = t

(C ∨D ∨ l[t] = r)σ
(i), (ii), (iii), (iv)

Paramodulation
C ∨ l[u′] 6= r D ∨ u = t

(C ∨D ∨ l[t] 6= r)σ
(i), (ii), (iii), (iv)

Reflection
C ∨ u′ 6= u

Cσ
∀L ∈ C : (u′ = u)σ 6≺ Lσ

Equational Factoring
C ∨ u = t, u′ = t′

(C ∨ t 6= t′ ∨ u = t′)σ
(i), ∀L ∈ {u′ = t′} ∪ C : (u = t)σ 6≺ Lσ

where the notation l[u′] means that u′ appears as a sub-term in l, σ is the most general unifier (mgu) of

u and u′, u′ is not a variable in Superposition and Paramodulation, and the following abbreviations hold:

(i) is uσ 6� tσ,

(ii) is ∀L ∈ D : (u = t)σ 6� Lσ,

(iii) is l[u′]σ 6� rσ, and

(iv) is ∀L ∈ C : (l[u′] ./ r)σ 6� Lσ.

Figure 2: Expansion rules: in these rules, what is below the inference line is added to the clause set that

contains what is above the inference line. Premises of a rule should be renamed to have disjoint variables;

./ is either = or 6=, and identity is symmetrized (meaning that s = t may also denote t = s).

[8, 17, 14]): this means that e.g. the condition (i) can be rephrased as ‘there exists a ground
substitution θ such that uσθ � tσθ’ (where 6� can be replaced to �, because the ordering is total
on ground terms). We can further restrict the ground substitution θ to take values in the actual
signature (and not in a signature extending the actual one). These choices are not very convenient
from a practical point of view, because the benefit of blocking some inference does not compensate
the increase in complexity due to the intractability of symbolic constraint solving problems (which
usually are NP-complete problems). What we want to point out here is that this interpretation
of ordering constraints as symbolic constraint solving problems in the actual signature destroys
invariance in the sense of Definition 5.5 and also invalidates the statement of Lemma 5.9. To see
why this is the case, let c1 ∈ K be the smallest constant in the given suitable ordering triple.
A clause like x = c1 can be superposed with itself if the maximality constraint is interpreted as
x 6� c1 (and the result of the superposition is x = y). On the other hand, if the maximality
constraint is interpreted as a symbolic constraint solving problem in the signature ΣK, then no
superposition applies because there is no ground term smaller than c1 in ΣK. Unfortunately, if
we apply a +2-shifting, then the symbolic constraint c3 � x? has, e.g., the solution x 7→ c1 and
superposition is not blocked anymore. Notice also that the singleton set of clauses {x = c1} is
model-saturated,12 has no infinite models, but does not contain a cardinality constraint clause.

To illustrate the content of Lemma 5.9 in a simple but not entirely trivial case, let us consider
12Recall that we defined model-saturation of a set of clauses in terms of the rewrite system associated to the

model generation construction (and not in terms of closure - up to redundancy - with respect to the rules of the
calculus).
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the clause ⇒ x = a, x = b, which tells us that there are at most two elements in the domain of a
model (these are the interpretations of the constants a and b). It is instructive to apply to this
clause the superposition calculus (in the plain Figure 2 formulation, where ordering constraints
are just 6�-conditions). The following is a derivation of a cardinality constraint clause:

1. ⇒ u = a, u = b

2. ⇒ u = a, v = a, v = u [Sup 1.1, 1.1]

3. ⇒ u = a, u = v, w = v, x = a, x = w [Sup 2.0, 2.0]

4. a = a ⇒ u = v, w = v, u = a, u = w [Fac 3.0, 3.3]

5. ⇒ u = v, w = v, u = a, u = w [Ref 4.0]

6. ⇒ u = v, w = v, u = w, x = y, z = y, x = u, x = z [Sup 5.2, 5.2]

where u, v, w, x, y, and z are variables, Sup abbreviates Superposition, Fac abbreviates Factoring,
Ref abbreviates Reflection, and the sequences of non-negative integers separated by ‘.’ denote
positions. With a little bit of effort, it is possible to derive (by continuing the application of the
rules of the calculus) a cardinality constraint clause whose cardinal is 3:

7. v = y ⇒ z = y, w = v, z = w, x = y, x = z, x = z [Fac 6.0, 6.4]

8. ⇒ z = y, w = y, z = w, x = y, x = z, x = z [Ref 7.0]

9. y = y ⇒ z = y, x = y, z = x, x = z, x = z [Fac 8.1, 8.3]

10. ⇒ z = y, x = y, z = x, x = z, x = z [Ref 9.0]

11. z = z ⇒ z = y, x = y, z = x, x = z [Fac 10.3, 10.4]

12. ⇒ z = y, x = y, z = x, x = z [Ref 11.0]

13. z = z ⇒ z = y, x = y, z = x [Fac 12.2, 12.3]

14. ⇒ z = y, x = y, z = x [Ref 13.0]

Cardinality constraint clauses are always derived by common superposition provers, according
to Lemma 5.9, when saturating sets of clauses not admitting infinite models. Such derivations,
however, even in simple cases like the one above, seems to take considerable amount of time in
state-of-the-art provers.
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