
UNIVERSITÀ DEGLI STUDI DI MILANO
FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI

Dipartimento di Matematica

DOTTORATO DI RICERCA IN MATEMATICA

Settore scientifico-disciplinare MAT/01

XIX CICLO

COMBINED DECISION PROCEDURES

FOR CONSTRAINT SATISFIABILITY

Advisor: Prof. Silvio Ghilardi

PhD Coordinator: Prof. Antonio Lanteri

PhD Student:

Enrica Nicolini

ANNO ACCADEMICO 2005/2006

Contents

Introduction iii
Overview . iii
Motivations . vi

1 Deciding First-Order Fragments 1
1.1 Preliminaries . 1
1.2 Examples from the Literature . 3

1.2.1 Presburger Arithmetic . 3
1.2.2 The Description Logic ALC . 6

1.3 Arrays with Dimension . 12
1.3.1 A Decision Procedure for Arrays with Dimension 16
1.3.2 The Architecture . 16
1.3.3 The Algorithm . 20
1.3.4 Correctness of the Procedure . 21

2 Combining Theories over Disjoint Signatures 24
2.1 The Nelson-Oppen Combination Schema 24
2.2 Undecidability Results . 26

2.2.1 The Theory TM∞ . 27
2.2.2 Refined Undecidability Results . 28

2.3 Decidability Results . 31
2.4 Combination by Superposition . 33

2.4.1 Superposition Calculus: an Overview 33
2.4.2 Superposition Modules . 35
2.4.3 Superposition Modules and Rewrite-based Decision Procedures . . 37
2.4.4 Invariant Superposition Modules and Cardinality Constraints . . . 38
2.4.5 Combining Superposition Modules and SMT Procedures 42

3 Combining Theories over Non-Disjoint Signatures 44
3.1 Some Notions from Model Theory . 44
3.2 Compatibility . 47
3.3 Combining Compatible Theories . 48

3.3.1 Proofs of the Combination Result 50
3.4 Locally Finite Theories and their Combinations 54
3.5 Positive Basis Enumerators . 56

3.5.1 Noetherian Theories and their Combinations 57

i

3.6 Examples . 61

4 A Higher-Order Framework for Combination 74
4.1 Type-Theoretic Languages . 75

4.1.1 Signatures . 75
4.1.2 Terms . 76
4.1.3 Substitutions and Conversions . 77
4.1.4 Models . 78

4.2 Fragments . 80
4.2.1 Algebraic Fragments . 80
4.2.2 Examples . 84
4.2.3 Reduced Fragments and Residues 90
4.2.4 Noetherian, Locally Finite and Convex Fragments 93
4.2.5 Further Examples . 95

4.3 Combined Fragments . 96
4.3.1 The Purification Steps . 97
4.3.2 The Combination Procedure . 100
4.3.3 Soundness . 104
4.3.4 Termination . 105
4.3.5 Towards Completeness . 105

4.4 Isomorphism Theorems and Completeness 109
4.4.1 The Main Combination Result . 111
4.4.2 Applications: Decidability Transfer through Ultrapowers 113
4.4.3 Applications: Decidability Transfer through Disjoint Copies 118

5 Combination for Monodic Fragments 126
5.1 Constant Domains and Standard Translation 127
5.2 Monodic Fusions for Fragments . 128
5.3 An Alternative Translation . 130
5.4 Proof of the Monodic Decidability Transfer Result 134

Conclusions 139

Index 140

List Of Symbols 145

Bibliography 147

ii

Introduction

This thesis is devoted to the study of the decidability of fragments of different logical

languages and to the transfer of the decidability to their combination. The interest in

such topics relies on the deep impact of such results to the applications: it is noteworthy

that, in this context, attention is paid more to the development of fast and efficient, even

if ad hoc, algorithms for the decidability than of logical calculi.

This fact has led to the use of a huge variety of heterogeneous methods for deciding

fragments, hence the need of re-using such methods in a modular way to solve more

complex problems arises. The natural answer to these needs is a combination schema

that should be as general and flexible as possible, and, equipped with suitable hypothesis,

should be capable to transfer the decidability from fragments to their combinations.

Overview

Chapter 1 presents some examples to the aim of justifying the need of re-using and in-

tegrating already existing procedures, and is divided into two parts. Section 1.2 presents

two well-known decidability results: one, due to Presburger, concerns a fragment of the

theory of arithmetic, the other concerns the satisfiability problem in the description lan-

guage ALC. The latter part of the chapter (Section 1.3) describes a result of ours about

the decidability of the universal fragment of the theory of arrays with dimension.

Our contribution in the remaining part of the thesis regards the combination of de-

cision procedures, focusing our attention on the decidability of the universal fragment.

Deciding the universal fragment of a given first-order theory T on a signature Σ is equiv-

alent to deciding the constraint satisfiability problem for T . More in detail, the constraint

satisfiability problem for T is the problem of deciding whether the conjunction of a finite

set of Σ-literals is satisfiable in a model of T . The combination problem arises when we

consider two first-order theories T1 and T2 over the signatures Σ1 and Σ2 respectively

(notice that it may happen that the signatures Σ1 and Σ2 are non-disjoint). If we are

able to decide the constraint satisfiability problem in both T1 and T2, we wonder whether

it is possible to solve the same problem in T1 ∪ T2. One of the simplest methodologies

iii

for the combination of decision procedures is represented by the Nelson-Oppen procedure

(see [69]), which was originally designed only for the disjoint signatures case and which

is guaranteed to be terminating and complete under the following assumptions: (i) Σ1

and Σ2 are disjoint; (ii) the theories T1 and T2 are stably infinite, i.e. Ti is such that any

quantifier-free Σ-formula ϕ which is satisfiable in a model of Ti is satisfiable in a model

of Ti whose domain is infinite.

In Chapter 2 assumption (ii) is analyzed. If we drop this hypothesis, we prove that

it is possible to incur in undecidability. In fact, in Section 2.2.1 we show an example

of a theory whose constraint satisfiability problem is decidable, but it is not decidable

if a constraint is satisfiable in an infinite model (obviously this is not the case of stably

infinite theories). Relying on such a result, we prove that there exist theories over finite

and disjoint signatures, having decidable constraint satisfiability problem, and such that

their union has undecidable constraint satisfiability problem. On the other hand, if we are

able to decide whether a constraint is satisfiable in an infinite model, we are close to get

a decidability result. Indeed, if we consider strongly ∃∞-decidable theories over disjoint

signatures (i.e., theories satisfying the following condition: (i) the constraint satisfiability

problem is decidable; (ii) it is decidable if a constraint is satisfiable in an infinite model;

(iii) it is decidable whether a finite structure is a model of the theory), we can transfer

the decidability to the union of the theories.

On the other side, in Chapter 3 we consider the assumption (i) about the disjointness

of the signatures. A first attempt to drop it can be found in [44], where the decidability

of the constraint satisfiability problem for T1∪T2 is obtained under the following assump-

tions: (a) the constraint satisfiability problems for T1 and T2 are decidable; (b) the theory

T1 and T2 are both compatible with respect to a Σ0-theory T0, where Σ0 is the shared

signature Σ1 ∩ Σ2; (c) the theory T0 is effectively locally finite, i.e. the signature Σ0 is

finite and, given a finite set of constants a, there exists only a finite (and computable) set

of ground Σ
a
0-terms which are “representative” modulo T0. After introducing a suitable

notions of noetherian theory and Ti-basis enumerator, our main contribution lies in prov-

ing that the assumption (c) can be weakened by requiring that the common subtheory T0

is noetherian and there exist Ti-basis enumerators. This result is a proper extension of

the result presented in [44] as it offers, for example, the opportunity of guaranteeing the

decidability of the constraint satisfiability problem for the combination of theories coming

from the field of computer algebra.

In Chapter 4 it is shown how to push Nelson-Oppen methodology even further, in

order to solve in a uniform way as many problems as possible. In fact, when it is used

in conjunction with model-theoretic results, it succeeds in dealing with various classes of

iv

combination problems, often quite far from the originally intended application domain.

In this respect, the Nelson-Oppen schema has been recast into an higher-order framework

by adopting type-theoretic signatures in Church’s style.

The interest of this approach relies on the existence of tractable fragments of general

type theory whose “combination” often turns out to be tractable. In order to plug the

Nelson-Oppen procedure into a higher-order context, a suitable notion of algebraic frag-

ment is needed (Section 4.2). In this framework, a constraint satisfiability problem for the

algebraic fragment Φ is reformulated as the problem of deciding whether a Φ-constraint is

satisfiable in some structureM belonging to the class of structures where Φ is interpreted.

Our definition of a fragment is sufficient to naturally reproduce Nelson-Oppen steps, but

we still have to face termination and completeness issues: for these, additional hypotheses

are needed.

In order to ensure termination, we modify the noetherianity notion previously intro-

duced by adapting it to the new context. To guarantee the completeness of the combi-

nation procedure in our context, we rely on powerful model-theoretic and semantically

driven tools, the so-called structural operations which, in order to be useful, are required

to admit an isomorphism theorem. An example of structural operations admitting an iso-

morphism theorem (for fragments consisting of all first-order formulae interpreted in an

elementary class) are ultrapowers: Keisler-Shelah isomorphism theorem (see [25]) proves

that two L(A)-models M and N are elementarily equivalent if and only if there is an

ultrafilter U such that the ultrapowers
∏

UM and
∏

U N are L(A)-isomorphic. Another

example of isomorphism theorem, operating on certain monadic first-order fragments, is

given by disjoint unions (this is the isomorphism theorem useful to get fusion decidability

transfer results in modal logic).

Equipped with such tools, we are able to prove a general decidability transfer result

that covers as special cases, besides new applications, the aforementioned extension of

Nelson-Oppen procedure to non-disjoint signatures, the fusion transfer for decidability

of global consequence relation in modal logic, and the fusion transfer of decidability of

A-Boxes with respect to T-Boxes axioms in local abstract description systems.

Finally, Chapter 5 contains a non trivial result of combination which fully exploits

the framework developed in the previous chapter. After introducing a proper definition

of monadically suitable fragment, the key theorem of the chapter states the transfer

decidability result for the monodic fusion of the one variable modal fragment and the

monadically suitable one. As a particular case, this theorem allows to reduce decidability

of modal and temporal monodic fragments to their extensional (i.e. non modal) and

one-variable components, thus recovering and properly extending the results in [94].

v

Motivations

With the birth of the modern symbolic logic, the idea that all the mathematical theorems

can be derived in a somehow “mechanizable” and “automatizable” way arose. In the

thirties the results by Gödel strongly limited the validity of that idea, showing that it is

not always possible to state, given a sentence in the language of a certain theory, whether

or not it is true in all the models of the theory. Notwithstanding Gödel’s results, the idea

of mechanizing part of the human reasoning has been developed.

More recently, the interplay between logic and computer science has been so rich,

active and dynamic to gradually get recognized by itself as a field of research, the so-

called field of computational logic, which essentially consists of all uses of logic in computer

science. Indeed, logic continues to play an important role in computer science and has

permeated several of its areas, including artificial intelligence, computational complexity,

program logics, programming languages and program verification.

In this context the area of automated deduction offers not only a novel use of logic in

computer science, but gives also an opportunity for the study and development of new

logical instruments, which can be advantageously used to cope with problems coming

from concrete applications. This field is young, as suggested by the word “automated”,

but its basis is ancient as suggested by the word “deduction”. Some trace the origins

of automated deduction to the Cornell summer meeting in 1957 that brought together a

large number of logicians and computer scientists, and where Abraham Robinson outlined

a proof procedure for the first-order predicate calculus based on searching for models

in the Herbrand universe. Others say that it began before that, with the 1955 Logic

Theorist program of Newell, Shaw and Simon, or with Martin Davis 1954 implementation

of Presburger’s decision procedure. Nowadays, two of the most fruitful application fields

of automated deduction are software verification and knowledge representation.

Software Verification

Software verification is a broad discipline of software engineering whose goal is to assure

that a software fully satisfies certain expected requirements. Usually, this requirements are

focused on guaranteeing the absence of incorrect behaviors (i.e., “bugs”). Catching bugs

in programs is difficult and time-consuming, however the efforts are justified because the

use of faulty software has a huge negative impact on the balance of the companies. Indeed,

according to [74], costs of inadequate software testing infrastructure on the economy of

the United States are estimated in 59 billions US dollars, whereas the potential cost

reduction from feasible infrastructure improvements is quantified around 22 billions US

dollars. These estimates do not reflect “costs” associated with mission critical software,

where failure can lead to extremely high costs such as loss of life or catastrophic failure.

vi

Examples of that kind are the breakdown of a SCUD missile which killed 28 people at

Dhahran in 1991, the explosion of the ESA rocket Ariane 5 in 1996, and even the well-

known “pentium-bug” that forced Intel to replace all flawed Pentium microprocessor in

1994.

The effort of debugging and proving correct even small units of code can surpass the

effort of programming. Bugs inserted while “programming in the small” can have dramatic

consequences for the consistency of a whole software system as shown, e.g., by viruses

which can spread by exploiting buffer overflows, a bug which typically arises while coding

a small portion of code. To detect this kind of errors, many verification techniques have

been put forward. There are two main approaches to verification, the so-called dynamic

and static verification. The former, also called testing, is the most widespread technique

and consists in the process of executing a program or an application with the aim of finding

errors. There are many approaches to software testing, depending on the availability of

the source code (white- and black-box approaches), on the stage of the development of

the product (alpha, beta and gamma testing), on the kind of product to be tested, on the

required degree of automation, and so on. However, effective testing of complex products

is essentially a process of investigation. Testing could mean “the process of questioning a

software in order to evaluate it”, where the “questions” are things the tester tries to do

with the software, and the product answers with its behavior in reaction to the probing

of the tester. With that in mind, it is clear that testing can never completely establish

the correctness of an arbitrary computer software.

Here in the following, we shall be mainly interested in static verification (also called

static analysis or formal verification), which differs from testing because it aims to guar-

antee that a system does not have a certain defect or does have a certain property. Formal

verification can be used, for example, for systems such as cryptographic protocols, combi-

natorial circuits, digital circuits with internal memory, and software expressed as source

code. The verification of these systems is done by providing a formal proof on an abstract

formal model of the system, the correspondence between the formal model and the nature

of the system being otherwise known by construction.

We can distinguish two main approaches to formal verification. The first approach is

called model checking (see, e.g., [26]): roughly speaking, it consists of a systematically

exhaustive exploration of the mathematical model. This technique is commonly used to

verify finite-state systems, but it sometimes be applied also to the infinite-state case.

The second approach consists of using a formal version of logical reasoning about the

system, usually using software such as the PVS, COQ, HOL, Isabelle, and Nqthm theorem

provers. This process is generally only partially automated and is driven by the user’s

understanding of the system to validate, but relies on fully automated procedures (from

now on called decision procedures) for some subproblems. Indeed, in verification with

vii

proof assistants, decision procedures are typically used for eliminating trivial subgoals

represented, for instance, as sequents modulo a background theory which usually axiom-

atize standard data-types commonly used in programs such as arrays, lists, bit-vectors

and so on.

Formal verification has been used to automatically detect common bugs such as out-

of-range array subscripts and variables used before initialization. More recently, in the

static analysis community, there seems to be a growing demand for a more declarative

approach. A declarative approach seems mandatory to enable the programmer to express

the properties to be checked so that the results of the analysis can be confronted against

his expectations. In this direction, some tools (e.g. [50, 38]) based on (extensions of)

first-order logic have been developed. These tools take a program with some annotations

written in (an extension of) first-order logic and produce a set of formulae of (a fragment

of) first-order logic whose satisfiability implies that a bug is present in the code. In order

to check for satisfiability, a procedure capable of handling the generated proof obligations

must be available.

Discharging the proof obligations arising in software verification and eliminating sub-

goals in verification with proof assistants reduce to the problem of proving the unsatisfia-

bility of a quantifier-free sentence with a complex Boolean structure modulo a background

theory T . This is the main reason to study the constraint satisfiability problem and to

develop decidability results for fragments of first-order theories. Moreover, since problems

deriving from software verification involve heterogeneous domains which are axiomatized

by different theories, modularity in combining and re-using algorithms and concrete im-

plementation of already developed decision procedures becomes crucial. In any involved

area, the combination and integration of existing decision procedures are non trivial tasks

mainly because of the heterogeneity of the techniques used by the component decision

procedures. If we consider the theories which are suitable for software verification, de-

cision procedures are obtained in many different ways: sometimes (e.g., when T is the

empty theory, the theory of lists or the theory of arrays) the superposition calculus de-

cides constraint satisfiability (see [5]), but in many other cases (for example whenever

arithmetic constraints are involved) ad hoc procedures are needed. In this context the

problem of combining decision procedures, which is the main topic considered in this

thesis, naturally arises.

A Toy Example In order to give an idea of the properties that are usually involved

in practical applications, we present a prototypical example of the properties one would

check in software verification.

Consider the following two program fragments written in C language:

viii

for (k=1; k<=n; k++)

a[i+k] = a[i]+k;

for (k=1; k<=n; k++)

a[i+n-k] = a[i+n]-k;

Notice that, if the execution of either fragment produces the same result in the array

a, then a[i+n]==a[i]+n must hold initially for any value of i and n. Fixed an integer

n, it is possible to automatically prove the above property. First of all, we need to give a

representation of the property using the formal language of first-order logic. We rely on

the following two theories T1 and T2, which will be presented more in detail in Sections

1.2.1 and 1.3:

(T1) The theory of arrays is used to express the formal properties of this common data-

type. Its signature consists of two function symbols (select and store) used to

represent the action of recovering an element from an array and of writing an element

into an array;

(T2) A fragment of the theory of Presburger Arithmetic is used to express the formal

properties of the additive group of the integers we are interested in.

For n = 2, we can represent the property with the following formula:

store(store(a, i+ 1, select(a, i) + 1), i + 2, select(a, i) + 2) =

store(store(a, i + 1, select(a, i+ 2)− 1), i, select(a, i+ 2)− 2)

→ select(a, i+ 2) = select(a, i) + 2

where i is an implicitly universally quantified variable.

In general, for n ≥ 0, the required formula is more complicated and has the following

form:

Ln
n = Rn

n → select(a, i+ n) = select(a, i) + n (1)

where

Ln
0 = Rn

0 = a

Ln
k = store(Ln

k−1, i+ k, select(a, i) + k) for k = 1, . . . , n

Rn
k = store(Rn

k−1, i+ n− k, select(a, i+ n)− k) for k = 1, . . . , n

Both of the involved theories admit decision procedures able to check the satisfiability

of a constraint, i.e. a conjunction of ground literals. That is the reason why we proceed by

refutation: indeed, checking the validity of (1) is equivalent to checking the satisfiability

of its negation which is, once skolemized, a conjunction Γ of ground literals. Discussing

this example in full details is beyond the aim of this introductory section; the interested

reader can recover it in [4], where the decision procedure is completely described.

ix

The presented example is a typical combination problem, since we have at our dis-

posal the decision procedures for the two theories, but we are interested in deciding the

satisfiability in the union of the theories. The first step is to purify the constraint Γ into

Γ1 ∪ Γ2 in such a way that Γ1 is over the signature of T1 and Γ2 is over the signature of

T2 (this can be trivially done by adding new equations c = t, for new constants c and

alien subterms t). However, some extra work is needed in order to guarantee that the

satisfiability of Γi w.r.t. Ti implies the satisfiability of Γ w.r.t. T1 ∪ T2.

The key ingredient in such cases is the Nelson-Oppen method (see [69, 73, 86]), which

was originally designed in order to combine decision procedures for the universal frag-

ment of first-order theories. The basic feature of the Nelson-Oppen method is quite

simple: constraints involving mixed signatures are purified into two equisatisfiable pure

constraints and then the specialized reasoners try to share all the information they can

acquire concerning constraints in the common subsignature, till an inconsistency is de-

tected or a saturation state is reached. We can illustrate the procedure by the following

simple example.

A Toy Example for Combination Suppose that theory T1 is Presburger arithmetic

and that theory T2 is the theory of two uninterpreted function symbols f, g (f is unary

and g is binary). We want to check unsatisfiability modulo T1 ∪ T2 of the constraint

Γ ≡ {x+ f(y) = x, g(f(y) + z, z) 6= g(z, z)}.

We use two decision procedures for satisfiability of literals modulo T1 and T2 as black

boxes. In the first step, Nelson-Oppen method repeatedly abstracts out alien subterms

with fresh variables, till an equisatisfiable finite set of literals Γ1∪Γ2 is produced, where Γ1

contains only literals in the signature of T1 and Γ2 contains only literals in the signature

of T2. In practice, subterms t are replaced by fresh variables x and new equations x = t

are added to the current constraint, till the the desired purified status is reached: in the

present example, we get

Γ1 ≡ {x+ w = x, u = w + z}, Γ2 = {w = f(y), g(u, z) 6= g(z, z)}.

In the second step, information exchange concerning the common subsignature is per-

formed. In our case, for instance, the decision procedure for T1 realizes that u = z is

a logical consequence of T1 ∪ Γ1; as soon as the decision procedure for T2 knows this

fact, it reports the inconsistency. Notice that this example is very simple: in general, the

exchange of entailed atoms from the common subsignature is not sufficient, one needs to

exchange entailed disjunctions of atoms (such an exchange of disjunctions of atoms may

be implemented for instance by case-split and backtracking).

x

There are two main problems that must be adequately addressed in this Nelson-Oppen

approach, namely termination and completeness of the proposed combined procedure. In

fact, Nelson-Oppen method was guaranteed to be complete only for disjoint signatures

and stably infinite theories. One of the task of this thesis (Chapters 2, 3 and 4) will be

the weakening of the hypothesis under which the Nelson-Oppen combination schema is

guaranteed to be terminating and complete.

Knowledge Representation

In this section we provide a very brief introduction to Description Logics, a formal lan-

guage for representing knowledge and reasoning about it. More detailed information can

be found in [7], that is the main source of this paragraph. Since we will present a specific

formalism (though expressive enough to cope with the questions arising from the knowl-

edge representation area), this section will be more technical than the previous one; on the

other hand, a comparison with the examples sketched in the previous section will give an

idea of how different can be the logic formalisms (and, consequently, also the techniques)

developed in order to treat problems coming from concrete applications. These are essen-

tially the motivations for looking for schemata for combination of decision procedures as

general and flexible as possible.

Description Logics is the most recent name for a family of knowledge representa-

tion formalisms that represent the knowledge of an application domain (the “world”) by

first defining the relevant concepts of the domain (its terminology), and then using these

concepts to specify properties of objects and individuals occurring in the domain (the

world description). From the beginning Description Logics have been considered gen-

eral purpose languages for knowledge representation and reasoning, and therefore suited

for many applications. In particular, they were considered especially effective for those

domains where the knowledge could be easily organized along a hierarchical structure.

The ability to represent and reason about taxonomies in Description Logics has mo-

tivated their use as a modeling language in the design and maintenance of large, hierar-

chically structured bodies of knowledge as well as their adoption as the representation

language for formal ontologies (see [91]). Other application domains are natural language

processing, because Description Logics can be viewed as a basic representation language;

database management, because the Description Logics formalism can be used in a variety

of ways in concert with the main technology of the area; software engineering, where

Description Logics are used in systems that would support the software developer by

helping him or her in finding out information about a large software system; configura-

tion, which includes applications that support the design of complex systems created by

combining multiple components; medicine, where one focus has been on the construc-

xi

tion and maintenance of very large ontologies of medical knowledge; and digital libraries

and Web-based information systems, where the Description Logic are used to represent

bibliographic information and to support classification and retrieval in digital libraries.

A distinguished feature of Description Logics is the emphasis on reasoning, that allows

one to infer implicitly represented knowledge from the knowledge that is explicitly con-

tained in the knowledge base by inference patterns that above all exploit classification of

concepts and individuals. Classification of concepts determines subconcept/superconcept

relationships (called subsumption relationships) between the concepts of a given termi-

nology, and thus allows one to structure the terminology in the form of a subsumption

hierarchy. This hierarchy provides useful information on the connection between differ-

ent concepts, and it can be used to speed-up other inference services. Classification of

individuals (or objects) determines whether a given individual is always an instance of a

certain concept (i.e., whether this instance relationship is implied by the description of the

individual and the definition of the concept). Thus, it provides useful information on the

properties of an individual. Moreover, instance relationships may trigger the application

of rules that insert additional facts into the knowledge base.

The following three ideas, first put forward in [22, 23], have largely shaped the subse-

quent development of Description Logics:

– The basic syntactic building blocks are atomic concepts (unary predicates), atomic

roles (binary predicates), and individuals (constants).

– The expressive power of the language is restricted in that it uses a rather small

set of (epistemologically adequate) constructors for building complex concepts and

roles.

– Implicit knowledge about concepts and individuals can be inferred automatically

with the help of inference procedures. In particular, subsumption relationships

between concepts and instance relationships between individuals and concepts play

an important role: subsumption relationships and instance relationships are inferred

from the definition of the concepts and the properties of the individuals.

By way of a prototypical example, a Description Logic formalism first introduces the

formalism for describing concepts (i.e., the description language), and then defines the

terminological (T-Box) and the assertional (A-Box) formalisms. A knowledge base com-

prises two components, the T-Box and the A-Box. The T-Box introduces the terminology,

i.e., the vocabulary of an application domain, while the A-Box contains assertions about

named individuals in terms of this vocabulary. The vocabulary consists of concepts, which

denote sets of individuals, and roles, which denote binary relationships between individ-

uals. In addition to atomic concepts and roles (concept and role names), all Description

xii

Logic systems allow their users to build complex descriptions of concepts and roles.

A Description Logic system not only stores terminologies and assertions, but also of-

fers services that reason about them. Typical reasoning tasks for a terminology are to

determine whether a description is satisfiable (i.e. consistent), or whether one description

is more general than another one, that is, whether the first subsumes the second. Im-

portant problems for an A-Box are to find out whether its set of assertions is consistent,

that is, whether it has a model, and whether the assertions in the A-Box entail that a

particular individual is an instance of a given concept description. Satisfiability checks of

descriptions and consistency checks of sets of assertions are useful to determine whether

a knowledge base is meaningful at all. With subsumption tests, one can organize the

concepts of a terminology into a hierarchy according to their generality. A concept de-

scription can also be conceived as a query, describing a set of objects one is interested

in. Thus, with instance tests, one can retrieve the individuals that satisfy the query.

Moreover, also for the Description Logic systems combination problems arise.

A Toy Example To introduce a description language (see [7] for more information),

we need a set of atomic concepts x, y, . . . , a set of role names R,S, . . . and a set of in-

dividual names a, b, . . . ; concepts are built up from atomic concepts, Boolean operators

⊥,⊤,⊓,⊔,¬, and relativized existential quantification ∃R (here R is a role name). Con-

cepts only notationally differ from propositional multimodal formulae (in modal logic the

notation for ∃R is the ‘possibility’ operator ♦R), however description logics are richer

because they allow to write also assertions. We have three kinds of assertions, namely

concepts assertions C(a) (here a is an individual name and C is a concept), role asser-

tions R(a, b) (here a, b are individual names and R is a role name) and concept equalities

C = D (here C,D are concepts). A finite set of concept assertions or of role assertions is

called an A-Box, whereas a finite set of concept equalities is called a T-Box;1 a pair given

by a T-Box and an A-Box is said to be a knowledge basis. The semantic for a description

language is rather intuitive: an interpretation is a pair I = (W I , ·I), where W I is a non-

empty set (the domain) and ·I is the interpretation function, assigning to each atomic

concept x a subset xI ⊆ W I , to each role name R a binary relation RI ⊆ W I ×W I ,

and to every individual name a an element aI ∈ W I . The interpretation function is

inductively extended to concepts by interpreting the Boolean operators as intersection,

union and complement and by interpreting relativized existential quantification as

(∃R.C)I := {w ∈W I | ∃v (w, v) ∈ RI ∧ v ∈ CI}.

1Sometimes, in the literature, concept inclusions are used instead of concept equalities; the difference
is immaterial, as far as concepts are closed under intersection.

xiii

An interpretation I satisfies a concept assertion C(a) iff aI ∈ CI , it satisfies a role

assertion R(a, b) iff (aI , bI) ∈ RI and it satisfies a concept equality C = D iff CI = DI ;

I is a model of a knowledge basis iff it satisfies all assertions from it.

As soon as concepts are closed under all Boolean operators, Description Logics rea-

soning tasks all reduce to satisfiability problems; satisfiability problems can however be

formulated at different levels and it is important to keep such distinctions, for instance,

for complexity reasons. For our purposes, it is useful to distinguish three different satisfi-

ability problems: (i) the global satisfiability problem is the problem of deciding whether

there exists a model I of a given T-Box in which we have CI 6= ∅ for a preassigned con-

cept C; (ii) the local satisfiability problem is the problem of deciding whether there exists

a model of a given A-Box; (iii) the full satisfiability problem is the problem of deciding

whether there exists a model of a knowledge basis. Problem (i) is a notational variant of

the relativized satisfiability problem in modal logic, whereas problem (ii) is the same as

the local satisfiability problem in modal logic, if we restrict to A-Boxes consisting on a

single concept assertion.

Suppose our description language contains roles R,R∗, S, S` and that we restrict to

interpretations in which R∗ is the reflexive-transitive closure of R and S` is the converse

relation of S; suppose also that we know how to process satisfiability problems involving

reflexive-transitive closures and converse relations separately, but we do not know how

to process a problem involving both of them (or that we do not want to re-implement

from scratch a device for solving such combined problems). Consider the following global

satisfiability problem

y = ∃R.∃R.x, (∀R∗.¬x) ⊓ (∃S.∀S`.y) 6= ⊥

(where ∀ is defined as ¬∃¬). To solve the problem, we first purify it as

y = ∃R.∃R.x, (∀R∗.¬x) ⊓ z 6= ⊥

z = ∃S.∀S`.y

and then we begin constraint propagation. In fact, the ‘converse relation’ procedure

discovers the entailed equality z⊓y = z and, using this information, the ‘reflexive-transitive

closure’ procedure can report the unsatisfiability of the problem.

There is a parallelism between the procedures described in the last example of Section

Software Verification on page (vi) and this one: in both cases, abstraction equations are

added to the current problem and propagation of shared information is used to detect

inconsistency. The development of a general framework for combination which is able to

xiv

cope with problems arising from disparate areas and involving different formalisms is one

of the main aims of this thesis.

xv

Chapter 1

Deciding First-Order Fragments

Symbolic logic offers a great variety of formalisms able to treat decision problems (modulo

a particular theory) for relevant fragments of a logical language, or to treat satisfiability

problems for various kinds of constraints. We can briefly mention some of the many

different kind of techniques commonly used: congruence closure, rewrite-based methods,

elimination of quantifiers, automata techniques, filtrations, and mosaics.

In this chapter we will describe three examples of decision procedures for fragments,

illustrating thus how different could be the techniques which lead to decidability results.

1.1 Preliminaries

Let us start fixing some formal preliminaries. A signature Σ is a (at most countable) set

of sort symbols together with a set of functions and predicate symbols (both equipped

with suitable lists of sort symbols as arity). We assume the binary equality predicate

symbol ‘=S ’ to be always present in any signature Σ for every sort S and we usually omit

the subscript S in =S. The signature obtained from Σ by the addition of a set K of new

constants (that is, 0-ary function symbols, each of them again equipped with a sort) is

denoted by Σ ∪K or by ΣK; when the set of constants is finite, we use letters a, b, c, etc.

in place of K. A signature Σ′ is a subsignature of signature Σ (in symbols, Σ′ ⊆ Σ) if

Σ′ is a signature that can be obtained from Σ by removing some of its sorts, function,

and predicate symbols. First-order terms and formulae over a signature Σ are defined in

the usual way, i.e. they must respect the arities of function and predicate symbols, and

the variables occurring in them must also be equipped with sorts (well-sortedness). The

notions of Σ-atom, -literal, -clause, -positive clause, etc. are the usual ones: e.g., an atom

is is a predicate symbol applied to (well-sorted) terms, a literal is an atom or the negation

of an atom, a clause is a multiset of literals, a positive clause is a multiset of atoms, etc.

As usual, writing A(x1, . . . , xn) means that the variables occurring free in the formula A

1

are a subset of {x1, . . . , xn}.

Terms, literals, clauses and formulae are called ground whenever variables do not

appear. Formulae without free variables are called sentences. The universal (resp. ex-

istential) closure of a formula ϕ is the sentence obtained from ϕ by adding a prefix of

universal (resp. existential) quantifiers binding all variables occurring free in ϕ. A Σ-

theory T is a set of sentences (called the axioms of T) in the signature Σ. If T is finite,

the theory is said to be finitely axiomatized. A universal theory is a theory whose axioms

are universal closures of quantifier-free sentences.

From the semantic side, we have the standard notion of a Σ-structure A: this consists

of non-empty and pairwise disjoint domains SA for every sort S, and interprets each

function symbol f and predicate symbol P as functions fA and relations PA, respectively,

according to their arities. If t is a ground term, we also use tA for the element denoted

by t in the structure A. We write A to denote the disjoint union of all domains SA

of a structure A. Let Σ and Σ′ be two signatures such that Σ′ ⊆ Σ and let M be a

Σ-structure; the Σ′-reduct of M is the Σ′-structureM|Σ′ obtained from M by forgetting

the interpretations of sort, function and predicate symbols of Σ not belonging to Σ′. A

Σ-embedding between two Σ-structuresM and N is a mapping µ : M → N that satisfies

the condition

M |= A(a1, . . . , an) iff N |= A(µ(a1), . . . , µ(an)) (1.1)

for all Σ-atoms A(x1, . . . , xn) and elements a1, . . . , an of M .1 If the embedding µ is the

identity on A, then we say that M is a substructure of N . In case (1.1) holds for all

first-order formulae, then µ is said to be an elementary embedding. If the elementary

embedding µ is the identity on M , then we say that M is an elementary substructure of

N or that N is an elementary extension of N . An isomorphism is a surjective embedding.

The truth of a Σ-formula in A is defined in the standard way (so that truth of a

formula is equivalent to truth of its universal closure). A formula ϕ is satisfiable in A iff

its existential closure is true in A. A Σ-structure A is a model of a Σ-theory T (in symbols

A |= T) iff all the sentences in T are true in A. For models of a Σ-theory T we shall use

the letters M,N , . . . to distinguish them from arbitrary Σ-structures. If ϕ is a formula,

T |= ϕ (‘ϕ is a logical consequence of T ’) means that ϕ is true in any model of T . A

Σ-theory T is complete iff for every Σ-sentence ϕ, either ϕ or ¬ϕ is a logical consequence

of T ; finally, T is consistent iff it has a model.

The main problems we deal with are decidability of fragments; more precisely, given a

Σ-theory T and a recursive set of Σ-formulae Φ, we want to decide whether T |= ϕ holds

for a formula ϕ in the fragment Φ. In particular,

1As usual, there are some implicit (but obvious) notation conventions in the formulation of (1.1): the
signature Σ is expanded to ΣM , M is seen as a ΣM -structure by interpreting a ∈ M into a, N is seen as
a ΣM -structure by interpreting a ∈ M into µ(a).

2

– if Φ consists of atomic Σ-formulae of the kind t = u, then it is called equational

fragment;

– if Φ consists of Σ-clauses containing at most one atom, then it is called universal

Horn fragment;

– if Φ consists of Σ-clauses, then it is called universal fragment;

– if Φ consists of all the Σ-formulae, then it is called elementary fragment.

The constraint satisfiability problem for the theory T is the problem of deciding

whether (the conjunction of) a finite set of Σ-literals is satisfiable in a model of T . The

complementary constraint unsatisfiability problem (i.e. the problem of deciding whether

a finite set of Σ-literals is unsatisfiable in all the models of T) is easily reduced to the

decidability of the universal fragment: notice in fact that T -unsatisfiability of A1∧· · ·∧An

is the same as the relation T |= ¬∃x(A1∧· · ·∧An) (for the appropriate existential closure

∃x), i.e. as the relation T |= ∀x(¬A1 ∨ · · · ∨ ¬An). Vice versa, T |= C (where C is the

clause B1 ∨ · · · ∨ Bm) is equivalent to T |= ∀xC and hence to the T -unsatisfiability of

¬B1∧· · ·∧¬Bm. In the following, we shall prefer to use free constants instead of variables

in constraint satisfiability problems, so that we (equivalently) redefine a Σ-constraint in

a signature Σ as a finite set of Σa-literals (where a is a finite set of new free constants);

constraint satisfiability problem for the theory T becomes the problem of establishing the

consistency of T ∪ Γ for a finite set Γ of ground Σa-literals (where a is a finite set of new

constants).

1.2 Examples from the Literature

We propose now two well-known decidability results: in Section 1.2.1 we describe the

classical decision procedure for the Presburger Arithmetic, whereas in Section 1.2.2 we

present an algorithm for the satisfiability of a formula in some model for the description

language ALC.

1.2.1 Presburger Arithmetic

Let us start recalling the classical decidability result for the theory of Presburger Arith-

metic. A possible formalization is the following: let us consider the signature ΣP = (0, s, <

,+), where 0 is a constant, s is a unary function symbol, < is a binary predicate symbol

and + is a binary function symbol. Naturally, a ΣP -structure N is the set of natural

number, where the symbols (0, s, <,+) are interpreted in the standard way. Presburger

Arithmetic P is the theory whose axioms are the set of all the ΣP -sentences which are

true in N. The elementary fragment of P is decidable: in fact, using a process of quantifier

3

elimination it is possible to decide whether a generic ΣP -formula is entailed by the axioms

of P. In the following we will refer to this property simply saying that P is decidable.

We recall that a theory T over the signature Σ admits quantifier elimination if and

only if for each Σ-formula A(x) there exists a quantifier-free Σ-formula B(x) such that

T |= A(x) ↔ B(x). Moreover, if we define a simply primitive formula A(x) a formula of

the kind ∃y(B1 ∧ · · · ∧Bm), where Bi is an atom or a negation of an atom, it is possible

to show that T admits quantifier elimination if and only if for every simply primitive

formula A(x) there exists a quantifier-free formula C(x) such that T |= A(x)↔ C(x).

Theorem 1.2.1 (Presburger, 1929). The theory P is decidable.

Proof. First of all, we enlarge the language adding the infinite supply of binary predicate

symbols ≡2,≡3,≡4, . . . , which are interpreted, respectively, as the congruence relation

modulo 2, modulo 3, modulo 4 etc. This will be useful in order to deal with the formulae

of the kind ∃y v1 = y + y + · · ·+ y that cannot be replaced in the original signature by a

quantifier-free formula.

For a term t and a natural number n, let nt be the term t+t+· · ·+t with n summands;

it it easy to notice that every term can be expanded to one of the form sn0(0) + n1x1 +

· · ·+ nkxk, where the numeral n0 is used to abbreviate the term s(0) + · · ·+ s(0)
︸ ︷︷ ︸

n0−times

.

Let us consider a simply primitive formula ∃y(B1 ∧ · · · ∧ Bm). We start eliminating

negations: we replace ¬(t1 = t2) by (t1 < t2 ∨ t2 < t1), ¬(t1 < t2) by (t1 = t2 ∨ t2 < t1)

and ¬(t1 ≡n t2) by (t1 ≡n t2 + s1(0) ∨ · · · ∨ t1 ≡n t2 + sn−1(0)). Then we regroup into a

disjunction of formulae of the form ∃y(A1 ∧ · · · ∧ Al), where each Ai is atomic; we may

further suppose that y occurs in each Ai, and that each Ai has one of the following forms:

ny + t = u or ny + t ≡n u or ny + t < u or u < ny + t, where u and t do not contain y.

We uniform the coefficients of y. Let p be the least common multiple of the coefficient

of y; each atomic formula can be converted to one in which the coefficient of y is p, by

“multiplying through” by the appropriate factor. This is legitimate, recalling that two

natural numbers a and b are congruent modulo n if and only if ka and kb are congruent

modulo kn. Now we eliminate the coefficient of y replacing py by x and adding the new

conjunct x ≡p 0. If one of the atoms in the formula ∃xϑ obtained by our manipulations

has the form x+ t = u, we can substitute x by u− t. More precisely, we should transpose

terms to compensate for the absence of subtraction: for example the atom (x < v)[u−t/x]

should be rewritten into u < v+t. In the following it is convenient to write these formulae

with a subtraction symbol, using it only as a device for the sake of readability. Thus the

formula ∃xϑ is equivalent in the theory of P to the formula ϑ[u − t/x] ∧ t ≤ u, which is

quantifier-free.

We may assume henceforth that no equality occurs between terms. So we consider

4

formulae of the kind

∃x[r0 − t0 < x ∧ · · · ∧ rh−1 − th−1 < x

x < u0 − v0 ∧ · · · ∧ x < uk−1 − vk−1

x ≡m0 w0 − q0 ∧ · · · ∧ x ≡mn−1 wn−1 − qn−1],

where ri, ti, ui, vi, wi and qi are terms not containing x. We can shorten our formula into

∃x[
∧

j<h

rj − tj < x ∧
∧

i<k

x < ui − vi ∧
∧

l<n

x ≡ml
wl − ql]. (1.2)

If there are no congruences, then (1.2) asserts that there is a nonnegative space between

the lower bound given by the maximum of the (rj−tj)’s and the upper bound given by the

minimum of the (ui−vi)’s. So the formula can be replaced by the following quantifier-free

one:
∧

i<k

∧

j<h

(rj − tj) + s(0) < ui − vi ∧
∧

i<k

0 < ui − vi.

Otherwise, let M be the least common multiple of the moduli m0, . . . ,mn−1. (1.2) asserts

the existence of a nonnegative number which is no less than a certain lower bound L, given

by the maximum of the (rj − tj)’s, and which satisfies certain congruences and certain

upper bounds. Because of the requirement of a non negative solution, (1.2) is equivalent

to

∃x[0 < x ∧
∧

j<h

rj − tj < x ∧
∧

i<k

x < ui − vi ∧
∧

l<n

x ≡ml
wl − ql]. (1.3)

In this way we can always assume that L is non negative or, equivalently, that r0 is 0 and

t0 is 0 too. Moreover, if such a solution exists, then one of the following is a solution:

L,L+ 1, L+ 2, . . . , L+M − 1. (1.3) can now be replaced by a quantifier-free disjunction

that asserts that one of the numbers of the kind (rj−tj)+D, where D is in {0, . . . ,M−1},

is a nonnegative solution:

∨

j≤l

∨

d<M

[
∧

i<l

ri−ti < (rj−tj)+sd(0)∧
∧

i<k

(rj−tj)+sd(0) < ui−vi∧
∧

l<n

(rj−tj)+sd(0) ≡li wl−ql].

What shown above implies that every formula is equivalent with respect to the the-

ory P to a quantifier-free formula over a language augmented with the symbols for the

congruence relations modulo n. If we are now given a sentence ϕ, we can find a ground

sentence ψ which is true in the intended structure N if and only if ϕ is. Deciding the

truth of ψ is straightforward: we have to look at the atomic sentences and, as every term

is in the form sn(0), we have to check atoms of the kind sh(0) = sk(0), or sh(0) < sk(0),

or sh(0) ≡m sk(0), which are true, respectively, if and only if h = k, or h < k, or h = k

5

modulo m.

There are many results in the literature about the complexity of the decision problem

for (fragments of) Presburger Arithmetic. A lower bound for proving the validity of a

prenex closed formula in the domain of integers can be found in [37], where it is proved

that there is a series {ϕn} of closed formulae of length linear in n such that the validity

of ϕn cannot be algorithmically decided in non-deterministic time 22n
.

An upper bound for the worst-case complexity of the quantifier elimination problem

in Presburger Arithmetic is in [89]. Let l be the length of the input formula ϕ, n the

number of quantified variables in ϕ, and b the number of the quantifier-blocks in ϕ. The

bound is of the form exp(l(cn)b
) for some constant c, where exp(x) = 2x. In [90] it is

shown that this upper bound is essentially tight; so the quantifier elimination problem is

inherently triply exponential.

These results seems to preclude any practical applications of algorithms involving

decidability procedures for formulae of Presburger Arithmetic. However, if we consider

the fragment of Presburger Arithmetic containing only clauses, we have at our disposal

algorithms of lower complexity. In fact the validity problem for this fragment is the dual

of checking a conjunction of ground literals for satisfiability. The latter reduces to the

well-known Integer Linear Programming problem which is NP-complete, as shown in [78].

1.2.2 The Description Logic ALC

In this section we deal with the the family of description languages ALC. As already

hinted in Section Knowledge Representation on page (xi), in order to introduce a de-

scription language we consider a set of atomic concepts x, y, . . . and a set of role names

R,S, . . . ; concepts are built up from atomic concepts, Boolean operators ⊥,⊤,⊓,⊔,¬,

and relativized universal quantification ∀R (here R is a role name). It is easy to see that

concepts are a notational variant of propositional multimodal formulae (in modal logic

the notation for ∀R is the ‘necessity’ operator �R), as pointed out by [76]. Moreover, it

is usual to shorten the concept ¬∀R.¬C with ∃R.C.

From the semantic side, an interpretation is a pair I = (W I , ·I), where W I is a non-

empty set (the domain) and ·I is the interpretation function, assigning to each atomic

concept x a subset xI ⊆ W I and to each role name R a binary relation RI ⊆ W I ×

W I . The interpretation function is inductively extended to concepts by interpreting the

6

Boolean operators and relativized universal quantification as follows:

(⊥)I := ∅

(⊤)I := W I

(C ⊓D)I := CI ∩DI

(C ⊔D)I := CI ∪DI

(¬C)I := W I \ CI

(∀R.C)I := {w ∈W I | ∀v (w, v) ∈ RI → v ∈ CI}.

Moreover, description languages give the opportunity to express inclusion between con-

cepts, C ⊑ D, and equality between concept, C ≡ D; naturally, an interpretation

I = (W I , ·I) satisfies the inclusion C ⊑ D if and only if CI ⊆ DI , and satisfies the

equality C ≡ D if and only if CI = DI . A finite set T of concept equalities is called a

T-Box ,2 and a model for T is an interpretation that satisfies all the equality of T .

There are four important reasoning tasks involving concepts: given a T-Box T , we

can be interested in one of the following problems.

Satisfiability : a concept C is satisfiable with respect to T if there exists a model I of T

such that CI is nonempty;

Subsumption: a concept C is subsumed by a concept D with respect to T if CI ⊆ DI

for every model I of T ;

Equivalence: two concepts C and D are equivalent with respect to T if CI = DI for

every model I of T ;

Disjointness: two concepts C and D are disjoint with respect to T if CI ∪DI = ∅ for

every model I of T .

Actually, the last three problems can be easily reduced to satisfiability tests: in fact,

given a T-Box, (a) C is subsumed by D iff C ⊓ ¬D is unsatisfiable; (b) C and D are

equivalent iff both C ⊓ ¬D and ¬C ⊓ D are unsatisfiable; (c) C and D are disjoint iff

C ⊓D is unsatisfiable.

Description Logics formalism allows also the reasoning about individuals. We enrich

the language introducing individual names: a, b, c, . . . ; every interpretation I = (W I , ·I)

will associate to any individual name a an element of the set wI . Using concepts C one

can make concept assertion C(a), whereas using roles R one can make role assertions

R(a, b). A finite set of concept assertions and role assertions is said A-Box , and it is

2Notice that inclusions between concepts can be expressed as concept equalities; for example, C ⊑ D

is equivalent to C ≡ C ⊓ D.

7

usually denoted with A. The interpretation I = (W I , ·I) satisfies the concept assertion

C(a) if aI ∈ CI , and it satisfies the role assertion R(a, b) if (aI , bI) ∈ RI ; moreover, it

satisfies an A-Box A if it satisfies each assertion in A. Finally, I satisfies an A-Box A

with respect to a T-Box T if it satisfies both.

The main reasoning task involving A-Boxes is a consistency check: an A-Box A is

consistent with respect to a T-Box T if there is an interpretation that satisfies A with

respect to T . The problem of the consistency of an A-Box with respect a T-Box is called

full satisfiability problem; in case the T-Box is empty it is called local satisfiability problem.

In the following, for the sake of simplicity, we describe a decision procedure for the

local satisfiability problem in the special case the description language contains a unique

role name R, and the A-Box consists only on a single concept assertion C(a). Notice that

this problem is equivalent to concept satisfiability, because the concept C is satisfiable if

and only if C(a) is consistent, where a is an arbitrarily chosen individual name.

This kind of problem is indeed a problem of decidability of fragments: in fact, relying

on the so-called standard translation, it is easy to translate ALC concepts into formulae

of a first-order fragment. First of all, we choose a language containing infinite unary

predicate symbols and a binary predicate symbol R(x, y), and we fix a bijective corre-

spondence x 7→ X between the atomic concepts and the unary predicate symbols. Now

it is sufficient to associate to every concept C a formula ST (C, x) as follows:

ST (⊥, x) = ⊥

ST (⊤, x) = ⊤

ST (x, x) = X(x)

ST (C1 ⊔ C2, x) = ST (C1, x) ∨ ST (C2, x)

ST (C1 ⊓ C2, x) = ST (C1, x) ∧ ST (C2, x)

ST (¬C, x) = ¬ST (C, x)

ST (∀R.C, x) = ∀y(R(x, y)→ ST (C, y)).

It is straightforward to notice that a concept C is unsatisfiable iff the formula ∀x ST (¬C, x)

is valid; in this way to solve the problem of concept satisfiability is equivalent to decide

the validity of the formulae in the fragment Φ = {∀x ST (C, x)}.

A Decision Procedure for the Satisfiability Problem in ALC

Consider the concept C. We can freely suppose that the only non boolean connective

occurring in is ∀R. since ∃R.A has been introduced as a shortening for ¬∀R.¬A. Let us

call ALC atom any concept whose main connective is not boolean. Examples of ALC

atoms are x, ∀R.(x⊓ y), and ∀R.(¬x⊔ ∀R.y). We write C(−→x ,
−−−→
∀R.X) to indicate that the

8

ALC atoms of C not occurring under the scope of the connective ∀R. are −→x and
−−−→
∀R.X,

where −→x are the ALC atoms which are atomic concepts and
−−−→
∀R.X are the remaining ones.

For example, if C is the concept

¬∀R.(x ⊔ ¬y) ⊓ ∀R.(¬∀R.(¬∀R.z)) ⊓ (x ⊔ ¬w ⊔ ∀R.w),

the ALC atoms in −→x are x and w, whereas the ALC atoms in
−−−→
∀R.X are ∀R.(x ⊔ ¬y),

∀R.(¬∀R.(¬∀R.z)), and ∀R.w. On the other hand, y is an ALC atoms occurring in C

which is not member of −→x , whereas ∀R.(¬∀R.z) and ∀R.z are ALC atoms occurring in C

which are not members of
−−−→
∀R.X.

We suppose now to have at our disposal a propositional decision procedure which is

capable to enumerate all the possible assignments satisfying a propositional formula β,

i.e. a formula built up from a set of propositional variables p, q, r, . . . using the boolean

connectives ∨,∧ and ¬. This is not an heavy assumption at all: for example the DPLL

procedure (see [29, 30] for the original algorithm) performs very well to this aim. We are

now ready to describe our procedure SatALC .

Algorithm 1 The function SatALC

function SatALC(C(−→x ,
−−−→
∀R.X))

for all α ∈ {α | α is an assignment and α |= C} do

if {∀R.D ∈
−−−→
∀R.X | α(∀R.D) = 0} = ∅ then

return “satisfiable”
else

B ← {B | ∀R.B ∈
−−−→
∀R.X and α(∀R.B) = 1}

D ← {D | ∀R.D ∈
−−−→
∀R.X and α(∀R.D) = 0}

if
∧

D∈D(SatALC(¬D ⊓
d
B) = “satisfiable”) then return “satisfiable”

end if
end for
return “unsatisfiable”

end function

Remark 1.2.2 (Algorithm 1). The sentence “α is an assignment and α |= C” means that

we consider C as a propositional formula whose propositional variables are the ALC atoms

of C, and we make the obvious identification of the connectives ⊓,⊔ with, respectively, ∧

and ∨. More in detail, each of the ALC atoms in
−−−→
∀R.X plays the role of a propositional

variable: thus, it makes sense to ask for an assignment to a SAT-solver.

To the procedure SatALC we associate the procedure TreeALC which, given a concept

C, returns, if possible, a labeled tree. A tree is a set W endowed with an antisymmetric

binary relation R satisfying the following conditions: there exists w0 such that (a) for

every w ∈ (W \ {w0}) there exists n > 0 such that w0Rw1R · · ·Rwn = w; moreover (b)

9

the aforesaid path w0, w1, . . . , wn is unique (the element w0 is said the root of the tree).

In this context, a labeling function is a function ν from W to the powerset of the atomic

concept of a given ALC language; a labeled tree is a tree endowed of such a labeling

function.

Algorithm 2 An algorithm generating labeled trees for SatALC

function TreeALC(C(−→x ,
−−−→
∀R.X))

for all α ∈ {α | α is an assignment and α |= C} do

if {∀R.D ∈
−−−→
∀R.X | α(∀R.D) = 0} = ∅ then

MC ← 〈{ρC}, ∅, ν〉 (where ν(ρC) = {x ∈ −→x | α(x) = 1})
return MC

else

B ← {B | ∀R.B ∈
−−−→
∀R.X and α(∀R.B) = 1}

D ← {D | ∀R.D ∈
−−−→
∀R.X and α(∀R.D) = 0}

M ←
⋃

D∈D TreeALC(¬D ⊓
d
B)

if ∅ 6∈MD then
let MC be the tree obtained from the disjoint union

∑

D MD of the trees
MD in M by: (i) adjoining a new point ρC , (ii) stating the relation
ρC RρD, where ρD is the root of the tree MD for each D, and (iii)
extending the function ν by ν(ρC) = {x ∈ −→x | α(x) = 1}

return MC

end if
end for
return ∅

end function

Remark 1.2.3 (Algorithm 2). Without loss of generality, we can always suppose that

the sets {WD}D of the trees {MD}D are pairwise disjoint (if not, a renaming is sufficient).

The disjoint union of the structures MD = 〈WD, RD, νD〉 is the structure

∑

D

MD = 〈
⋃

D

WD,
⋃

D

RD,
⋃

D

νD〉

(notice that, being the domain of νD’s pairwise disjoint,
⋃

D νD is still a function).

The labeled tree 〈W,R, ν〉 returned by TreeALC(C) is naturally an interpretation I:

the unique role name of the language is interpreted in the binary relation R, and the

labeling function ν determines the interpretation of the concepts. In fact, it is sufficient

to set, for each atomic concept x, xI = {w ∈ W | x ∈ ν(w)}. In general, every set W

endowed with a binary relation R and a function ν from W to the powerset of the atomic

concept of an ALC language containing a unique role name determines in a unique way

an interpretation for that language. Also the converse is (obviously) true: so we shall use

indifferently interpretations I = (W I , ·I) or structures M = 〈W,R, ν〉 for a given ALC

10

language containing a unique role symbol.

We say that a concept C is satisfied in a point w of the interpretation I determined

by the structure M = 〈W,R, ν〉 if w ∈ CI ; in symbols, we write M |=w C.

Lemma 1.2.4. Let C be a concept such that SatALC(C) = “satisfiable”. Then the tree

MC returned by TreeALC(C) satisfies C in its root.

Proof. It is straightforward to notice that if SatALC(C) = “satisfiable”, then TreeALC(C)

6= ∅. The proof of the lemma is by induction on the depth of MC . Let us start analyzing

the case MC has depth 0, i.e. it consists only of a root node named ρC . We have to

show that MC |=ρC
C. We notice that for each atom ∀R.D in

−−−→
∀R.X, the propositional

assignment α considered by the procedure TreeALC to return a tree of depth 0 is such

that α(∀R.D) = 1, otherwise TreeALC(C) would have returned a structure different from

〈{ρC}, ∅, ν〉. Observing that (i) MC |=ρC
∀R.A for each concept A; (ii) for each atomic

concept x, MC |=ρC
x if and only if α(x) = 1, and (iii) α is an assignment which satisfies

C, it follows the thesis.

Suppose now that MC has depth n > 0 and consider the assignment α used by the

procedure TreeALC . Given the set of atoms B = {B | ∀R.B ∈
−−−→
∀R.X and α(∀R.B) = 1},

for each ∀R.D in
−−−→
∀R.X such that α(∀R.D) = 0 we have at our disposal the tree MD

such that MD |=ρD
(¬D ⊓

d
B) by inductive hypothesis (since the depth of MD is less

then the depth of MC). We have to show that MC |=ρC
C. Since, for each D as above,

MD |=ρD
(¬D⊓

d
B), then MD |=ρD

B for each B ∈ B. Thus, by construction of MC , we

have MC |=ρC
∀R.B for each B ∈ B. Analogously, since MD |=ρD

¬D, MC |=ρC
¬∀R.D

for each D as above. Finally, observing that, for each atomic concept x, MC |=ρC
x if and

only if α(x) = 1, and that α is an assignment which satisfies C, it follows that MC |=ρC
C.

Lemma 1.2.5. Let C be a satisfiable concept. Then SatALC(C) returns “satisfiable”.

Proof. Let us define the degree of a concept as follows:

– deg(x) = 0 if x is a atomic concept;

– deg(D ∗B) = max(deg(D), deg(B)) if ∗ is the connective ⊔ or ⊓;

– deg(¬D) = deg(D);

– deg(∀R.D) = deg(D) + 1.

The proof of the statement is by induction on the degree of C. By hypothesis, there exists

an interpretation I such that CI contains at least an element, say ρC . Let M = 〈W,R, ν〉

be the structure determined by I. We can consider the propositional assignment α defined

as follows:

11

– for every atomic concept x in −→x , α(x) = 1 iff M |=ρC
x;

– for every atom ∀R.A in
−−−→
∀R.X, α(∀R.A) = 1 iff M |=ρC

∀R.A.

If deg(C) = 0, SatALC(C) returns “satisfiable” because our assumption on the avail-

ability of a procedure able to find all the propositional assignment for C implies that α

will be eventually analyzed in SatALC(C).

On the other hand, if deg(C) > 0, suppose by inductive hypothesis that SatALC(D)

returns “satisfiable” for each satisfiable concept D such that deg(D) < deg(C). For each

atom ∀R.D such that α(∀R.D) = 0, there exists an element ρD in W such that ρCRρD

and such that M |=ρD
¬D ⊓

d
B where B = {B | ∀R.B ∈

−−−→
∀R.X and α(∀R.B) = 1}.

Since ∀R.D and ∀R.B (for each B ∈ B) are proper subconcepts of C, it is easy to check

that the degree of ¬D ⊓
d
B is less than the degree of C. Thus the inductive hypothesis

applies, guaranteeing that SatALC(¬D ⊓
d
B) is “satisfiable” for every D as above. Now

it is clear that SatALC(C) returns “satisfiable”.

Some few words about complexity issue. A brief inspection of Algorithm 1 makes it

clear that the proposed procedure is a PSPACE one; on the other hand, the satisfiability

of ALC-concept description (without any condition on the number of roles present in the

language) is a problem which is PSPACE-complete (see [7, 77]).

1.3 Arrays with Dimension

The results about the decidability of fragments described in Section 1.2.1 and Section

1.2.2 are quite old and well known; in this section we will present a newer one. We will

show that the constraint satisfiability problem is decidable for the theory of finite arrays,

that is the theory of the sequences over a certain set of elements which are eventually

equal to a fixed element, say ⊥, and which features two operations: one for reading the

value stored at a certain position i in an array a (in symbols, a[i]), and one for the point-

wise modification of an array a at position i with the value e (in symbols, a[i 7→ e]). As

we have required that our sequences are eventually equal to ⊥, for every array a there

exists a smallest index n such that a[i] = ⊥ for i ≥ n: this index is the dimension of a.

The reason to use the word “dimension” rather than “length” lies in the fact that we do

not require that a[k] 6= ⊥ for each index k less than the dimension of a. There is just one

array whose dimension is zero: we indicate it by ε, and call it the empty array. Moreover

we require the theory of Presburger Arithmetic over indexes; this is a natural choice since

many applications of verification require to reason about arithmetic expressions over the

indexes of arrays.

12

We formally introduce the theory of array as a union of subtheories over non-disjoint

signatures. This will help us in the development of the decision procedure for the con-

straint satisfiability problem.

T0 has just one sort symbol index, the following function and predicate symbols: 0 :

index, s : index → index, and <: index × index. It is axiomatized by the

following sentences:

y 6= 0→ ∃z(y = s(z)) (1.4)

x < s(y)↔ (x < y ∨ x = y) (1.5)

¬(x < 0) (1.6)

x < y ∨ x = y ∨ y < x (1.7)

x < y → ¬(y < x) (1.8)

x < y → (y < z → x < z) (1.9)

where x and y are implicitly universally quantified variables of sort index.3 This

theory admit elimination of quantifiers and it is complete (see [34] for details): its

intended structure is the set of natural numbers endowed with zero and successor.

As usual, below, we will write x ≤ y as an abbreviation of x < y ∨ x = y.

P is Presburger arithmetic over indexes. The signature is that of T0 extended with

the function symbol for addition + : index × index → index, written infix. As

already done in Section 1.2.1, we will still use the numeral n to abbreviate the term

s(0) + · · · s(0)
︸ ︷︷ ︸

n−times

. Clearly, T0 ⊂ P.

A is the theory of arrays which has the following signature:

– sort symbols: index,elem,array and

– function symbols: select : array×index→ elem and store : array×index×

elem→ array

and it is axiomatized by the following sentences:

select(store(a, i, e), i) = e (1.10)

i 6= j → select(store(a, i, e), j) = select(a, j) (1.11)

3In the following, we will often omit the outermost universal quantification as well as sort information
for variables for the sake of readability.

13

Ae is the theory of arrays with extensionality which has the same signature of A and it

is axiomatized by (1.10), (1.11), and the axiom of extensionality:

∀i(select(a, i) = select(b, i))→ a = b (1.12)

Notice that A ⊂ Ae.

Adim is the simple theory of arrays with dimension whose signature is the union of

the signatures of T0 and Ae extended with the following three symbols: ⊥ : elem,

ε : array, and dim : array→ index. It is axiomatized by the axioms in T0, those

in Ae, and the following sentences:

dim(a) ≤ i→ select(a, i) = ⊥ (1.13)

dim(a) = s(i)→ select(a, i) 6= ⊥ (1.14)

dim(ε) = 0 (1.15)

Notice that T0 ⊂ Adim and Ae ⊂ Adim .

ADP is the theory of arrays with dimension whose signature is the union of the sig-

natures of Adim and P and is axiomatized by the axioms in Adim and all valid

sentences in P.

We notice that Adim extends Ae (both in the signature and in the axioms), but is smaller

than ADP, because indexes are only endowed with a discrete linear poset structure. In

this way, we have that ADP = Adim ∪P and the theories Adim and P share the complete

theory T0. The situation is depicted in Figure 1.1, where solid boxes represent theories

and the dashed box represents the non-disjoint union of P and Adim , which share the

theory T0.

T0

Adim

P

Ae

ADP

Figure 1.1: ADP as the non-disjoint combination of P and Adim sharing T0

The theories T0 is decidable, because it admits quantifier elimination (see, e.g., [34]);

this fact leads to the decidability of the theory, by considerations similar to the ones used

14

to show the decidability of the theory P. A and Ae have the universal fragment decid-

able: for example, these results are obtained in [5] applying the superposition calculus.

These considerations allow us to assume the availability of two decision procedures for

the constraint satisfiability problems of P and A.

Standard Models The theories Ae, Adim , and ADP admit a particular subclass of

models, the standard ones; they are the structures that give the arrays the meaning of

sequences of elements eventually constant. Formally, a standard model is a structure that

matches the following requirements.

Definition 1.3.1. Let A be a set and κ be an element of A. The standard model of ADP

induced by the pair (A,κ) is the ΣADP -structure M such that

(i) the sort index is interpreted inM as N and the symbols 0, <, s,+ have their natural

meaning;

(ii) the sort elem is interpreted in M as A and the constant ⊥ is interpreted as κ;

(iii) the sort array is interpreted in M as the set of functions a : N −→ A such that

there is some na ∈ N for which we have a(m) = κ whenever m ≥ na;

(iv) the constant ε is interpreted as the constant function with value κ;

(v) for each function a : N −→ A, dimM(a) is the smallest n ∈ N such that a(m) = κ

holds for all m ≥ n;

(vi) finally, for each function a and index i, we have selectM(a, i) = a(i) and, for each

element e ∈ A, storeM(a, i, e) is the following function:

storeM(a, i, e)(n) :=

a(n) if n 6= i,

e otherwise.

The standard models ofAe andAdim can be defined in a similar way by taking the ΣAe-

and ΣAdim
-reduct (respectively) of ADP-standard models. Notice again that, contrary

to finite sequences, we do not require elements at indexes less than the dimension of an

array to be different from ⊥.

In the following we shall prove that a constraint is satisfiable in a model of ADP iff it

is satisfiable in a standard model (see Lemma 1.3.7, below). Notice that this is far from

being obvious, because ADP is not a complete theory: it cannot be so, since the full

first-order theory of ADP is undecidable. This can be reduced to the fact that the full

first-order theory of Ae is undecidable (see, e.g., [83]). As a preliminary step, we state

and prove a simple relationship between arbitrary and standard models of ADP.

15

Flatten

DPP DPA

sat/unsat

all sat?

E-inst. G-inst.

Figure 1.2: The architecture of the decision procedure for ADP

Proposition 1.3.2. Let M be a model of Ae, Adim , or ADP. Then, there exists a

substructure of M which is a standard model of Ae, Adim , or ADP, respectively.

Proof. Call an element of indexM standard iff it is of the kind nM, where

n := s(· · · s
︸ ︷︷ ︸

n−times

(0) · · ·) is a numeral. Similarly, call an element of sort arrayM standard

iff it is of the kind storek(ε, n, e)M, where storek(ε, n, e) is a term denoting the result of

writing the k-elements e ⊆ elemM in the numeral positions n on the empty array. Stan-

dard indexes, standard arrays and the whole set elemM are closed under the operations

in the signature ΣADP and form a substructure ofM which is isomorphic to the standard

model built up from elemM and ⊥M.

1.3.1 A Decision Procedure for Arrays with Dimension

As already said, we assume the availability of two decision procedures solving the A- and

P-satisfiability problems. We will see how to reduce the ADP-satisfiability problems to

two constraint satisfiability problems, one in A and one in P.

1.3.2 The Architecture

The overall schema of the decision procedure for ADP is depicted in Figure 1.2. The

module Flatten pre-process the literals in the input constraint so to make them flat and

easily recognizable as belonging to one theory among those used to define ADP, i.e. T0,

P, Ae, and Adim . The module E-instantiation produces suitable instances of the exten-

sionality axiom (1.12) so that a simpler decision procedure for the satisfiability problem

for A (with respect to one for Ae) is assumed available. The module G-instantiation is

non-deterministic and guesses sufficiently many facts which are potentially entailed in P

and Adim by the constraints. The modules DPP and DPA implement the decision proce-

dures for Presburger Arithmetic and the theory of arrays (without extensionality). The

module ‘all sat?’ returns “satisfiable” if both decision procedures for P and A returned

“satisfiable”; otherwise, returns “unsatisfiable”.

16

Now, we are ready to describe the internal working of each module in full detail.

Flattening

Without loss of generality, when considering a set S of ground literals to be checked

for satisfiability, we may assume that each literal ℓ in S is flat , i.e. ℓ is required to be

either of the form a = f(a1, . . . , an), P (a1, . . . , an), or ¬P (a1, . . . , an), where a, a1, . . . , an

are constants (of appropriate sort), f is a function symbol, and P is a predicate symbol

(possibly the equality symbol). It is well-known (see, e.g., [5]) that, given a ΣT -constraint

ϕ, there exists a linear time algorithm which returns a T -equisatisfiable flat Σ
a
T -constraint

ϕ′ by introducing “fresh” constants to name all the subterms occurring in ϕ.

In our case, we assume that the module Flatten in Figure 1.2 transforms (in linear

time) a set of arbitrary literals over the signature Σ
a
ADP

4 into an equisatisfiable set of flat

literals on the signature Σ
c
ADP , for some set c ⊇ a of constants (the constants in c \ a are

said to be fresh). For the theory ADP, we assume that flat literals can be only of the

following two forms:

– c1 ⊲⊳
⋆ c2, where c1, c2 are constants and ⊲⊳⋆∈ {=, 6=, <, 6<};

– f(c1, . . . , cn) = cn+1 where ci are constants and f ∈ {select, store,dim,+};

It will be useful to regard a set L of flat literals over Σ
c
ADP as the union of four disjoint

subsets, i.e.

L := LAe ∪ Ld ∪ LT0 ∪ L+

where the literals in LAe are of the following forms:

select(a, i) = e store(a, i, e) = b a ⊲⊳ b e ⊲⊳ e′,

with a, b : array, i : index, and e, e′ : elem, the literals in Ld are of the form

dim(a) = i,

with a : array, i : index, the set LT0 contains literals of the forms

i1 ⊲⊳
⋆ i2 s(i1) = i2,

with i1, i2 : index; and finally, the set L+ contains literals of the form

i1 + i2 = i3,

4Recall from our conventions of Section 1.1 that Σ
a

ADP is the signature of the theory ADP expanded
with the free constants a.

17

with i1, i2, i3 : index.

Below, w.l.o.g., we assume all sets of literals to be flat. Moreover, we will abbreviate

LT0 ∪ L+ as LP .

E-instantiation Closure

The module E-instantiation finds enough instances of the axiom (1.12) for extensionality

of arrays, according to Definition 1.3.3, so that it can be eliminated without compromising

the correctness of the decision procedure for ADP.

Definition 1.3.3 (E-instantiation Closed Set of Literals). A set L of ground flat literals

is E-instantiation closed iff the following condition is satisfied:

1. if a 6= b ∈ L, with a, b : array, then {select(a, i) = e1, select(b, i) = e2, e1 6= e2} ⊆ L

for some constants i : index, e1, e2 : elem;

It is not difficult to see that, given a set of ground flat literals L, there exists an

ADP-equisatisfiable set LE ⊇ L which is E-instantiation closed since contains also the

skolemization of some logical consequences of Ae ∪ L.

Lemma 1.3.4. There exists a linear time algorithm which takes a set L of flat literals

over the signature Σ
a
ADP and returns a E-instantiation closed set LE of flat literals over

the signature Σ
c
ADP such that (i) L ⊆ LE , (ii) L and LE are ADP-equisatisfiable, and

(iii) a ⊆ c.

The signature Σ
c
ADP of LE is a proper simple expansion of the signature Σ

a
ADP of

L, because Skolem constants must be fresh. If LE is the set of literals produced by the

module E-instantiation when taking as input a set L of n literals, then the number of new

literals in LE is at most 3n. Since producing a new literal takes constant time, there must

exist a linear time algorithm to compute E-instantiation closed sets.

G-instantiation Closure

The module G-instantiation is non-deterministic and it is responsible to produce suitable

instances of the axioms about the dimension of arrays, i.e. (1.13) and (1.14), and to guess

enough facts entailed by the input constraint w.r.t. P so to guarantee the correctness of

the overall decision procedure for ADP-satisfiability.

Definition 1.3.5 (G-instantiation Closed Set of Literals). A set L of ground flat literals

is G-instantiation closed iff the following conditions are satisfied:

1. if ε occurs in L, then dim(ε) = 0 ∈ L.

18

2. if dim(a) = i ∈ L, with a : array and i : index, then {i = 0} ⊆ L or {e 6=

⊥, select(a, j) = e, s(j) = i} ⊆ L for some constant j : index;

3. if i, j occur in L, with i, j : index, then i = j ∈ L or i 6= j ∈ L;

4. if i, j occur in L, with i, j : index and i 6= j ∈ L, then i < j ∈ L or j < i ∈ L;

5. if {dim(a) = i, i ≤ j} ⊆ L, with a : array and i, j : index, then {select(a, j) =

⊥} ⊆ L (here i ≤ j stands for i < j or i = j).

It is not difficult to see that, given a set of literals, it is always possible to compute

an equisatisfiable G-instantiation closed set in (non-deterministic) polynomial time.

Lemma 1.3.6. There exists a non-deterministic polynomial time algorithm which takes

as input a set L of ground flat literals over a signature Σ
a
ADP and returns a G-instantiation

closed set LG of flat literals over the signature Σ
c
ADP such that (i) L ⊆ LG, (ii) L and LG

are ADP-equisatisfiable, and (iii) a ⊆ c.

Proof. Let m be the number of literals in L of the form dim(ak) = dak
where dak

is

a constant of sort index. Let us consider a set b = {j1, . . . , jm, e1, . . . , em} of fresh

constants, where jk : index, ek : elem, and k ∈ {1, . . . ,m}. A G-instantiation LG of L

can be computed by exhaustively executing the following three steps:

1. for each pair i, j of constants of sort index in a ∪ b∪ {0}, exactly one of the atoms

i = j and i 6= j is added to LG, and in the latter case either i < j or j < i is added

too;

2. if the literal dim(ak) = dak
∈ LG , then:

(a) if 0 = dak
∈ LG or 0 ≡ dak

, then add {jk = 0, ek = ⊥} to LG ;

(b) if 0 < dak
∈ LG , then add {s(jk) = dak

, select(ak, jk) = ek, ek 6= ⊥} to LG .

3. if {dim(a) = i, i ≤ j} ⊆ LG , then add {select(a, j) = ⊥} to LG .

There are two important observations. First, each new index jk : index (k ∈ {1, . . . ,m})

denotes the predecessor of the dimension of ak, when ak is guessed to be different of ε

(if dimension of ak is guessed to be ε, then jk is also set to zero). Second, each new

constant ek : elem (k ∈ {1, . . . ,m}) denotes the result of reading the content of array ak

at position jk.

These two observations together with the fact that the process described above to build

LG closely follows Definition 1.3.5 should make it clear that L is satisfiable iff there exist

a set LG which is G-instantiation closed and ADP-satisfiable too. The non-deterministic

polynomial time result is obtained by a straightforward inspection of the process described

above to build LG .

19

It is straightforward to check that running the E- and G-instantiation modules in this

order, one obtains a set of both E- and G-instantiation closed set of literals.

1.3.3 The Algorithm

The (non-deterministic) Algorithm 3 gives a decision procedure to solve the ADP-satisfi-

ability problem. Without loss of generality (see Section 1.3.2), we assume that L contains

only flat literals.

Algorithm 3 The (extensible) decision procedure for ADP

T←− {A,P}
function DPADP (L: set of flat literals)

LE ← E-instantiation(L)
for all LG ∈ {G-instantiation(LE)} do

for all T ∈ T do ρT ← DPT (LG
T)

if
∧

T∈T
(ρT = “satisfiable”) then return “satisfiable”

end for
return “unsatisfiable”

end function

The function DPT , for T ∈ {ADP ,A,P}, denotes the decision procedure to solve

the T -satisfiability problem, i.e. DPT takes a set L of literals over the signature ΣT and

returns “satisfiable” when L is T -satisfiable, “unsatisfiable” otherwise. If L is a set of flat

literals, then

LT := {ℓ | ℓ ∈ L is a ΣT -literal},

where T ∈ {A,P}. So, for example, LG
P is the subset of the literals in LG over the

signature ΣP . The set T in Algorithm 3 contains the names of the theories for which a

decision procedure is assumed available.

Let L be a set of flat literals over the signature ΣADP to be checked for ADP-

satisfiability. The decision procedure DPADP first computes the E-instantiation LE of

L (recall from Lemma 1.3.4 that this can be done in linear time). Then, it start enu-

merating all possible G-instantiations (the for each loop in Algorithm 3). If it is capa-

ble of finding a G-instantiation LG such that its literals LG
P over the signature ΣP are

P-satisfiable and its literals LG
A over the signature ΣA are A-satisfiable, then DPADP

returns the ADP-satisfiability of the input set L of literals. Otherwise, if all possible

G-instantiations are enumerated and the test of the conditional in the body of the loop

always fails, then DPADP returns the ADP-unsatisfiability of the input set L of literals.

Notice that, clauses (3) - (4) of Definition 1.3.5 have the effect of automatically syn-

chronizing the decision procedures for A and P, in the sense that the G-complete set of

literals LG contains i 6= j when it contains, e.g., i < j, and i 6= j is passed to DPA when

20

considering to LG
A.

1.3.4 Correctness of the Procedure

The termination of DPADP is obvious, since the computation of LE terminates (see the

proof of Lemma 1.3.4) and there are only finitely many possible sets LG to be considered

in the for each loop of Algorithm 3.

The soundness and completeness of DPADP are consequences of the following combi-

nation lemma.

Lemma 1.3.7 (Combination). Let L := LA∪Ld∪LP be an E- and G-instantiation closed

set. Then, the following conditions are equivalent:

(i) L is satisfiable in a standard model of ADP;

(ii) L is ADP-satisfiable;

(iii) LA is A-satisfiable and LP is P-satisfiable.

Proof. Since the implications (i) ⇒ (ii) ⇒ (iii) are trivial, it is sufficient to show that (iii)

⇒ (i) to conclude the proof.

Let M′ be a structure such that M′ |= Ae ∪ LAe and N be a structure such that

N |= P ∪ LP . Since P is complete, we are entitled to assume that N is the standard

structure of natural numbers N. We are now ready to build a standard model M for

ADP ∪ L out of M as follows. We take elemM to be elemM′
and ⊥M to be ⊥M′

; the

free constants occurring in L are interpreted as follows:

(A) for each constant i : index occurring in LP , let iM := iN ;

(B) for each constant e : elem occurring in LA, let eM := eM
′
;

(C) for each constant a : array occurring in LA, we define aM to be the function

fa : N −→ elemM so defined:

fa(n) :=

select(a, i)M
′

if n = iM for some i occurring in LP ,

⊥M otherwise.

The construction is well-defined since L is G-instantiation closed, if two constants i1 and i2

of sort index occurring in LP are interpreted into the same element inM, then iN1 = iN2 ,

the atom i1 = i2 is in LP (and hence in LA) and so M′ |= select(a, i1) = select(a, i2).

Now, we show that for each ℓ ∈ L, we have M |= ℓ. This is obvious for ℓ ∈ LP and for ℓ

of the form e1 ⊲⊳ e2, with e1, e2 : elem. We are left to consider the following cases:

21

(i) if ℓ has the form select(a, i) = e, with a : array, i : index, e : elem, then M |= ℓ

because of (A), (B), (C);

(ii) if ℓ has the form a1 = a2, with a1, a2 : array, then M |= ℓ because aM
′

1 = aM
′

2 , so

select(a1, i)
M′

= select(a2, i)
M′

for each constant i : index occurring in LP . Hence,

aM1 = aM2 by (C);

(iii) if ℓ has the form store(a1, i, e) = a2, with a1, a2 : array, i : index, e : elem, then

M |= ℓ by considering an argument similar to that used for case (ii);

(iv) if ℓ has the form a1 6= a2, with a1, a2 : array, then M |= ℓ because

{select(a1, i) = e1, select(a2, i) = e2, e1 6= e2} ⊆ LA

by Definition 1.3.3 of E-instantiation closed set of literals and M′ |= LA and hence

select(a1, i)
M 6= select(a2, i)

M because of (i). As a consequence, we have aM1 6= aM2 .

(v) if ℓ has the form dim(a) = i, then we consider two subcases:

– if {i = 0} ⊆ LP , then it is sufficient to prove that for each integer n, fa(n) is

equal to ⊥M where fa = aM. If n = jM for some constant j : index such that

{i < j} ⊆ LP or {i = j} ⊆ LP ,

then, since L is G-instantiation closed, {select(a, j) = ⊥} ⊆ LAe hence fa(n) =

⊥M by (C); otherwise, fa(n) = ⊥M by (C).

– if {i 6= 0} ⊆ LP , then for each integer n ≥ iM, fa(n) = {⊥M} by a similar

argument to the one used for the previous subcase. In fact, we observe that

since L is G-instantiation closed, s(j) = i is in LP for some constant j : index,

and also select(a, j) = e, e 6= ⊥ must be in LAe , therefore the thesis follows

from (B), (C) and (i).

Now, we are able to state and prove the correctness of DPADP .

Theorem 1.3.8. DPADP is a decision procedure for the ADP-satisfiability problem, i.e.

for any set L of flat literals, L is ADP-satisfiable iff DPADP(L) returns “satisfiable”.

Furthermore, DPADP decides the satisfiability problem in the standard models of ADP.

Proof. If L is ADP-satisfiable, then it is obvious that DPADP(L) returns “satisfiable”.

We are left with the task of proving that the converse implication holds. We will prove

that when DPADP(L) returns “satisfiable”, then L is satisfiable in a standard model

22

of ADP. If DPADP(L) returns “satisfiable”, then DPADP has found a G-instantiation

LG := LG
A ∪ L

G
d ∪ L

G
P of LE at some iteration of the for each loop in Algorithm 3. The

set LG is such that

LG
A is A-satisfiable and LG

P is P-satisfiable.

From these two facts, the existence of a standard ADP-model of LG immediately follows

by using Lemma 1.3.7 above.

23

Chapter 2

Combining Theories over Disjoint

Signatures

In the previous chapter different methods for deciding fragments of theories were de-

scribed. The last of the given examples deals with a typical combination problem, since

the involved theory can be decomposed as the union of different subtheories and the pro-

posed procedure exploits the availability of two other different decision procedures. This

example shows how naturally the need of combining such different techniques arises; the

present chapter will be entirely devoted to the problem of combination.

Suppose we are now given two first-order theories T1 and T2 over the signatures Σ1

and Σ2 respectively (at the moment we do not ask Σ1 and Σ2 to be disjoint). If we are

able to solve the constraint satisfiability problem for both T1 and T2, we wonder when it

is possible to solve the same problem for T1∪T2. In order to be able to re-use any existing

decision procedure, it is useful to adopt a so-called black-box approach. We assume that a

prover P1 solves the problem for the theory T1 and a prover P2 solves the problem for the

theory T2. The provers P1 and P2 can exchange information only externally, according

to a protocol to be specified: in any case, P1 and P2 cannot be internally modified.

One of the most simple combination methodology for the satisfiability decision prob-

lems compliant with the black-box approach is represented by the Nelson-Oppen procedure

(see [69]): it was originally designed only for disjoint signatures case (i.e. the equality is

the only shared predicate symbol).

2.1 The Nelson-Oppen Combination Schema

The Nelson-Oppen procedure can be summarized essentially into two steps: the first is

the purification and the second is the exchange loop.

24

Purification The preprocessing step consists in the transformation of the initial finite

set Γ of Σ1 ∪ Σ2 ∪A-ground literals into the set

Γ1 ∪ Γ2 (2.1)

where Γ1 are Σ1 ∪A-ground literals and Γ2 are Σ2 ∪A-ground literals. We remark

that this transformation preserves the equisatisfiability; moreover, the purification

is linear (equation like c = t for new constants c and alien subterms t are successively

added).

Exchange loop Whenever the prover Pi (i ∈ {1, 2}) finds a disjunction C of ground

Σ0 ∪ A-atoms (where Σ0 := Σ1 ∩ Σ2) such that Γi ∪ {¬C} is unsatisfiable modulo

Ti, C is added to Γj (j ∈ {1, 2}, j 6= i) if not already present.

Alternatively, one can limit the exchange to atoms instead of clauses: obviously case

splitting and backtracking mechanisms are required. However, if the theories Ti are

Σ0-convex, the atoms exchange becomes deterministic, as in the original Nelson-Oppen

case. Following [85], a theory T on the signature Σ is said to be Σ0-convex (Σ0 ⊆ Σ) iff

whenever T ∪ Γ |= A1 ∨ · · · ∨ An (for n ≥ 1 and for ground Σ0 ∪ A-atoms A1, . . . , An),

there is k ∈ {1, . . . , n} such that T ∪ Γ |= Ak.

The exchange loop returns “unsatisfiable” if Γ1 (or Γ2) eventually becomes unsat-

isfiable modulo T1 (or T2 respectively). Otherwise, it returns “satisfiable” if the loop

terminates without finding any inconsistency. The deterministic Nelson-Oppen proce-

dure is guaranteed to be terminating and complete under the following assumption: (i)

Σ1 and Σ2 are disjoint; (ii) the theories T1 and T2 are Σ0-convex; (iii) they admit only

non trivial models, i.e. models with cardinality bigger than 1. In the non-deterministic

case, we can drop assumption (iii) and weaken the convexity hypothesis (ii) to the hy-

pothesis that the theories T1 and T2 are stably infinite. We say that a theory T over the

signature Σ is stably infinite iff for any quantifier-free Σ-formula ϕ satisfiable modulo T ,

there exists a model of T whose domain is infinite and which satisfies ϕ.

It is possible to show (see [17]) that a theory which is convex and admits only trivial

models is also stably infinite. Briefly, we recall that a set S of literals is convex in a

theory T if T ∪S does not entail any disjunction of equalities without entailing one of the

equalities itself. A theory is convex if every set of literals in the language of the theory is

convex.

What discussed above shows that stable infiniteness is a weaker property character-

izing the theories that can be combined according to the Nelson-Oppen schema; the key

observation about the requirements for the completeness of this scheme seems to be the

satisfiability of constraints in infinite models of the component theories. What would hap-

25

pen in case we drop the assumption about the cardinality of models for the component

theories, maintaining the hypothesis of disjoint signatures?

2.2 Undecidability Results

We start introducing the following

Definition 2.2.1. Let T be a Σ-theory.

– T is ∃-decidable iff the universal fragment of T is decidable; equivalently if the

constraint satisfiability problem for T is decidable;1

– T is ∃∞-decidable iff it is ∃-decidable and moreover it is decidable whether any

Σ-constraint Γ is satisfiable in an infinite model of T .

Some few remarks about Definition 2.2.1. The requirement for a Σ-theory T to be

∃-decidable is precisely the requirement that the constraint satisfiability problem for T

is decidable, which is equivalent to the requirement of deciding whether a universal Σ-

formula is entailed by the axioms of T . Moreover it is straightforward to see that, for

stably infinite theories, ∃-decidability is equivalent to ∃∞-decidability. To illustrate the

interest of studying the decidability of satisfiability in the infinite models of a theory, we

state the following

Theorem 2.2.2. Let Ti be a Σi-theory (for i = 1, 2) and let the signatures Σ1,Σ2 be

disjoint. If T1 is ∃-decidable but it is not ∃∞-decidable and if T2 is consistent, ∃-de-

cidable but does not admit finite models, then the constraint satisfiability for T1 ∪ T2 is

undecidable.

Proof. We simply show that a Σ1-constraint Γ is T1 ∪ T2-satisfiable iff it is satisfiable in

an infinite model of T1. One side is obvious; for the other side, pick infinite models M1

of T1 ∪ Γ and M2 of T2 (the latter exists by consistency of T2). By Löwenheim-Skolem

theorem, we can assume that both models are countable, i.e. that they have the same

support (up to isomorphism). But then, we can simply put together the interpretations

of functions and predicate symbols and get a model of T1 ∪ T2 ∪ Γ.

We notice that there are many theories which are ∃-decidable and have only infinite

models. One such theory is Presburger Arithmetic, another one is the theory of acyclic

lists (see [73]). If there exist ∃-decidable theories that are not ∃∞-decidable, Theorem 2.2.2

implies that there exist theories which are ∃-decidable and whose union is not ∃-decidable.

1According to our definitions (see Section refsec:preliminaries), a Σ-constraint is a finite conjunction
of ground Σa literals.

26

2.2.1 The Theory TM∞

In this section we want to exhibit a ∃-decidable theory that is not ∃∞-decidable.

Let ΣTM∞ be the signature containing (in addition to the equality predicate) the fol-

lowing (infinite) set of propositional letters {P(e,n) | e, n ∈ N}. Consider the propositional

letter P(e,n): we regard e as the index (i.e. the code) of a Turing Machine and n as

the input to the Turing machine identified by e (this coding is possible because of basic

results about Turing machines - see, e.g., [72]). We indicate by k : N × N → N ∪ {∞}

the (non-computable) function associating to each pair (e, n) the number k(e, n) of com-

putation steps of the Turing Machine e on the input n. We write k(e, n) = ∞ when the

computation does not halt. The axioms of the theory TM∞ are the universal closures of

the following formulae:

P(e,n) →
∨

i<j≤m

xi = xj , if k(e, n) < m. (2.2)

Two observations are in order. First, the property “being an axiom of TM∞” is decidable,

because the ternary predicate k(e, n) < m is recursive. Indeed, it is sufficient to run the

Turing Machine e on input n and wait at most m computation steps to verify whether

e halts. Second, the consequent of implication (2.2) is an at-most cardinality constraint,

i.e. it is a formula of the form
∨

i6=j

xi = xj (2.3)

where xi, xj are (implicitly universally quantified) distinct variables for i, j = 1, . . . , n,

which constrain the domain of any model to contain at most n − 1 elements. Thus,

axioms of the form (2.2) tells us that if the Turing Machine e halts in at most m steps,

then the cardinality of the domains of a model is bounded by m. These properties allow

us to state and prove the following key result:

Proposition 2.2.3. The theory TM∞ is ∃-decidable but it is not ∃∞-decidable.

Proof. To show that the theory is ∃-decidable, consider a constraint Γ over the signature

Σ
a
TM∞

. First, guess an arrangement Γ0 for the constants a and check the set of equations

and inequations from Γ ∪ Γ0 for consistency in the pure theory of equality. Then, if the

satisfiability check succeeds, Γ0 explicitly gives the minimum cardinality m for Γ ∪ Γ0 to

be satisfied. Clearly, Γ∪Γ0 is unsatisfiable if it contains both P(e,n) and ¬P(e,n). If this is

not the case, we still have to consider the constraints represented by axiom (2.2), which

states that if a literal of the kind P(e,n) is in a ΣTM∞-constraint, such a constraint can

be only satisfied in a model whose cardinality is at most k(e, n). Thus, if P(e,n) ∈ Γ∪ Γ0,

we only need to check that m ≤ k(e, n), which can be effectively done since the ternary

predicate k(e, n) < m is recursive.

27

To see that TM∞ is not ∃∞-decidable, notice that the constraint {P(e,n)} is TM∞-

satisfiable in an infinite structure iff k(e, n) = ∞. In turn, this is equivalent to check

whether the computation of the Turing Machine e on the input n does not terminate,

which is obviously undecidable, being the complement of the Halting problem.

The theory TM∞ is defined on an infinite signature. However, it is possible to intro-

duce two theories TMω and TM∀ω over finite signatures, with the same characteristics as

TM∞ as far decidability in finite and infinite models is concerned, and such that TM∀ω

is also universal.

2.2.2 Refined Undecidability Results

Here we refine Proposition 2.2.3 by avoiding the use of an infinite signature like ΣTM∞ .

A Variant of the Theory TM∞: TMω

Consider the signature ΣTMω consisting of a constant symbol 0, a unary predicate symbol

P , and two binary predicate symbols < and S. The axioms of the theory TMω are the

universal closures of the following formulae:

¬x < x (2.4)

x < y ∧ y < z → x < z (2.5)

x < y ∨ x = y ∨ y < x (2.6)

0 = x ∨ 0 < x (2.7)

S(x, y)↔ (x < y ∧ ¬∃z(x < z ∧ z < y)) (2.8)

x < y → ∃z(S(x, z) ∧ (z < y ∨ z = y)) (2.9)

P (xa) ∧ S(0, x1) ∧ · · · ∧ S(xa−1, xa) ∧ S(xa, xa+1) ∧ · · · ∧ S(xa+m−1,xa+m)→ ⊥,

if a = 〈e, n〉 and k(e, n) < m (2.10)

P (x) ∧ P (y)→ x = y (2.11)

where 〈·, ·〉 is a primitive recursive coding for pairs, i.e. a computable bijection from N×N

to N (we are guaranteed that the primitive recursive coding function 〈·, ·〉 exists because

of basic results about primitive recursive functions, see again [72] for details).

Two remarks are in order. First, because of axioms (2.4)-(2.9), any model of TMω is

a ΣTMω -structure endowed with a strict linear order with minimum element; moreover,

every element (except the last one, if any) has an immediate successor. Second, finite

models of TMω are initial segments of N, whereas infinite models admit N as an initial

segment. It is also worth to consider the last two axioms of TMω:

28

– axiom (2.10) means that, given a Turing Machine e, its input n, and the coding h

of the pair (e, n), the atom P (h) can be satisfied only in models of cardinality at

most h+ k(e, n) + 1;

– axiom (2.11) states that there is no model satisfying two atoms P (a) and P (b) if

a 6= b. This axiom simplifies the technical development below.

Proposition 2.2.4. The theory TMω is ∃-decidable but it is not ∃∞-decidable.

Proof. Let Γ be a constraint over the signature Σc. We define a TMω-guessing G on Γ

as a finite set of ground Σc-literals such that (i) Γ ⊆ G and (ii) for every pair of distinct

constants a, b ∈ c ∪ {0}, either a < b ∈ G, b < a ∈ G, or a = b ∈ G. Clearly, Γ is

TMω-satisfiable iff some TMω-guessing G on Γ is TMω-satisfiable. As a consequence, we

consider the problem of deciding the satisfiability of a TMω-guessing G.

Given such a TMω-guessing G, notice that for G to be consistent, the equations be-

longing to G must induce an equivalence relation on the constants occurring in it. Let us

pick a representative constant for each equivalence class (with 0 being the representative

for its class). Furthermore, let us replace all terms in G with the representative constants

of their equivalence classes. After this transformation, without loss of generality, we can

delete all equalities and inequalities from G. Let us denote the result of such transfor-

mations still with G. For each negative literal ¬S(c1, c2) in G such that c1 < c2 ∈ G and

{c1 < a, a < c2} 6⊆ G for some constant a, we add c1 < c3, c3 < c2 to G, where c3 is a

fresh constant. After this step, the literals of the form a < b that are in G should put the

constants in G in a linear order, i.e.

c0 < c1 < c2 < · · · < cs−1 < cs.

Here c0 is 0, ci and cj are distinct for i 6= j, and only inequalities of the form ci < cj

(0 ≤ i < j ≤ s) are in G (if it is not so, it is because G contains inconsistencies from

the point of view of the theory of strict linear orders with first element). Furthermore,

if S(ci, cj) ∈ G, then j = i + 1; otherwise, G is inconsistent. Thus, all literals in G (not

containing P) are satisfied, for instance, in the linearly ordered structure containing s

elements. Clearly, G is inconsistent if it contains a pair of complementary literals, so we

suppose this is not the case. Because of axiom (2.11), it can contain at most one positive

literal involving the predicate P and, at this point, G can be unsatisfiable only because

of the presence of such a literal. Let this literal be P (ca); for m = s − a, the following

inequalities

0 < c1 < c2 < · · · < ca−1 < ca < ca+1 < · · · < ca+m

are in G. If there is j < a such that S(cj , cj+1) /∈ G, then G is satisfiable. To see this,

consider a non standard model of Arithmetic and interpret cj+1, . . . , ca+m as elements

29

greater than all the standard natural numbers: if the predicate P is interpreted as the

singleton subset formed by (the interpretation of) ca, axiom (2.10) is true because the a-th

successor of 0 is not in P . On the other hand, if {S(0, c1), S(c1, c2), . . . , S(ca−1, ca)} ⊆ G,

then G is satisfiable iff m ≤ k(e, n) where a = 〈e, n〉. Since 〈e, n〉 and the relation

m ≤ k(e, n) are computable, we have a decision procedure for the constraint satisfiability

problem in TMω.

To see that TMω is not ∃∞-decidable, notice that the TMω-constraint

{S(0, c1), S(c1, c2), . . . , S(ca−1, ca), P (ca)},

(for a = 〈e, n〉) is TMω-satisfiable in an infinite structure iff the computation of the Turing

Machine e over the input n diverges, which is obviously undecidable.

A Variant of the Theory TMω: TM∀ω

Theory TMω is not universal. However, it is not difficult to find an alternative axiom-

atization over a finite signature ΣTM∀ω
so to define a universal theory TM∀ω which is

∃-decidable but it is not ∃∞-decidable.

The main ideas used in the definition of TM∀ω are the following: (a) we replace the

binary predicate symbol S of TMω with a unary function symbol s; (b) we re-use axioms

(2.4)-(2.7) and (c) we introduce new axioms to constrain the unary symbol s to be such

that s(x) = x holds iff the order < has a last element which is precisely x.

In more detail, the signature of the theory TM∀ω coincides with the signature of the

theory TMω with the exception that the binary predicate symbol S is replaced by the

unary function symbol s. The axioms for TM∀ω are divided into three groups. In the first

group we have axioms (2.4)-(2.7) and in the second group the following ones:

x = s(x) ∨ x < s(x) (2.12)

¬(x < y ∧ y < s(x)) (2.13)

x < y → s(x) < y ∨ s(x) = y (2.14)

s(x) = x ∧ x < y → ⊥ (2.15)

Axioms (2.12)-(2.15), together with (2.4)-(2.7), state that the function s behaves like

a successor function with the exception that fixed points of s are allowed (see (2.12)).

Axiom (2.15) however says that the only possible fixed point of the function s is the

maximum element with respect to the order <.

In addition to the axioms of the first two groups (namely (2.4)-(2.7) and (2.12)-(2.15)),

30

in the third group, we have axiom (2.11) and the following one (which replaces (2.10)):

P (sa(0)) ∧ sa+m−1(0) < sa+m(0)→ ⊥ if a = 〈e, n〉 and k(e, n) < m (2.16)

Proposition 2.2.5. The theory TM∀ω is ∃-decidable but it is not ∃∞-decidable.

Proof. The argument is similar to the argument used in the proof of Proposition 2.2.4,

with the proviso that the constraint Γ should be flattened. Moreover, once the linear

order

c0 < c1 < · · · < cs−1 < cs

is obtained, we notice that if the literal cj = s(ci) belongs to the guessing G, then this is

inconsistent if j 6= i+ 1 or if j = i 6= s. The other steps in the proof of Proposition 2.2.4

remain unchanged.

Now we are able to prove the following

Theorem 2.2.6. There exist ∃-decidable universal theories over finite and disjoint sig-

natures, whose union is not ∃-decidable.

This result follows from Theorem 2.2.2 and the fact that TM∀ω is ∃-decidable but not

∃∞-decidable. It is still an open problem to find an ∃-decidable, non ∃∞-decidable theory

(in a finite signature), which is universal and finitely axiomatized.

2.3 Decidability Results

Notwithstanding the negative result implied by Theorems 2.2.2 and 2.2.6, we observe that,

when both T1 and T2 are ∃∞-decidable, we are close to get the decidability of constraint

satisfiability in T1 ∪ T2. To understand why, recall the following well-known fact.

Lemma 2.3.1. Let Λ be a set of first-order sentences. If Λ does not admit infinite models,

then there must exist an integer N > 0 such that, for each model M of Λ, the cardinality

of the support set of M is bounded by N .

For a proof, the interested reader is referred to any introductory textbook about

model theory (see, e.g., [87]). The key idea is to apply compactness to infinitely many

“at-least-n-elements” constraints (these are the constraints expressed by the formulae

∃x1, . . . , xn

∧

i6=j xi 6= xj). It is interesting to notice that the above bound on the cardi-

nality of finite models can be effectively computed for ∃-decidable theories.

Lemma 2.3.2. Let T be an ∃-decidable Σ-theory; whenever it happens that a given Σ-

constraint Γ is not satisfiable in an infinite model, one can compute a natural number N

such that all models of T ∪ Γ have cardinality at most N .

31

Proof. For h = 2, 3, . . . , add the following set δh := {ci 6= cj | 1 ≤ i < j ≤ h} of literals to

T ∪ Γ, where the constants c1, . . . , ch are fresh. Actually, the literals in δh are simply the

Skolemization of the “at-least-h-elements” constraint. Clearly, if T∪Γ∪δh is unsatisfiable,

then we get a bound for the cardinality of the models of T ∪ Γ. Since, by Lemma 2.3.1,

such a bound exists, the process eventually terminates.

It could be useful to notice that there is a subtle point here: Lemma 2.3.2 applies

to all ∃-decidable theories, but it is really useful only for ∃∞-decidable theories, because

only for these theories the hypothesis “Γ in not satisfiable in an infinite model of T” can

be effectively checked.

Definition 2.3.3. An ∃∞-decidable Σ-theory T is said to be strongly ∃∞-decidable iff for

any finite Σ-structure A, it is decidable whether A is a model of T .

It is not difficult to find strongly ∃∞-decidable theories. For example, any finitely

axiomatizable ∃∞-decidable Σ-theory with a finite Σ is strongly ∃∞-decidable, since it is

sufficient to check the truth of the axioms for finitely many valuations. Now, we are in the

position to state and prove the following modularity property for ∃∞-decidable theories.

Theorem 2.3.4. Let Ti be a strongly ∃∞-decidable Σi-theory (for i = 1, 2) such that

Σ1,Σ2 are finite and disjoint. Then the combined theory T1 ∪ T2 is ∃-decidable.

Proof. Let Γ be a finite set of ground Σ1 ∪ Σ2 ∪ a-literals (where a is a finite set of free

constants). By well-known means (see, e.g., [12]), we can obtain an equisatisfiable set

Γ1 ∪ Γ2 such that Γi contains only Σ
a
i -symbols, for i = 1, 2. Let Γ0 be an arrangement of

the constants a, i.e. a finite set of literals such that either ai = aj ∈ Γ0 or ai 6= aj ∈ Γ0,

for i 6= j and ai, aj ∈ a. Clearly, Γ1 ∪ Γ2 is satisfiable iff Γ1 ∪ Γ0 ∪ Γ2 is satisfiable for

some arrangement Γ0 of the constants a. From the fact that theories T1, T2 are both

∃∞-decidable, the following case analysis can be effectively performed:

– If Γ0∪Γi is satisfiable in an infinite model of Ti (for both i = 1, 2), then Γ0∪Γ1∪Γ2

is satisfiable in an infinite model of T1 ∪ T2 by the standard argument underlying

the correctness of the Nelson-Oppen combination schema (see, e.g., [86, 44]).

– If Γ0 ∪ Γi is unsatisfiable in any infinite model of Ti (for either i = 1 or i = 2),

then (by Lemma 2.3.2) we can effectively compute an integer N > 0 such that

each model M of T ∪ Γi ∪ Γ0 has cardinality less than N . Hence, it is sufficient to

exhaustively search through Σ1∪Σ2∪a-structures up to cardinality N . The number

of these structures is finite because Σ1 and Σ2 are finite and, by Definition 2.3.3, it

is possible to effectively check whether each such a structure is a model of T1 and

T2, and hence also of T1 ∪ T2 ∪ Γ0 ∪ Γ1 ∪ Γ2. If a model is found, the procedure

returns “satisfiable”, otherwise another arrangement Γ0 (if any) is considered.

32

Theorem 2.3.4, which can be easily generalized to the combination of n > 2 theories,

raises naturally the question if there is a practical sufficient condition for a theory to

be strongly ∃∞-decidable. Clearly, stably infinite ∃-decidable theories are ∃∞-decidable.

We are now looking for more interesting examples. In Section 2.4 we will show that,

whenever a finitely axiomatized theory T admits a rewrite-based decision procedure for

its constraint satisfiability problem [5, 4], T is not only ∃-decidable but also strongly

∃∞-decidable.

2.4 Combination by Superposition

The task of this section rests on showing that (under suitable assumptions) rewrite-based

methods give practical sufficient conditions for a theory to be strongly ∃∞-decidable.

First, we need to introduce some technical definitions. In Section 2.4.2, we recall some

basic notions underlying the superposition calculus [71] and we introduce superposition

modules as suitable abstractions for the subsequent technical development. Then, in

Section 2.4.3, we introduce the notion of invariant superposition modules and, in Section

2.4.4, we show that they can generate an “at-most” cardinality constraint (see (2.3) in

Section 2.2.1) whenever a theory does not admit infinite models. Last, in Section 2.4.5,

we describe how to combine rewrite-based procedures (see, e.g., [4, 5]) with Satisfiability

Modulo Theory (SMT) tools, such as [32, 6, 36, 43], in order to obtain automatic methods

to solve constraint satisfiability problems involving theories admitting only finite models

(e.g., enumerated data-types).

2.4.1 Superposition Calculus: an Overview

From now on, we consider only universal, finitely axiomatized theories, whose signatures

are finite. Without loss of generality, we assume that signatures contain only function

symbols, because any atom P (t1, . . . , tn) with predicate symbol P other than equality can

be written as an equation p(t1, . . . , tn) = true, where p is a fresh function symbol and

true a fresh constant symbol, and this transformation preserves satisfiability (see, e.g.,

[71]).

In the following, = denotes equality, ≡ denotes identity, l, r, u, t are terms, v,w, x, y, z

are variables, all other lower case letters are constant or function symbols. A fundamental

feature of the Superposition Calculus (from now on, SP) is the usage of a term reduction

ordering (TRO) ≺ (see, e.g., [11]) which is total on ground terms. The ordering ≺ is

extended to literals in such a way that only maximal sides of maximal instances of literals

are considered when applying the expansion rules of Figure 2.1. The most commonly

33

used orderings are the Knuth-Bendix ordering (KBO) and the lexicographic path ordering

(LPO).

A clause C is redundant with respect to a set S of clauses if either C ∈ S or S can be

obtained from S ∪{C} by a sequence of application of the contraction rules of Figure 2.2.

An inference is redundant with respect to a set S of clauses if its conclusion is redundant

with respect to S. A set S of clauses is saturated with respect to SP if every inference

of SP with a premise in S is redundant with respect to S. A derivation is a sequence

S0, S1, . . . , Si, . . . of sets of clauses where at each step an inference of SP is applied to

generate and add a clause (see expansion rules in Figure 2.1) or to delete or reduce a clause

(see contraction rules in Figure 2.2). A derivation is characterized by its limit, defined

as the set of persistent clauses S∞ =
⋃

j≥0

⋂

i>j Si. A derivation S0, S1, . . . , Si, . . . with

limit S∞ is fair with respect to SP if for every inference in SP with premises in S∞,

there is some j ≥ 0 such that the inference is redundant in Sj.

Theorem 2.4.1 (Nieuwenhuis and Rubio [71]). If S0, S1, . . . is a fair derivation of SP,

then (i) its limit S∞ is saturated with respect to SP, (ii) S0 is unsatisfiable iff the empty

clause is in Sj for some j, and (iii) if such a fair derivation is finite, i.e. it is of the form

S0, . . . , Sn, then Sn is saturated and logically equivalent to S0.

We say that SP is refutationally complete since it is possible to derive the empty

clause with a finite derivation from an unsatisfiable set of clauses (see (ii) of Theorem

2.4.1). The proof of this theorem (see [71], but also [13, 14]) relies on the creation of a

convergent rewriting system from the set of all the ground instances of a saturated set

of clauses. If the empty clause does not belong to the saturation, a model for S0 can be

built from the set of all the ground terms identified by the equivalence relation deriving

from the rewriting rules. The clauses of the derivation concurring to the creation of these

rewriting rules are called productive. The precise definition of productive clause will be

given in the next Section 2.4.2, and it will turn to be essential also for the results presented

hereafter.

The rewriting based methodology for T -satisfiability consists of two phases:

1. Flattening: all ground literals are flattened by introducing new constants, yielding

an equisatisfiable set of flat literals.

2. Ordering selection and termination: any fair derivation of SP is shown to be finite

when applied to the union of the set of flat literals together and the set of axioms

of T , provided that the TRO ≺ satisfies a few properties depending on T .

If T is a theory to which the rewriting-based approach can be applied, a T -satisfiability

procedure can be built by implementing flattening (this can be done once and for all),

and by using a prover mechanizing SP with a suitable TRO ≺. If the final set of clauses

34

Superposition
Γ⇒ ∆, l[u′] = r Π⇒ Σ, u = t

(Γ,Π⇒ ∆,Σ, l[t] = r)σ
(i), (ii), (iii), (iv)

Paramodulation
Γ, l[u′] = r ⇒ ∆ Π⇒ Σ, u = t

(l[t] = r,Γ,Π⇒ ∆,Σ)σ
(i), (ii), (iii), (iv)

Reflection
Γ, u′ = u⇒ ∆

(Γ⇒ ∆)σ
(v)

Eq. Factoring
Γ⇒ ∆, u = t, u′ = t′

(Γ, t = t′ ⇒ ∆, u = t′)σ
(i), (vi)

Legenda: a clause ¬A1 ∨ · · · ∨ ¬An ∨ B1 ∨ · · · ∨ Bn is written in sequent style as
{A1, . . . , An} ⇒ {B1, . . . , Bm} (where the Ai’s and Bj ’s are literals), equality is the
only predicate symbol, σ is the most general unifier of u and u′, u′ is not a variable
in Superposition and Paramodulation, L is a literal, and the following hold:

(i) uσ 6� tσ, (ii) ∀L ∈ Π ∪ Σ : (u = t)σ 6� Lσ, (iii) l[u′]σ 6� rσ, (iv) ∀L ∈ Γ ∪
∆ : (l[u′] = r)σ 6� Lσ, (v) for all L ∈ Γ ∪ ∆ : (u′ = u)σ 6≺ Lσ, and (vi) for all
L ∈ Γ : uσ 6� Lσ, and for all L ∈ {u′ = t′} ∪∆ : (u = t)σ 6≺ Lσ.

Figure 2.1: Expansion Inference Rules of SP .

Subsumption
S ∪ {C,C ′}

S ∪ {C}
if Cϑ ⊆ C ′ for some substitution ϑ

Simplification
S ∪ {C[l′], l = r}
S ∪ {C[rϑ], l = r}

if l′ ≡ lϑ, rϑ ≺ lϑ, and
∀L ∈ C[lϑ] : (lϑ = rϑ) ≺ L

Deletion
S ∪ {Γ⇒ ∆, t = t}

S

where C and C ′ are clauses and S is a set of clauses.

Figure 2.2: Contraction Inference Rules of SP.

returned by the prover contains the empty clause, then the T -satisfiability procedure

returns “unsatisfiable”; otherwise, it returns “satisfiable”. This behavior respects the fact

that SP is refutationally complete (see [71]).

2.4.2 Superposition Modules

Since we have to deal with constraints involving finitely (but arbitrarily) many new con-

stants, we consider a countable set K of constants disjoint from Σ to form the expanded

signature ΣK. Usual results on orderings can be extended to infinite signatures (see [67]);

notice however that one can keep the signature ΣK finite, by coding ci as si(0) (for new

symbols s, 0), like e.g., in [28]. We collect all needed data in the following

Definition 2.4.2 (Suitable Ordering Triple). A suitable ordering triple is a triple (Σ,K,≺),

where: (a) Σ is a finite signature; (b) K := {c1, c2, c3, . . . } is a countably infinite set of

constant symbols such that Σ and K are disjoint; (c) ≺ is a reduction ordering over

35

ΣK-terms satisfying the following conditions:

(i) ≺ is total on ground ΣK-terms;

(ii) for every ground ΣK-term t with root symbol f ∈ Σ and for every ci ∈ K, we have

ci ≺ t;

(iii) for ci, cj ∈ K, we have ci ≺ cj iff i < j.

The above conditions on the reduction ordering are similar to those adopted in [5, 4]

to build rewrite-based decision procedures for the constraint satisfiability problem in

theories of data structures, fragments of integer arithmetic, and their combinations. It

is indeed very easy and natural to produce suitable ordering triples: for instance, if an

LPO is adopted, it is sufficient to take a total precedence >p satisfying the condition

f >p ci >p cj, for f ∈ Σ, ci ∈ K, cj ∈ K and i > j.

Another key characteristic of a rewrite-based inference system is the possibility of

associating a model to the set of derived clauses, defined by building incrementally a

convergent term rewriting system.

Let (Σ,K,≺) be a suitable ordering triple and let S be a set of ΣK-clauses not con-

taining the empty clause. The set gr(S) contains all ground ΣK-clauses that are instances

of clauses in S. By transfinite induction on C ∈ gr(S), we simultaneously define Gen(C)

and the ground rewrite system RC as follows (see [71]):

(a) RC :=
⋃

D∈gr(S),D≺C Gen(D);

(b) Gen(C) := {l → r} in case C is of the kind ∆1 ⇒ l = r,∆2 and the following

conditions are satisfied:

1. RC 6|= ∆1 ⇒ ∆2, i.e. (i) for each l = r ∈ ∆1, l and r have the same normal

form with respect to RC (in symbols, l ↓RC
r) and (ii) for each s = t ∈ ∆2,

s 6↓RC
t;

2. r ≺ l, v ≺ l (for all v occurring in ∆1), {u, v} ≺ms {r, l}, for every equation

u = v occurring in ∆2, where ≺ms is the multi-set extension [11] of ≺;

3. l is not reducible by RC , and

4. RC 6|= r = t′, for every equation of the kind l = t′ occurring in ∆2;

(c) Gen(C) := ∅, otherwise.

We say that C is productive if Gen(C) 6= ∅. Finally, let RS :=
⋃

C∈gr(S)Gen(C). Note

that RS is a convergent rewrite system, by conditions 2 and 3 above.

We are interested in a semantic notion of saturation based on model generation.

36

Definition 2.4.3. A set S of ΣK-clauses is model-saturated iff (i) S does not contain

the empty clause and (ii) the rewrite system RS is a model of S, i.e. the quotient of the

Herbrand universe of ΣK modulo RS-convergence is a model of the universal closures of

the clauses in S.

The following definition of reasoning module is precisely what we need to prove the

main technical Lemma 2.4.10 below.

Definition 2.4.4 (Superposition Module). Let (Σ,K,≺) be a suitable ordering triple. A

superposition module SP(Σ,K,≺) is a computable function which takes a finite set S0 of

ΣK-clauses as input and returns a (possibly infinite) sequence

S0, S1, . . . , Sn, . . . (2.17)

of finite sets of ΣK-clauses, called an S0-derivation, such that (i) if S0 is unsatisfiable,

then there exists k ≥ 0 such that the empty clause is in Sk; (ii) if S0 is satisfiable, then

the set

S∞ :=
⋃

j≥0

⋂

i≥j

Si

of persistent clauses is model-saturated, and (iii) the sets Si and Sj are logically equivalent

for (0 ≤ i, j ≤ ∞). We say that SP(Σ,K,≺) terminates on the set of ΣK-clauses S0 iff

the S0-derivation (2.17) is finite.

Superposition modules are deterministic, i.e. there exists just one S0-derivation start-

ing with a given finite set S0 of clauses. Any implementation of the superposition calculus

(see [71]) together with a fair strategy satisfies Definition 2.4.4.

2.4.3 Superposition Modules and Rewrite-based Decision Procedures

For the proofs below, we need a class of superposition modules which are invariant (in a

sense to be made precise) under certain renamings of finitely many constants. Formally,

an n-shifting (where n is an integer such that n > 0) is the operation that applied to

a ΣK-expression E returns the ΣK-expression E+n obtained from E by simultaneously

replacing each occurrence of the free constant ci ∈ K by the free constant ci+n, for i > 0

(where the word “expression” may denote a term, a literal, a clause, or a set of clauses).

In practice, an n-shifting enlarges the set of free constants occurring in the set of clauses

by adding the extra constants c1, . . . , cn that are not in the range of the function (·)+n.

Example 2.4.5. Let us consider the set S := {f(c1, c4) = c1, f(f(c1, c4), c4) = c2} of

ground ΣK-literals where Σ := {f} and K := {c1, c2, . . . }. Then, we have that S+5 :=

{f(c6, c9) = c6, f(f(c6, c9), c9) = c7}.

37

Definition 2.4.6 (Invariant Superposition Module). Let (Σ,K,≺) be a suitable order-

ing triple. A superposition module SP(Σ,K,≺) is invariant iff for every S0-derivation

S0, S1, . . . , Sj , . . . (with S0 being a set of ΣK-clauses), we have that (S0)+n, (S1)+n, . . . ,

(Sj)
+n, . . . is an (S0)+n-derivation, for all n ≥ 0.

Most of the actual implementations of the superposition calculus are stable under

signature extensions (this is so because they need to handle Skolem symbols) and, hence,

the behavior of a superposition prover is not affected by any proper extension of the

signature and the ordering. The property of producing derivations that are invariant

under shifting is weaker than stability under signature extensions. As a consequence, any

superposition prover can be turned into an invariant superposition module. However,

not all possible implementations of the superposition calculus are invariant superposition

modules, as we shall discuss in Section 2.4.4.

Example 2.4.7. Suppose that in the suitable ordering triple (Σ,K,≺), the term ordering

≺ is an LPO whose precedence satisfies f >p ci >p cj (for f ∈ Σ, ci ∈ K, cj ∈ K, i > j).

Let us consider the superposition module given by the standard superposition calculus (see

Section 2.4.1) and let us take again the situation in Example 2.4.5. The (model-)saturated

set output by SP(Σ,K,≺) when taking S as input is Ss := {f(c1, c4) = c1, c2 = c1}. It

is not difficult to see that the set (Ss)
+5 := {f(c6, c9) = c6, c7 = c6} is exactly the set

that we would obtain as output by the superposition module SP(Σ,K,≺) when taking

as input the set (S)+5 (see Example 2.4.5).

Definition 2.4.8. Let (Σ,K,≺) be a suitable ordering triple. A universal and finitely

axiomatized Σ-theory T is ∃-superposition-decidable iff there exists an invariant superpo-

sition module SP(Σ,K,≺) that is guaranteed to terminate when taking as input T ∪ Γ,

where Γ is a ΣK-constraint.

From the termination results for superposition calculus given in [5, 4], it follows that

theories such as equality, (possibly cyclic) lists, arrays, and so on are ∃-decidable by

superposition. According to Definition 2.4.8, any theory T which is ∃-superposition-de-

cidable is ∃-decidable. In the following, we show that T is also ∃∞-decidable.

2.4.4 Invariant Superposition Modules and Cardinality Constraints

A variable clause is a clause containing only equations between variables or their nega-

tions. The antecedent-mgu (a-mgu, for short) of a variable clause ∆1 ⇒ ∆2 is the most

general unifier of the unification problem {x
?
= y | x = y ∈ ∆1}. A cardinality constraint

clause is a variable clause ∆1 ⇒ ∆2 such that ⇒ ∆2µ does not contain any trivial equa-

tion like x = x, where µ is the a-mgu of ∆1 ⇒ ∆2; the number of free variables of ∆2µ is

called the cardinal of the cardinality constraint clause ∆1 ⇒ ∆2. For example, the clause

38

x = y ⇒ y = z1, x = z2 is a cardinality constraint clause whose cardinal is 3 (notice that

this clause is true only in the one-element model).

Lemma 2.4.9. If a satisfiable set S of clauses contains a cardinality constraint clause

∆1 ⇒ ∆2, then S cannot have a model whose domain is larger than the cardinal of

∆1 ⇒ ∆2.

Proof. Let µ be the a-mgu of ∆1 ⇒ ∆2. By definition of a cardinality constraint clause,

the clause⇒ ∆2µ does not contain trivial equations; if n is the number of distinct variables

in⇒ ∆2µ, then there cannot be more than n−1 distinct elements in any model of S.

The next crucial lemma expresses the property that an invariant superposition module

will discover a cardinality constraint clause whenever the input set of clauses does not

admit infinite models. In Section 2.4.4, we illustrate this behavior by showing how the

superposition calculus can derive a cardinality constraint clause from ⇒ x = a, x = b.

Lemma 2.4.10. Let (Σ,K,≺) be a suitable ordering triple. Let SP(Σ,K,≺) be an in-

variant superposition module. If S0 is a satisfiable finite set of clauses, then the following

conditions are equivalent:

(i) the set S∞ of persistent clauses in an S0-derivation of SP(Σ,K,≺) contains a car-

dinality constraint clause;

(ii) S0 does not admit infinite models.

Proof. The implication (i) ⇒ (ii) is proved by Lemma 2.4.9. To show (ii) ⇒ (i), assume

that the set S0 does not have a model whose domain is infinite. By Lemma 2.3.1, there

must exist a natural number N such that every model M of S0 has a domain with at

most N elements. Since a cardinality constraint clause does not contain constants, it is

in S∞ iff it is in (S∞)+N . Hence, by Definition 2.4.6 of an invariant superposition module

(considering (S0)+N rather than S0, if needed) we are free to assume that the constants

{c1, . . . , cN} do not occur in S∞. Recall also that, according to the definition of a suitable

ordering triple, the constants {c1, . . . , cN} are the smallest ground ΣK-terms.

According to the definition of superposition module (see Definition 2.4.4), since S0

is assumed to be satisfiable, S∞ is model-saturated, which means that the convergent

rewrite system RS∞ is a model of S∞ (hence also of S0, which is logically equivalent to

S∞). Now, since S0 does not have a model whose domain is of cardinality N or greater,

there is at least one constant among c1, . . . , cN which is not in normal form (with respect

to RS∞). Assume that ci is not in normal form (with respect to RS∞) and that each cj

(for j < i) is. By model generation (see Section 2.4.2), to reduce ci we need a rule l→ r

from a productive clause C of the kind ∆1 ⇒ l = r,∆2 ∈ gr(S∞); furthermore, ci can be

39

reduced only to cj for j < i. The maximality condition 2 of model generation in Section

2.4.2 on l implies that l is ci and that the remaining terms in C are of the kind cj for

j ≤ i.2 By condition 1 of model generation in Section 2.4.2, the fact that all terms cj

(j < i) are in RS∞-normal form, and the fact that RS∞ is a convergent rewrite system

extending RC , it follows that each equation in ∆1 is of the form cj = cj . Furthermore,

again by condition 1 of model generation in Section 2.4.2, there is no (trivial) equality

of the form cj = cj in ∆2. Since the constants {c1, . . . , cN} do not occur in S∞, we are

entitled to conclude that the productive clause ∆1 ⇒ l = r,∆2 is the ground instance of

a variable clause, i.e. there must exist a variable clause C̃ of the form ∆̃1 ⇒ l̃ = r̃, ∆̃2 in

S∞ such that C̃ϑ ≡ C for some ground substitution ϑ. Since the antecedent of C consists

of trivial equalities, ϑ is less general than µ, where µ is the a-mgu of C̃, i.e. we have

that ϑ = µϑ′ for some substitution ϑ′. Furthermore, since there are no positive trivial

equalities in C ≡ C̃µϑ′, there are no positive trivial equalities in C̃µ either, which implies

that C̃ is a cardinality constraint clause belonging to S∞.

The following result immediately follows from Lemma 2.4.10 above, because unsatis-

fiability in infinite models can be detected by looking for a cardinality constraint clause

among the finitely many final clauses of a terminating derivation:

Theorem 2.4.11. Let T be a finitely axiomatized universal Σ-theory where Σ is finite.

If T is ∃-superposition-decidable, then T is strongly ∃∞-decidable.

Deriving a Cardinality Constraint Clause in Practice

As already said (see Section 2.4.1), superposition calculus is refutationally complete:

model generation technique is the main tool to show this result. However, the com-

pleteness proof in [71] makes clear that the calculus is complete as well if the ordering

constraints are interpreted as symbolic constraint solving problems (see, e.g., [27, 70, 55]):

this means that, e.g., the condition (i) in Figure 2.1 can be rephrased as “there exists

a ground substitution ϑ such that tσϑ ≺ uσϑ” (where 6� can be replaced to ≺, because

the ordering is total on ground terms). We can further restrict the ground substitution ϑ

to take values in the actual signature (and not in a signature extending the actual one).

These choices are not very convenient from a practical point of view, because the benefit

of blocking some inference does not compensate the increase in complexity due to the

intractability of symbolic constraint solving problems (which usually are NP-complete

problems).

What we want to point out here is that this interpretation of ordering constraints

as symbolic constraint solving problems in the actual signature destroys invariance in

2More precisely (this is important for the proof): terms occurring positively can only be cj for j ≤ i

and terms occurring negatively can only be cj for j < i.

40

the sense of Definition 2.4.6 and also invalidates the statement of Lemma 2.4.10. To see

why this is the case, let c1 ∈ K be the smallest constant in the given suitable ordering

triple. A clause like x = c1 can be superposed with itself if the maximality constraint is

interpreted as x 6� c1 (and the result of the superposition is x = y). On the other hand, if

the maximality constraint is interpreted as a symbolic constraint solving problem in the

signature ΣK, then no superposition applies because there is no ground term smaller than

c1 in ΣK. Unfortunately, if we apply a +2-shifting, then the symbolic constraint x ≺ c3?

has, e.g., the solution x 7→ c1 and superposition is not blocked anymore. Notice also that

the singleton set of clauses {x = c1} is model-saturated,3 has no infinite models, but does

not contain a cardinality constraint clause.

To illustrate the content of Lemma 2.4.10 in a simple but not entirely trivial case,

let us consider the clause ⇒ x = a, x = b, which tells us that there are at most two

elements in the domain of a model (these are the interpretations of the constants a and

b). It is instructive to apply to this clause the superposition calculus (in the plain Figure

2.1 formulation, where ordering constraints are just 6�-conditions). The following is a

derivation of a cardinality constraint clause:

1. ⇒ u = a, u = b

2. ⇒ u = a, v = a, v = u [Sup 1.1, 1.1]

3. ⇒ u = a, u = v,w = v, x = a, x = w [Sup 2.0, 2.0]

4. a = a ⇒ u = v,w = v, u = a, u = w [Fac 3.0, 3.3]

5. ⇒ u = v,w = v, u = a, u = w [Ref 4.0]

6. ⇒ u = v,w = v, u = w, x = y, z = y, x = u, x = z [Sup 5.2, 5.2]

where u, v,w, x, y, and z are variables, Sup abbreviates Superposition, Fac abbreviates

Factoring, Ref abbreviates Reflection, and the sequences of non negative integers sep-

arated by “.” denote positions. With a little bit of effort, it is possible to derive (by

continuing the application of the rules of the calculus) a cardinality constraint clause

3Recall that we defined model-saturation of a set of clauses in terms of the rewrite system associated
to the model generation construction (and not in terms of closure - up to redundancy - with respect to
the rules of the calculus).

41

whose cardinal is 3:

7. v = y ⇒ z = y,w = v, z = w, x = y, x = z, x = z [Fac 6.0, 6.4]

8. ⇒ z = y,w = y, z = w, x = y, x = z, x = z [Ref 7.0]

9. y = y ⇒ z = y, x = y, z = x, x = z, x = z [Fac 8.1, 8.3]

10. ⇒ z = y, x = y, z = x, x = z, x = z [Ref 9.0]

11. z = z ⇒ z = y, x = y, z = x, x = z [Fac 10.3, 10.4]

12. ⇒ z = y, x = y, z = x, x = z [Ref 11.0]

13. z = z ⇒ z = y, x = y, z = x [Fac 12.2, 12.3]

14. ⇒ z = y, x = y, z = x [Ref 13.0]

Cardinality constraint clauses are always derived by common superposition provers, ac-

cording to Lemma 2.4.10, when saturating sets of clauses not admitting infinite models.

Such derivations, however, even in simple cases like the one above, seems to take consid-

erable amount of time in state-of-the-art provers.

2.4.5 Combining Superposition Modules and SMT Procedures

Invariant superposition modules provide us with means to check whether a theory is

strongly decidable or not. However, the situation is not really clear in practice. By

using available state-of-the-art implementations of the superposition calculus, such as

SPASS (see [88]) or E (see [79]), with suitable ordering, we have run concrete invariant

superposition modules for a theory T≤k, admitting only finite models with at most k −

1 elements, axiomatized by an appropriate “at-most” cardinality constraint, see (2.3).

Indeed, according to Definition 2.4.6, the hard part is to prove termination for arbitrary

input clauses of the form T≤k ∪ Γ, where Γ is a set of ground literals. Our preliminary

experiments were quite discouraging. In fact, both SPASS and E were able to handle

only the trivial theory T≤1 (axiomatized by ⇒ x = y). Already for T≤2 (axiomatized

by ⇒ x = y, x = z, y = z), the provers do not terminate in a reasonable amount of time

although we experimented with various settings. For example, while SPASS is capable

of finding a saturation for T≤2 ∪ Γ when Γ := ∅, it seems to diverge when Γ := {a 6= b}.

This seems to dramatically reduce the scope of applicability of Theorem 2.4.11 and hence

of Theorem 2.3.4.

Fortunately, this problem can be solved by the following two observations. First,

although a superposition module may not terminate on instances of the constraint satis-

fiability problem of the form T ∪Γ, where Γ is a constraint and T does not admit infinite

models (such as T≤k, above), Lemma 2.4.10 ensures that a cardinality constraint clause

will eventually be derived in a finite amount of time: if a clause C is in the set S∞ of

persistent clauses of a derivation S0, S1, . . . , then there must exists an integer k ≥ 0 such

42

function Grounding (N : integer, T : axioms, Γ: Ground literals)
1 introduce fresh constants c1, . . . , cN ;
2 for every k-ary function symbol f in Γ ∪ T (with k ≥ 0), generate the positive

clauses
N∨

i=1

f(a1, . . . , ak) = ci

for every a1, . . . , ak ∈ {c1, . . . , cN} and let E be the resulting set of clauses;
3 for every clause C ∈ T , instantiate C in all possible ways by ground substitutions

whose range is the set {c1, . . . , cN} and let Tg be the resulting set of clauses;
4 return the set Tg ∪ E ∪ Γ.
end

Figure 2.3: The Grounding function

that C ∈ Sk (recall Definition 2.4.4). Second, when a cardinality constraint clause C

is derived from T ∪ Γ, a bound on the cardinality of the domains of any model can be

immediately obtained by the cardinal associated to C. It is possible to use such a bound

to build an equisatisfiable set of clauses (see Figure 2.3) and pass it to an efficient deci-

sion procedure for the pure theory of equality, based on congruence closure, such as those

provided by many SMT tools (see, e.g., [32, 6, 36, 43]). The observations above motivate

the following relaxation of the notion of an ∃-superposition-decidable theory.

Definition 2.4.12. Let (Σ,K,≺) be a suitable ordering triple. A universal and finitely

axiomatized Σ-theory T is weakly ∃-superposition-decidable iff there exists an invariant su-

perposition module SP(Σ,K,≺) such that for every ΣK-constraint Γ, any T ∪Γ-derivation

either (i) terminates or (ii) generates a cardinality constraint clause.

We can easily adapt Theorem 2.4.11 to this new definition.

Theorem 2.4.13. Let T be a universal and finitely axiomatized Σ-theory, where Σ is

finite. If T is weakly ∃-superposition-decidable, then T is strongly ∃∞-decidable.

Proof. Decidability of Σ-constraints in models of T can be obtained by halting the invari-

ant superposition module and then using any SMT procedure for the theory of equality

with the set of clauses obtained by the function Grounding of Figure 2.3. Decidability

in infinite models is answered negatively if a cardinality constraint clause is generated;

otherwise, we have termination of the invariant superposition module and if the empty

clause is not produced, satisfiability is reported by Lemma 2.4.10.

43

Chapter 3

Combining Theories over

Non-Disjoint Signatures

As already pointed out, the Nelson-Oppen combination schema yields to a decision pro-

cedure for the constraint satisfiability problem for the union of theories which are stably

infinite and over disjoint signatures. In the previous chapter we were concerned with

the weakening of the hypothesis of stable infiniteness; in this chapter we deal with the

hypothesis of disjoint signatures. A first attempt to drop it can be found in [44], where it

is replaced by two fundamental requirements: the first regards a sort of “compatibility”

with respect a common subtheory and the second limits the number of terms different up

to logical consequence to be finite. In the following we re-propose these results and we

weaken that second requirement by introducing a “noetherianity” notion. Let us start

fixing the context.

3.1 Some Notions from Model Theory

Here and in the following we will refer to the definitions presented in Section 1.1. When-

ever confusion does not arise, we may improperly write clauses/positive clauses as dis-

junctions of the corresponding literals/atoms (in particular, the empty clause is always

confused with the empty disjunction ⊥ expressing syntactic falsity). Letters ϕ,ψ, . . . are

used for formulae, whereas letters A,B, . . . are used for literals and letters C,D, . . . are

used for clauses.

If T and T ′ are two Σ-theories, writing T ⊆ T ′ means that all the axioms for T are

logical consequences of the axioms for T ′, i.e. that the set of sentences in T are true in

all the models of T ′. The diagram ∆(A) of a Σ-structure A is the set of ground ΣA-

literals which are true in A, thus enlarging the signature Σ with the names of all the

elements in the domain of A; the elementary diagram ∆e(A) of a Σ-structure A is the

44

set of ΣA-sentences which are true in A. We recall a very useful theorem

Theorem 3.1.1 (Robinson’s Diagram Lemma [25]). There is an (elementary) embedding

between the Σ-structures A and B iff it is possible to expand B to a ΣA-structure in such

a way that it becomes a model of the (elementary) diagram of A.

Now we introduce a notion that will be deeply exploited in what follows.

Definition 3.1.2. Let T be a Σ-theory and let T ∗ be a further Σ-theory extending T .

T ∗ is a model completion of T iff:

(i) every model of T embeds into a model of T ∗;

(ii) for every Σ-structure A which is a model of T , we have that T ∗∪∆(A) is a complete

ΣA-theory.

A Σ theory T is said to be sub-model complete if and only if, given M, model of T ,

and A ⊆M any substructure ofM, T ∪∆(A) is a complete ΣA-theory. By the Diagram

Lemma, an equivalent formulation is the following: T is sub-model complete iff given two

modelsM1,M2 of T and given a common Σ-substructure A of them, we have thatM1 is

elementarily equivalent toM2 as a ΣA-structure. The notion of sub-model completeness

is the semantic counterpart of quantifier elimination.

Proposition 3.1.3. T admits elimination of quantifiers iff it is sub-model complete.

Proof. Suppose that T admits elimination of quantifier; consider two models N1,N2 of

its, a common substructure A of N1 and N2 and a ΣA
0 -sentence ϕ(a). ϕ(x) is T -equivalent

to a quantifier-free formula ϕ′(x), hence if ϕ(a) is true in N1, ϕ′(a) is true in it, ϕ′(a) is

true in A and in N2, as well, because ground open formulae are preserved by both sub-

and super-structures, thus establishing that ϕ(a) is true in N2. Since ϕ(a), N1,N2 are

arbitrary, T ∪∆(A) is complete.

Suppose now, for the other side, that T is sub-model complete and let ϕ(x) be an

arbitrary formula. For new constants a consider the set of sentences

Θ := T ∪ {ϕ(a)} ∪ {¬ψ(a) | ψ is quantifier-free and T |= ψ(a)→ ϕ(a)}.

If Θ is inconsistent, then we have T |= ϕ(a)→ ψ1(a) ∨ · · · ∨ ψn(a) for quantifier-free ψi

implying ϕ, so that we have

T |= ϕ(x)↔ ψ1(x) ∨ · · · ∨ ψn(x)

yielding the fact that T admits quantifier elimination. Consequently, it suffices to show

that Θ cannot be consistent. Suppose it is and let M be a model of it. Let A be the

45

substructure of M generated by the a; we must have

T ∪∆(A) |= ϕ(a),

because otherwise we would be able to build a model of T containing A as a substructure

and falsifying ϕ(a) (which cannot be because T is sub-model complete and ϕ(a) is true in

M being an element of Θ). This means that for some quantifier-free sentence ψ(a) true

in A we have that T |= ψ(a) → ϕ(a). According to the definition of Θ, ¬ψ(a) is true in

M and also in A (because it is quantifier-free), contradiction.

The following lemma shows an interesting relationship between model completion and

sub-model completeness.

Lemma 3.1.4. Let T be a universal Σ-theory and let T ∗ ⊇ T a further Σ-theory; under the

hypothesis that (i) every model of T embeds into a model of T ∗, the following requirements

are equivalent:

(ii) for every Σ-structure A which is a model of T , we have that T ∗∪∆(A) is a complete

ΣA-theory;

(ii’) T ∗ is a sub-model complete theory.

Proof. Let us assume that (i) and (ii) hold. We want to show that, if M is a model of

T ∗ and A is a substructure of M, then T ∗ ∪∆(A) is a complete ΣA-theory. T ⊆ T ∗, so

M is a model of T ; moreover, since T is universal, also A is a model of T . It is possible

to apply (ii), obtaining that T ∗ ∪∆(A) is a is a complete ΣA-theory.

Let us assume now that (i) and (ii’) hold, and let M be a model of T . By hypothesis

(i), M is a substructure of a model N of T ∗ for some N ; thus (ii’) applies, yielding the

fact that T ∗ ∪∆(M) is a complete ΣM-theory.

Notice that, under the hypothesis (i), (ii’) implies (ii) even if we drop the assumption

that T is a universal theory; moreover, as the sub-model completeness is equivalent to

quantifier elimination, the following proposition holds.

Proposition 3.1.5. Let T be a Σ-theory and let T ∗ ⊇ T a further Σ-theory. T ∗ is a

model-completion of T if

1. every model of T embeds into a model of T ∗;

2. T ∗ admits quantifier elimination.

It can be shown that a model completion T ∗ of a theory T is unique in case it exists,

and if T has universal axioms, then T ∗ has a set of ∀∃-axioms, i.e. every sentence in this

46

axiomatization of T ∗ is obtained from an open formula by prefixing it some existential

quantifiers and finally some universal quantifiers (in this order).

We can give a brief list of examples of theories that are model-completion: the theory

of an infinite set is the model completion of the pure theory of equality; the theory of

dense total orders without endpoints is the model completion of the theory of total orders;

the theory of algebraically closed fields is the model completion of the theory of integral

domains; the theory of divisible torsion free abelian groups is the model completion of

the theory of torsion free abelian groups. An old result in [92] says, in particular, that

universal Horn theories T in finite signatures always have a model completion, provided

the following two conditions are satisfied: (a) finitely generated models of T are all finite;

(b) amalgamation property holds for models of T . This fact can be used in order to prove

the existence of a model completion for theories axiomatizing many interesting discrete

structures (like graphs, posets, etc.).

From Proposition 3.1.5 it follows that every theory T ∗ admitting elimination of quan-

tifiers is the model completion of itself; moreover, T ∗ is also the model completion of the

theory T axiomatized by the set of universal sentences which are logical consequences of

T ∗ (see [25] for a proof).

3.2 Compatibility

A key ingredient for the combination of procedures is the following notion:

Definition 3.2.1. Let T be a theory in the signature Σ and let T0 be a universal theory

in a subsignature Σ0 ⊆ Σ. We say that T is T0-compatible iff

(i) T0 ⊆ T ;

(ii) T0 has a model-completion T ∗
0 ;

(iii) every model of T embeds into a model of T ∪ T ∗
0 .

Remark 3.2.2. Let us make few observations.

– According to the above Definition, it is evident that T0-compatibility reduces to the

standard notion of stable infiniteness (used in the disjoint Nelson-Oppen combina-

tion procedure) in case T0 is the pure theory of equality.

– Moreover, every theory including a universal theory T0 that is the model completion

of itself is T0-compatible. Examples of that kind do exist: for example, let us

consider the theory L of acyclic lists, whose signature consists on two unary function

47

symbols car, cdr and one binary function symbol cons, and whose axioms are:

cons(car(x), cdr(x)) = x

car(cons(x, y)) = x

cdr(cons(x, y)) = y

t(x) 6= x

where t is a term different from a variable and a constant, built up by using finitely

many applications of the unary function symbols car, cdr and involving the variable

x. L is universal and admits elimination of quantifiers (see [44]), so every theory

including L is L-compatible.

– If T0 has a model completion T ∗
0 and if T ⊇ T ∗

0 , then T is certainly T0-compatible:

this trivial case is often interesting (we may take e.g. T0 to be the theory of linear

orders and T to be real arithmetic or rational linear arithmetic).

– Let T0 be a universal theory having a model completion T ∗
0 and let T be any ex-

tension of T0 with free function symbols only. In this case, T is T0-compatible: to

see it, take any model M of T , embeds its Σ0-reduct into a model M′ of T ∗
0 and

expand in any arbitrary way the interpretation of the free function symbols to the

tuples of M′ not entirely belonging to M.

More examples of theories which are T0-compatible for some T0 will be supplied in

section 3.4. Before going on to state the decidability result for the combined constraint

satisfiability, we recall the Robinson’s Joint Consistency Theorem (see [25]):

Theorem 3.2.3 (Robinson’s Joint Consistency Theorem). Let H0 be a complete theory

in a signature Θ0 = Θ1 ∩Θ2 and H1,H2 be consistent extensions of its in the signatures

Θ1,Θ2, respectively. Then H1 ∪H2 is consistent too in the signature Θ1 ∪Θ2.

3.3 Combining Compatible Theories

Let us fix the main data for the whole chapter trough the following:

Assumption 3.3.1.

1. T1 is a theory in the signature Σ1 and T2 is a theory in the signature Σ2; Σ0 is the

signature Σ1 ∩ Σ2;

2. For finitely many new free constants a, Γ1 is a finite set of ground literals in the

signature Σ
a
1 and Γ2 is a finite set of ground literals in the signature Σ

a
2;

48

3. There is a universal Σ0-theory T0 such that both T1 and T2 are T0-compatible.

The main aim is that of (semi)deciding the universal fragment of T1∪T2, given that the

corresponding universal fragments of T1 and T2 are (semi)decidable. By skolemization,

this amounts to (semi)decide the consistency of

T1 ∪ T2 ∪ Γ, (3.1)

where Γ is a finite set of ground literals in the signature Σ1 ∪ Σ2, expanded with a finite

set of new Skolem constants.

Recall, from Section 2.1, that Γ can be purified into the equisatisfiable (w.r.t. T1∪T2)

set Γ1∪Γ2, where Γi is a set of ground literals over a simple expansion of Σi (for i = 1, 2).

Thus the problem reduces to that of establishing the consistency of a set of literals like

(T1 ∪ Γ1) ∪ (T2 ∪ Γ2), (3.2)

where Γ1,Γ2 satisfy the requirements described in the Assumption 3.3.1-(2). Notice that

at the end of the purification process, Σ0-literals could be inserted either in Γ1 or in Γ2

or in both of them, indifferently.

Clearly the consistency of (3.2) cannot follow from the mere separate consistency of

T1 ∪ Γ1 and of T2 ∪ Γ2 (for trivial reasons, take e.g. T1 = T2 = ∅, Γ1 = {a1 = a2}

and Γ2 = {a2 = a3, a1 6= a3}). We need some information exchange between a reasoner

dealing with T1∪Γ1 and a reasoner dealing with T2∪Γ2. Craig’s interpolation theorem for

first-order logic ensures that the inconsistency of (3.2) can be detected by the information

exchange of a single Σ
a
0-sentence ϕ such that T1∪Γ1 |= ϕ and T2∪Γ2∪{ϕ} |= ⊥. However,

as pointed out in [85], this observation is not very useful, as ϕ might be any first-order

formula, whereas we would like - at least - ϕ to be quantifier-free: remind that most

existing provers detect inconsistency just by skolemization and saturation, so they surely

would not be able to find such a ϕ (if it is not quantifier-free), even in case they can

efficiently handle with both T1 ∪ Γ1 and T2 ∪ Γ2.

Unfortunately, information exchange of quantifier-free Σ
a
0-formulae alone is not suf-

ficient, even for syntactically simple T1 and T2, to establish the inconsistency of (3.2).

Thus we need the further assumption (3) in order to get limited information exchange

without affecting refutational completeness ((3) is the only relevant assumption we make,

being (1) and (2) mere notational conventions).

Definition 3.3.2. A positive residue chain is a finite list

C1, . . . , Cn

49

of positive ground Σ
a
0-clauses such that for every k = 1, . . . , n, there is i = 1, 2 such that

Ti ∪ Γi ∪ {C1, . . . , Ck−1} |= Ck.

We can now formulate the main combination results, whose proof can be found in the

next section:

Theorem 3.3.3. Under the Assumption 3.3.1, (T1 ∪ Γ1) ∪ (T2 ∪ Γ2) is inconsistent iff

there is a positive residue chain C1, . . . , Cn such that Cn is the empty clause.

Thus inconsistency can be detected by repeated exchanges of positive ground clauses

only; if we allow information exchange consisting on ground quantifier-free formulae, a

single exchange step is sufficient:

Theorem 3.3.4. Under the Assumption 3.3.1, (T1 ∪ Γ1) ∪ (T2 ∪ Γ2) is inconsistent iff

there is a ground quantifier-free Σ
a
0-sentence ϕ such that

T1 ∪ Γ1 |= ϕ and T2 ∪ Γ2 ∪ {ϕ} |= ⊥.

We recall that the Ti’s are said to be Σ0-convex (see Section 2.1) iff whenever it

happens that Ti ∪ Γi |= A1 ∨ · · · ∨ An (for n ≥ 1 and for ground Σ
a
0-atoms A1, . . . , An),

then there is k = 1, . . . , n such that Ti∪Γi |= Ak. Among Σ0-convex theories we have the

important class of universal Horn theories, see [85]. For Σ0-convex theories, an immediate

subsumption argument refines Theorem 3.3.3 in the following way:

Corollary 3.3.5. In addition to the Assumption 3.3.1, suppose also that T1, T2 are both

Σ0-convex. Then (T1 ∪ Γ1) ∪ (T2 ∪ Γ2) is inconsistent iff there is a positive residue chain

C1, . . . , Cn in which C1, . . . , Cn−1 are all ground Σ
a
0-atoms and Cn is ⊥.

It is clear that Theorems 3.3.3 and 3.3.4 yield combined semidecision procedures for the

constraint satisfiability problem in T1∪T2 in case the corresponding constraint satisfiability

problems for T1 and T2 are separately decidable. The procedure suggested by Theorem

3.3.3 is just a fair information exchange of positive ground Σ
a
0-clauses that eventually

stops if (T1 ∪ Γ1) ∪ (T2 ∪ Γ2) is inconsistent. On the contrary, the procedure suggested

by Theorem 3.3.4 (which is nothing but an interpolation theorem) identifies all ground

Σ
a
0-clauses which are logical consequences of T1 ∪Γ1 and check whether their conjunction

is consistent with T2 ∪ Γ2.

3.3.1 Proofs of the Combination Result

Definition 3.3.6. A set ∆ of Σ
a
0-clauses is exhaustive whenever it contains, for every

ground Σ
a
0-literal A, either A itself or its negation.

50

Definition 3.3.7. Say that a set Γ0 of positive ground Σ
a
0-clauses is saturated iff it is

closed under the two rules

T1 ∪ Γ1 ∪ Γ0 |= C ⇒ C ∈ Γ0

T2 ∪ Γ2 ∪ Γ0 |= C ⇒ C ∈ Γ0.

Lemma 3.3.8. Suppose that Γ0 is saturated and does not contain the empty clause. Then

there are Σ
a
i -models Mi (i = 1, 2) such that

M1 |= T1 ∪ Γ1 ∪ Γ0 and M2 |= T2 ∪ Γ2 ∪ Γ0;

moreoverM1 andM2 share the same Σ0-substructure generated by the elements (denoted

by) a.

Proof. The statement of the lemma is proved if we are able to find an exhaustive set ∆

of ground Σ
a
0-literals which is consistent with both T1 ∪ Γ1 ∪ Γ0 and T2 ∪ Γ2 ∪ Γ0. In this

case, in fact, given any two models M1 |= T1 ∪ Γ1 ∪ Γ0 ∪∆ and M2 |= T2 ∪ Γ2 ∪ Γ0 ∪∆,

we have that their Σ0-substructures generated by a both have diagram ∆, consequently

they are Σ0-isomorphic. We may assume that they are just the same, by renaming some

elements in one of the supports, if needed.

We shall adapt the notion of productive clause used in nowadays refutational com-

pleteness proofs for e.g. resolution or paramodulation based calculi. Consider any strict

total terminating order on ground Σ
a
0-atoms and extend it to a strict total terminating

order > for positive ground Σ
a
0-clauses by taking standard multiset extension. We shall

define increasing sets ∆+
C (varying C ∈ Γ0) of ground Σ

a
0-atoms as follows. Recall that,

as the empty clause is not in Γ0, all positive clauses in Γ0 are of the kind A∨A1∨· · ·∨An

(n ≥ 0).

The definition is by transfinite induction on>. Say that the clause C ≡ A∨A1∨· · ·∨An

from Γ0 is productive iff

(i) {A} > {A1, . . . , An};

(ii) A1, . . . , An 6∈ ∆+
<C (where ∆+

<C is
⋃

D<C ∆+
D).

Now, if C is productive, we let ∆+
C to be ∆+

<C ∪ {A}, otherwise ∆+
C is simply ∆+

<C .

Let ∆+ be
⋃

C∈Γ0
∆+

C and ∆ be ∆+ ∪ {¬A |A is a ground Σ
a
0-atom not belonging

to ∆+}. By construction, ∆ |= Γ0, so we simply need to show that T1 ∪ Γ1 ∪ ∆ and

T2 ∪ Γ2 ∪∆ are consistent.

It is straightforward to verify that if the clause A ∨ A1 ∨ · · · ∨ An is productive and

A is the maximum atom in it, then A1, . . . , An 6∈ ∆+: actually, the Ai’s could only be

produced by clauses smaller than A ∨A1 ∨ · · · ∨An.

51

Suppose now that T1 ∪ Γ1 ∪∆ is not consistent (the case i = 2 is analogous). Then

there are ground atoms B1, . . . , Bm 6∈ ∆+ and productive clauses

C1 ≡ A1 ∨A11 ∨ · · · ∨A1k1

· · ·

Cn ≡ An ∨An1 ∨ · · · ∨Ankn

(with maximum atoms A1, . . . , An, respectively), such that

T1 ∪ Γ1 ∪ {A1, . . . , An} |= B1 ∨ · · · ∨Bm.

By trivial logical manipulations, it follows that

T1 ∪ Γ1 ∪ {C1, . . . , Cn} |=
∨

i,j

Aij ∨B1 ∨ · · · ∨Bm.

As C1, . . . , Cn are clauses in Γ0 and as Γ0 is saturated, the clause

D ≡
∨

i,j

Aij ∨B1 ∨ · · · ∨Bm

is also in Γ0. By construction (anyway, either D is productive or not) some of the atoms

{A11, . . . , Ankn , B1, . . . , Bm} is in ∆+. By the remark above, A11, . . . , Ankn cannot be

there, so one of the Bj ’s is in ∆+, contradiction.

IfM is a Σ-model and X ⊆M, we can considerM as a Σ∪X-structure by interpreting

the name b̄ of each b ∈ X into b. Next lemma uses the assumption 3.3.1:

Lemma 3.3.9. LetM1 be a Σ1-model of T1 and letM2 be a Σ2-model of T2; suppose also

thatM1 andM2 share a common Σ0-substructure A. Then there are a Σ1∪Σ2∪A-model

M of T1 ∪ T2 and two ΣA
i -embeddings Mi −→M (i = 1, 2).

Proof. By T0-compatibility, we can suppose that the Mi are models of Ti ∪ T
∗
0 . By

renaming some elements in the supports if needed, we can also freely suppose that the

setsM1\A andM2\A are disjoint. Consider the elementary diagrams ∆e(M1), ∆e(M2)

ofM1,M2; we show that ∆e(M1)∪∆e(M2) is consistent as a Σ1∪Σ2∪M1∪M2-theory.

First notice that T ∗
0 ∪∆(A) is a complete ΣA

0 -theory: this is just condition (ii) of the

Definition 3.1.2 of model completion, recalling that every substructure of a model of Ti is

a model of T0, being T0 a universal theory.

Having established that T ∗
0 ∪ ∆(A) is a complete theory, we see that ∆e(M1) and

∆e(M2) are both extensions of its. Now we can simply invoke Robinson’s Joint Consis-

tency Theorem 3.2.3: in our case, extended signatures are Σ1 ∪M1 and Σ2 ∪M2, while

52

the common subsignature is Σ0 ∪ A, because the sets M1 \ A and M2 \ A are disjoint.

Having established that ∆e(M1)∪∆e(M2) is consistent, clearly any model of its fits our

M (notice that such anM is a model of T1 and T2, because it is a model of the elementary

diagrams of M1 and M2).

We are now ready to prove Theorems 3.3.3 and 3.3.4.

Proof of Theorem 3.3.3. Suppose that there is no positive residue chain ending up with

the empty clause. We build a saturated set Γ0 of of positive ground Σ
a
0-clauses in ω

steps. Let Θ0 be the empty set; if Θk has already been defined, let Θk+1 be the set of

positive ground Σ
a
0-clauses C such that Ti ∪Γi ∪Θk |= C holds for i = 1 or i = 2. Clearly

Θk ⊆ Θk+1; moreover, by the compactness theorem for first-order logic, it is clear that

Γ0 =
⋃

k Θk is saturated. Notice also that a clause C belongs to Θk+1 (k ≥ 0) iff there is

a positive residue chain C1, . . . , Cn, C such that C1, . . . , Cn all belong to Θk: this is easily

proved by induction on k and by compactness again. The induction step is as follows: if

C ∈ Θk+1, then there are C1, . . . , Cn ∈ Θk such that Ti ∪Γi∪{C1, . . . , Cn} |= C holds for

i = 1 or i = 2. Now it is sufficient to append C to any juxtaposition of positive residue

chains ending up in C1, . . . , Cn. Consequently, Γ0 does not contain the empty clause and

Lemma 3.3.8 applies. This means that there are modelsM1 |= T1∪Γ1 andM2 |= T2∪Γ2

whose Σ0-substructures generated by a are the same. We can now apply Lemma 3.3.9

to M1,M2,A (where A is this Σ0-substructure generated by a). By that Lemma, there

are a model M |= T1 ∪ T2 and ΣA
i -embeddings Mi −→ M. As Mi |= Γi, we have also

M |= Γi (i = 1, 2) (recall that the Γi’s are sets of ground Σ
a
0-literals, so their truth is

preserved by ΣA
i -embeddings). Thus M |= T1 ∪ Γ1 ∪ T2 ∪ Γ2, so the latter set is indeed

consistent.

Proof of Theorem 3.3.4. We reduce this Theorem to the previous one. If T1∪Γ1∪T2∪Γ2

is inconsistent, there is a positive residue chain C1, . . . , Cn ending up with the empty

clause. Say that Ck is an i-residue (i = 1, 2) iff Ti ∪ Γi ∪ {C1, . . . , Ck−1} |= Ck. Let ψk

(for k = 1, . . . , n) be the quantifier-free ground Σ
a
0-formula ¬C1 ∨ · · · ∨ ¬Ck−1 ∨ Ck and

let ϕ be the conjunction of the ψk such that Ck is a 1-residue. Clearly, T1 ∪ Γ1 |= ϕ.

Moreover, by induction, it is easy to see that T2 ∪ Γ2 ∪ {ϕ} |= Cj for all j = 1, . . . , n: in

fact, if Cj is a 2-residue, then T2 ∪ Γ2 ∪ {C1, . . . , Cj−1} |= Cj (hence T2 ∪ Γ2 ∪ {ϕ} |= Cj

by induction hypothesis) and if Cj is a 1-residue, then {ϕ} |= ¬C1 ∨ · · · ∨ ¬Cj−1 ∨ Cj

(hence T2 ∪ Γ2 ∪ {ϕ} |= Cj again by induction hypothesis). As T2 ∪ Γ2 ∪ {ϕ} |= Cj holds

for all j, we have in particular that T2 ∪ Γ2 ∪ {ϕ} |= ⊥ for j = n.

53

3.4 Locally Finite Theories and their Combinations

An Σ0-universal theory T0 is said to be locally finite iff

(i) Σ0 is finite;

(ii) for every finite set a of new free constants, there are finitely many Σ
a
0-ground terms

t1, . . . , tka such that for every further Σ
a
0-ground term u, we have T0 |= u = ti (for

some i = 1, . . . , ka).

Condition (ii) simply means that in the class of the structures in which T0 is interpreted,

every Σ
a
0-ground term is equal, as an interpreted function, to one of the ti. The terms

t1, . . . , tn are called the x-representative terms of Φ0.

As we are mainly dealing with computational aspects, we consider part of the definition

the further request that such t1, . . . , tka are effectively computable from a. In this case

T0 is said to be effectively locally finite. Examples of locally finite theories are the theory

of graphs, of partial orders (more generally, any theory whose signature does not contain

function symbols), of commutative idempotent monoids, of Boolean algebras, etc.

In a locally finite theory T0, there are restricted finite classes which are representatives,

up to T0-equivalence, of the whole classes of Σ
a
0-ground literals, clauses, quantifier-free

sentences, etc. (they are just the ground literals, clauses, quantifier-free sentences, etc.

containing only the above mentioned representative terms t1, . . . , tka). As it is evident

that we can limit information exchange to ground positive clauses and quantifier-free

sentences in that restricted class, both Theorems 3.3.3 and 3.3.4 yield combined decision

procedures for the constraint satisfiability problem in T1∪T2, in case T0 is effectively locally

finite and in case the corresponding constraint satisfiability problems for T1 and T2 are

separately decidable.

Recalling the observations made after the Corollary 3.3.5, the procedure suggested by

Theorem 3.3.3 is just a fair information exchange of positive ground Σ
a
0-clauses, to be

continued until the situation gets stable or until an inconsistency is detected. Notice that

in case T1 and T2 are Σ0-convex theories, information exchange can be further limited to

ground Σ
a
0-atoms by Corollary 3.3.5. This observation, as shown in [73] for the disjoint

signatures case, may improve complexity bounds in certain significant situations.

Besides the already mentioned procedure suggested by Theorem 3.3.4, there is a third

possible (non-deterministic) procedure, which is justified directly by Lemma 3.3.9: as

there are only finitely many Σ0-structures generated by a which are models of T0 (recall

that such structures cannot have more than ka-elements), one simply guesses one of them

and check whether its diagram is consistent with both T1 ∪ Γ1 and T2 ∪ Γ2.

We give a first example to which the above outlined combined procedures apply.

54

Example 3.4.1. Let T1 be rational linear arithmetic and let T2 be the theory of total

orders endowed with a strict monotonic function f . This means that f is subject to the

axiom ∀x∀y (x < y → f(x) < f(y)). We take as T0 the theory of total orders, whose

model completion T ∗
0 is the theory of dense total orders without endpoints. T1 is known

to be decidable (see [19]). The universal fragment of T2 is decidable too: in fact, it is

easy to prove that any finite total order endowed with a partial strict monotonic function

embeds into a model of T2 (this is shown by successively inserting new points and by

taking union in the limit). Henceforth the satisfiability of a set Γ2 of Σ
a
2-ground literals

can be decided by a non-deterministic guessing of such a finite total order endowed with

a partial strict monotonic function. As T1 ⊇ T ∗
0 , T1 is certainly T0-compatible. We

only need to show that T2 is T0-compatible, by embedding each model M of T2 into a

model M′ of T ∗
0 ∪ T2. It is sufficient to take as M′ the lexicographic product of M with

e.g. the poset of rational numbers. For density, observe that (b,m) <lex (b′,m′) implies

(b,m) <lex (b, n) <lex (b′,m′), where n = m+m′

2 in case m < m′ and n = m+ 1 otherwise

(notice that in this last case, we must have b < b′). The symbol f is interpreted by putting

fM
′
(b,m) = (fM(b),m), and the embedding M −→ M′ is defined by associating with

b ∈M the pair (b, 0). Thus the combination results apply and we obtain the decidability

of the universal fragment of the rational linear arithmetic endowed with a strict monotonic

function. It is not difficult to see that the complexity of this combined decision algorithm,

if applied to satisfiability of the existential closure of a quantifier-free formula, lies in the

NP-class (just adapt the arguments in [73]).

Application to Fusion Decidability in Modal Logic In order to explain the ap-

plications to fusion decidability in modal logic, we need to fix some terminology. We

shall not directly introduce modal logic, rather we insist on its algebraic counterpart (this

might look not very orthodox, but makes things more simple for the purposes of this

section). A modal algebra is just a Boolean algebra B = 〈B,∩, 1,∪, 0, (−)′〉 endowed with

an hemimorphism � (a hemimorphism is a function preserving only binary meets and the

top element). Hemimorphisms are also called modal (necessity) operators. The modal

operator � is said to be transitive iff the identity �a ≤ ��a holds for every a ∈ B.1 Let

now Σ1 be the signature of Boolean algebras augmented with a unary function symbol �1

and let Σ2 be the signature of Boolean algebras augmented with a unary function symbol

�2. T1 is the equational theory of a variety V1 of modal algebras and T2 is the equational

theory of another variety V2 of modal algebras. For i = 1, 2, Ti is a universal Horn theory,

hence it is Σi-convex.

Proposition 3.4.2. Let T1, T2 be as above; then the decidability of the universal Horn

fragments of T1 and T2 implies the decidability of the universal Horn fragment of T1 ∪ T2

1Recall that, in a Boolean algebra, y ≤ z is a shorthand for y ∩ z = y.

55

Proof. As already mentioned, we have for free the decidability of the universal fragment

of T1 and T2; we take as T0 the theory of Boolean algebras (which is locally finite and

admits as a model completion the theory of atomless Boolean algebras): in order to apply

the combination results, we simply need to show that T1, T2 are T0-compatible. We do it

for T1. LetM be a model of T1, we show how to embed it into a modelM′ of T1 which is

based on an atomless Boolean algebra: this is a well known and rather trivial fact, which

is used also in [93] as a side preliminary lemma. Instead of reporting the argument used

in [93], we give a more direct one. Define a sequence of models of T1 by: M0 := M,

Mk+1 := Mk×Mk; define also embeddings δk :Mk −→Mk+1 by δk(a) := 〈a, a〉. Now

take as M′ the union (more precisely, the inductive limit) of this chain: clearly M′ is

atomless as a Boolean algebra (no non-zero element is minimal in it as any a ∈Mk gets

identified with 〈a, a〉 = 〈a, 0〉 ∪ 〈0, a〉 in Mk+1).

3.5 Positive Basis Enumerators

Now we want to weaken the assumption of local finiteness. Let T be a theory over the

signature Σ, and a be a finite set of new constants. Given a set Γ of ground Σa-clauses

and a subtheory T0 ⊆ T over the signature Σ0 ⊆ Σ, we call T0-basis for Γ a set ∆ of

ground Σ
a
0-clauses such that:

(i) all the clauses D ∈ ∆ are positive and are such that T ∪ Γ |= D;

(ii) for every positive ground Σ
a
0-clause C, T ∪ Γ |= C if and only if T0 ∪∆ |= C.

For the sake of simplicity, we conventionally included ⊥ among the atoms over any

signature Σ, so ⊥ is considered as a positive clause.

We are interested in exchange information concerning consequences over shared sig-

natures, thus we need a notion that reminds the notion of residue, like in partial theory

reasoning (see, e.g., [18] for comprehensive information on the subject and the relevant

pointers to the literature). In Chapter 4 we will develop an abstract approach and we

will treat residues as clauses which are recursively enumerated by a suitable device; at

the moment a more superficial notion of basis enumerator will be sufficient to our aim.

Definition 3.5.1. Suppose we are given a subtheory T0 of a theory T over the signature

Σ0 ⊆ Σ. A positive basis enumerator for T0 (often shortened as T -p.b.e.) is a recursive

function mapping a finite set a of constants and a finite set Γ of ground Σa-clauses to a

finite set of positive ground Σ
a
0-clauses B

a
T (Γ) (to be written simply as BT (Γ)) in such a

way that:

– T ∪ Γ |= BT (Γ) (soundness);

56

– if T ∪ Γ |= ⊥, then BT (Γ) is equal to ⊥; otherwise BT (Γ) is T0-basis for Γ.

A positive basis enumerator is simply a machinery able to return a finite set of positive

ground clauses that are “representative” of the logical consequences of a set of ground

clauses, modulo a theory T . Actually, our positive basis T -enumerator is a little bit better,

because it is able to point inconsistencies out. Notice however that, since we cannot always

guarantee the existence of finite and recursive bases, a positive basis T -enumerator may

not exist.

3.5.1 Noetherian Theories and their Combinations

The above mentioned notion of p.b.e.’s usually applies to the cases in which the sub-

theory T0 is noetherian: this important notion is borrowed from algebra. Noetherianity

conditions known from algebra (see, e.g., [64]) say that there are no infinite ascending

chains of congruences. In finitely presented algebras, congruences are represented as sets

of equations among terms, hence noetherianity can be expressed there by saying that

there are no infinite ascending chains of sets of atoms, modulo logical consequence. If we

translate this into our setting, we get the following definition.

A Σ0-theory T0 is called noetherian if and only if for every finite set of constants a,

every infinite ascending chain

Θ1 ⊆ Θ2 ⊆ · · · ⊆ Θn ⊆ · · ·

of sets of ground Σ
a
0-atoms is eventually constant for T0-consequence (meaning that there

is an n such that for all m and A ∈ Θm, we have T0 ∪Θn |= A).

In a noetherian theory the lack of strict ascending chains of positive ground atoms

forbids the existence of strict ascending chains of positive ground clauses.

Proposition 3.5.2. In a noetherian theory T0 every infinite ascending chain of sets of

positive Σ
a
0-clauses is eventually constant for T0-consequence.

Proof. Suppose not; in this case there are infinitely many positive ground Σ
a
0-clauses

C1, C2, . . . such that for all i, the clause Ci is not a T0-consequence of {Ck | k < i}.2

Let us build a chain of trees T0 ⊆ T1 ⊆ T2 ⊆ · · · , whose nodes are labeled by ground

Σ
a
0-atoms as follows. T0 consists of the root only, which is labeled ⊤. Suppose Ti−1 is

already built and consider the clause Ci ≡ B1∨· · ·∨Bm. To build Ti, do the following for

every leaf K of Ti−1 (let the branch leading to K be labeled by A1, . . . , Ak): append new

sons to K labeled B1, . . . , Bm, respectively, if Ci is not a T0-consequence of {A1, . . . , Ak}

(if it is, do nothing for the leaf K).

2This is an equivalent formulation of the negation of the statement of the proposition.

57

Consider now the union tree T :=
⋃
Ti: since, whenever a node labeled Ak+1 is

added, Ak+1 is not a T0-consequence of the formulae labeling the predecessor nodes, by

the noetherianity of Φ0, all branches are then finite and by König lemma the whole tree

is itself finite. This means that for some index j, the examination of clauses Ci (for i > j)

did not yield any modification of the already built tree. Now, Cj+1 is not a T0-consequence

of {C1, . . . , Cj}: this means that there is a Σ
a
0 structure which is a model of T0, in which

all atoms of Cj+1 are false and one atom in each of the C1, . . . , Cj is true. By induction

on j = 0, . . . , i, it is easily seen that there is a branch in Tj whose labeling atoms are true

in A: this contradicts the fact that the tree Ti has not been modified in step i+ 1.

Suppose that T0 is noetherian and that T is a theory extending T0: by the above

proposition, it is immediate to see that every finite set of ground Σa-clauses Γ has a finite

T0-basis. This is the reason why noetherian theories are so suitable to deal with our

notion of p.b.e.. The role of effective local finiteness is to make Nelson-Oppen procedures

terminating (see also [44, 9, 8]): however noetherianity is a weaker condition that will

turn out to be already sufficient for that, once it is accompanied by a suitable effectiveness

condition.

Proposition 3.5.3. If T0 is an effectively locally finite theory, T is a theory extending T0,

and T has decidable constraint satisfiability problem, then there always exists a T -p.b.e.

BT for T0.

Proof. Once a finite number of Σa-clauses Γ is given, first test Γ for consistency: if it

is inconsistent, BT (Γ) just returns ⊥. If it is consistent, test the finitely many positive

clauses containing the representative atoms P (ti1 , . . . , tin) for being a T -consequence of

Γ (here the ti’s are the finitely many representative terms involving the constants among

the a’s). BT (Γ) will coincide with the set of all the clauses whose test is positive. Notice

that this test can be effectively done, because the constraint satisfiability problem for T

is decidable.

Now we are ready to give a formal description of an algorithm for the constraint

satisfiability problem for a combined theory T1 ∪ T2.

The result of Theorem 3.3.3 can be restated in this new context:

Theorem 3.5.4. Suppose that T1 and T2 are two theories respectively over the signature

Σ1 and Σ2. Let Σ0 be the subsignature common to Σ1 and Σ2 (i.e: Σ0 := Σ1 ∩ Σ2), and

T0 a universal theory such that:

(i) T1 and T2 are both T0-compatible;

(ii) T0 is noetherian.

58

Algorithm 4 Extending Nelson-Oppen

Step 1. Purify the finite input set of ground literals Γ, thus producing, for some finite
set a of free constants, a finite set Γ1 of ground Σ

a
1-literals and finite set Γ2 of ground

Σ
a
2-literals (then Γ1∪Γ2 is T1∪T2-equisatisfiable with Γ). In the next loop, positive

ground Σ
a
0-clauses are added to Γ1 and Γ2;

Step 2. Using the T1-p.b.e. BT1 and T2-p.b.e. BT2, check the output of BTi
(Γi):

Step 2.1. if for at least an index i ∈ {1, 2}, BTi
(Γi) is ⊥, return “unsatisfiable”;

Step 2.2. if BTi
(Γi) = ∆i and ∆i 6= ⊥, for each D ∈ ∆i such that Tj ∪ Γj 6|= D,

(i 6= j), add D to Γj and rerun Step 2;

Step 3. If this step is reached, return “satisfiable”.

Suppose also that there exist a T1-p.b.e. BT1 for T0 and a T2-p.b.e. BT2 for T0.

Under these hypotheses the above Algorithm 4 is a decision procedure for the constraint

satisfiability problem for T1 ∪ T2.

Proof. First, we show that the algorithm always halts. In fact, the noetherianity of T0

and Proposition 3.5.2 imply that only a finite number of positive ground Σ
a
0-clauses can

be added to Γ1 and Γ2; henceforth, either ⊥ is discovered at a certain point, or eventually

the loop will end.

Since the positive basis enumerator’s are sound and the message “unsatisfiable” is

returned if and only if at least a positive basis enumerator has discovered an inconsistency,

we can conclude that, if the output of an execution of the Algorithm 4 on the constraint

Γ1 ∪ Γ2 is “unsatisfiable”, then Γ1 ∪ Γ2 is unsatisfiable modulo T1 ∪ T2.

On the other hand, if the final message is “satisfiable”, then (i) there exists a set of posi-

tive ground Σ
a
0-clauses {C ′

1, . . . , C
′
l} such that BT1(Γ1∪{C

′
1, . . . , C

′
l}) = ∆1, (ii) there exists

a set of positive ground Σ
a
0-clauses {C

′′

1 , . . . , C
′′

m} such that BT2(Γ2∪{C
′′

1 , . . . , C
′′

m}) = ∆2,

(iii) ∆1 and ∆2 are sets different from {⊥}; moreover (iv) for each clause D1 ∈ ∆1,

T2∪Γ2∪{C
′′

1 , . . . , C
′′

m}) |= D1, and, (v) for each clause D2 ∈ ∆2, T1∪Γ1∪{C
′
1, . . . , C

′
l}) |=

D2.

As BT1 and BT2 are positive basis enumerator’s, ∆1 is a T0-basis for Γ1 ∪{C
′
1, . . . , C

′
l}

and ∆2 is a T0-basis for Γ2 ∪ {C
′′

1 , . . . , C
′′

m}; recalling conditions (iv) and (v), this is

sufficient to conclude that ∆1 and ∆2 are logically equivalent modulo T0.

We want to show that it is possible to obtain a saturated set of clauses not containing

⊥. Let us consider the set ∆∗ := {C | T0 ∪ ∆1 |= C}. ∆∗ is a saturated set. Recalling

the definition, (see Definition 3.3.7), we have to prove that, for every positive ground Σ
a
0-

clause C such T1∪Γ1∪∆∗ |= C, then C ∈ ∆∗. But T1∪Γ1∪∆∗ |= C iff T1∪Γ1∪∆1 |= C.

Being ∆1 a T0-basis for (Γ1) ∪ {C ′
1, . . . , C

′
l}, it follows that T0 ∪ ∆1 |= C, henceforth

59

C ∈ ∆∗. Analogously, being ∆2 logically equivalent modulo T0 to ∆1, every positive

ground Σ
a
0-clause D such T2 ∪ Γ2 ∪∆∗ |= D, is already a member of ∆∗.

∆∗ does not contain the empty clause. In fact, suppose it does. Thus T1∪Γ1∪∆∗ |= ⊥.

This implies that T1∪Γ1∪∆1 |= ⊥; this happens if and only if T1∪Γ1∪{C ′
1, . . . , C

′
l} |= ⊥;

by the definition of BT1 , BT1(Γ1 ∪ {C
′
1, . . . , C

′
l}) should be equal to ⊥: contradiction with

the hypothesis that BT1(Γ1 ∪ {C
′
1, . . . , C

′
l}) = ∆1, ∆1 6= {⊥}.

Thus we have proved that, if the final message is “satisfiable”, it is possible to obtain

a saturated set of clauses not containing ⊥. From now on we follow the proof of Theorem

3.3.3: at this point Lemma 3.3.8 applies, implying that there are models M1 |= T1 ∪ Γ1

and M2 |= T2 ∪ Γ2 whose Σ0-substructures generated by a are the same. By Lemma

3.3.9, choosing as a common substructure A the Σ0-substructure generated by a, there

are a model M |= T1 ∪ T2 and two ΣA
i -embeddings Mi −→ M. As Mi |= Γi, we have

also M |= Γi (i = 1, 2).

Noetherianity is the essential ingredient for the termination of Nelson-Oppen com-

bination procedures. Let us make some observations concerning an efficiency issue. In

order to decide the satisfiability in a Σ theory T of ground clauses (or, more in general,

of arbitrary ground formulae over a simple expansion Σa) it is sufficient to decide the

satisfiability in T of conjunction of ground literals over Σa. In fact we can convert the

ground formula we are checking for satisfiability modulo T into disjunctive normal form,

and then we can test for satisfiability each disjunct. The original formula is satisfiable if

and only if at least one of the disjuncts is. This approach is extremely inefficient because

of the exponential blow up due to the conversion in disjunctive normal form.

In concrete cases, the most common solution is an integration of a decision procedure

for the constraint satisfiability problem with a SAT-solver implementing refinements of

the DPLL algorithm (see [30, 29]). A general framework that enables to combine decision

procedures with SAT-solvers in such a way that can incorporate various types of opti-

mization developed for the DPLL method can be found in [84]. Even in this refined case,

deciding the satisfiability of ground clauses requires case splitting. This is the reason why,

for efficiency issues, convexity is the crucial property.

Following the definition introduced in Section 2.1, a theory T is Σ0-convex iff every

finite set Γ of literals over Σ having as a T -consequence the disjunction of n > 1 Σ0-atoms,

actually has as a T -consequence one of them. Similarly, a T -p.b.e. for T0 is Σ0-convex iff

for every set Γ of literals, BT (Γ) is an atom (recall that by our conventions, this includes

the case in which it is ⊤ or ⊥). Any T -p.b.e. for T0 can be turned into a Σ0-convex

T -p.b.e. for T0, in case T is Σ0-convex. As already hinted, the advantage lies on the

efficiency of the procedure. In fact, Step 2.2 of Algorithm 4 requires the calculus of a

basis, which usually underlies a satisfiability test for a set of clauses, and an exchange

60

of clauses between the two p.b.e.’s. It is clear that, if the sets returned by the p.b.e.’s

contain only atoms, i.e. the component theories are both convex with respect to the shared

subtheory, the combination procedure checks the satisfiability only of sets of atoms, thus

considerably improving in efficiency.

3.6 Examples

In this subsection we collect some examples which concretely illustrate the notions of a

noetherian theory and of a noetherian T -p.b.e..

Example 3.6.1 (K-algebras). Given a field K, let us consider the one-sorted signature

ΣK-alg containing the constants 0, 1, the two binary function symbols +, ◦, the unary

function symbol − and a K-indexed family of unary function symbols gk (or simply k).

We shall use infix notation for + and write kv, v1v2 for gk(v), ◦(v1, v2), respectively. As

we want to describe the theory K-alg of (commutative, for simplicity) K-algebras, the

axioms will be the following:

(1) Abelian additive group axioms:

∀x y z (x+ y) + z = x+ (y + z)

∀x x+ 0 = x

∀x x− x = 0

∀x y x+ y = y + x

(2) Abelian multiplicative monoid:

∀x y z (xy)z = x(yz)

∀x x1 = x

∀x y xy = yx

(3)

∀x y z (x+ y)z = xz + yz (3.3)

∀x y k(x+ y) = kx+ ky for all k ∈ K (3.4)

∀x (k1 ⊕ k2)x = k1x+ k2x for all k1, k2 ∈ K (3.5)

∀x (k1 · k2)x = k1(k2x) for all k1, k2 ∈ K (3.6)

∀x 1Kx = x (3.7)

∀x y k(xy) = (kx)y = x(ky) for all k ∈ K (3.8)

where ⊕ and · are respectively the sum and multiplication operation in K, whereas

1K is the multiplicative unit of K.

The ground atoms over a simple expansion Σ
a
K-alg

of ΣK-alg have a normalized repre-

sentation as p(a) = 0, where p is a polynomial; the theory of K-algebras is equational,

hence convex, so that the constraint satisfiability problem is just the problem of deciding

whether an equation p(a) = 0 is a logical consequence of a finite number of equations

61

{p1(a) = 0, . . . , pn(a) = 0}. Since the polynomial ring K[a1, . . . , an] is the free K-algebra

on n-generators, this problem is equivalent to the membership of the polynomial p to the

ideal 〈p1, . . . , pn〉 generated by the polynomials p1, . . . , pn. The Buchberger’s algorithm

solves the problem by computing the Gröbner basis associated to the ideal 〈p1, . . . , pn〉

(Gröbner basis can morally be considered as confluent and terminating rewriting systems

for deciding the universal fragment of theory of K-algebras). Since, by Hilbert’s basis the-

orem, there exists no infinite properly ascending chain of ideals in K[a1, . . . , an], K-alg is

a noetherian theory.

Example 3.6.2 (K-vector spaces). As a subtheory of the previous theory, let us con-

sider the theory K-vect of K-vector spaces, whose signature ΣK-vect is obtained from

ΣK-alg forgetting the ring multiplication ◦ and the ring unit 1. The axioms for K-vect

are now axioms (1), (3.4), (3.5), (3.6) and (3.7). The ground terms over a simple ex-

pansion of ΣK-vect can consequently be represented as linear homogeneous polynomials

with K-coefficients. K-vect is noetherian because there does not exist an infinite prop-

erly ascending chain of subspaces of a finitely generated K-vector space, but it is not

locally finite because linear polynomials in n unknowns are infinite (if coefficients are

infinite). In order to obtain a K-alg-p.b.e. for K-vect through Buchberger algorithm, we

need membership of a linear polynomial to a finitely generated ideal to be decided only

by linear reduction rules (in this case, our K-alg-p.b.e. for K-vect may simply extract

the linear polynomials from a Gröbner basis). This can be obtained through a further

requirement on the admissibility of the term ordering (in fact, since we need that linear

terms can be rewritten to linear ones only, not every admissible order is suitable). As an

example of an order matching such a requirement, one can take for instance the following

one (see [11]): say that am1
1 · · · a

mn
n ≺ al1

1 · · · a
ln
n holds iff (1)

∑n
i=1mi <

∑n
i=1 li or (2)

∑n
i=1mi =

∑n
i=1 li and (m1, · · · ,mn) <n

lex (l1, · · · , ln) (where <n
lex is the lexicographic

extension of the natural numbers ordering). We can now briefly outline how to extract

from the Buchberger’s algorithm a K-alg-p.b.e. for K-vect. First notice that, according

to the above requirement on the ordering for polynomials, only linear rewrite rules can

be used to reduce a linear term. Thus in order to compute a K-vect-basis for the K-alg-

constraint Γ = {p1 = 0, . . . , pn = 0, r1 6= 0, . . . , rm 6= 0} it is sufficient to: (a) run the

Buchberger’s algorithm procedure on {p1, . . . , pn} (let Q be the corresponding Gröbner

basis); (b) normalize the rj w.r.t. →Q to check consistency; (c) if consistency holds, re-

turn the equations q = 0, where q in the basis is a linear polynomial (if consistency does

not hold, simply return ⊥).

Example 3.6.3. The observations of the previous example concerning noetherianity and

convexity of the theory K-vect apply also in the analogous case of the theory of modules

over a noetherian ring R. In fact, ground terms over a simple expansion of the signature

62

of the theory of R-modules represent elements in finitely generated free R-modules and,

as a generalization of Hilbert’s basis theorem, the following theorem holds (see, e.g., [64]).

Theorem 3.6.4. Given a noetherian ring R, any finitely generated R-module is noethe-

rian.

This implies that the theory of abelian groups is a noetherian theory and, since integer

or rational arithmetic (namely the theory of the integers or of the rationals under addition)

is an extension of the latter, it is noetherian too (however noetherianity is lost if we add

to the language a predicate symbol for the ordering).

We give a further example (to be combined with the fragment of Example 3.6.1):

Example 3.6.5 (K-vector spaces endowed with an endomorphism). This is an extension

of the theory K-vect in Example 3.6.2. We augment the signature ΣK-vect with a unary

function symbol f and we add the following two axioms to the axioms of K-vect:

∀x y f(x+ y) = f(x) + f(y) (3.9)

∀x f(kx) = kf(x) for all k ∈ K (3.10)

This theory - call it f -K-vect - is the theory of the K-vector spaces endowed with an endo-

morphism. Ground terms over a simple expansion Σ
a
f -K-vect

of Σf -K-vect formally represent

vectors in finitely generated free K-algebras endowed with an endomorphism, and hence

normalize to the form k1f
m1(ai1) + · · · + knf

mn(ain) (kj ∈ K, j ∈ {1, . . . , n}). Given

the convexity of the fragment, constraint satisfiability amounts to decide if an equation

p = 0 is a logical consequence of given equations p1 = 0, . . . , pn = 0. This is equivalent to

check (in free f -K-vector spaces) if the vector p belongs to the subspace 〈p1, . . . , pn〉f ob-

tained from the closure under the endomorphism f of the subspace 〈p1, . . . , pn〉 generated

by the vectors p1, . . . , pn. In order to show the decidability of the problem, we can use

standard completion methods (reproducing Buchberger algorithm): we show here what

to do, leaving the details to the reader.

(i) Let us call ‘vector components’ the terms of the form fm(ai); vector components

must be given a terminating total order (satisfying suitable admissibility require-

ments). An example of such an ordering is the following: define fn1(ai) ≺ fn2(aj)

iff 〈n1, i〉 <lex 〈n2, j〉 (where <lex is the lexicographic order on N× N). We will call

head component the greatest vector component occurring in a term p (denoted by

H(p)), head coefficient the coefficient of the head component (denoted by HC(p))

and remainder the term R(p) = p−HC(p) ·H(p).

(ii) Given a finite set P of terms with head coefficient 1, the reduction relation →P is

introduced as follows: p1 →P p2 holds iff for some p ∈ P

63

(a) p1 contains a component m whose coefficient is k 6= 0;

(b) there exists n such that m = fn(H(p));

(c) p2 = p1 − k · f
n(p).

(iii) Critical pairs are identified with S-vectors, in the sense that →P is confluent iff all

S-vectors S(pl, pr) (for pl, pr ∈ P) normalize to 0. Here if pl = H(pl) + R(pl) and

pr = H(pr) +R(pr), the term S(pl, pr) is defined as follows:

– if there exists n such that H(pi) = fn(H(pj)) (i, j ∈ {l, r}, i 6= j), then

S(pl, pr) = pi − f
n(pj);

– S(pl, pr) = 0 otherwise.

(iv) A terminating completion procedure turns an arbitrary→P into some confluent and

equivalent →Q: the procedure simply adds a normal form of the S-vectors that do

not normalize to 0 to the current set of terms. For efficiency reasons, the procedure

may also perform backward simplification steps.

We finally mention how to extract from the above completion procedure a f -K-vect-

p.b.e. for K-vect: to this aim, notice that, according to the above ordering for vector

components, only f -free rewrite rule can be used to reduce an f -free term. So it is

possible to compute a K-vect-basis for the f -K-vect-constraint Γ = {p1 = 0, . . . , pn =

0, r1 6= 0, . . . , rm 6= 0} by running the completion procedure on {p1, . . . , pn} and by

following the steps (b), (c) of Example 3.6.2.

We consider now the combined theory T1∪T2, where T1 is the theory K-alg given in the

Example 3.6.1 and T2 is the fragment f -K-vect of Example 3.6.5 (here, however, we require

K-algebras to be non degenerate, i.e. to satisfy the condition 0 6= 1). From the axioms

of the two theories, it follows that the class of models for T1 ∪ T2 consists of the models

of the theory of the non degenerate K-algebras endowed with a linear endomorphism

(i.e. endowed with a function f preserving sum and scalar multiplication). The common

subtheory T0 is the theory K-vect of K-vector spaces given in Example 3.6.2. Such a

theory is universal and admits as a model completion the theory T ⋆
0 = T0 ∪ {∃x (x 6= 0)},

if K is an infinite field, and the theory T0 ∪ {∃x1 · · · ∃xn

∧

i6=j xi 6= xj}n∈N, otherwise: in

both cases, the models of T ⋆
0 are just infinite K-vector spaces. Since every non degenerate

K-algebra (resp. every f -K-vector space) can be embedded into an infinite K-algebra

(resp. into an infinite f -K-vector space), the requirements about the T0-compatibility of

both K-alg and f -K-vect are completely fulfilled. The condition concerning the existence

of a K-alg-p.b.e. and of a f -K-vect-p.b.e. for T0 = K-vect is also satisfied, as pointed

out in Examples 3.6.1, 3.6.2 and 3.6.5 above. Hence the combination procedure given by

64

Algorithm 4 decides the constraint satisfiability problem for the theory of (non degenerate)

K-algebras endowed with a linear endomorphism.

Example 3.6.6 (Linear arithmetic over reals). First of all, let us fix some notation

conventions. Given a set of variables {x1, . . . , xn}, each inequality C has the form
∑n

i=1 aixi ≤ b; moreover, if e is the linear equation
∑n

i=1 aixi = b, the symbol e denotes

the corresponding inequation
∑n

i=1 aixi 6= b; finally, if C is the inequality
∑n

i=1 aixi ≤ b,

C= denotes the equation
∑n

i=1 aixi = b obtained from C replacing the simbol ≤ by the

symbol = (similarly is defined C<).

Let us now recall two important properties of systems of linear equations and inequal-

ities with coefficients in the real field. The following two theorems hold:

Theorem 1. If P is a finite set of inequalities and e1, e2, . . . , em are inequations, P ∪

{e1, . . . , em} has a solution if and only if P ∪ {ei} has a solution for every i.

Theorem 2. Given a finite set of inequalities P = {C1, . . . Cm}, let SP be the set of

solutions of P , let SC=
k

be the set of solutions of the equation C=
k , and let IA be the

set of indexes such that k ∈ IA if and only if SP ⊆ SC=
k
; moreover, given an equation

e, let Se denote the set of solution of e. If e is an equation such that SP ⊆ Se, then
⋂

k∈IA
SC=

k
⊆ Se.

The proofs of Theorems 1 and 2 can be found, for example, in [60]. For the sake of

completeness, we present them here and, to this aim, we recall some preliminary notions.

Every set of solutions of a system P of inequalities can be considered as a convex set

in an Euclidean space of finite dimension; moreover, adopting a more geometrical point

of view, it is easy to associate to every convex set X its affine closure Aff(X), that is

the intersection of all the affine subspaces of the Euclidean space containing X. These

affine spaces are naturally topological spaces endowed with the topology induced by the

Euclidean distance. Let us consider an Euclidean affine space of a given finite dimension.

Lemma 3. Any convex set has non-empty interior in its affine closure, endowed with the

induced topology.

Proof. Let C be a non-empty convex set. The lemma is straightforward if C consists of

a single point. Let us suppose that C has more than one element and, without loss of

generality, let us suppose that the origin O of the affine space is in C. Consider the set

of vectors pC defined by {P −O | P is a point in C}; let {p1, p2, . . . , ps} be the maximal

set of linearly independent vectors in pC . Then the affine closure of C coincides with the

vector space spanned by p1, p2, . . . , ps. All the points of the form
∑

((1
(s+1))+εi)pi, where

|εi| <
1

s+1 , are in C and constitute an open neighborhood of the point
∑

(1
s+1)pi (which

is in C because C is convex) in the affine closure of C.

65

Lemma 4. Let C be a convex set whose affine closure has dimension d and suppose that

Q1, Q2, . . . , Qn are convex sets whose affine closure has dimension di < d (i ∈ {1, . . . , n}).

Then C 6⊆
⋃

iQi.

Proof. Each intersection Xi = Aff(Qi)∩Aff(C) is an affine subspace of Aff(C) of dimension

strictly lower than d, and thus it is a closed nowhere dense subset of Aff(C). By Lemma

3, C has non-empty relative interior in Aff(C); as a consequence of Baire theorem (see,

e.g., [75]), C cannot be contained in a finite (even denumerable) union of closed nowhere

dense sets.

Now it is possible to derive the proof of Theorem 1.

Proof of Theorem 1. Let Aff(SP) be the affine closure of the set SP of solutions of the

system P . Suppose that, for each j, the system P ∪ {ej} admits at least a solution;

then, for each j, we have SP 6⊆ Sej
, where Sej

is the set of solutions of the equation ej.

It follows that Aff(SP) 6⊆ Sej
. Therefore Sej

∩ Aff(SP) is an affine space of dimension

strictly lower then Aff(SP). So, by Lemma 4, SP , which is clearly a convex set, is not

included in
⋃

j Sej
.

Theorem 1 allows also to prove Theorem 2.

Proof of Theorem 2. The theorem is proved if we show that Aff(SP) =
⋂

k∈IA
SC=

k
. Clearly

Aff(SP) ⊆
⋂

k∈IA
SC=

k
. For the converse we show first that the system of inequalities and

equations {C<
k }k 6∈IA

∪ {C=
k }k∈IA

admits at least a solution. This system is equivalent to

the system P ∪ {C=
k }k 6∈IA

. By Theorem 1, this latter system admits at least a solution if

and only if, for each k 6∈ IA, the system P∪{C=
k } admits at least a solution, but this follows

from the definition of IA. Hence, the set X of solution of the system {C<
k }k 6∈IA

∪{C=
k }k∈IA

is not empty. Moreover, X is an open subset of the affine space
⋂

k∈IA
SC=

k
, since the

affine space inherits the induced topology from the Euclidean one. Therefore Aff(X) and
⋂

k∈IA
SC=

k
have the same dimension, so

⋂

k∈IA
SC=

k
= Aff(X) ⊆ Aff(SP).

If we consider a system P of inequalities with real coefficients, the Fourier-Motzkin

algorithm decides if P admits at least a solution. The algorithm works as follows. Let P

be a set of inequalities and let x be a variable. By obvious algebraic manipulations it is

always possible to arrange the inequalities as follows:

Ni li ≤ x i ∈ {1, . . . , p}

Pj x ≤ rj j ∈ {1, . . . , q}

Vl dl ≤ 0 l ∈ {1, . . . , s}

66

where p, q, s ≥ 0, each polynomial li, rj and dl do not contain the variable x and Ni, Pj and

Vl are the sets of original inequalities from which the corresponding equality was derived.

The first p inequalities correspond to the ones in which x has a negative coefficient, the

next q inequalities correspond to the ones in which x has a positive coefficient, and the

remaining s inequalities correspond to the ones in which x does not occur.

A Fourier step eliminating x is the transformation which produces the inequalities

li ≤ rj i ∈ {1, . . . , p} and j ∈ {1, . . . , q}

dl ≤ 0 l ∈ {1, . . . , s},

which associates Ni ∪ Pj with each inequality li ≤ rj , and which associates Vl with each

dl ≤ 0. A Fourier step is trivial if p = 0 or q = 0; such a step simply deletes all

the inequalities containing x in case x does not have a positive (respectively negative)

coefficient in any inequality of P . Fourier’s algorithm repeats the above procedure until

all variables are eliminated or a contradictory inequality is found. The labels associated

to every inequality have the following meaning: the set Sk associated with each original

inequality Ck is initialized to {Ck}, and then Fourier’s algorithm is applied as described

above. If C ′ is contained in a set S associated with an inequality C then we say that C

was produced using C ′.

Let us consider the signature Σ = {0, 1,+,−, {fr}r∈R, <} where 0, 1 are constants,

− and fr are unary function symbols whereas + is binary, and < is a binary predicate

symbol. Let TR = ThΣ(R), that is the set of all Σ-sentences true in R considered as

an R-vector space (thus fr’s represent the external product). In this perspective, given

a system of inequalities P = {C1, . . . , Cm}, we will call implicit equality any C=
k such

that TR |= P → C=
k . Thus, since TR is a complete theory, Theorem 1 establishes the

Σ0-convexity of TR (Σ0 = Σ\{<}). On the other hand, Theorem 2 establishes that, given

a system of inequalities P , if B is the collection of all the implicit equalities of P and e is

an equality such that TR |= P → e, then TR |= B → e. So, in order to compute a basis for

all the equalities implied by a system P , it is sufficient to recognize the implicit equalities

in P .

The Fourier-Motzkin algorithm is actually an algorithm for the quantifier elimination

for TR, and it solves the constraint satisfiability problem for TR. Moreover, in [59] it is

shown how the Fourier-Motzkin algorithm can be used in order to establish which of the

original inequalities are actually implicit equalities. Indeed, the following theorem holds.

Theorem 5. An inequality Ck in a set of inequalities P is an implicit equality iff appli-

cation of the Fourier algorithm will produce an inequality 0 ≤ 0 using Ck.

To prove Theorem 5 we need to introduce some preliminaries lemmas. In the following,

67

if α is a real and C is the inequality
∑n

j=1 ajxj ≤ b, αC is the inequality
∑n

j=1 αajxj ≤ αb,

whereas if C ′ is the inequality
∑n

j=1 a
′
jxj ≤ b′, C + C ′ means the inequality

∑n
j=1(aj +

a′j)xj ≤ b+ b′.

Lemma 6. If P is a finite set of inequalities {C1, C2, . . . Cm} and there exists a set of

positive reals {α1, . . . , αm} such that
∑m

k=1 αkCk is an inequality which can be reduced to

the form 0 ≤ 0, then Cj is an implicit equality for every j ∈ {1, . . . ,m}.

Proof. Suppose that there exists a set of positive reals {α1, . . . , αm} such that
∑m

k=1 αkCk

has the form 0 ≤ 0. Hence (−1)Cj =
∑m

k=1,k 6=j
αk

αj
Ck for j ∈ {1, . . . ,m}. Since the set of

consequences of P is closed under non negative linear combinations, TR |= P → (−1)Cj .

Clearly TR |= P → Cj, and so TR |= P → C=
j for j ∈ {1, . . . ,m}.

Here and in the following we shall adopt the following notation: if P and P ′ are

systems of inequalities and P ′ is the result of an application of a single step of the Fourier’s

algorithm, then we write P →F P ′. The following lemmas will be necessary to show the

completeness of Fourier’s algorithm whenever is used to extract all the implicit equalities.

Lemma 7. Let x be a variable and let P be a system of inequalities

li ≤ x i ∈ {1, . . . , p}

x ≤ rj j ∈ {1, . . . , q}

dl ≤ 0 l ∈ {1, . . . , s}

If P →F P ′ by the elimination of the variable x, then TR |= ∃xP ↔ P ′.

Hence, if P →F P ′ by the elimination of the variable x and TR |= P → e, where e is

an equation in which x does not occur, then TR |= P ′ → e.

Proof. TR |= P → P ′, thus TR |= ∀x(P → P ′). Since x does not occur in P ′, TR |=

∃xP → P ′. Suppose s is an assignment of variables to real numbers such that R |=s P
′.

Then s(li) ≤ s(rj) for each i and j and so maxi s(li) ≤ minj s(rj). Thus s′ defined by

s′(z) = s(z) if z 6≡ x and s′(x) = maxi s(li) is an assignment such that R |=s′ ∃xP . Hence

TR |= P ′ → ∃xP .

Lemma 8. Let P be the set of inequalities

li ≤ x i ∈ {1, . . . , p}

x ≤ rj j ∈ {1, . . . , q}

dl ≤ 0 l ∈ {1, . . . , s}

68

over the variable x and other variables ỹ, and suppose TR |= P → x = L(ỹ) where L(ỹ)

is a linear expression. If P →F P ′ by the elimination of the variable x then, for some i

and j, TR |= P ′ → li = rj .

Proof. Let S denote the set of solutions of P . For every s ∈ S there is an i such that

s(li) = s(x). If not, then maxi s(li) < s(x) and so s′ defined by s′(z) = s(z) if z 6≡ x

and s′(x) = maxi s(li) would be a solution of P . But TR |= P → x = L(ỹ) and so

s′(x) = s′(L(ỹ)) = s(L(ỹ)) = s(x) which is a contradiction.

Thus we have just shown that TR |= P →
∨p

i=1 li = x. By Theorem 1, TR |= P → li =

x for some i. Similarly TR |= P → x = rj for some j. Hence TR |= P → li = rj . Lemma

7 implies that TR |= P ′ → li = rj for some i and j.

As a consequence of the proof of the previous lemma we have that the existence of

implicit equalities is preserved under Fourier’s algorithm steps.

Lemma 9. If P contains an implicit equality C=
k produced using an original inequality

C and P →F P ′, then P ′ contains an implicit equality produced using C.

Proof. Let x be the eliminated variable. There are three cases. If Ck has the form li ≤ x

then, from the proof of Lemma 8, P has an implicit equality x ≤ rj and P ′ contains

li ≤ rj produced using C. Similarly if Ck has the form x ≤ rj . If x does not occur in C=
k ,

then P ′ contains Ck (produced using C). In each case we can apply Lemma 7 to show

that the appropriate inequality is an implicit equality of P ′.

We can now prove Theorem 5 which establishes the correctness of Fourier’s algorithm

for computing implicit equalities.

Proof of Theorem 5. (Soundness) We can observe that every inequality C obtained during

an execution of Fourier’s algorithm is the sum of positive multiples of the inequalities in

the set S associated with C. By Lemma 6, Ck is an implicit equality.

(Completeness) Suppose TR |= P → C=
k . Let P →F P ′. By Lemma 9, there is an

inequality C in P ′ which is an implicit equality, and which is produced using Ck. If 0 ≤ 0

is such an equality then we are done. Otherwise we repeat the argument for P ′ and C.

This process must terminate since eventually all variables in P will have been elimi-

nated. At that stage, the set of inequalities must contain an implicit equality produced

using Ck. Since all variables have been eliminated, the inequalities must have the form

0 ≤ c for some constant c. The only possible implicit equality must come from 0 ≤ 0.

As already observed, the constraint satisfiability problem for TR is decidable: apart

from the Fourier-Motzkin algorithm for the elimination of quantifiers, possible decision

procedures can be built up relying on the Simplex algorithm or also on the SUP-INF

69

method. As a subtheory of TR let us consider R-vect, i.e. the theory of the vector spaces

over R. R-vect admits as model completion the theory R-vect⋆ = R-vect ∪ {∃x (x 6= 0)},

whose models are just infinite R-vector spaces. Since for each n the “at least” constraint

∃x1, x2, . . . , xn

∧

i6=j xi 6= xj is in TR, the models of TR are necessarily infinite; this implies

that every model of TR is a model also of R-vect⋆, henceforth the requirements about the

R-vect-compatibility of TR are completely fulfilled.

Two observations are in order. First, Theorem 1 shows that TR is ΣR-vect-convex.

Second, Theorem 5 shows that, given a set P of inequalities, it is always possible to

extract all the entailed equalities. This is sufficient to state that there exists a R-vect-

p.b.e. for TR.

Example 3.6.7 (The theory of equality). Let us consider the theory Eq of equality.

ΣEq consists only of the binary predicate symbol =. Let P := {P1, P2, . . . , Pn, . . . } be

a countable set of propositional letters, and consider the theory Eq∗, over the signa-

ture ΣEq∗ = ΣEq ∪ P, which extends the theory of equality Eq by adding the following

(countably many) axioms:

Pn ↔ ∀x1 . . . xn+1

∨

1≤i<j≤n+1

xi = xj (n ∈ N)

We notice that, if Pn is true in some models A of Eq, then the domain of A has

cardinality at most n; on the other hand, ¬Pn is true in a structure A if and only if

the domain of A has cardinality at least n + 1. In other words, the role played by the

propositional letter Pn is the same of an “at least” constraint, whereas the role played by

¬Pn is the same of an “at most” constraint. Thus, every infinite structure A will satisfy

¬Pn for each n.

Eq∗ has essentially the same models of Eq, because the interpretation of the propo-

sitional letters in P is uniquely determined; moreover it is sub-model complete. If fact,

given any substructure A of a model N of Eq∗, if n is the cardinality of the domain of N ,

∆(A) contains all the atoms of the kind Pm for each m ≥ n, and literals of the kind ¬Pl

for each l < n; in case N is an infinite structure, ∆(A) contains ¬Pn for each n. This is

sufficient in order to uniquely determine the cardinality of any model of Eq∗ ∪∆(A), as

the assignment over the propositional letters in P is an equivalent way of giving an axiom-

atization of the theory Eqn of set with a fixed cardinality n, varying n in {1, 2, . . . ,∞}.

Now it is easy to see that Eq∗∪∆(A) is a complete ΣA-theory. Let us consider two models

B1, B2 of Eq∗ ∪ ∆(A): if they have the same finite cardinality, they are isomorphic; if

they are structures with infinite domain, then, by the upward Löwenheim-Skolem theo-

rem, there exist two structures B′1 and B′2 with the same cardinality such that B1 embeds

(elementarily) into B′1, and such that B2 embeds (elementarily) into B′2. Since B′1 and B′2

70

have the same cardinality, they are isomorphic; since B1 and B2 embed elementarily into

structures that are isomorphic, they are elementary equivalent.

We have shown that Eq∗ is sub-model complete; by Lemma 3.1.4, Eq∗ admits elim-

ination of quantifiers, so it can be considered the model-completion of itself. Moreover,

as the models of Eq are the same of Eq∗, every theory T extending Eq can be automat-

ically considered a theory extending Eq∗; in this way T always fulfills the condition of

Eq∗-compatibility. Finally, Eq∗ is a noetherian theory. Given a finite set of constants

a, there exists only a finite number of atoms over Σ
a
Eq∗; moreover, as Pn |= Pm for each

m ≥ n, every ascending chains of Σ
a
Eq∗-atoms becomes eventually constant for logical

consequences.

Thus, if we want to combine two theories T1 and T2 whose constraint satisfiability

problem is decidable and which are over disjoint signatures, we only need to check if there

exist a T1-p.b.e. and a T2-p.b.e. for Eq∗.

Example 3.6.8 (Strongly ∃∞-decidable theories). Let us consider a theory T which is

strongly-∃∞-decidable (see Section 2.3). We recall that, given a constraint Γ, if T is

a strongly-∃∞-decidable theory then (i) it is decidable if T ∪ Γ is satisfiable, (ii) it is

decidable if T ∪ Γ is satisfiable in an infinite structure, (iii) for every finite structure A,

it is decidable if A is a model for T ∪ Γ; moreover Lemma 2.3.2 implies that it is possible

to effectively compute the least integer N such that all models of T ∪ Γ have cardinality

at most N .

As already said, the theory T can be considered equivalent to the (Σ ∪ P)-theory

TEq∗ := T ∪Eq∗, since they have the same models, being the interpretation of the propo-

sitional letters Pn fixed; moreover, the following lemma holds.

Lemma 10. If T is a strongly-∃∞-decidable theory extending Eq, then (i) the constraint

satisfiability problem for TEq∗ is decidable, and (ii) given a constraint Γ, it is decidable if

Γ is satisfiable in an infinite model of TEq∗.

Proof. For (i), let us consider a (Σ∪P)a-constraint Γ; notice that, being Σ and P disjoint,

we can always write Γ as Γ ∪ C, where Γ is a Σa-constraint not containing propositional

letters belonging to P and C is a constraint containing only propositional letters belonging

to P. Moreover, we can freely suppose that C contains a positive occurrence of the atom

PN whenever the least integer N such that all models of T ∪ Γ has cardinality at most

N exists (if not, since T is strongly-∃∞-decidable and because of Lemma 2.3.2, we can

simply add it to C preserving the equisatisfiability of Γ with respect to TEq∗). To check

the satisfiability of Γ ∪C with respect to TEq∗ , first of all we test C for consistency (this

can be easily done by a straightforward inspection). Suppose that C is consistent. If

an atom Pm occurs positively in C, then the satisfiability of Γ ∪ C can be detected by

71

inspecting all the (finitely many) Σa-structures whose cardinality is less or equal to m.

Otherwise the satisfiability of Γ ∪ C with respect to TEq∗ is reduced to the satisfiability

of Γ with respect to T .

As far as (ii) is concerned, notice that every satisfiable constraint Γ ∪ C admits an

infinite model if and only if Γ is satisfiable in an infinite structure which is a model of

T and C does not contain any positive occurrence of atoms belonging to P. Being both

requirements effective, it follows that condition (ii) is satisfied.

As a consequence of the above lemma, for every constraint Γ which is satisfiable only

in finite models of TEq∗, it is always possible to compute the least integer N such that all

models of TEq∗ ∪ Γ have cardinality at most N .

Now, given a set of ground clauses ∆ over the simple expansion (Σ ∪ P)a of Σ ∪ P,

we want to obtain a TEq∗-p.b.e. for Eq∗. We will deal with positive (Σ ∪ P)a-clauses of

the following kinds:

(1) clauses over the signature P;

(2) clauses over the signature Σa;

(3) clauses over the mixed signature (Σ ∪ P)a.

As far as (1) and (3) are concerned, notice that we can assume that just one atom

belonging to P occurs in them (indeed, Pi ∨ Pj is logically equivalent to Pk where k =

max{i, j}). Let us proceed in the following way:

(i) for clauses of the kind (1), we check if TEq∗ ∪∆ is satisfiable and, if so, we decide

whether TEq∗ ∪ ∆ admits an infinite model, and, if not, we compute the least N

such that all models of TEq∗ ∪∆ have cardinality at most N .

This can be effectively done: the most naive method is converting the conjunction

of the clauses in ∆ into disjunctive normal form Γ1 ∨ Γ2 ∨ · · · ∨ Γn. By Lemma 10,

we can check if TEq∗ ∪ Γi is satisfiable; if so, we can decide if Γi is satisfiable in an

infinite model of TEq∗ and, if not, we can compute the least Ni such that all models

of TEq∗ ∪ Γi have cardinality at most Ni. If at least one Ni has been found and no

Γi is satisfiable in infinite models, then the clause we are looking for is PN , where N

is the maximum of the Ni’s (notice that, if TEq∗ ∪∆ |= Pk, then Eq∗ ∪{PN} |= Pk).

(ii) for clauses of the kind (2), it is sufficient to check if a positive clause in the form

ai1 = ai2 ∨ · · · ∨ ain−1 = ain , where aij is a constant among the a’s, is a logical

consequence of TEq∗∪∆ (this can be effectively done by reducing it to a satisfiability

problem in the usual way).

72

(iii) as far as clauses of the kind (3) are concerned, for each clause C of the form ai1 = ai2∨

· · ·∨ain−1 = ain , where aij is a constant among the a’s, we check if TEq∗ ∪∆∪{¬C}

is satisfiable in an infinite model, and, if not, we compute the least N such that all

models of TEq∗ ∪∆∪{¬C} have cardinality at most N (to this aim, we can proceed

as in (i)). In such a case, the required clause is C ∨PN (indeed, TEq∗ ∪∆ |= C ∨PN

and, if TEq∗ ∪∆ |= C ∨ Pk, then Eq∗ ∪ {C ∨ PN} |= C ∨ Pk)

BTi
(∆) is equal to ⊥ if the satisfiability test in step (i) fails. Otherwise, it consists of all

the ground Σ
a
Eq-clauses computed in steps (i), (ii) and (iii).

Example 3.6.9 (Weakly ∃-superposition-decidable theories). The previous example shows

that, in order to extract a TEq∗-p.b.e. for Eq∗ (where TEq∗ = T ∪Eq∗ and T is any theory

extending the pure theory of equality) it is sufficient to have that T is a strongly-∃∞-de-

cidable. As weakly ∃-superposition-decidable theories are strongly-∃∞-decidable theories

(see Theorem 2.4.13), it is possible to obtain a TEq∗-p.b.e. for Eq∗ whenever T is weakly

∃-superposition-decidable.

73

Chapter 4

A Higher-Order Framework for

Combination

In this chapter we try to push the Nelson-Oppen methodology further in order to solve in a

uniform way as many problems as possible. We have already seen in the previous chapter

that, when joined to model-theoretic results, the Nelson-Oppen schema succeeds in dealing

with various classes of combination problems. Now we want to generalize even more this

schema: in this perspective, we will plug it into an higher-order framework, adopting type-

theoretic signatures in Church’s style. The choice of a higher-order framework is justified

by the fact that quite often the semantic specification language for decision problem is

intrinsically higher-order, even if in practice problems themselves are not really such. For

example, in the case of modal logics, decision problems are specified through the so-called

standard translations: clearly, the problem of finding a structure satisfying the standard

translation of a modal formula is (at least in principle) higher-order because the predicates

symbols occurring in the problem are genuine second-order variables.

The interest of this approach relies on the existence of tractable fragments of general

type theory whose ‘combination’ often turns out to be tractable. To develop the plan of

plugging Nelson-Oppen procedure into a higher-order context, we will need to introduce

a suitable notion of fragments and their combination (Sections 4.2 and 4.3), to adapt

the notions of local finiteness and noetherianity to these new definitions (Section 4.2.4),

to re-design the combination schema (Section 4.3.2). At this point we will be able to

obtain a semidecision procedure for the combined constraint satisfiability; to guarantee the

completeness of the procedure, we will need powerful semantically-driven tools (Section

4.4).

74

4.1 Type-Theoretic Languages

We fix our notation for higher-order syntax; we adopt a type theory in Church’s style (see

[3, 2, 58] for introductions to the subject).

4.1.1 Signatures

We use letters S1, S2, . . . to indicate sorts (also called primitive types) of a signature.

Formally, sorts are a set S and types over S are built inductively as follows:

– every sort S ∈ S is also a type;

– Ω is a type (this is called the truth-values type):

– if τ1, τ2 are types, so is (τ1 → τ2).

As usual external brackets are omitted; moreover, we shorten the expression τ1 → (τ2 →

. . . (τn → τ)) into τ1 . . . τn → τ (in this way, every type τ has the form τ1 . . . τn → τ ,

where n ≥ 0 and τ is a sort or it is Ω). In the following, we use the notation T (S) or

simply T to indicate a types set, i.e. the totality of types that can be built up from the

set of sorts S. In this way, S is sometimes left implicit in the notation, however we always

reserve to sorts the letters S1, S2, . . . (as opposed to the letters τ, υ, etc. which are used

for arbitrary types).

A signature (or a language) is a triple L = 〈T ,Σ, a〉, where T is a types set, Σ is a set

of constants and a is an arity map, namely a map a : Σ −→ T ; we write f : τ1 . . . τn → τ

to express that f is a constant of type τ1 . . . τn → τ , i.e. that a(f) = τ1 . . . τn → τ .

According to the above observation, we can assume that τ is a sort or that τ = Ω; in

the latter case, we say that f is a predicate or a relational symbol (predicate symbols are

preferably indicated with the letters P,Q, . . .).

We require the following special constants to be always present in a signature:

– ⊤ and ⊥ of type Ω;

– ¬ of type Ω→ Ω;

– ∨ and ∧ of type Ω Ω→ Ω;

– =τ of type τ τ → Ω for each type τ ∈ T (we usually write it as ‘=’ without specifying

the subscript τ).

The proper symbols of a signature are its sorts and its non special constants.

A signature is one-sorted iff its set of sorts is a singleton. A signature L is first-order

if for any proper f ∈ Σ, we have that a(f) = S1 . . . Sn → τ , where τ is a sort or it is Ω.

75

A first-order signature is called relational iff any proper f ∈ Σ is a relational constant,

that is a(f) = S1 . . . Sn → Ω. By contrast, a first-order signature is called functional iff

any proper f ∈ Σ has arity S1 . . . Sn → S.

Let L1 = 〈T1,Σ1, a1〉 and L2 = 〈T2,Σ2, a2〉 be two signatures; we say that L1 is a

subsignature of L2 (written L1 ⊆ L2) if T1 ⊆ T2, Σ1 ⊆ Σ2 and a1 ⊆ a2. Furthermore,

given L1 = 〈T1,Σ1, a1〉 and L2 = 〈T2,Σ2, a2〉, in case a1 and a2 coincide1 on Σ1 ∩ Σ2,

we define the union signature L1 ∪ L2 to be (let T1 be T (S1) and T2 be T (S2)) 〈T (S1 ∪

S2),Σ1∪Σ2, a1∪a2〉 and the intersection signature L1∩L2 to be 〈T1∩T2,Σ1∩Σ2, a1∩a2〉.

4.1.2 Terms

Given a signature L = 〈T ,Σ, a〉 and a type τ ∈ T , we define the notion of an L-term (or

just term) of type τ , written t : τ , as follows (for the definition we need, for every type

τ ∈ T , a countable supply Vτ of variables of type τ):

– x : τ (for x ∈ Vτ) is an L-term of type τ ;

– c : τ (for c ∈ Σ and a(c) = τ) is an L-term of type τ ;

– if t : υ → τ and u : υ are L-terms of types υ → τ and υ, respectively, then

valυ(t, u) : τ (also written as t(u) : τ) is an L-term of type τ ;

– if t : τ is an L-term of type τ and x ∈ Vυ is a variable of type υ, λxυ t : υ → τ is an

L-term of type υ → τ .

In the following, we consider the notation xτ (cτ) equivalent to x : τ (c : τ), where x

(c) is a variable (a constant); if it can be deduced from the context, the specification of

the type of a term may be omitted. Moreover, a term of type τ is also called a τ -term and

terms of type Ω are also called formulae. Given a formula ϕ, we write {x | ϕ} for λxϕ.

We shorten valυn(· · · (valυ1(t, u1), · · ·), un) to t(u1, . . . , un) where ui is a term of type

υi (i ∈ {1, . . . , n}) and t is a term of type υ1 . . . υn → τ . For each term ϕ of type Ω, we

define the Ω-terms ∀xυ ϕ and ∃xυ ϕ as {xυ | ϕ} = {xυ | ⊤} and as ¬∀xυ ¬ϕ, respectively

(the latter can also be defined differently, in an intuitionistically acceptable way, see [58]).

For terms ϕ1, ϕ2 of type Ω, the terms ϕ1 → ϕ2 and ϕ1 ↔ ϕ2 of type Ω are classically

defined by ¬ϕ1∨ϕ2 and by (ϕ1 → ϕ2)∧(ϕ2 → ϕ1), respectively (but notice that ϕ1 ↔ ϕ2

can be defined in a semantically equivalent way also as ϕ1 = ϕ2).

By the above definitions, first-order formulae can be considered as a subset of the

higher-order formulae defined in this section. More specifically, when we speak of first-

order terms, we mean variables x : S, constants c : S and terms of the kind f(t1, . . . , tn) :

1Modulo renaming some elements of Σ1, we can assume that this condition is always satisfied, so that
union and intersection signatures are always defined.

76

S, where t1, . . . , tn are (inductively given) first-order terms and a(f) = S1 · · ·Sn → S.

Now first-order formulae are obtained from formulae of the kind⊤ : Ω,⊥ : Ω, P (t1, . . . , tn) :

Ω (where t1, . . . , tn are first-order terms and a(P) = S1 · · ·Sn → Ω) by applying ∃xS,∀xS ,∧,

∨,¬,→,↔.

4.1.3 Substitutions and Conversions

An occurrence of a variable x in a term t is bound if it appears in a subterm of t of the

kind λxu, otherwise it is said to be free. A variable x occurs free in a term t if and only

if at least one occurrence of x in t is free; by fvar(t) we mean the set of the variables

that occur free in t (whereas fvarτ (t) is the set of the variables of type τ that occur free

in t). If E is a set of terms, fvar(E) means
⋃

t∈E fvar(t). We often use notations like

x, y to mean tuples of distinct free variables.

A term without free variables is called a closed term and a formula without free

variables is called a sentence. The notation t[x1, . . . , xn] (resp. E[x1, . . . , xn]) means that

fvar(t) ⊆ {x1, . . . , xn} (resp. fvar(E) ⊆ {x1, . . . , xn}).

Two terms are said to be equivalent modulo α-conversion iff they differ only by a

bound variables renaming; in the following, we shall identify α-equivalent terms, i.e. we

consider terms as representatives of their equivalence class modulo α-conversion.

Let V be the disjoint union of the sets of variables Vτ (τ ∈ T). We define the notion of

substitution as usual: a substitution is a map σ : V → T (from the set V of the variables

into the set T of the terms) that respects types (i.e. if x ∈ Vτ then xσ is a term of type τ)

and such that the set {x | x 6≡ xσ} is finite.2 The set dom(σ) := {x | 6≡ xσ} is called the

domain of the substitution σ. A substitution σ will be written as x1 7→ xσ1, . . . , xn 7→ xnσ,

or equivalently as x1σ/x1, . . . , xnσ/xn, where dom(σ) ⊆ {x1, . . . , xn}. A substitution is a

renaming iff it is a variable permutation.

Substitutions can be extended in the domain from variables to all terms in the usual

way; notice however that, when defining inductively the term tσ, it might happen that

α-conversions must be applied before actual replacements, in order to avoid clashes. If

σ = {x1 7→ u1, . . . , xn 7→ un} and fvar(t) ⊆ {x1, . . . , xn}, the term tσ can also be written

as t[u1, . . . , un]. Given two substitutions σ1 and σ2, the composite substitution σ1σ2 is the

substitution that maps the variable x to (xσ1)σ2. The notion of βη-equivalence between

terms is introduced through the following previous inductive definition of the relation ⊲1
βη

(we follow [33]):

– (β) val(λx t, u) ⊲1
βη tσ, where σ : {x 7→ u};

– (η) λx val(t, x) ⊲1
βη t, if x is not free in t;

2Since the equality symbol ‘=’ is present in the object language, we prefer to use ‘≡’ in the metalanguage
for coincidence of syntactic expressions.

77

– (µ) val(t, u) ⊲1
βη val(t, u

′), if u ⊲1
βη u

′;

– (ν) val(t, u) ⊲1
βη val(t

′, u), if t ⊲1
βη t

′;

– (ξ) λx t ⊲1
βη λx t

′, if t ⊲1
βη t

′.

The βη-equivalence relation ∼βη is now the reflexive, symmetric and transitive closure

of the relation ⊲1
βη. By definition, ∼βη is an equivalence relation compatible with the term

constructors. It is known that the βη-reduction relation ⊲βη obtained from the transitive

closure of ⊲1
βη, gives a rewrite system that is strongly normalizable and confluent (see

[16, 47]), i.e. each term has a unique βη-normal form modulo α-conversion. Sometimes,

however, it is preferable to use the so-called long-βη-normal form of a term t : τ (instead

of the βη-normal form of t). This is defined as follows: suppose τ = τ1 · · · τn → υ, consider

the βη-normal form

λx1 · · ·λxm y(u1, . . . , up)

of t (here m ≤ n and y is a variable or a constant) and then take

λx1 · · ·λxmλxm+1 · · ·λxn y(u′1, . . . , u
′
p, x

′
m+1, . . . , x

′
n)

to be the long-βη-normal forms of t (where u′1, . . . , u
′
p, x

′
m+1, . . . , x

′
n are the long-βη-

normal forms of u1, . . . , up, xm+1, . . . , xn, respectively). Thus, for instance, the long βη-

normal form of a predicate constant P : τ → Ω is {x | P (x)}.

4.1.4 Models

In order to introduce our computational problems, we need to recall the notion of an

interpretation for a type-theoretic language. Formulae of higher-order type theory which

are valid in ordinary set-theoretic models do not form an axiomatizable class, as it is

well-known from classical limitative results. Hence, in order to re-gain axiomatizability,

one has to use Henkin models (see [3]) or to take interpretations into elementary toposes

(see [58]). However, we shall confine ourselves to standard set-theoretic models, because

we are not interested in the whole type theoretic language (nor in any calculus for it).

On the other hand, the generalization to more powerful semantics of the definitions given

in this subsections is well-known and can be found, for instance, in the aforementioned

textbooks.

If we are given a map that assigns to every sort S ∈ S a set [[S]], we can inductively

extend it to all types over S, by taking [[τ → υ]] to be the set of functions from [[τ]]

to [[υ]]. Given a language L = 〈T ,Σ, a〉, a L-structure (or just a structure) A is a pair

〈[[−]]A,IA〉, where:

(i) [[−]]A is a function assigning to a sort S ∈ T , a set [[S]]A;

78

(ii) IA is a function assigning to a constant c ∈ Σ of type τ , an element IA(cτ) ∈ [[τ]]A

(here [[−]]A has been extended from sorts to types as explained above).

In every structure A, we finally require also that [[Ω]]A = {0, 1}, that IA(⊥) = 0, that

IA(⊤) = 1, that IA(=τ) is the characteristic function of the identity relation on [[τ]]A,

and that IA(¬), IA(∨), IA(∧) are the usual truth tables functions (notice that, in these

and similar passages, we implicitly use the isomorphisms (XY)Z ≃ XY ×Z in order to

treat in the natural way curryfied binary function symbols).

We do not exclude, in principle, that in a structure A we can have [[τ]]A = ∅ for

some type τ (in fact, the use of finitary assignments below is compatible with empty do-

mains);3 however, when dealing with one-sorted signatures L, we shall implicitly assume,

for simplicity, that in L-structures the unique sort is always interpreted into a non-empty

domain.

Given a L-structure A = 〈[[−]]A,IA〉, let LA be the language enriched by a constant

ā of type τ for every a ∈ [[τ]]A; A can be canonically considered as a LA-structure once

IA is extended to the new constants by stipulating that IA(ā) := a. By induction, it is

now possible to extend IA to all closed LA-terms t as follows:

– IA(val(t, u)) = IA(t)(IA(u)) (this is set-theoretic functional application);

– IA(λxτ t) is the function that maps each element a ∈ [[τ]]A into IA(t[ā/x]).

From now on, we shall not distinguish for simplicity between a and its name ā.

A LA-sentence ϕ is true inA (in symbolsA |= ϕ) iff IA(ϕ) = 1. Notice that, according

to the above definition of universal quantification, we have that A |= ∀xτ ϕ if and only if

for each a ∈ [[τ]]A, we have IA(ϕ[a/x]) = 1.

To introduce the notion of satisfiability we use finite assignments. LetA = 〈[[−]]A,IA〉

be a L-structure and let x be a finite set of variables; an x-assignment (or simply an

assignment if x is clear from the context) α is a map associating with every variable

xτ ∈ x an element α(x) ∈ [[τ]]A. An L-formula ϕ is satisfied in A under the x-assignment

α (where x ⊇ fvar(ϕ)) iff Iα
A(ϕ) = 1, where Iα

A(ϕ) is the LA-sentence obtained by

replacing in ϕ the variables x ∈ x by (the names of) α(x). We usually write A |=α ϕ for

Iα
A(ϕ) = 1.

A formula is satisfiable iff it is satisfied under some assignment and a set of formulae Θ

(containing altogether only finitely many variables) is satisfiable iff for some assignment

α we have that A |=α ϕ holds for each ϕ ∈ Θ (of course, for this to make sense, α must be

3Usual (total) assignments are inadequate if one wants tautological sentences to be satisfiable in a
structure in which some sort is interpreted into the empty set. Finite assignments eliminate this incon-
venient, however empty domains cause further problems on the syntactic side, if one wants to formulate
suitable calculi. These questions do not concern the present work, however we recall that there is a simple
well-known solution to them, namely the explicit indication of the variables involved in a proof (see [58]).

79

an x-assignment for some x ⊇ fvar(Θ) - and one can even assume x = fvar(Θ) without

loss of generality).

For signature inclusions L0 ⊆ L, there is an obvious taking reduct operation mapping

an L-structure A to an L0-structure A|L0
; we can similarly take the L0-reduct of an

assignment, by ignoring the values assigned to variables whose types are not in L0 (we

leave the reader to define these notions properly).

Two L-structures A1 = 〈[[−]]A1 ,IA1〉 and A2 = 〈[[−]]A2 ,IA2〉 are said to be iso-

morphic iff there are bijections ιτ : [[τ]]A1 −→ [[τ]]A2 (varying τ ∈ T) such that

ιτ (IA1(c)) = IA2(c) holds for all c : τ ∈ Σ and such that ιτ→υ(h) = ιυ ◦ h ◦ ι
−1
τ holds for

all h ∈ [[τ → υ]]A1 .4 Isomorphic structures are in fact indistinguishable (in particular,

the same sentences are true in them).

4.2 Fragments

General type theory is very hard to attack from a computational point of view, this is

why we are basically interested only in more tractable fragments and in combinations of

them. Fragments are defined as follows:

Definition 4.2.1. A fragment is a pair 〈L, T 〉 where L = 〈T ,Σ, a〉 is a signature and T

is a recursive set of L-terms.

4.2.1 Algebraic Fragments

We want to use fragments as ingredients of larger and larger combined fragments: a

crucial notion in this sense is that of an algebraic fragment.

Definition 4.2.2. A fragment 〈L, T 〉 is said to be an algebraic fragment iff T satisfies

the following conditions:

(i) T is closed under composition, i.e. if u[x1, . . . , xn] ∈ T , then uσ ∈ T , where σ :

{x1 7→ t1, . . . , xn 7→ tn} is a substitution such that ti ∈ T for all i = 1, . . . , n;

(ii) T contains domain variables, i.e. if τ is a type such that some variable of type τ

occurs free in a term t ∈ T , then every variable of type τ belongs to T ;

(iii) T contains codomain variables, i.e. if t : τ belongs to T , then every variable of type

τ belongs to T .

Observe that from the above definition it follows that T is closed under renamings, i.e.

that if t ∈ T and σ is a renaming, then tσ ∈ T . The role of Definition 4.2.2(i) is that of

4Thus, once again, to give an isomorphism it is sufficient to specify the bijections ιS for all sorts S.

80

making fragment combinations non trivial, whereas the other conditions of Definition 4.2.2

will be needed in order to apply preprocessing purification steps to combined constraints.

Quite often, one is interested in interpreting the terms of a fragment not in the class

of all possible structures for the language of the fragment, but only in some selected ones

(e.g. when checking satisfiability of some temporal formulae, one might be interested only

in checking satisfiability in particular flows of time, those which are for instance discrete

or continuous). This is the reason for ‘interpreting’ fragments:

Definition 4.2.3. An interpreted algebraic fragment (to be shortened as i.a.f.) is a triple

Φ=〈L, T,S〉, where 〈L, T 〉 is an algebraic fragment and S is a class of L-structures closed

under isomorphisms.

The set of terms T in an i.a.f. Φ=〈L, T,S〉 is called the set of Φ-terms and the set of

types τ such that t : τ is a Φ-term for some t is called the set of Φ-types. A Φ-variable is

a variable xτ such that τ is a Φ-type (or equivalently, a variable which is a Φ-term). It is

also useful to identify a (non-interpreted) algebraic fragment 〈L, T 〉 with the interpreted

algebraic fragment Φ=〈L, T,S〉, where S is taken to be the class of all L-structures.

Definition 4.2.4. Given an i.a.f. fragment Φ, a Φ-atom is an equation t1 = t2 between

Φ-terms t1, t2 of the same type; a Φ-literal is a Φ-atom or a negation of a Φ-atom, a Φ-

constraint is a finite conjunction of Φ-literals, a Φ-clause is a finite disjunction of Φ-literals.

Infinite sets of Φ-literals (representing an infinite conjunction) are called generalized Φ-

constraints (provided they contain altogether only finitely many free variables).

Some Conventions. Without loss of generality, we may assume that ⊤ is a Φ-atom

in every i.a.f. Φ (in fact, to be of any interest, a fragment should at least contain one

term t and we can let ⊤ to be t = t). As a consequence, ⊥ will always be a Φ-literal;

by convention, however, we shall include ⊥ among Φ-atoms (hence a Φ-atom is either an

equation among Φ-terms - ⊤ included - or it is ⊥). Since we have ⊥ as an atom, there

is no need to consider the empty clause as a clause, so clauses will be disjunctions of at

least one literal. The reader should keep in mind these slightly non standard conventions

for the rest of the chapter.

A Φ-clause is said positive if only Φ-atoms occur in. A Φ-atom t1 = t2 is closed if

and only if ti is closed (i ∈ {1, 2}); the definition of closed Φ-literals, -constraints and

-clauses is analogous. For a finite set x of variables and an i.a.f. Φ, a Φ(x)-atom (-term,

-literal, -clause, -constraint) is a Φ-atom (-term, -literal, -clause, -constraint) A such that

fvar(A) ⊆ x.

In this chapter we mainly deal with the constraint satisfiability problem for an in-

terpreted algebraic fragment Φ=〈L, T,S〉: this is the problem of deciding whether a Φ-

constraint is satisfiable in some structure A ∈ S. On the other hand, the word problem

81

for Φ is the problem of deciding if the universal closure of a given Φ-atom is true in every

structure A ∈ S.

The literature on fragments and on decision procedures for fragments is extremely

large (in a sense, one may argue that mathematical logic itself consists of studying the

various fragments and their syntactic and semantic properties). Notice however that our

definition of a fragment refers to an embedding into a higher-order typed language: the

consequence of this approach is that a given well-known fragment (in the naive sense) can

formally be turned into a fragment in our sense in many ways and the differences among

such ways are crucial when concretely applying the definition of a combined fragment to

be given in Section 4.3.

The reason is the following: although we have not yet given the relevant definition, the

reader may imagine that combining algebraic fragments means, roughly speaking, taking

the smallest algebraic fragment containing some given ones. Now, when defining the set

of Φ-terms of a fragment, it does not actually matter whether certain symbols are treated

as free constants or as free variables: since every variable is existentially quantified in

the definition of a satisfiable constraint, then one may indifferently use free constants or

variables in Φ-terms. However, constants are not good to be used as placeholders when

defining the composition (=substitution) of terms, so the (ab)use of free constants reduces

the expressive richness of the combined fragments that can be build over the given one.

Another opportunity in defining the set of Φ-terms of a fragment, is that of taking

a final λ-abstraction in order to get rid of free variables.5 Clearly the choice of closing

by λ-abstraction the Φ-terms of a fragment changes the nature of the satisfiability of the

resulting constraints (e.g. it makes the difference between local and global satisfiability,

in the case of the standard translation of modal propositional formulae). However such a

choice has another relevant and more hidden effect: having taken λ-abstraction, we pro-

duced higher-order terms which are now ready to be substituted for higher-order variables

when taking combined fragments.

Sometimes the above options cannot be used together: for instance, the set of prenex

first-order formulae having a certain given prefix shape are not an algebraic fragment

if the predicate letters in them are treated as second-order variables and if first-order

variables are λ-abstracted (closure under substitutions of Φ-terms for variables fails).

The moral of this discussion is that our framework is quite general and flexible, but

just for this reason, it needs to be handled with some care. In next subsection we shall

give examples of algebraic fragments (the reader now knows why we will apparently make

‘many different copies’ of seemingly the same fragment).

5For Φ-terms ϕ[x] of type Ω, this usually has the effect of taking universal closure in Φ-atoms: the term
{x | ⊤} is usually in Φ, so that taking the Φ-atom {x | ⊤} = {x | ϕ} amounts to consider the universal
closure of ϕ.

82

We would like to draw the reader’s attention to the fact that in Definition 4.2.2,

when formulating the closure under composition requirement for the set of the terms T

of an algebraic fragment, we asked that if t[x1, . . . , xn] ∈ T and u1, . . . , un ∈ T , then

precisely the term t[u1/x1, . . . , un/xn] belongs to T (and not just some other term which

is βη-equivalent to it, like for instance its βη-normal form). The reason for this strict

requirement is that we want a term belonging to a combined i.a.f. to be effectively decom-

posable into some iterated composition of pure terms (see Subsection 4.3.1). With the

present version of Definition 4.2.2, there is an evident algorithm for computing such a de-

composition. Of course, we did not eliminate the βη-conversion problem in this way, but

we simply left to the user of our combination procedure the responsibility of effectively

certifying that the terms forming the constraints he is interested to decide for satisfiability

really belong (maybe up to βη-equivalence) to the combined fragment to which he is going

to apply the procedure. For instance, before claiming that our procedure decides rela-

tivized satisfiability in fusions of modal logics, we shall have to produce such a certificate

(this is the content of Lemma 4.4.13 below).

Before closing this subsection, we make a little digression (not relevant for the com-

prehension of the remaining part of the chapter) about the choice of the word ‘algebraic’

in order to name our fragments (this digression may also help future development in a

more conceptual setting).

It is well-known (see [58]) that higher-order (intuitionistic) type theories correspond

to elementary toposes; thus our signatures must in particular be related to free toposes.

Algebraic fragments in this context are cartesian subcategories of such toposes (we use the

name ‘cartesian category’ for ‘category with finite products’). In fact, algebraic fragments

are closed under compositions and contains projections, namely variables. Now it is well-

known from Lawvere functorial semantics (see [61]) that cartesian categories correspond

to equational theories in a similar way as toposes correspond to higher-order type theories.

Thus our algebraic fragments, if considered from ouside, are just equational (i.e. algebraic)

theories. In fact, if we take for instance the algebraic fragment given by the standard

translation of modal propositional formulae, if we consider it as a cartesian category by

itself and if we then come back to a presentation of it as a first-order equational theory, we

get the theory of modal algebras (i.e., Boolean algebras plus meet-preserving operators),

namely the theory of the algebras which are used as the standard algebraic semantics for

modal logic.

However, the embedding of an algebraic fragment into a higher-order language (i.e., the

consideration of a specific topos in which a cartesian category is embedded - we recall that

one such always exists) gives new information on the internal structure of the fragment

itself and we want this information to be part of our data. In fact, when interpreting an

algebraic fragment, we consider not just set-valued cartesian functors having as a domain

83

the cartesian category corresponding to the fragment itself, but just those such functors

which are restrictions of set-valued logical functors defined on the bigger recipient topos

(in the case of the above presentation of the theory of modal algebras, for instance,

this means that we are considering Kripke models, not just arbitrary algebraic models).

Secondly, the specification of the recipient topos seems to influence the construction of

our combined larger fragments. Thirdly, the internal information on the fragment is

useful to identify certain ad hoc operations on the models of the recipient topos and to

exploit specific preservation properties (with respect to the formulae in the fragment) of

such operations: these preservation properties will be essential ingredients for justifying

completeness of combined decision procedures.

4.2.2 Examples

We give here a list of examples of i.a.f.’s; we shall mainly concentrate on those examples

which will play a central role in the positive results of this thesis. In all cases, the proof

that the properties of Definition 4.2.2 are satisfied is just sketched or entirely left to the

reader (such proofs are all immediate or they reduce to easy inductive arguments based

on standard information from Subsection 4.1.3).

Example 4.2.5 (Simply typed λ-calculus). This is the i.a.f. Φ that one gets by keeping

only the terms that can be built by ‘omitting any reference to the type Ω’. According

to Friedman theorem (see [39]), this i.a.f. has decidable word problem,6 because βη-

normalization can decide equality of Φ-terms in all interpretations. However, constraint

satisfiability problem is no longer decidable.

Example 4.2.6 (First-order equational fragments). Let us consider a first-order language

L = 〈T ,Σ, a〉 (for simplicity, we also assume that L is one-sorted). Let T be the set of

the first-order L-terms and let S consists of the L-structures which happen to be models

of a certain first-order theory in the signature L. Obviously, the triple Φ = 〈L, T,S〉 is an

i.a.f.. The Φ-atoms will be equalities between Φ-terms, i.e. first-order atomic formulae

of the kind t1 = t2. Deciding the word problem in Φ=〈L, T,S〉 is equivalent to the

decidability of the standard equational fragment (as defined for the case of equational

theories for instance in [11]), whereas constraint satisfiability problem is the problem of

deciding satisfiability of a finite set of equations and inequations.

Example 4.2.7 (Universal first-order fragments). The previous example disregards the

relational symbols of the first-order signature L. To take also them into consideration,

it is sufficient to make some slight adjustment: besides first-order terms, also atomic

6Remember that, when no semantic class S is mentioned in the definition of an i.a.f., it is intended
that S consists of all possible interpretations for the language.

84

formulae (⊤,⊥ included), as well as propositional variables (namely variables having

type Ω) will be terms of the fragment.7 The semantic class S where the fragment is

to be interpreted can be taken to be again the class of the models of some first-order

theory. Then, for Φ=〈L, T,S〉 so defined, the constraint satisfiability problem becomes

the problem of deciding the satisfiability of an arbitrary finite set of L-literals in the

models belonging to S8 (the complementary problem is equivalent to the problem of

deciding validity of a universal first-order formula in S).

We now define different kinds of i.a.f.’s starting from the set F of first-order formulae

of a first-order signature L; for simplicity, let us suppose also that L is relational and

one-sorted (call W its unique sort).

Example 4.2.8 (Full first-order language, plain version). We take T to be the union of

F with the sets of the individual variables and of the propositional variables. Of course,

Φ=〈L, T 〉 so defined is an algebraic fragment, whose types are W and Ω. By Church

theorem, both word and constraint satisfiability problem are undecidable here (the two

problems reduce to satisfiability of a first-order formula with equality); they may be

decidable in case the fragment is interpreted into some specific semantic class S. If S is

an elementary class (i.e. it is the class of the models of a first-order theory), then the

i.a.f. Φ = 〈L, T,S〉 is called a first-order fragment..

In the next example, we build formulae (out of the symbols of our fixed first-order

relational one-sorted signature L) by using at most N (free or bound) individual variables;

however we are allowed to use also second-order variables of arity at most K:

Example 4.2.9 (Full first-order language, NK-version). Fix cardinals K ≤ N ≤ ω and

consider, instead of F , the set FNK of formulae ϕ that contains at most N (free or bound)

individual variables and that are built up by applying boolean connectives and individual

quantifiers to atomic formulae of the following two kinds:

– P (xi1 , . . . , xin), where P is a relational constant and xi1 , . . . , xin are individual vari-

ables (since at most x1, . . . , xN can be used, we require that i1, . . . , in ≤ N);

– X(xi1 , . . . , xin), where i1, . . . , in ≤ N , and X is a variable of type W n → Ω with

n ≤ K (here W n abbreviates W · · ·W , n-times).

7Propositional variables are added to the set of terms in order for closure under codomain variables to
be satisfied, see Definition 4.2.2.

8L-atomic formulae A (resp. negated L-atomic formulae ¬A) can be seen as the Φ-atoms A = ⊤ (resp.
A = ⊥). One should include also equations A = B and inequations A 6= B among L-atomic formulae
and/or propositional variables. However, for instance, A = B is satisfiable iff A∧B is satisfiable or ¬A∧¬B

is satisfiable: this means that, by case splitting, we can anyway reduce satisfiability of Φ-constraints to
satisfiability of conjunctions of L-atomic and negated L-atomic formulae.

85

The terms in the algebraic fragment ΦL
NK = 〈LNK , T

L
NK〉 are now the terms t such that

t ∼βη {x1, . . . , xn | ϕ}, for some n ≤ K and for some ϕ ∈ FNK , with fvarW (ϕ) ⊆

{x1, . . . , xn}.
9 Types in such ΦL

NK are now W n → Ω (n ≤ K) and this fact makes a

big difference with the previous example (the difference will be sensible when combined

fragments enter into the picture). Constraint satisfiability problems still reduce to satis-

fiability problems for sentences: in fact, once second-order variables are replaced by the

names of the subsets assigned to them by some assignment α in a L-structure, ΦL
NK-atoms

like {x | ϕ} = {x | ψ} are equivalent to first-order sentences ∀x(ϕ ↔ ψ) and conversely

any first-order sentence ϑ (with at most N bound individual variables) is equivalent to

the ΦL
NK -atom ϑ = ⊤.

The cases N = 1, 2 are particularly important, because in these cases the satisfiability

problem for sentences (and hence also constraint satisfiability problems in our fragments)

becomes decidable (see [63, 80, 68, 81, 31]).

We mention that the previous two examples admit very important weaker versions in

which some of the first-order operators are omitted. For instance, if universal quantifiers

and negations are omitted, constraint satisfiability in the λωω-version becomes the problem

of deciding whether a geometric sequent is entailed by a finitely axiomatized geometric

theory (for this terminology, see [8] or some book in categorical logic, like [65]).

Further examples can be obtained by using the large information contained in the

textbook [21] (see also [35]). We shall continue here by investigating fragments that arise

from research in knowledge representation area, especially in connection to modal and

description logics.

Example 4.2.10 (Modal/Description Logic fragments, global version). A modal signa-

ture is a set OM , whose elements are called unary ‘Diamond’ modal operators (the case

of n-ary modal operators does not create special difficulties and it is left to the reader).

OM -modal formulae are built up from a countable set of propositional variables x, y, z, . . .

by applying ⊤,⊥,¬,∧,∨ as well as the operators ♦k ∈ OM .

With every modal signature OM we associate the first-order signature LM , containing

a unique sort W and, for every ♦k ∈ OM , a relational constant Rk of type WW → Ω.

Suppose we are given a bijective correspondence x 7−→ X between propositional variables

and second-order variables of type W → Ω. Given an OM -modal formula ϕ and a variable

w of type W , the standard translation ST (ϕ,w) is the LM -term of type Ω inductively

9We need to use βη-equivalence here to show that the properties of Definition 4.2.2 (namely closure
under composition and under domain/codomain variables) are satisfied.

86

defined as follows:

ST (⊤, w) = ⊤

ST (⊥, w) = ⊥

ST (x, w) = X(w)

ST (¬ψ,w) = ¬ST (ψ,w)

ST (ψ1 ∨ ψ2, w) = ST (ψ1, w) ∨ ST (ψ2, w)

ST (ψ1 ∧ ψ2, w) = ST (ψ1, w) ∧ ST (ψ2, w)

ST (♦ψ,w) = ∃v(R(w, v) ∧ ST (ψ, v))

where v is a variable of type W (different from w). Let TM be the set of those LM -terms

t for which there exists a modal formula ϕ s.t. t ∼βη {w | ST (ϕ,w)}. The pair 〈LM , TM 〉

is an algebraic fragment and it becomes an i.a.f. ΦM = 〈LM , TM ,SM 〉 if we specify also a

class SM of LM -structures closed under isomorphisms (notice that LM -structures, usually

called Kripke frames in modal logic, are just sets endowed with a binary relation Rk for

every ♦k ∈ OM).

ΦM -constraints can be equivalently represented in the form

{w | ST (ψ,w)} = {w | ⊤}∧{w | ST (ϕ1, w)} 6= {w | ⊥}∧· · ·∧{w | ST (ϕn, w)} 6= {w | ⊥};

they are satisfied iff there exists a Kripke model (i.e. a Kripke frame endowed with an

assignment of subsets for second-order variables of type W → Ω) based on a frame in SM

in which ψ holds globally (namely in every state), whereas ϕ1, . . . , ϕn hold in some states

s1, . . . , sn, respectively. If SM is closed under disjoint unions, we can limit ourselves to

the case n = 1: thus constraint satisfiability problem becomes, in the description logics

terminology, just the relativized satisfiability problem for a given concept description

w.r.t. to a given T-Box (we call T-Box a ΦM -atom like {w | ST (ψ,w)} = {w | ⊤}).10

Example 4.2.11 (Modal/Description Logic fragments, local version). If we want to

capture A-Box reasoning too, we need to build a slightly different fragment. The type-

theoretic signature LML of our fragment 〈LML, TML〉 is again LM , but TML now contains:

a) the set of terms which are βη-equivalent to terms of the kind ST (ϕ,w) (these terms

are called ‘concept assertions’); b) the terms of the kind Rk(v,w) (these terms are called

‘role assertions’); c) the variables of type W,Ω and W → Ω.

The pair 〈LML, TML〉 is an algebraic fragment and it becomes an interpreted algebraic

fragment ΦML = 〈LML, TML,SML〉 if we specify also a class SML of LML-structures closed

10Usually, a T-Box is defined as a conjunction of ‘generalized concept inclusions’ that are required to
hold globally: this can be reduced to the requirement for a single formula to hold globally, because all
boolean connectives are at our disposal.

87

under isomorphisms. Let us now analyze constraints in this fragment: as in Example 4.2.7,

we can eliminate (by Boolean case splitting) atoms of the kind ST (ϕ,w) = ST (ψ, v),

ST (ϕ,w) = R(v1, v2), etc. (and their negations), in favor of plain concept assertions

and role assertions. In addition we have: a) identities among individual names (i.e.

among variables of type W); b) identities among atomic concepts (i.e. among second-

order variables of type W → Ω); c) propositional variables (i.e. variables of type Ω); d)

negations of identities among atomic concepts; e) negations of propositional variables; f)

negations of role assertions; g) negations of identities among individual names.

Now, a)-b)-c)-d)-e) can be eliminated without loss of generality: in fact, (i) all variable

identities can be eliminated by replacements; (ii) negations of identities among atomic

concepts can be replaced by concept assertions involving fresh variables; (iii) propositional

variables and their negations do not interact with the remaining part of the constraint

and can be ignored. In conclusion, ΦLM -constraints are just standard A-Boxes with, in

addition, negations of role assertions and of identities among individual names (notice

that traditional A-Boxes automatically include all negations of identities among distinct

individual variables by the so-called ‘unique name assumption’, see [7]. Let us call A-

Boxes these slightly more general constraints and let us reserve the name of positive

A-Boxes to conjunctions of concept assertions and role assertions.

Example 4.2.12 (Modal/Description Logic fragments, full version). If we want to deal

with satisfiability of an A-Box w.r.t. a T-Box, it is sufficient to join the two previous

fragments. More precisely, we can build the fragments ΦMF = 〈LMF , TMF ,SMF 〉, where

LMF = LM and TMF = TM ∪ TML. Types in this fragment are W,Ω and W → Ω

constraints are conjunctions of a T-Box and an A-Box.

Example 4.2.13 (Modal/Description Logic fragments, non-normal case). If we want to

consider the case in which some of the operators in OM are non-normal, we can use higher-

order constants fk : (W → Ω) → (W → Ω) (instead of binary relations Rk : WW → Ω)

and define a different translation. Such a translation NT (ϕ,w) differs from ST (ϕ,w) for

the inductive step relative to modal operators which now reads as follows:

NT (♦kψ,w) = fk({w | NT (ψ,w)})(w).

Now global, local and full algebraic fragments can be defined as in the normal case. If the

easy extension to n-ary non-normal cases is included and if we also interpret the resulting

fragments, we get precisely the abstract description systems of [10].

Example 4.2.14 (µ-calculus). We show how to build a truly second-order fragment out

of a modal signature OM (in the sense of Example 4.2.10). In the syntax of µ-calculus

(see [56]), we are allowed to apply the minimum fixed point operator µxD to a concept

88

D provided x occurs only positively or only negatively in D. According to well-known

fixed point characterization, we can extend the translation ST from Example 4.2.10, by

using the second-order formulae

ST (µxD,w) := ∀Y (({w | ST (D,w)}[Y 7→ X] ⊆ Y)→ Y (w))

Armed by this translation, we can easily design suitable µ-fragments.

Guarded and packed guarded fragments were introduced as generalizations of modal

fragments (see [1, 49, 66]): in fact, they form classes of formulae which are remarkably

large but still inherit relevant syntactic and semantic features of the more restricted

modal formulae. In particular, guarded and packed guarded formulae are decidable for

satisfiability (with the appropriate settings, decision procedures can be obtained also by

running standard superposition provers - see [42]).

For simplicity, we give here the instructions on how to build only one version of the

packed guarded fragment with equality (other versions can be built by following the

methods we used above for the first-order and the modal cases). We notice that packed

guarded fragments without equality are also important: to built them it is sufficient to

erase any reference to the equality predicate in the relevant definitions.

Example 4.2.15 (Packed guarded fragments). Let us consider a first-order one-sorted

relational signature LG. A guard π is a LG-formula like
∧k

i=1 πi, where:

– πi is obtained by applying existential quantifiers to atomic formulae Pi(xi1, . . . , xini
)

where the Pi are constants of type W ni → Ω and xi1, . . . , xini
are variables of type

W ;

– for all x1, x2 ∈ fvar(π), there exists an i ∈ {1, . . . , k} such that {x1, x2} ⊆ fvar(πi).

We define the packed guarded formulae as follows:

– if X : W → Ω and x : W are variables, X(x) is a packed guarded formula;

– if P : W n → Ω is a constant and y1 : W, . . . , yn : W are variables, P (y1, . . . , yn) is a

packed guarded formula;

– if ϕ is a packed guarded formula, ¬ϕ is a packed guarded formula;

– if ϕ1 and ϕ2 are packed guarded formulae, ϕ1 ∧ϕ2 and ϕ1 ∨ϕ2 are packed guarded

formulae;

– if ϕ is a packed guarded formula and π is a guard such that fvarW (ϕ) ⊆ fvar(π),

then ∀y(π[x, y]→ ϕ[x, y]) and ∃y(π[x, y] ∧ ϕ[x, y]) are packed guarded formulae.11

11If y = {y1, . . . , yn}, then ∀y means ∀y1 · · · ∀yn and ∃y means ∃y1 · · · ∃yn.

89

Notice that we used second-order variables of type W → Ω only (and not of type

W n → Ω for n > 1): the reason, besides the applications to combined decision problems

we have in mind, is that we want constraint problems to be equivalent to sentences which

are still packed guarded, see below. Packed guarded formulae not containing variables of

type W → Ω are called elementary (or first-order) packed guarded formulae.

If we let TG be the set of LG-terms t such that t is βη-equivalent to a term of the

kind {w | ϕ} (where ϕ is a packed guarded formula such that fvarW (ϕ) ⊆ {w}), then

the pair 〈LG, TG〉 is an algebraic fragment. The only type in this fragment is W → Ω

and constraint satisfiability problem in this fragment is equivalent to satisfiability of

guarded sentences: this is because, in case ϕ1, ϕ2 are packed guarded formulae with

fvarW (ϕi) ⊆ {w} (for i = 1, 2), then {w | ϕ1} = {w | ϕ2} is equivalent to ∀w(ϕ1 ↔ ϕ2)

which is packed guarded (just use w = w as a guard).

4.2.3 Reduced Fragments and Residues

If Φ=〈L, T,S〉 is an i.a.f., we shall use Greek letters Γ,∆,Λ . . . for Φ-constraints (i.e. for

finite sets of Φ-literals) and letters Θ,Ξ, . . . for finite sets of Φ-clauses. We recall that a

Φ(x)-constraint is a Φ-constraint in which at most the variables x occur free; analogously,

a Φ(x)-clause is a Φ-clause in which at most the variables x occur free. If Θ is a set of

such Φ(x)-clauses and C ≡ L1∨· · ·∨Lk is a Φ(x)-clause, we say that C is a Φ-consequence

of Θ (written Θ |=Φ C) iff the set of formulae Θ∪{¬L1, . . . ,¬Lk} is not Φ-satisfiable (i.e.

iff such a set is not satisfiable in any A ∈ S).

The notion of consequence is too strong for certain applications; for instance, when

we simply need to delete certain deductively useless data, a weaker notion of redundancy

(based e.g. on subsumption) is preferable. We shall give abstract notions of redun-

dancy and of consequences enumeration in this subsection, however these notions are less

sophisticated than similar notions introduced within saturation-based theorem proving

(see, e.g., [15]). The reason why we need them here is that they will make our combined

decision procedure more flexible, as explained below.

Our abstract axiomatization of a notion of redundancy is the following (recall that we

conventionally included ⊤ and ⊥ among Φ-atoms in any i.a.f. Φ):

Definition 4.2.16. A redundancy notion for a fragment Φ is a recursive binary rela-

tion RedΦ between a finite set of Φ-clauses Θ and a Φ-clause C satisfying the following

properties:

(i) RedΦ(Θ, C) implies Θ |=Φ C (soundness);

(ii) RedΦ(∅,⊤) and RedΦ({⊥}, C) both hold;

(iii) RedΦ(Θ, C) and Θ ⊆ Θ′ imply RedΦ(Θ′, C) (monotonicity);

90

(iv) RedΦ(Θ, C) and RedΦ(Θ ∪ {C},D) imply RedΦ(Θ,D) (transitivity);

(v) if C is subsumed by some C ′ ∈ Θ,12 then RedΦ(Θ, C) holds.

Whenever a redundancy notion RedΦ is fixed, we say that C is Φ-redundant w.r.t. Θ

when RedΦ(Θ, C) holds.

For example, the minimum redundancy notion is obtained by stipulating that

RedΦ(Θ, C) holds precisely when (⊥ ∈ Θ or C ≡ ⊤ or C ≡ ⊤ ∨ D or C is subsumed

by some C ′ ∈ Θ). On the contrary, if the constraint solving problem for Φ is decidable,

there is a maximum redundancy notion (called the full redundancy notion) given by the

Φ-consequence relation. In fact, it is evident that a recursive procedure for Φ-constraint

solving is a recursive procedure deciding Θ |=Φ C, for finite Θ.

Let Φ= 〈L, T,S〉 be an i.a.f. on the signature L=〈T ,Σ, a〉 and let L0 = 〈T0,Σ0, a0〉

be a subsignature of L. The i.a.f. restricted to L0 is the i.a.f. Φ|L0
= 〈L0, T|L0

,S|L0
〉 so

defined:

– T|L0
is the set of terms obtained by intersecting T with the set of L0-terms;

– S|L0
consists of the structures of the kind A|L0

, varying A ∈ S.

An i.a.f. Φ0 = 〈L0, T0,S0〉 is said to be a L0-subfragment (or simply a subfragment, leaving

the subsignature L0 ⊆ L as understood) of Φ=〈L, T,S〉 iff T0 ⊆ T|L0
and S0 ⊇ S|L0

. In

this case, we may also say that Φ is an expansion (or an extension) of Φ0.

Given the notions of redundancy and of subfragment, we are now ready to restate in

these general settings the notions of basis and of enumerators already introduced in Sec-

tion 3.5. Given a set Θ of Φ(x)-clauses and a redundancy notion RedΦ0 on a subfragment

Φ0 of Φ, we call Φ0-basis for Θ a set Ξ of Φ0(x0)-clauses such that (here x0 collects those

variables among the x which happen to be Φ0-variables):

(i) all clauses D ∈ Ξ are positive and are such that Θ |=Φ D;13

(ii) every positive Φ0(x0)-clause C such that Θ |=Φ C is Φ0-redundant with respect to

Ξ.

As in the first-order case, the intuitive meaning of residues is that of clauses which are

recursively enumerated by a suitable device (the device may for instance be an enumerator

of certain proofs of a calculus, but there is no need to think of it in this way):

Definition 4.2.17. Suppose we are given a subfragment Φ0 of a fragment Φ. A positive

residue Φ-enumerator for Φ0 (often shortened as Φ-p.r.e.) is a recursive function mapping

12As usual, this means that every literal of C′ is also in C.
13Recall that we conventionally included ⊥ among Φ-atoms, so ⊥ is considered as a positive clause.

91

a finite set x of Φ-variables, a finite set Θ of Φ(x)-clauses and a natural number i to a

Φ0-clause Res
x
Φ(Θ, i) (to be written simply as ResΦ(Θ, i)) in such a way that:

– ResΦ(Θ, i) is a positive clause;

– fvar(ResΦ(Θ, i)) ⊆ x;

– Θ |=Φ ResΦ(Θ, i) (soundness).

Any Φ0-clause of the kind ResΦ(Θ, i) (for some i ≥ 0) will be called a Φ0-residue of Θ.

Having also a redundancy notion for Φ0 at our disposal, we can axiomatize the notion

of an ‘optimized’ (i.e. of a non-redundant) Φ-p.r.e. for Φ0. The version of the Nelson-

Oppen combination procedure we give in Subsection 4.3.2 has non-redundant p.r.e.’s

as main ingredients and it is designed to be ‘self-adaptive’ for termination in the rele-

vant cases when termination follows from our results. These are basically the noethe-

rian and the locally finite cases mentioned in Subsection 4.2.4, where p.r.e.’s which are

non-redundant with respect to the full redundancy notion usually exist and enjoy the

termination property below.

Definition 4.2.18. A Φ-p.r.e. ResΦ for Φ0 is said to be non-redundant (w.r.t. a redun-

dancy notion RedΦ0) iff it satisfies also the following properties for every x, for every

finite set Θ of Φ(x)-clauses and for every i ≥ 0 (we write Θ|Φ0
for the set of clauses in Θ

which are Φ0-clauses):

(i) if ResΦ(Θ, i) is Φ0-redundant with respect to Θ|Φ0
∪ {ResΦ(Θ, j) | j < i}, then

ResΦ(Θ, i) is either ⊥ or ⊤;

(ii) if ⊥ is Φ0-redundant with respect to Θ|Φ0
∪ {ResΦ(Θ, j) | j < i}, then ResΦ(Θ, i) is

equal to ⊥;

(iii) if ResΦ(Θ, i) is equal to ⊤, then Θ|Φ0
∪ {ResΦ(Θ, j) | j < i} is a Φ0-basis for Θ.

Definition 4.2.19. A non-redundant Φ-p.r.e. for Φ0 is said to be complete iff for every

x, for every finite set Θ of Φ(x)-clauses and for every positive Φ0(x)-clause C, we have

that Θ |=Φ C implies that C is Φ0-redundant w.r.t. Θ|Φ0
∪ {ResΦ(Θ, j) | j ≤ i} for some

i.

A non-redundant Φ-p.r.e. ResΦ is said to be terminating iff for for every x, for every

finite set Θ of Φ(x)-clauses there is an i such that ResΦ(Θ, i) is equal to ⊥ or to ⊤.

Let us make a few comments on Definition 4.2.18: first, only non-redundant residues

can be produced at each step (condition (i)), if possible. If it is not possible, this means

that all the relevant information has been accumulated (a Φ0-basis has been reached).

92

In this case, if the inconsistency ⊥ is discovered (in the sense that it is perceived as

redundant), then the residue enumeration in practice stops, because it becomes constantly

equal to ⊥ (condition (ii)). The tautology ⊤ has the special role of marking the opposite

outcome: it is the residue that is returned precisely when Θ is consistent and a Φ0-basis

has been produced, meaning that all relevant semantic consequences of Θ have been

discovered (conditions (ii)-(iii)).

If the redundancy notion we use is trivial (i.e. it is the minimum one), then only very

mild corrections are needed for a Φ-p.r.e. for Φ0 to become non-redundant: apart from

minor ad hoc modifications,14 we only need to make it constantly equal to ⊥, as soon as

⊥ becomes redundant in the enumeration. This observation shows that, in practice, any

Φ-p.r.e. for Φ0 can be made non-redundant and can consequently be used as input of our

combined decision procedure.

The role of ⊤ as a residue is precious in case for some special reasons (typically

exemplified in computational algebra, see Subsection 4.2.5 below), we have an effective

procedure which is able to recognize whether a given set of positive Φ0-clauses forms a

Φ0-basis for Θ with respect to the full redundancy notion: if these full Φ0-bases for Θ

can be effectively recognized and if also Φ0-consequence is decidable, we can always turn

a complete Φ-p.r.e. for Φ0 into a non-redundant one with respect to the full redundancy

notion. The advantage of this optimization is that the combined decision procedure of

Subsection 4.3.2, after getting ⊤ or ⊥ as residues, automatically recognizes that the

residue exchange is over and halts.

4.2.4 Noetherian, Locally Finite and Convex Fragments

The above mentioned optimization for p.r.e.’s usually apply to the cases in which the

‘small’ fragment Φ0 is noetherian. In Section 3.5.1 we have already defined this peculiar

kind of theories; if we translate it into our general setting, we get the following definition.

An i.a.f. Φ0 is called noetherian if and only if for every finite set of variables x, every

infinite ascending chain

∆1 ⊆ ∆2 ⊆ · · · ⊆ ∆n ⊆ · · ·

of sets of Φ0(x)-atoms is definitively constant for Φ0-consequence (meaning that there is

an n such that for all m and A ∈ ∆m, we have ∆n |=Φ0 A).

14These modifications are possible provided that there are countably many closed Φ0-atoms equivalent
to ⊤ but syntactically different from it: if there are such infinitely many closed Φ0-atoms which are
‘copies’ of ⊤, then we can replace ResΦ(Θ, i) by one of them in case ResΦ(Θ, i) is redundant with respect
to Θ|Φ0

∪ {ResΦ(Θ, j) | j < i}. By using this trick, conditions (i) and (iii) of Definition 4.2.18 can
be forced, if the underlying redundancy notion for Φ0 is the minimum one. The hypothesis that Φ0 is
endowed with such infinitely many ‘copies’ of ⊤ is not really restrictive and can be always obtained by
slight modifications of Φ0.

93

We want to recapture also the class of locally finite theories: to this aim, it is sufficient

to adapt the definition of Section 3.4 as follows.

An i.a.f. Φ0 is said to be effectively locally finite iff

(i) the set of Φ0-types is recursive and constraint satisfiability problem for Φ0 is decid-

able;

(ii) for every finite set of Φ0-variables x, there are finitely many computable Φ0(x)-

terms t1, . . . , tn such that for every further Φ0(x)-term u one of the literals t1 6=

u, . . . , tn 6= u is not Φ0-satisfiable (that is, in the class of the structures in which Φ0

is interpreted, every Φ0(x)-term is equal, as an interpreted function, to one of the

ti).

The terms t1, . . . , tn in (ii) are called the x-representative terms of Φ0.

The adaptation of Proposition 3.5.2 to these new definitions is immediate.

Proposition 4.2.20. In a noetherian fragment Φ0 every infinite ascending chain of sets

of positive Φ0(x)-clauses is definitively constant for Φ0-consequence.

Suppose that Φ0 is noetherian and that Φ is an expansion of it: by the above proposi-

tion, it is immediate to see that every finite set of Φ(x)-clauses Θ has a finite full Φ0-basis

(i.e. there is a finite Φ0-basis for Θ with respect to the full redundancy notion). The fol-

lowing noetherianity requirement for a p.r.e. is intended to be nothing but an effectiveness

requirement for the computation of finite full Φ0-bases.

A Φ-p.r.e. ResΦ for a noetherian fragment Φ0 is said to be noetherian iff it is non-

redundant with respect to the full redundancy notion for Φ0. An immediate consequence

of Proposition 4.2.20 is that:

Proposition 4.2.21. A noetherian Φ-p.r.e. ResΦ for Φ0 is terminating and also com-

plete.

It is straightforward, given Proposition 3.5.3, to verify that the following proposition

holds:

Proposition 4.2.22. If Φ0 is effectively locally finite and Φ is any extension of it having

decidable constraint satisfiability problem, then there always exists a noetherian Φ-p.r.e.

for Φ0.

Proof. Do as in the proof of Proposition 3.5.3; at the end, instead of returning a basis,

list (up to Φ0-redundancy, which can be effectively checked) the clauses whose test for

Φ-consequence is positive and to give ⊤ as a final message.

94

We shall see that, when dealing with noetherian p.r.e.’s over a noetherian shared frag-

ment, the combination procedure of Subsection 4.3.2 becomes automatically terminating.

However, the informal remarks we made at the end of Section 3.5.1 about complexity issue

are still valid: in fact noetherianity is the key ingredient for termination, but convexity

is the key property for efficiency.

We paraphrase the definition of convexity with respect a subfragment as follows: an

i.a.f. Φ is Φ0-convex (here Φ0 is a subfragment of Φ) iff every finite set Γ of Φ-literals having

as a Φ-consequence the disjunction of n > 1 Φ0-atoms, actually has as a Φ-consequence

one of them. When we say that a fragment Φ is convex tout court, we mean that it is

Φ-convex. The fragments Φ = 〈L, T,S〉 analyzed in Example 4.2.6 are convex in case

S is the class of the models of a first-order Horn theory. Similarly, a Φ-p.r.e. for Φ0 is

Φ0-convex iff ResΦ(Γ, i) is always an atom (recall that by our conventions, this includes

the case in which it is ⊤ or ⊥). Any complete non-redundant Φ-p.r.e. for Φ0 can be turned

into a Φ0-convex complete non-redundant Φ-p.r.e. for Φ0, in case Φ is Φ0-convex. Thus

the combination procedure of Subsection 4.3.2 is designed in such a way that it becomes

automatically deterministic if the component fragments are both convex with respect to

the shared fragment.

4.2.5 Further Examples

We can easily translate the Examples 3.6.1, 3.6.2, 3.6.5 of Section 3.6 of noetherian first-

order theories into our framework.

Example 4.2.23 (K-algebras). Given a field K, let us consider the one-sorted language

LKalg, whose signature contains the constants 0, 1 of type V (V is the unique sort of

LKalg), the two binary function symbols +, ◦ of type V V → V , the unary function

symbol − of type V → V and a K-indexed family of unary function symbols gk of type

V → V . We consider the i.a.f. ΦKalg = 〈LKalg, TKalg,SKalg〉 where TKalg is the set

of first-order terms in the above signature (we shall use infix notation for + and write

kv, v1v2 for gk(v), ◦(v1, v2), respectively). Furthermore, the class SKalg consists of the

structures which happen to be models for the theory of (commutative, for simplicity)

K-algebras. In this way the conditions of the definition of interpreted algebraic fragment

are completely fulfilled, and also in this formalism, the atoms of the fragment are simply

the equation of the kind p = 0, where p is a polynomial.

Example 4.2.24 (K-vector spaces). As a subfragment of the previous fragment, let us

consider the fragment ΦK = 〈LK , TK ,SK〉, where we forget in the signature the ring

multiplication ◦ and the ring unit 1; the structures in SK are now the K-vector spaces

and the terms in TK (namely the first-order terms in LK) can consequently be represented

as linear homogeneous polynomials with K-coefficients.

95

Finally, we translate Example 3.6.5 as follows.

Example 4.2.25 (K-vector spaces with an endomorphism). We add to the signature

LK a unary function symbol f and, in order to interpret the fragment, we take K-vector

spaces endowed with an endomorphism (call this fragment ΦKend = 〈LKend, TKend,SKend〉

and the structures in SKend f -K-vector spaces). Terms in this fragment formally repre-

sent vectors in finitely generated free SKend-algebras and hence normalize to the form

k1f
m1(xi1) + · · · + knf

mn(xin) (kj ∈ K, j ∈ {1, . . . , n}). The algorithm in order to ex-

tract a noetherian ΦKend-p.r.e. for the subfragment ΦK is exactly the same described in

Example 3.6.5.

4.3 Combined Fragments

We give now the formal definition for the operation of combining fragments.

Definition 4.3.1. Let Φ1 = 〈L1, T1,S1〉 and Φ2 = 〈L2, T2,S2〉 be i.a.f.’s on the lan-

guages L1 and L2 respectively; we define the shared fragment of Φ1,Φ2 as the i.a.f.

Φ0 = 〈L0, T0,S0〉, where

– L0 := L1 ∩ L2;

– T0 := T1|L0
∩ T2|L0

;

– S0 := S1|L0
∪ S2|L0

.

Thus the Φ0-terms are the L0-terms that are both Φ1-terms and Φ2-terms, whereas the

Φ0-structures are the L0-structures which are reducts either of a Φ1- or of a Φ2-structure.

According to the above definition, Φ0 is a subfragment of both Φ1 and Φ2.

Definition 4.3.2. The combined fragment of the i.a.f.’s Φ1 and Φ2 is the i.a.f.

Φ1 ⊕ Φ2 = 〈L1 ∪ L2, T1 ⊕ T2,S1 ⊕ S2〉

in the language L1 ∪ L2 such that:

– T1 ⊕ T2 is the smallest set of L1 ∪ L2-terms which includes T1 ∪ T2, is closed under

composition and contains domain and codomain variables;

– S1 ⊕ S2 = {A | A is a L1 ∪ L2-structure s.t. A|L1
∈ S1 and A|L2

∈ S2}.

T1 ⊕ T2 is defined in such a way that conditions (i)-(ii)-(iii) from Definition 4.2.2 are

matched;15 of course, since Φ1 ⊕ Φ2-types turn out to be just the types which are either

Φ1- or Φ2-types, closure under domain and codomain variables comes for free.

15In Subsection 4.3.1 we shall prove that T1 ⊕ T2 is recursive (given that T1 and T2 are recursive).

96

4.3.1 The Purification Steps

We say that a Φ1⊕Φ2-term is pure iff it is a Φi-term (i = 1 or i = 2) and that a Φ1⊕Φ2-

constraint Γ is pure iff it for each literal L ∈ Γ there is i = 1 or i = 2 such that L is

a Φi-literal. Constraints in combined fragments can be purified, as we shall see. Before

giving the related procedure, we first have a better look to terms in a combined fragment

Φ1 ⊕Φ2 = 〈L1 ∪L2, T1 ⊕ T2,S1 ⊕ S2〉. For a L1 ∪ L2-term t and for a natural number n,

the relation δ(t, n) (written as δ(t) ≤ n) holds whenever one of the following non mutually

exclusive conditions apply:

– n ≥ 0 and t is a shared variable (i.e. a Φ0-variable);

– n ≥ 1 and t ∈ T1 ∪ T2;

– n ≥ 2 and there are r, s > 0, there are terms u[x1, . . . , xk], t1, . . . , tk such that

n = r + s, δ(u) ≤ r, δ(t1) ≤ s, . . . , δ(tk) ≤ s and t is equal to u[t1/x1, . . . , tk/xk].

Notice that if δ(t) ≤ n holds and if n ≤ m, then δ(t) ≤ m holds too. The degree δ(t) of

a L1 ∪ L2-term t is the minimum d such that δ(t) ≤ d holds (provided such a d exists,

otherwise the degree of t is said to be infinite). It turns out that terms having degree

0 are just shared variables and terms having degree 1 are pure Φi-terms which are not

shared variables. The following lemma is easily proved by induction:

Lemma 4.3.3. L1⊕L2-terms t satisfying δ(t) ≤ n are closed under substitutions mapping

variables into variables.

Lemma 4.3.4. A term t ∈ L1 ∪ L2 belongs to T1 ⊕ T2 iff it has a finite degree.

Proof. For n ≥ 1, the set of terms t satisfying δ(t) ≤ n contains domain and codomain

variables (essentially because T1 and T2 contain their domain and codomain variables).

Let us show that terms having finite degree are closed under composition: take terms

u[x1, . . . , xk] and t1, . . . , tk (all having finite degree) and suppose that types are compat-

ible for substitution. We must show that u[t1/x1, . . . , tk/xk] has finite degree: this is

obvious if u is a variable and, if all ti are variables, we can use the above mentioned

fact that terms having finite degree are closed under substitutions mapping variables into

variables. Otherwise δ(u[x1, . . . , xk]) = s1 > 0 and δ(t1) = m1, . . . , δ(tk) = mk. For

s2 := max(m1, . . . ,mk) > 0, we have that δ(u[t1/x1, . . . , tk/xk]) ≤ s1 + s2 has finite

degree too.

We proved that terms of finite degree satisfy conditions (i)-(ii)-(iii) of Definition 4.2.2.

Vice versa, if δ(t) ≤ n, then it is immediate to see that t belongs to any set of L1∪L2-terms

containing T1 ∪ T2 and satisfying such conditions.

Corollary 4.3.5. T1 ⊕ T2 is recursive.

97

Proof. This is an effective procedure (based on Lemma 4.3.4) that determines whether

a given term t ∈ L1 ⊕ L2 belongs to the combined fragment. We associate with t the

complexity measure ρ(t) given by the sum of the size of t and of the number of occurrences

of constants in t. We first check whether t is a pure Φi-term; if not, in order for t to

belong to T1 ⊕ T2, the degree of t (namely the smallest n such that δ(t) ≤ n holds)

must be some n > 1, which means that we can split it as u[t1, . . . , tk], where δ(u) ≤ r,

δ(t1), . . . , δ(tk) ≤ s, r + s = n, and r, s > 0. Since n > r, by Lemma 4.3.3 it follows that

at least one of the ti is not a variable and u cannot be a variable too because n > s; but

this means that ρ(u) < ρ(t), ρ(t1) < ρ(t), . . . , ρ(tk) < ρ(t), i.e. that we can recursively

check whether u, t1, . . . , tk have finite degree.

The membership problem t ∈ T1 ⊕ T2 however might be computationally hard: since

we basically have to guess a subtree of the position tree of the term t, the procedure

we sketched is in NP. For instance, if we combine T1 = {f1(f2n+1
0 (x)) | n ≥ 0} with

T2 = {f2n+1
0 (f2(x)) | n ≥ 0},16 then it is evident that in order to get a good splitting of

f1(f4
0 (f2(x))) one might need to backtrack a first inappropriate attempt like

f1(f2
0 (y)) and y 7→ f2

0 (f2(x)).

Notice however that these complications in complexity (with respect to the plain Nelson-

Oppen case) are due to our level of generality and that they disappear in customary

situations where don’t know non-determinism can be avoided by looking for ‘alien’ sub-

terms, see [12] for a thorough discussion of the problem in standard first-order cases.

Let Γ be now any Φ1 ⊕ Φ2-constraint: we shall provide finite sets Γ1,Γ2 of Φ1- and

Φ2-literals, respectively, such that Γ is Φ1⊕Φ2-satisfiable iff Γ1∪Γ2 is Φ1⊕Φ2-satisfiable.

The purification process is obtained by iterated applications of the following:

Purification Rule

Γ′, A[t, x]

Γ′, A[y, x], y = t
(4.1)

where (we use notations like Γ′, A[t, x] for the constraint Γ′ ∪ {A[t, x]})

– t is a non-variable term (let τ be its type);

– y is a variable of type τ occurring in A[y, x] but not occurring in Γ′, A[t, x];17

16To complete the settings for this example, we may assume that a(f1) = S0 → S1, a(f2) = S2 → S0,
a(f0) = S0 → S0 (f0 is the unique shared symbol). Suitable variables should also be added to T1, T2 to
formally fulfill the conditions of Definition 4.2.2.

17Recall that, from our conventions in Subsection 4.1.3, the notation A[y, x] means that fvar(A) ⊆
{y, x} and A[t, x] means the formula obtained by applying to A the substitution y 7→ t.

98

– the literal A[y, x] is not an equation between variables;

– Γ′, A[y, x], y = t is a Φ1⊕Φ2-constraint (this means that it still consists of equations

and inequations among Φ1 ⊕ Φ2-terms).

The meaning of the Purification Rule is that we are allowed to simultaneously abstract

out in a constraint one or more occurrences of a non-variable subterm t, provided we still

produce a Φ1⊕Φ2-constraint (for termination, we must also take care of not introducing

variable equations).

Proposition 4.3.6. An application of Purification Rule produces an equisatisfiable con-

straint.

Proof. The constraint Γ′, A[t, x] is satisfied in a L1 ∪L2-structure A ∈ S1 ⊕S2 under the

assignment α iff the constraint Γ′, A[y, x], y = t produced by the rule is satisfied in A

under the assignment obtained by incrementing α with y 7→ Iα
A(t).

The purification process takes as input an arbitrary Φ1⊕Φ2-constraint Γ and applies

it the Purification Rule as far as possible. The Purification Rule can be applied in a don’t

care non-deterministic way (however recall that in order to apply the rule one must before

take care of the fact that the constraint produced by it still consists of Φ1 ⊕ Φ2-literals,

hence don’t know non-determinism may arise inside a single application of the rule).

Proposition 4.3.7. The purification process terminates and returns a set Γ1∪Γ2, where

Γi is a set of Φi-literals.

Proof. The terminating property is proved as follows. First notice that, after an applica-

tion of the Purification Rule, the number N of the non-variable subterm positions of the

current constraint cannot increase. New equations are added by the rule, but these are

only equations between a variable and a non-variable term occurring in the constraint, so

that the overall number of equations that can be added during the purification process

does not exceed N (notice that, after the rule has produced Γ′, A[y, x], y = t, the new

position in which the subterm t is now is not available for another purification step, since

purification steps cannot produce variables equations).

Let us now show that if the Purification Rule does not apply to Γ, then Γ splits into

two pure Φi-constraints. We first claim that, since Purification Rule does not apply to Γ,

any term t in a literal t = v or t 6= v of Γ has degree at most 1 (i.e. it is either in T1 or

in T2): otherwise we have t ≡ u[t1, . . . , tk], with u[x1, . . . , xk], t1, . . . , tk all having lower

degree than t. Since the degree of u and of the ti’s is lower than the degree of t, both

u and at least one of the ti are not a variable (see Lemma 4.3.3); suppose for instance

99

that t1 is not a variable and that the constraint Γ is Γ′, u[t1, . . . , tk] = v. Contrary to the

assumption, the Purification Rule applies to Γ and produces the constraint

Γ′, u[x1, t2, . . . , tk] = v, x1 = t1 (4.2)

(x1 can be renamed, if needed):18 in fact fragments are closed under domain/codomain

variables, hence the variable we need is at our disposal, so that (4.2) is a Φ1⊕Φ2-constraint

(notice that u[x1, t2, . . . , tk] has a degree, hence it is a Φ1 ⊕ Φ2-term).

Having established that terms in Γ are all pure, we wonder whether there are impure

(in)equations. It is also impossible, because the Purification Rule can replace e.g. t1 = t2

by t1 = x ∧ x = t2 in case t1 ∈ T1, t2 ∈ T2 are non-variable terms (since fragments are

closed under codomain variables, if t1 : τ1 ∈ T1, t2 : τ2 ∈ T2 and τ := τ1 = τ2, then the

type τ is shared and ti = x is a Φi-atom for every variable x : τ).

Actually, one can prove that the Purification Rule (if exhaustively applied) can bring

the current constraint into a pure and flat form (i.e. in a form in which negative literals

just contain variables and positive literals do not contain equations among two non-

variable terms).

4.3.2 The Combination Procedure

In this subsection, we develop a procedure which is designed to solve constraint satisfia-

bility problems in combined fragments: the procedure is sound and we shall investigate

afterwards sufficient conditions for it to be terminating and complete. Let us fix (once

and for all) relevant notation for the involved data.

Assumptions/Notational Conventions.

We suppose that we are given two i.a.f.’s Φ1 = 〈L1, T1,S1〉 and Φ2 = 〈L2, T2,S2〉, with

shared fragment Φ0 = 〈L0, T0,S0〉. We suppose also that a redundancy notion RedΦ0 for

Φ0 and two non-redundant Φi-p.r.e.’s for Φ0 (call them ResΦ1 , ResΦ2) are available.19

We also fix a purified Φ1 ⊕ Φ2-constraint Γ1 ∪ Γ2 to be tested for Φ1 ⊕ Φ2-consistency;

we can freely suppose that Γ1 and Γ2 contain the same subset Γ0 of Φ0-literals (i.e. that

Γ0 := Γ1|Φ0
= Γ2|Φ0

).20 We indicate by xi the free variables occurring in Γi (i = 1, 2); x0

are those variables among x1 ∪ x2 which happen to be Φ0-variables (again we can freely

suppose that x0 = x1 ∩ x2).
21

18This might be needed in order to fulfill the Purification Rule requirement that x1 does not occur in
Γ.

19Of course, ResΦ1 and ResΦ2 are assumed to be both non-redundant with respect to RedΦ0 .
20Otherwise, Φ0-literals can be added to Γ1 and Γ2 till this holds.
21Otherwise, equations like x = x can be added to the Γi.

100

In order to describe the procedure we also need a selection function in the sense of

the following definition:

Definition 4.3.8. A selection function Choose(Λ) is a recursive function accepting as

input a set Λ of Φ0(x0)-atoms and returning a positive Φ0(x0)-clause C such that:

(i) C is a Φi-consequence of Γi ∪ Λ, for i = 1 or i = 2;

(ii) if ⊥ is Φ0-redundant w.r.t. Γ0 ∪ Λ, then C is ⊥;

(iii) if C is Φ0-redundant w.r.t. Γ0 ∪ Λ, then C is ⊤ or ⊥.

The recursive function Choose(Λ) will be subject also to a fairness requirement that

will be explained below.

The Function FComb

Our combined procedure generates a tree whose internal nodes are labeled by sets of Φ0(x0)-

atoms; leaves are labeled by “unsatisfiable” or by “saturated”. The root of the tree is labeled

by the empty set and if a node is labeled by the set Λ, then the successors are:

– a single leaf labeled “unsatisfiable”, if Choose(Λ) is equal to ⊥;

– or a single leaf labeled “saturated”, if Choose(Λ) is equal to ⊤;

– or nodes labeled by Λ ∪ {A1}, . . . ,Λ ∪ {Ak}, if Choose(Λ) is A1 ∨ · · · ∨Ak.

The branches which are infinite or end with the “saturated” message are called open,

whereas the branches ending with the “unsatisfiable” message are called closed. The

procedures stops (and the generation of the above tree is interrupted) iff all branches are

closed or if there is an open finite branch (of course termination is not guaranteed in the

general case).22

Fair Selection Functions.

The function Choose(Λ) is fair iff the following happens for every open branch Λ0 ⊆

Λ1 ⊆ · · · : if C ≡ ResΦi
(Γi ∪ Λk, l) for some i = 1, 2 and for some k, l ≥ 0, then C is

22During our combination procedure Φ0-residues are exchanged, till a saturation state is reached or till
an inconsistency is detected. One may worry about the fact that information concerning L0-terms which
are not Φ0-terms is not exchanged (there might in principle be such terms, according to Definition 4.3.1).
However, we just pointed out that, without additional conditions, the procedure is not complete and, when
sufficient conditions for completeness are introduced (see Proposition 4.4.5), these will be strong enough
to guarantee that the exchanged information is sufficient: more specifically, the set of Φ0-terms will be
big enough for Φ0-equivalence of structures to be converted into L0-isomorphism, through Φi-equivalence
preserving semantic operations.

101

Algorithm 5 The combination procedure

1: function FComb(Λ)
2: C ← Choose(Λ)
3: if C = ⊥ then
4: return “unsatisfiable”
5: else if C = ⊤ then
6: return “saturated”
7: end if
8: for all A ∈ C do
9: if FComb(Λ ∪ {A}) = “saturated” then

10: return “saturated”
11: end if
12: end for
13: return “unsatisfiable”
14: end function

Φ0-redundant with respect to Γ0 ∪ Λn for some n (roughly, residues w.r.t. Φi of an open

branch are redundant with respect to the atoms in the branch).

We first show how to build fair selection functions (under the current assumptions/no-

tational conventions):

Proposition 4.3.9. There always exists a fair selection function.

Proof. For a finite set Λ and for a list Θ of Φ0(x0)-clauses, let us define the auxiliary

procedure LMin(Λ,Θ). We have that

– LMin(Λ, [C]) = C;

– LMin(Λ, [C|Θ]) = LMin(Λ,Θ), if RedΦ0(Λ ∪ {D}, C) holds for some D ∈ Θ;

– LMin(Λ, [C|Θ]) = C, otherwise

(roughly, the procedure takes the leftmost RedΦ0 -maximal element of the list Θ, using

the set Λ as a parameter).

Fix now a surjective recursive function

δ = (δ1, δ2, δ3) : N −→ {1, 2} ×N× N

such that n ≥ δ2(n) holds for every n (this function can be easily built by using a recursive

encoding of pairs, see, e.g., [72]).

For Λ = {A1, . . . , An}, define now Choose(Λ) to be

LMin(Γ0 ∪ Λ, [ResΦδ1(n)
(Γδ1(n) ∪ {A1, . . . , Aδ2(n)}, δ3(n)), ResΦ1(Γ1 ∪ Λ, 0), ResΦ2(Γ2 ∪ Λ, 0)]).

(4.3)

102

The intuitive explanation of this definition is as follows: for i = 1, 2 and j ≤ n,

residues ResΦi
(Γi∪{A1, . . . , Aj}, k) can be disposed in two matrices having n infinite rows

(ResΦi
(Γi∪{A1, . . . , Aj}, k) is the k-th entry of the j-th row in the i-th matrix). Now our

selection function explores the rows of these two matrices by a diagonal path, but before

making the final choice it checks whether in the first entries of the two last rows there is

anything more informative.

Clearly Choose(Λ) is a Φi-consequence of Γi ∪ Λ, for i = 1 or i = 2, because of

the soundness condition of Definition 4.2.17; moreover if Choose(Λ) is redundant w.r.t.

Γ0 ∪ Λ, then (by Definition 4.2.16 (iii)) it must be equal to ResΦ2(Γ2 ∪ Λ, 0), hence it is

⊤ or ⊥, according to Definition 4.2.18 (i) (and it is ⊥, if ⊥ is redundant w.r.t. Γ0 ∪Λ, by

Definition 4.2.18 (ii)).

To show fairness, pick a consistent branch labeled by the increasing sets of Φ0-atoms

Λ0 ⊆ Λ1 ⊆ · · · and suppose that C ≡ ResΦi
(Γi ∪ Λk, l) for some i = 1, 2 and for some

k, l ≥ 0. Let us distinguish the case in which the consistent branch is finite and the case

in which it is infinite.

If it is finite, it ends with a saturation message, which means that for some n, we

have Choose(Λn) ≡ ⊤. From (4.3) and Definition 4.2.16 (ii)-(iii)-(iv), we must have

that ResΦ1(Γ1 ∪ Λn, 0) and ResΦ2(Γ2 ∪ Λn, 0) are both equal to ⊤. To show this, notice

that: (a) a residue equal to ⊤ selected by the function Choose(Λn) according to (4.3)

cannot be either ResΦδ1(n)
(Γδ1(n) ∪ {A1, . . . , Aδ2(n)}, δ3(n)) or ResΦ1(Γ1 ∪Λn, 0), because

⊤ is always redundant; (b) hence it must be ResΦ2(Γ2 ∪ Λn, 0), which implies however

(by the way the procedure LMin is defined) that ResΦ1(Γ1 ∪ Λn, 0) is redundant w.r.t.

Γ0 ∪Λn ∪{ResΦ2(Γ2 ∪Λn, 0)} (which is equal to Γ0 ∪Λn ∪{⊤}) and hence w.r.t. Γ0 ∪Λn

by transitivity. The latter implies that ResΦ1(Γ1 ∪Λn, 0) is also equal to ⊤ by Definition

4.2.18 (i).23

Since ResΦ1(Γ1∪Λn, 0) and ResΦ2(Γ2∪Λn, 0) are both equal to ⊤, by Definition 4.2.18

(iii), we conclude that Γ0∪Λn is a Φ0-basis for both Γ1∪Λn and Γ2∪Λn, which means that

the Φi-residue C is redundant with respect to Γ0∪Λn: in fact, since C ≡ ResΦi
(Γi∪Λk, l),

by Definition 4.2.17, C is a Φi-consequence of Γi ∪ Λk (for Λk ⊆ Λn) and hence also of

Γi ∪ Λn, thus the definition of a Φ0-basis applies.

If the branch is infinite, for some n, we have δ1(n) = i, δ2(n) = k, δ3(n) = l. Hence,

either C has been selected, or some better choice (from the redundancy point of view)

has been made according to (4.3). Since this better choice D cannot be ⊤ or ⊥ because

the branch is infinite, some atom of D (or of C, if C has been directly selected) is in

Λn+1: this means that C is redundant with respect to Γ0 ∪ Λn+1 because of Definition

4.2.16(iii)-(iv)-(v).

23It cannot be equal to ⊥, because it is redundant w.r.t. Γ0 ∪Λn: in that case, ResΦ2(Γ2 ∪Λn, 0) would
be ⊥ too by Definition 4.2.18(ii).

103

We underline that the fair selection function given in (4.3) above can be optimized in

specific situations, where extra information on the input residue enumerators is available;

however, the existence of a uniform schema for defining a fair selection function is an

interesting property of our combination procedure.

4.3.3 Soundness

One possible exit of our procedure is when it generates a finite tree whose leaves are all

labeled “unsatisfiable”: this is precisely the case in which the whole procedure returns

“unsatisfiable”.

Proposition 4.3.10 (Soundness). If the procedure FComb returns “unsatisfiable”, then

the purified constraint Γ1 ∪ Γ2 is Φ1 ⊕Φ2-unsatisfiable.

Proof. We consider the tree generated by the execution of the procedure described in

section 4.3.2. The thesis consists of proving that, if such a tree is closed, then the purified

constraint Γ1 ∪ Γ2 is Φ1 ⊕ Φ2-unsatisfiable. The proof applies an inductive argument on

the tree.

Consider a node labeled with Λ which is the parent of a leaf labeled with “unsatis-

fiable”: by construction Choose(Λ) is equal to ⊥. By Definition 4.3.8, there exists an

i such that Γi ∪ Λ is Φi-unsatisfiable. Recalling the definition of combined fragment, it

follows that Γi ∪ Λ is Φ1 ⊕Φ2-unsatisfiable, thus Γ1 ∪ Γ2 ∪ Λ is unsatisfiable too.

Consider now a tree whose leaves are labeled with “unsatisfiable” and whose root is

labeled by Λ. Suppose now, by inductive hypothesis, that each child of the root (labeled

by Λ ∪ {Aj}) is such that Γ1 ∪ Γ2 ∪ Λ ∪ {Aj} is Φ1 ⊕ Φ2-unsatisfiable (j ∈ {1, . . . , k}).

Γ1 ∪ Γ2 ∪ Λ ∪ {Aj} is Φ1 ⊕ Φ2-unsatisfiable for each j iff Γ1 ∪ Γ2 ∪ Λ ∪ {A1 ∨ · · · ∨ Ak}

is Φ1 ⊕ Φ2-unsatisfiable: this means that our inductive hypothesis entails the Φ1 ⊕ Φ2-

unsatisfiability of Γ1 ∪ Γ2 ∪ Λ ∪ {A1 ∨ · · · ∨Ak}. By construction, our internal nodes are

labeled by Λ ∪ {A1}, . . . ,Λ ∪ {Ak} iff Choose(Λ) is A1 ∨ · · · ∨ Ak; hence, by Definition

4.3.8, there exists an i ∈ {1, 2} such that Γi∪Λ |=Φi
A1∨· · ·∨Ak, thus being A1∨· · ·∨Ak

a Φ1 ⊕ Φ2-consequence of Γ1 ∪ Γ2 ∪ Λ.

This means that for each Φ1 ⊕ Φ2-structure in which Γ1 ∪ Γ2 ∪ Λ is true w.r.t. an

assignment, A1 ∨ · · · ∨ Ak is true w.r.t. to the same assignment too. Moreover, the

Φ1⊕Φ2-unsatisfiability of Γ1 ∪Γ2 ∪Λ∪{A1∨ · · · ∨Ak} means that there does not exist a

Φ1 ⊕Φ2-structure in which Γ1 ∪ Γ2 ∪ Λ and {A1 ∨ · · · ∨Ak} are both true w.r.t. at least

an assignment. It follows that Γ1 ∪ Γ2 ∪ Λ is Φ1 ⊕ Φ2-unsatisfiable itself.

The thesis follows by the consideration that, when we run the procedure for the pure

constraint Γ1 ∪ Γ2, the root of the tree is labeled by the empty set by construction.

104

4.3.4 Termination

Next, we identify a relevant termination case:

Proposition 4.3.11 (Termination). If Φ0 is noetherian and RedΦ0 is the full redundancy

notion, then the procedure FComb terminates on the purified constraint Γ1 ∪ Γ2.

Proof. Let us consider the tree T generated by the execution of the procedure FComb

as described in Section 4.3.2. Recalling that T is finite iff FComb(∅) terminates, we now

suppose that FComb(∅) does not terminate. In this way T , which is a finitely branching

tree by construction, is not finite and it has an infinite branch by König lemma.

This means that there is a infinite chain of sets of Φ0(x0)-atoms Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λn ⊂

· · · , where Λi is the label of a node that belongs to that infinite path, Λi+1 = Λi ∪ {Ai}

and RedΦ0(Γ0 ∪ Λi, Ai) does not hold by Definitions 4.2.16(v) and 4.3.8. Since RedΦ0

is the full redundancy notion, we obtained an infinite sequence A1, A2, A3, . . . such that

Γ0∪{Aj | j < i} 6|=Φ0 Ai for every i. This contradicts our hypothesis on the noetherianity

of Φ0.

4.3.5 Towards Completeness

Completeness of the procedure FComb cannot be achieved easily, heavy conditions are

needed. In this section, we nevertheless identify what is the ‘semantic meaning’ of a run

of the procedure that either does not terminate or terminates with a saturation message.

Since our investigations are taking a completeness-oriented route, it is quite obvious

that we must consider from now on only the case in which the input Φi-p.r.e.’s are complete

(see Definition 4.2.19). In addition we need a compactness-like assumption. We say that

an i.a.f. Φ is Φ0-compact (where Φ0 is a subfragment of Φ) iff, given a Φ-constraint Γ and

a generalized Φ0-constraint Γ0, we have that Γ ∪ Γ0 is Φ-satisfiable if and only if for all

finite ∆0 ⊆ Γ0, we have that Γ ∪∆0 is Φ-satisfiable.

Proposition 4.3.12. Any extension Φ of a locally finite fragment Φ0 is Φ0-compact.

Proof. Recall that, according to the definition of constraints, a generalized Φ0-constraint

Γ0 is an infinite set of Φ0-literals in which only finitely many Φ0-variables (call them x)

occur free. Since Φ0 is locally finite, there exist finitely many Φ0(x)-terms representing

all Φ0(x)-terms up to Φ0-equivalence: for this reason, a generalized Φ0(x)-constraint Γ0 is

equivalent to the constraint in which all terms have been replaced by their representatives.

The above Proposition means that, if we assume effective local finiteness in order to

guarantee termination, Φ0-compactness is guaranteed too. Notice that only special kinds

of generalized Φ-constraints are involved in the definition of Φ0-compactness, namely

105

those that contain finitely many proper Φ-literals; thus, Φ0-compactness is a rather weak

condition (that’s why it may hold for any extension whatsoever of a given fragment, as

shown by Proposition 4.3.12). Finally, it goes without saying that, by the compactness

theorem for first-order logic, Φ0-compactness is guaranteed whenever Φ is a first-order

fragment.

Proposition 4.3.13. Suppose that Φ1,Φ2 are both Φ0-compact, that the function

Choose(Λ) is fair w.r.t. two complete Φi-p.r.e.’s and that the procedure FComb does

not return “unsatisfiable” on the purified constraint Γ1∪Γ2. Then there are Li-structures

Mi ∈ Si and Li-assignments αi (i = 1, 2) such that:

(i) M1 |=α1 Γ1 and M2 |=α2 Γ2;

(ii) for every Φ0(x0)-atom A, we have that M1 |=α1 A iff M2 |=α2 A.

Proof. A set of positive Φ0(x0)-clauses Θ⋆
0 is saturated if and only if it is closed under the

two rules:

Γ1 ∪Θ⋆
0 |=Φ1 C ⇒ C ∈ Θ⋆

0

Γ2 ∪Θ⋆
0 |=Φ2 C ⇒ C ∈ Θ⋆

0,

for every positive Φ0(x0)-clause C.

Let us suppose that ResΦ1 and ResΦ2 are complete p.r.e.’s. Consider now the tree T

generated by an execution as described in Section 4.3.2, in case FComb does not return

“unsatisfiable” on the purified constraint Γ1 ∪ Γ2. If T is finite, then it has a branch

whose leaf is labeled by “saturated”, otherwise it has an infinite branch (we recall that,

by construction, T is a finitely branching tree and, by König lemma, a finitely branching

tree which is infinite has an infinite branch).

Let us consider that (finite or infinite) open branch labeled Λ0 ⊆ Λ1 ⊆ · · · and let us

take Λ :=
⋃

j Λj ; we define Θ⋆
0 := {C | C is a positive Φ0(x0)-clause s.t. Γ1 ∪ Λ |=Φ1 C}

(we remark that Λ ⊆ Θ⋆
0). Θ⋆

0 is saturated and, for i = 1, 2, the generalized constraints

Γi ∪ Θ⋆
0 are Φi-satisfiable, as shown by Lemma 4.3.14. Thus, Lemma 4.3.15 applies and

there are two Li-structures Mi ∈ Si satisfying Γi ∪ Θ⋆
0 under assignments αi, such that

M1, α1 and M2, α2 satisfy the same Φ0(x0)-atoms.

Lemma 4.3.14. The set Θ⋆
0 defined above is saturated, Γ1 ∪ Θ⋆

0 is Φ1-satisfiable and

Γ2 ∪Θ⋆
0 is Φ2-satisfiable.

Proof. To prove that Θ⋆
0 is saturated, we need to show that

Γ2 ∪Θ⋆
0 |=Φ2 C ⇒ C ∈ Θ⋆

0

106

where C is a positive Φ0(x0)-clause. We prove that Γ1 ∪ Λ |=Φ1 C implies Γ2 ∪ Λ |=Φ2 C

(and conversely, but the proof of the converse is the same).

Γ1∪Λ |=Φ1 C iff there exists n such that Γ1∪Λn |=Φ1 C (by Φ0-compactness of Φ1) iff

there exists k such that24 RedΦ0(Γ0∪Λn∪{C0, . . . , Ck}, C) holds, where Cj ≡ ResΦ1(Γ1∪

Λn, j) (by the completeness of the Φ1-p.r.e.). By the fairness requirement on the Choose

function, there exist mj’s such that RedΦ0(Γ0 ∪Λmj
, Cj) holds (j ∈ {1, . . . , k}), hence by

monotonicity of redundancy there exists m ≥ n,m ≥ mj such that RedΦ0(Γ0 ∪ Λm, Cj)

holds for each j ∈ {1, . . . , k}; by transitivity of redundancy we have RedΦ0(Γ0 ∪ Λm, C)

and consequently also Γ0 ∪ Λm |=Φ0 C. Thus Γ2 ∪ Λm |=Φ2 C and finally Γ2 ∪ Λ |=Φ2 C.

We showed that Γ1 ∪ Λ |=Φ1 C holds iff Γ2 ∪ Λ |=Φ2 C holds; it follows that:

Θ⋆
0 = {C is a positive Φ0(x0)-clause | Γ1 ∪ Λ |=Φ1 C} =

= {C is a positive Φ0(x0)-clause | Γ2 ∪ Λ |=Φ2 C},

that is Γ2 ∪Θ⋆
0 |=Φ2 C ⇒ C ∈ Θ⋆

0.

We finally prove that Γi∪Θ⋆
0 is Φi-satisfiable for i = 1, 2. To this aim notice that Γi∪Λ

is Φi-satisfiable iff Γi ∪∆ is Φi-satisfiable for each ∆ ⊆ Λ, ∆ finite (by Φ0-compactness of

Φi). For each such ∆, there exists an index n such that ∆ ⊆ Λn. Γi ∪Λn is Φi-satisfiable

for each n (we have Γi ∪ Λn 6|=Φi
⊥ by completeness of ResΦi

, by definition 4.2.18 (ii)

and by the fairness requirement of the selection function Choose),25 thus every Γi ∪∆

is Φi-satisfiable and consequently so is Γi ∪Λ. Since we noticed above that Θ⋆
0 consists of

the clauses C such that Γi ∪ Λ |=Φ1 C, it follows that Γi ∪Θ⋆
0 is Φi-satisfiable.

We now state the following lemma whose proof is exactly the translation into this

high-order framework of Lemma 3.3.8.

Lemma 4.3.15. Suppose that we are given a saturated set of positive Φ0(x0)-clauses

Θ⋆
0, such that Γ1 ∪ Θ⋆

0 is Φ1-satisfiable and Γ2 ∪ Θ⋆
0 is Φ2-satisfiable. Then there are

structures M1 ∈ S1, M2 ∈ S2 and two assignments α1, α2 such that M1 |=α1 Γ1 ∪ Θ⋆
0

and M2 |=α2 Γ2 ∪Θ⋆
0. Moreover, for every Φ0(x0)-atom A, M1 |=α1 A holds if and only

if M2 |=α2 A holds.

Proof. A set ∆ of Φ0(x0)-literals is exhaustive iff for each Φ0(x0)-atom A, A ∈ ∆ or

¬A ∈ ∆.

24Recall that Γ0 = Γ1|Φ0
= Γ2|Φ0

according to the ‘Notational Conventions’ at the beginning of Sub-
section 4.3.2.

25In more detail, if Γi ∪Λn |=Φi
⊥ for some n, then ⊥ appears as a residue of Γi ∪Λn (by completeness

of ResΦi
and by Definition 4.2.18 (ii)). By the fairness of the selection function it is then redundant with

respect to some Γ0 ∪Λm, which implies that Choose(Λm) is ⊥, by Definition 4.3.8, contrary to fact that
the branch is not closed.

107

Let us consider any terminating strict total order on Φ0(x0)-atoms (it exists by the well

ordering principle) and let us extend it to a terminating strict total order on multisets.26

We use such an ordering to define increasing subsets ∆C , varying C among positive

Φ0(x0)-clauses in Θ⋆
0 (positive clauses are identified here with multisets of atoms).

We say that the Φ0(x0)-clause C ≡ A ∨ A1 ∨ · · · ∨ An from Θ⋆
0 is productive (and

produces the Φ0(x0)-atom A) iff {A} > {A1, . . . , An} and A1, . . . , An 6∈ ∆+
<C where

∆+
<C :=

⋃

D<C,D∈Θ⋆
0

∆+
D. If C is productive and produces A, then ∆+

C := ∆+
<C ∪ {A},

otherwise ∆+
C := ∆+

<C .

Let us define ∆+ :=
⋃

C∈Θ⋆
0

∆+
C and ∆ := ∆+ ∪ {¬A | A is a Φ0(x0)-atom and A 6∈

∆+}. By construction, ∆ |=Φ0 Θ⋆
0 (because ∆ contains a Φ0(x0)-atom for every Φ0(x0)-

clause in Θ⋆
0).

We need to show that Γ1∪∆ is Φ1-satisfiable and Γ2∪∆ is Φ2-satisfiable. First of all, we

claim that if a Φ0(x0)-clause C ≡ A∨A1∨· · ·∨An is productive and {A} > {A1, . . . , An},

then A1, . . . , An 6∈ ∆+. To show this, recall that, by definition, Ai ∈ ∆+ (i ∈ {1, . . . , n})

iff Ai belongs to a productive Φ0(x0)-clause Ci and Ai is the maximum atom in it, thus

Ci < C (by multisets ordering): however none of the Ai can be in ∆+
<C , because C is

productive, thus justifying our claim.

We suppose now that Γ1 ∪∆ is Φ1-unsatisfiable. By Φ0-compactness of the i.a.f. Φ1,

there are Φ0(x0)-atom B1, . . . , Bm 6∈ ∆+ and productive Φ0(x0)-clauses

C1 ≡ A1 ∨A11 ∨ · · · ∨A1k1

· · ·

Cn ≡ An ∨An1 ∨ · · · ∨Ankn

(with maximum Φ0(x0)-atoms A1, . . . , An respectively) s.t. Γ1 ∪ {A1, . . . , An,¬B1, . . . ,

¬Bm} is Φ1-unsatisfiable. It follows that

Γ1 ∪ {C1, . . . , Cn} ∪ {¬A11, · · · ,¬Ankn ,¬B1, . . . ,¬Bm}

is also unsatisfiable. As C1, . . . , Cn are positive Φ0(x0)-clauses in Θ⋆
0 and Θ⋆

0 is saturated,

the positive Φ0(x0)-clause

D ≡
∨

i,j

Aij ∨B1 ∨ · · · ∨Bm

is also in Θ⋆
0. By construction, some of its Φ0(x0)-atoms belongs to ∆+. A11, . . . , Ankn

cannot be there because the C1, . . . , Cn are productive (see the above claim), thus at least

one of the Bj’s is in ∆+: contradiction.27 The case of Γ2 is analogous.

26We are using basic information on multiset orderings that can be found in textbooks like [11].
27Notice that we cannot have k1 = · · · = kn = m = 0, because Γ1 ∪ {C1, . . . , Cn} ⊆ Γ1 ∪ Θ⋆

0 and the
latter is consistent by hypothesis.

108

We finally show that, given two structures M1 ∈ S1, M2 ∈ S2 and two assignments

α1, α2 such that M1 |=α1 Γ1 ∪∆ and M2 |=α2 Γ2 ∪∆, we have thatM1, α1 and M2, α2

satisfy the same Φ0(x0)-atoms. This is clear, because ∆ an exhaustive set of Φ0(x0)-

literals.

4.4 Isomorphism Theorems and Completeness

Proposition 4.3.13 explains what is the main problem for completeness: we would like an

open branch to produce Φi-structures (i = 1, 2) whose L0-reducts are isomorphic and we

are only given Φi-structures whose L0-reducts are Φ0(x0)-equivalent (in the sense that

they satisfy the same Φ0(x0)-atoms). Hence we need a powerful semantic device that

is able to transform Φ0(x0)-equivalence into L0-isomorphism: this device will be called

isomorphism theorem. The precise formulation of what we mean by isomorphism theorem

needs some preparation. First of all, we introduce fragments extended with free constants;

in fact, whereas the use of variables in constraints was precious so far as it emphasized

the role of substitutions (and substitutions act on variables, not on free constants), now

it is better to have at hand also the formalism of free constants, otherwise standard

model-theoretic results would get an unnatural formulation.

Given an i.a.f. Φ= 〈L, T,S〉, we denote by Φ(c) = 〈L(c), T (c),S(c)〉 the following i.a.f.:

(i) L(c) := L∪{c} is obtained by adding to L finitely many new constants c (the types of

these new constants must be types of Φ); (ii) T (c) contains the terms of the kind t[c/x, y]

for t[x, y] ∈ T ; (iii) S(c) contains precisely the L(c)-structures whose L-reduct is in S.

Fragments of the kind Φ(c) are called finite expansions of Φ.

Let Φ(c) be a finite expansion of Φ = 〈L, T,S〉 and let A,B be L(c)-structures. We

say that A is Φ(c)-equivalent to B (written A ≡Φ(c) B) iff for every closed Φ(c)-atom A

we have that A |= A iff B |= A. By contrast, we say that A is Φ(c)-isomorphic to B

(written A ≃Φ(c) B) iff there is an L(c)-isomorphism from A onto B.

We can now specify what we mean by a structural operation on an i.a.f. Φ0 =

〈L0, T0,S0〉. We will be very liberal here and define structural operation on Φ0 any family

of correspondences O = {Oc0} associating with any finite set of free constants c0 and with

any A ∈ S0(c0) some Oc0(A) ∈ S0(c0) such that A ≡Φ0(c0)
Oc0(A). If no confusion arises,

we omit the indication of c0 in the notation Oc0(A) and write it simply as O(A).28

A collection O of structural operations on Φ0 admits a Φ0-isomorphism theorem if and

only if, for every c0, for every A,B ∈ S0(c0), if A ≡Φ0(c0) B then there exist O1, O2 ∈ O

such that O1(A) ≃Φ0(c0)
O2(B).

28The notion of a structural operation we propose here is sufficient to state and prove our results.
However all the structural operations we shall use in the chapter enjoy additional properties: for instance,
since they are induced by suitable endofunctors on the category of sets, they are functorial. For similar
reasons, properties like (Oc0(A))|L0(c′0) = Oc′0(A|L0(c′0)) (for c′0 ⊆ c0) are always true in our examples.

109

Example 4.4.1 (Ultrapowers). Ultrapowers (see [25]) are basic constructions in the

model theory of first-order logic. An ultrapower
∏

U (technically, an ultrafilter U over

a set of indexes is needed to describe the operation) transforms a first-order structure

A into a first-order structure
∏

U A which is elementarily equivalent to it (meaning that

A and
∏

U A satisfy the same first-order sentences). Hence if we take a fragment Φ0 =

〈L0, T0,S0〉, where S0 is an elementary class and 〈L0, T0〉 is an algebraic fragment of the

kind analyzed in Example 4.2.8, then
∏

U is a structural operation on Φ0. The following

deep result in classical model theory (known as the Keisler-Shelah isomorphism theorem

- see [25]) gives here a Φ0-isomorphism theorem in our sense.29

Theorem 4.4.2 (Keisler-Shelah Isomorphism Theorem). Let L be a first-order signature

and let A,B be L-structures. Then A is elementarily equivalent to B iff there is an

ultrafilter U such that the ultrapowers
∏

U A and
∏

U B are L-isomorphic.

We shall mainly be interested into operations that can be extended to a preassigned

expanded fragment. Here is the related definition. Let an i.a.f. Φ = 〈L, T,S〉 extending

Φ0 = 〈L0, T0,S0〉 be given; a structural operation O on Φ0 is Φ-extensible if and only if

for every c and every A ∈ S(c) there exist B ∈ S(c) such that

B|L0(c0) ≃Φ0(c0)
O(A|L0(c0)

) and B ≡Φ(c) A,

(where c0 denotes the set of those constants in c whose type is a Φ0-type).

Example 4.4.3. Taking the reduct of a first-order structure to a smaller signature com-

mutes with ultrapowers, hence if Φ = 〈L, T,S〉 is an extension of Φ0 = 〈L0, T0,S0〉, both

〈L, T 〉, 〈L0, T0〉 are fragments of the kind analyzed in Example 4.2.8 and S,S0 are ele-

mentary classes, then the Φ0-structural operation
∏

U is Φ-extensible (the structure B

required in the definition of Φ-extensibility is again
∏

U A, where the ultrapower is now

taken at the level of L-structures).

Sometimes an isomorphism theorem does not hold precisely for a fragment Φ0 =

〈L0, T0,S0〉, but for an inessential variation (called specialization) of it. A specialization

of Φ0 is an i.a.f. Φ⋆
0 which has the same language and the same terms as Φ0, but whose

class of L0-structures is a smaller class S⋆
0 ⊆ S0 satisfying the following condition: for

every c0 and for every A ∈ S0(c0), there exists A⋆ ∈ S⋆
0 (c0) such that A ≡Φ0(c0) A

⋆. Thus,

the condition simply means that Φ0 and its specialization Φ⋆
0 satisfy the same generalized

constraints.

29If Φ0 = 〈L0, T0,S0〉 is from Example 4.2.6 or 4.2.7 and quantifier elimination holds in S0, then the
Q

U ’s are also structural operations on Φ0 admitting a Φ0-isomorphism theorem (this observation will be
implicitly used in the proof of Theorem 4.4.7 below.)

110

Given an i.a.f. Φ = 〈L, T,S〉 extending Φ0, we say that Φ is compatible with respect to

a given specialization Φ⋆
0 = 〈L0, T0,S

⋆
0 〉 of Φ0 iff Φ⋆ = 〈L, T,S⋆〉 is a specialization of Φ,

where S⋆ contains exactly those L-structures from S whose L0-reduct belongs to S⋆
0 . This

Φ0-compatibility notion is intended to recapture, in our general setting, T0-compatibility

as introduced in [44]. The latter generalizes, in its turn, the standard stable infiniteness

requirement of Nelson-Oppen procedure:

Example 4.4.4 (Stably infinite first-order theories). Let Φ = 〈L, T,S〉 be an i.a.f. of the

kind considered in Example 4.2.6 or in Example 4.2.7: we say that Φ is stably infinite iff

every satisfiable Φ-constraint is satisfiable in some infinite L-structure A ∈ S. To see that

this is a Φ0-compatibility requirement, consider the i.a.f. Φ0 = 〈L0, T0,S0〉 so specified:

(i) L0 is the empty one-sorted signature; (ii) T0 contains only the individual variables; (iii)

S0 is the totality of L0-structures (i.e. the totality of sets). A specialization Φ⋆
0 of Φ0 is

obtained by considering the class S⋆
0 formed by the infinite sets. By an easy compactness

argument (compactness theorem holds here because Φ is a first-order fragment), it is

easily seen that Φ is stably infinite iff it is compatible with respect to the specialization

Φ⋆
0 of Φ0.

During the chapter, we shall see other examples of extensible structural operations

and of isomorphisms theorems (we shall divide indeed our applications into three groups,

depending on the particular isomorphism theorem which is involved).30

4.4.1 The Main Combination Result

We are now ready to formulate a sufficient condition for our combined procedure to be

complete:

Proposition 4.4.5. Suppose that Φ1,Φ2 are both Φ0-compact and Φ0-compatible with

respect to a specialization Φ⋆
0 of Φ0; suppose also that there is a collection O of structural

operations on Φ⋆
0 which are all Φ⋆

1 and Φ⋆
2-extensible and admit a Φ⋆

0-isomorphism theorem.

In this case, if the function Choose(Λ) is fair w.r.t. two complete Φi-p.r.e.’s and the

procedure FComb does not return “unsatisfiable” on the purified constraint Γ1 ∪Γ2, then

such a constraint is Φ1 ⊕Φ2-satisfiable.

Proof. By Proposition 4.3.13, there are two structuresM1,M2 and two assignments α1,

α2 such that: (i) M1 ∈ S1, M2 ∈ S2; (ii) M1 |=α1 Γ1 and M2 |=α2 Γ2; (iii) M1, α1 and

M2, α2 satisfy the same Φ0(x0)-atoms. If we put variables into bijective correspondence

with free constants, we may identify the pairs (Mi, αi) with structures in Si(ci), for finite

sets of free constants ci. Thus we can say that there are structures N1 ∈ S(c1),N2 ∈

30Still, there might be further examples which are not considered in this thesis and which deserve further
investigation: model theory of modal logic (see [48]) seems to be interesting in this sense.

111

S(c2) satisfying Γ1[c1],Γ2[c2], respectively, such that N1|L0(c0) ≡Φ0(c0)
N2|L0(c0) (where

c0 = c1 ∩ c2 are the free constants whose types are Φ0-types).31

Now we will show that there is a L1(c1) ∪ L2(c2)-structure M such that M|Li
∈ Si

and M |= Γi[ci] (i = 1, 2). By Φ0-compatibility with respect to Φ⋆
0, we may assume that

N1|L0(c0)
and N2|L0(c0)

are in a class S⋆
0 , over which the collection of structural operations

O admits an isomorphism theorem.

Thus there are two structural operations O1, O2 ∈ O such that O1(N1|L0(c0)) ≃Φ0(c0)

O2(N2|L0(c0)
). Since O1, O2 are Φ⋆

1- and Φ⋆
2-extensible, there exist two structures B1 ∈

S⋆
1 (c1) and B2 ∈ S

⋆
2 (c2) such that B1|L0(c0)

≃Φ0(c0) O1(N1|L0(c0)
) and B2|L0(c0) ≃Φ0(c0)

O2(N2|L0(c0)
), B1 ≡Φ1(c1) N1 and B2 ≡Φ2(c2)

N2. Thus, B1 satisfies Γ1[c1] and B2 satisfies

Γ2[c2]. Moreover, B1|L0(c0)
≃Φ0(c0) B2|L0(c0); we can now easily build the desired M in

two steps.

In the first step, we define B′2 such that B1|L0(c0) = B′2|L0(c0)
and B2 ≃Φ2(c2) B

′
2 (notice

that B′2 ∈ S2(c2) by the closure under isomorphisms of S2, see Definition 4.2.3). Let ι

be the isomorphism B1|L0(c0)
−→ B2|L0(c0)

; to define B′2, we interpret L0-sorts as in B1

and L2 \ L0-sorts as in B2. Put now ι′S := ιS for S ∈ L0 and let ι′S be the identity for

L2 \ L0-sorts; by taking standard inductive extension to all L2-types, we get a family of

bijections ι′ = {ι′τ : [[τ]]B′
2
−→ [[τ]]B2} (indexed by the L2-types) that can be used in order

to complete the definition of B′2 (in the sense that we define the B′2-interpretation of every

constant d : τ of L2(c2) as (ι′τ)−1(IB2(d))). It is easily seen that the L2(c2)-structure B′2
matches the desired requirements.

Since the L0(c0)-reducts of B1 and B′2 are now just the same structure, it is easy to

define (through a trivial join of both sorts and constants interpretations) a L1(c1)∪L2(c2)-

structureM such thatM|L1(c1)
= B1 andM|L2(c2) = B′2. Thus, the L1∪L2-reduct ofM

belongs to S1 ⊕ S2 and satisfies Γ1[x1] ∪ Γ2[x2].

The facts we established so far can be collected into our main decidability transfer

theorem.

Theorem 4.4.6. Suppose that:

(1) the interpreted algebraic fragments Φ1,Φ2 have decidable constraint satisfiability prob-

lems;

(2) the shared fragment Φ0 is effectively locally finite (or more generally, Φ1,Φ2 are both

Φ0-compact, Φ0 is noetherian and there exist noetherian positive residue Φ1- and

Φ2-enumerators for Φ0);

31See the parallel convention for x0 at the beginning of Subsection 4.3.2. Notice that because of the
Definition 4.3.1 concerning the shared fragment Φ0, we have that both N1|L0(c0) and N2|L0(c0) belong to
S0(c0).

112

(3) Φ1 and Φ2 are both Φ0-compatible with respect to a specialization Φ⋆
0 of Φ0;

(4) there is a collection O of structural operations on Φ⋆
0 which are all Φ⋆

1- and Φ⋆
2-

extensible and admit a Φ⋆
0-isomorphism theorem.

Then the procedure FComb (together with the preprocessing Purification Rule) decides

constraint satisfiability in the combined fragment Φ1 ⊕ Φ2.

Proof. From Propositions 4.3.6, 4.3.7, 4.3.9, 4.3.10, 4.2.22, 4.3.11, 4.3.12, 4.2.21, and

4.4.5.

Remark. In case the shared fragment Φ0 is locally finite, a combination procedure can

be obtained also simply by guessing a maximal set Θ0 of Φ0(x0)-literals and by testing

the Φi-satisfiability of Θ0 ∪ Γi. This non-deterministic version of the procedure does not

require the machinery developed in Section 4.2.3 (but it does not apply to noetherian

cases and does not yield automatic optimizations in Φ0-convexity cases).

Remark. Theorem 4.4.6 cannot be used to transfer decidability of word problems to our

combined fragments: the reason is that, in case the procedure FComb is initialized with

only a single negative literal, constraints containing positive literals are nevertheless gen-

erated during the execution (and also by the Purification Rule). However, since negative

literals are never run-time generated, Theorem 4.4.6 can be used to transfer decidability

of conditional word problems, namely of satisfiability problems for constraints containing

just one negative literal.32

In the next three subsections we shall investigate families of concrete applications of

Theorem 4.4.6, based on suitable isomorphism theorems.

4.4.2 Applications: Decidability Transfer through Ultrapowers

We shall use the isomorphism Theorem 4.4.2 to get the transfer decidability results of [44]

as a special case of Theorem 4.4.6. For simplicity, we show how to do it for one-sorted

functional first-order signatures (and leave to the reader the easy extension to first-order

signatures containing also relational symbols like in Example 4.2.7).

Let Φ1 = 〈L1, T1,S1〉 and Φ2 = 〈L2, T2,S2〉 be equational first-order i.a.f.’s (i.e. i.a.f.’s

of the kind considered in the Example 4.2.6) and let Φ0 = 〈L0, T0,S0〉 be their shared

fragment. The hypotheses for the decidability transfer result of [44] are (equivalent to)

the following:

32For instance, usual relativized satisfiability problems in modal logic are the same as conditional
word problems in the fragments ΦM = 〈LM , TM ,SM 〉 from Example 4.2.10; here constraint satisfiability
problems can be reduced to conditional word problems in case of closure under disjoint unions of the
Kripke frames in ΦM (this is a special case of the straightforward general fact that, in convex fragments,

conditional word problems and constraint satisfiability problems are inter-reducible).

113

(C1) there is a universal theory T0 in the shared signature L0 such that every A ∈ S0 is

a model of T0;

(C2) T0 admits a model-completion T ⋆
0 ;

(C3) for i = 1, 2, for every tuple c of free constants and for every A ∈ Si(c), there is some

A′ ∈ Si(c), s.t. A(c) ≡Φi(c) A
′(c) and A′

|L0
is a model of T ⋆

0 ;33

(C4) Φ0 is effectively locally finite.

Condition (C2) means that: (a) T0 ⊆ T
⋆
0 ; (b) every model of T0 embeds into a model

of T ⋆
0 ; (c) the following holds for every finite set of free L0-constants c0 and for every

pair of L0(c0)-structures A,B which are models of T ∗
0 : if A ≡Φ0(c0) B, then A and B

are L0(c0)-elementarily equivalent (see any textbook on model theory like [25] for more

information).34

Theorem 4.4.7 (Ghilardi [44]). Suppose that Φ1 and Φ2 are first-order equational i.a.f.’s

satisfying conditions (C1)-(C4) above; if constraint satisfiability problems are decidable in

Φ1 and Φ2, then they are decidable in Φ1 ⊕ Φ2 too.

Proof. We check the conditions of Theorem 4.4.6. We take S⋆
0 to be the class of L0-

structures B such that B ∈ S0 and B is a model of the model-completion T ⋆
0 of T0

(see (C2) above). To check that Φ⋆
0 = 〈L0, T0,S

⋆
0 〉 is a specialization of Φ0 argue as

follows. If A ∈ S0(c0), then by Definition 4.3.1, there is M ∈ Si(c0) (i = 1, 2) such

that M|L0(c0) = A. By (C3) above there is some M′ ∈ Si which is a model of T ⋆
0 and

such that M′ ≡Φi(c0) M holds. It follows that the L(c0)-reduct of M′ is in S⋆
0 and it is

Φ0(c0)-equivalent to A. The same argument proves also the Φ⋆
0-compatibility of Φi.

If we have two decision procedures for the constraint satisfiability problem over Φ1

and Φ2, then 4.4.6 (1) holds; (C4) guarantees 4.4.6 (2) and 4.4.6 (3) has been just proved.

To check the remaining condition 4.4.6 (4), we use ultrapowers and the isomorphism

Theorem 4.4.2.

In fact, for every c0, if A,B ∈ S⋆
0 (c0) are such that A ≡Φ0(c0) B, then A and

B are L0(c0)-elementarily equivalent because they are models of T ⋆
0 . Hence we have

∏

U A ≃Φ0(c0)

∏

U B, for a suitable ultrafilter U .

Ultrapowers as structural operations are Φ⋆
i -extensible, meaning that for every U ,

for every c and for every A ∈ S⋆
i (c), there exists B ∈ S⋆

i (c) such that B|L0(c) ≃Φ0(c)

33Instead of (C3), in [44] it is asked the (apparently stronger but in fact equivalent) condition: (C3’)
every A ∈ Si embeds into some A′ ∈ Si which is a model of T ⋆

0 .
34Usually condition (c) is formulated by saying that: (c’) the union of T ⋆

0 and of the Robinson diagram
of a model of T0 is a complete first-order theory. It can be shown that (c) is equivalent to (c’), but for our
purpose of deriving the results from [44], it is sufficient to observe that (c’) implies (c): this is clear since
A ≡Φ0(c0) B means precisely that A and B are both models of the Robinson diagram of the substructure
generated by the c0 (the latter is a model of T0 because T0 is universal).

114

∏

U (A|L0(c)) and B ≡Φi(c) A.35 To see this, take B :=
∏

U A; since the class of struc-

tures which are models of an elementary theory is closed under ultrapowers, B ∈ S⋆
i (c).

Furthermore we have

B|L0(c) = (
∏

U

A)|L0(c) ≃Φ0(c)

∏

U

(A|L0(c)),

as desired.

If we take as T0 the empty theory (in the one-sorted first-order empty language with

equality), then T ⋆
0 is the theory of an infinite set and condition (C3) is equivalent to stable

infiniteness (by a simple argument based on compactness); thus, Theorem 4.4.7 reduces

to the standard Nelson-Oppen result (see [69, 73, 86]) concerning stably infinite theories

over disjoint signatures.

We recall from [44] that among relevant examples of theories to which Theorem 4.4.7

is easily seen to apply, we have Boolean algebras with operators (namely the theories

axiomatizing algebraic semantics of modal logic): thus, decidability of conditional word

problem transfers from two theories axiomatizing varieties of Boolean algebras with op-

erators to their union (provided only Boolean operators are shared). This result, proved

in [93] by specific techniques, is the algebraic version of the fusion transfer of decidability

of global consequence relation in modal logic.

We remark that condition (C4) can be weakened to

(C4′) Φ0 is noetherian and there exist noetherian positive residue Φ1- and Φ2-enumerators

for Φ0

(as suggested by Theorem 4.4.6 (2)) and we give an example of an application of Theorem

4.4.7 under this weaker condition.

Example 4.4.8 (Combination of Noetherian fragments). We consider the combined frag-

ment Φ1⊕Φ2 where Φ1 is the fragment ΦKalg of the Example 4.2.23 and Φ2 is the fragment

ΦKend of Example 4.2.25 (here, however, we require K-algebras to be non degenerate, i.e.

to satisfy the condition 0 6= 1). From Definition 4.3.2, it follows that the class S1 ⊕ S2

consists of the models of the theory of the non degenerate K-algebras endowed with a

linear endomorphism (i.e. endowed with a function f preserving sum and scalar mul-

tiplication). The set S0 of structures of the shared fragment Φ0 consists of the models

of the theory T0 of K-vector spaces. The theory T0 is universal and admits as a model

completion the theory T ⋆
0 = T0 ∪ {∃x (x 6= 0)}, if K is an infinite field, and the theory

35Since, for the sake of simplicity, we limited our analysis to the one-sorted case, the set of types of Φ0

is the same as the set of types of Φi, so the c0 in the definition of an extensible operation are equal to the
c here.

115

T0 ∪ {∃x1 · · · ∃xn

∧

i6=j xi 6= xj}n∈N, otherwise: in both cases, the models of T ⋆
0 are just

infinite K-vector spaces. Thus conditions (C1) and (C2) are satisfied. Since every non

degenerate K-algebra (resp. every f -K-vector space) can be embedded into an infinite

K-algebra (resp. into an infinite f -K-vector space), condition (C3) holds too. Condi-

tion (C4′) is also satisfied, as pointed out in Subsection 4.2.5 when discussing Examples

4.2.23, 4.2.24 and 4.2.25. Hence the combination procedure FComb decides conditional

word problems for the theory of (non degenerate) K-algebras endowed with a linear en-

domorphism.

As another application of Theorem 4.4.6 based on Keisler-Shelah isomorphism the-

orem, we show how to include a first-order equational theory within description logic

A-Boxes. An A-Box fragment is an i.a.f. of the kind ΦML = 〈LML, TML,SML〉, where

〈LML, TML〉 is defined (out of a modal signature OM) as in Example 4.2.11 and SML is

a class of LML-structures closed under isomorphisms and disjoint I-copies. The latter

operation is defined as follows:

Definition 4.4.9 (Disjoint I-copy). Consider a first-order one-sorted relational signature

L and a (non-empty) index set I. The operation
∑

I , defined on L-structures and called

disjoint I-copy, associates with an L-structureM = 〈[[−]]M,IM〉 the L-structure
∑

IM

such that [[W]]P
I M is the disjoint union of I-copies of [[W]]M (here W is the unique sort

of L). The interpretation of relational predicates is defined as follows36

∑

I

M |= P (〈d1, i1〉, . . . , 〈dn, in〉) ⇐⇒ i1 = i2 = · · · = in andM |= P (d1, . . . , dn)

(4.4)

for every n-ary predicate P .

Disjoint I-copy is a special case of a more general disjoint union operation: the latter

is defined again by (4.4) and applies to any I-indexed family of structures (which may

not coincide with each other). Our specific interest for disjoint I-copies is motivated by

the following Lemma, concerning satisfiability of packed guarded formulae:37

Lemma 4.4.10. Consider a first-order one-sorted relational signature L, the L-structure

M and its disjoint I-copy
∑

IM. The following statements hold:

(i) for every elementary packed guarded formula ϕ[x1, . . . , xn] (n ≥ 0), for every

d1, . . . , dn in the support of M and for every index i ∈ I, we have that

∑

I

M |= ϕ[〈d1, i〉, . . . , 〈dn, i〉] ⇐⇒ M |= ϕ[d1, . . . , dn];

36Elements of the disjoint union of I-copies of a set S are represented as pairs 〈s, i〉 (meaning that 〈s, i〉
is the i-th copy of s ∈ S).

37See Example 4.2.15 for the related definition.

116

(ii) a packed guarded elementary sentence is satisfiable inM iff it is satisfiable in
∑

IM.

Proof. We check the first claim by induction on ϕ (the second claim follows immediately

for the case n = 0). If ϕ is atomic, just apply (4.4), and the case of Boolean connectives

is immediate. Suppose now that ϕ is the packed guarded existential quantification

∃y1 · · · ∃ym(π[xi1 , . . . , xik , y1, . . . , ym] ∧ ψ[xi1 , . . . , xik , y1, . . . , ym])

where xi1, . . . , xik are the variables among x1, . . . , xn that really occur free in ϕ[x1, . . . , xn]

(notice that they must all occur free in the guard π, as well as the y1, . . . , ym). ThatM |=

ϕ[d1, . . . , dn] implies
∑

IM |= ϕ[〈d1, i〉, . . . , 〈dn, i〉] is trivial; for the converse suppose that

∑

I

M |= π[〈di1 , i〉, . . . , 〈dik , i〉, 〈e1, j1〉, . . . , 〈em, jm〉]∧

∧ψ[〈di1 , i〉, . . . , 〈dik , i〉, 〈e1, j1〉, . . . , 〈em, jm〉]

for some 〈e1, j1〉, . . . , 〈em, jm〉. By (4.4) and the definition of a guard, all indexes j1, . . . , jm

must be equal to some j (and, if k 6= 0, j must be i). ThusM |= π[di1 , . . . , dik , e1, . . . , em]∧

ψ[di1 , . . . , dik , e1, . . . , em] holds by induction hypothesis and by (4.4).

Let OM be a modal signature, as defined in Example 4.2.10: notice that formulae like

ST (ϕ,w) and ∀wST (ϕ,w) are packed guarded, hence if we replace in them the second-

order variables of type W → Ω by free constants for subsets of W (which are first-order

relational symbols), Lemma 4.4.10 (i)-(ii) applies to the formulae so obtained.

We now want to combine an equational first-order i.a.f. Φ = 〈L, T,S〉 from Example

4.2.6 and an A-Box fragment ΦML = 〈LML, TML,SML〉 (we suppose that the signatures

L and LML are disjoint). Assume in addition that SML is an elementary class (i.e it is

the class of the models of a first-order LML-theory) and that Φ is stably infinite.

Since all our data are first-order, the argument of the proof of Theorem 4.4.7 works,

provided conditions (C1)-(C4) hold. We take as T0 the empty theory and as T ⋆
0 the theory

of an infinite set, so that we only have to check condition (C3) for both Φ and ΦML. For

the former, the condition holds trivially (the situation is the same as in the standard

disjoint Nelson-Oppen case mentioned above). For the latter, for every LML(c)-structure

A(c) and for an infinite I, by Lemma 4.4.10 (i) we can expand
∑

I A to a LML(c)-structure

in such a way that A(c) ≡ΦML(c)

∑

I A(c) holds38: this proves condition (C3) (obviously,
∑

I A(c) is infinite, because I is infinite). We so proved the following result:

Theorem 4.4.11. Suppose that we are given an equational first-order i.a.f. Φ = 〈L, T,S〉

and an A-Box fragment ΦML = 〈LML, TML,SML〉; suppose also that the signatures L and

38To this aim, interpret a free individual constant c ∈ c in
P

I A as 〈IA(c)(c), i〉, where i is some
arbitrarily chosen element of I (to be the same for all the free individual constants c that belong to c).

117

LML are disjoint, that Φ is stably infinite and that SML is an elementary class. Then

decidability of constraint satisfiability problems transfers from Φ and ΦML to Φ⊕ ΦML.

The fragment Φ ⊕ ΦML of Theorem 4.4.11 is quite peculiar, because its combined

terms all arise from a single composition step (they all have degree 2, in the terminology

of Lemma 4.3.4).

4.4.3 Applications: Decidability Transfer through Disjoint Copies

Disjoint copies are the key tool for transfer decidability results in modal fragments too.

Let OM be a modal signature, as defined in Example 4.2.10. A modal i.a.f. over OM is a

fragment of the kind ΦM = 〈LM , TM ,SM 〉, where LM and TM are as defined in Example

4.2.10, whereas SM is a class of LM -structures closed under isomorphisms and disjoint

I-copies. The next proposition translates into our settings the main ingredient of the

decidability transfer proof for relativized satisfiability in [10].

In the following, we indicate by OM0 the empty modal signature.

Proposition 4.4.12. Let ΦM be a modal i.a.f. over the modal signature OM and con-

sider a modal subfragment ΦM0 of it, based on the empty modal signature; the structural

operations {
∑

I}I over ΦM0 are ΦM -extensible and form a collection admitting a ΦM0-

isomorphism theorem.

Proof. Recall from Example 4.2.10 that W → Ω is the only type of the i.a.f. ΦM , hence the

relevant free constants c in expanded languages are second-order constants for subsets of

W (this means, in particular, that their interpretation can be extended to disjoint I-copies

like any other relational first-order predicate symbol as shown in Definition 4.4.9).

That taking disjoint I-copies
∑

I is a structural ΦM -extensible operation is clear: to

define N ∈ SM (c) which is ΦM (c)-equivalent to some M ∈ SM (c) and whose ΦM0(c)-

reduct is LM0(c)-isomorphic to
∑

I(M|LM0
(c)) it is sufficient to take the LM (c)-structure

∑

IM as N and apply Lemma 4.4.10 (ii) (recall that constraints in ΦM are equivalent

to conjunctions of formulae of the kind ∀wST (ϕ,w) and their negations). That taking

disjoint I-copies is a structural operation (i.e. that a LM0(c)-structure and its disjoint

I-copy are ΦM0(c)-equivalent) is clear by the same reasons.

To show that a ΦM0-isomorphism theorem holds, suppose that we are given free

constants c0 := {P1, . . . , Pn} and two structures M1 and M2 in SM0(c0) such that

M1 ≡ΦM0
(c0) M2; we show that

∑

IM1 ≃ΦM0
(c0)

∑

IM2 holds for some I.

Consider every boolean combination of the form ε(w) = Q1(w) ∧ · · · ∧ Qn(w) where

Qj ≡ Pj or Qj ≡ ¬Pj (thus the number of such formulae is 2n). For a given LM0(c0)-

structure N , let ε(N) := {a ∈ [[W]]N | N |= ε(a)} and let us associate with N the

2n cardinal invariants aε(N) := ♯ε(N). Now two LM0(c0)-structures N1 and N2 having

118

the same invariants are isomorphic, because we can glue bijections ε(N1) −→ ε(N2) to a

LM0(c0)-isomorphism N1 ≃ N2.

Finally, we note that M1 ≡ΦM0
(c0) M2 means that M1 |= A holds iff M2 |= A holds

for every closed ΦM0(c0)-atom A. In particular, M1 |= {w | ε(w)} = {w | ⊥} iff M2 |=

{w | ε(w)} = {w | ⊥}: thus ε(M1) = ∅ iff ε(M2) = ∅ holds for all ε. Let now consider a

set I whose cardinality m is such that m ≥ ε(Mi) for all ε and for i ∈ {1, 2}: we show

that
∑

IM1 ≃ΦM0
(c0)

∑

IM2 proving that the two structures have the same invariants.

In fact the cardinal identities aε(
∑

IM1) = m ·aε(M1) = m = m ·aε(M2) = aε(
∑

IM2)

hold for all ε.

If OM1 and OM2 are modal signatures, we let OM1⊕M2 indicate their disjoint union

(OM1⊕M2 is called the fusion of the modal signatures OM1 and OM2). Given a modal i.a.f.

ΦM1 over OM1 and a modal i.a.f. ΦM2 over OM2 , let us define their fusion as the modal

i.a.f.

ΦM1⊕M2 = 〈LM1⊕M2 , TM1⊕M2,SM1 ⊕ SM2〉.

Notice that for two modal i.a.f.’s ΦM1 = 〈LM1, TM1 ,SM1〉 and ΦM2 = 〈LM1, TM1 ,SM1〉

over disjoint modal signatures, the shared fragment ΦM0 = 〈LM0 , TM0 ,SM0〉 is locally

finite, because it is a modal i.a.f. over the empty modal signature (for any finite set of

ΦM0-variables x0, the representative ΦM0(x0)-terms are those of the kind {w | ψ(w)},

where ψ is a boolean combination of the second-order variables x0).

Now if ΦM1 and ΦM2 have decidable constraint satisfiability problems, then so does

the combined i.a.f. ΦM1 ⊕ΦM2: in fact, the hypotheses of Theorem 4.4.6 are satisfied by

the previous proposition.39 To infer the transfer decidability result to the fusion modal

i.a.f., we need to clarify the relationship between ΦM1⊕M2 and ΦM1 ⊕ ΦM2.

Given two i.a.f.’s Φ1 = 〈L1, T1,S1〉 and Φ2 = 〈L2, T2,S2〉, we say that they are βη-

equivalent (written Φ1 ∼βη Φ2) iff L1 = L2, S1 = S2 and moreover for every t1 ∈ T1

one can effectively compute some t2 ∈ T2 such that t1 ∼βη t2, and vice versa. Clearly,

βη-equivalent i.a.f.’s can be considered to be just the same.

Lemma 4.4.13. If ΦM1⊕M2 and ΦM1 ⊕ ΦM2 are as above, we have that ΦM1⊕M2 ∼βη

ΦM1 ⊕ ΦM2.

Proof. Since TM1 ⊕TM2 is defined to be the minimum set of terms closed under substitu-

tions and containing TM1 and TM2 and since TM1⊕M2 enjoys these properties, clearly any

t ∈ TM1 ⊕ TM2 belongs to TM1⊕M2 .

Conversely, let us take t ∈ TM1⊕M2; then t ∼βη {w | ST (ϕ,w)} for some OM1⊕M2-

modal formula ϕ.40 By induction on ϕ, we define u ∈ TM1 ⊕ TM2 such that u ∼βη

39We obviously take Φ⋆
0 to be ΦM0 in 4.4.6 (3).

40Notice that {w | ST (ϕ, w)} - hence also ϕ - can be effectively computed because it is in long-βη-normal
form and so it is the long-βη-normal form of t.

119

{w | ST (ϕ,w)} (then t ∼βη u follows by transitivity). If ϕ is a propositional variable we

can take u to be {w | ST (ϕ,w)}. If ϕ is ψ1∧ψ2, by induction there are u1, u2 ∈ TM1⊕TM2

such that ui ∼βη {w | ST (ψi, w)} for i = 1, 2. Then {w | ST (ϕ,w)} = {w | ST (ψ1, w) ∧

ST (ψ2, w)} ∼βη {w | {w | ST (ψ1, w)}(w)∧{w | ST (ψ2, w)}(w)} ∼βη {w | u1(w)∧u2(w)}.

The latter is obtained by replacing in the term {w | ST (x1∧x2, w)} = {w | X1(w)∧X2(w)}

the terms u1, u2 ∈ TM1 ⊕TM2 for the second-order variables X1,X2, respectively, hence it

is a term that belongs to TM1 ⊕ TM2 too, because the latter is closed under substitution.

The cases of ∨,¬,♦k are analogous.

We have so proved the following well-known decidability transfer result (see, e.g., [10]

and the literature quoted therein).

Theorem 4.4.14 (Decidability Transfer for Modal i.a.f.’s). If two modal i.a.f.’s ΦM1 and

ΦM2 have decidable constraint satisfiability problems, so does their fusion ΦM1⊕M2.

Fragments of the kind examined in Example 4.2.11 are not interesting for being com-

bined with each other, because the absence of the type W → Ω makes such combinations

trivial. On the contrary, full modal fragments from Example 4.2.12 are quite interesting

in this respect (we recall that they reproduce both A-Box and T-Box reasoning from the

point of view of description logics). In fact very slight modifications are sufficient to get

a result analogous to Theorem 4.4.14: we just sketch how to do it.

Let OM be a modal signature; a full modal i.a.f. over OM is a fragment of the

kind ΦFM = 〈LFM , TFM ,SFM 〉, where LFM and TFM are as defined in Example 4.2.12,

whereas SFM is again a class of LM -structures closed under isomorphisms and disjoint

I-copies.

There is a little complication arising now: since W is a type of an i.a.f. like ΦFM ,

when we expand languages with free constants, we now get (besides constants of type

W → Ω) also individual constants of type W . The interpretation of these constants is

not defined in disjoint I-copies, because taking disjoint I-copies is an operation defined

only for first-order relational signatures. We proceed as follows: we take index sets I

which are pointed, namely some i0 ∈ I is specified. Then, we define the interpretation of

an individual constant c of type W in
∑

IM as 〈IM(c), i0〉.

The definition of fusion for full modal i.a.f.’s is the obvious one and it leads to the

following:

Theorem 4.4.15 (Decidability Transfer for Full Modal i.a.f.’s [10]). If two full modal

i.a.f.’s have decidable constraint satisfiability problems, so does their fusion.

Proof. We sketch the little modifications required to prove Proposition 4.4.12 in the

present context (Lemma 4.4.13 does not need any essential change). Let ΦFM be a full

modal i.a.f. over OM and let ΦFM0 be a subfragment of it on the empty modal signature.

120

According to the considerations in Examples 4.2.10 and 4.2.11, when considering lan-

guages expanded with free constants c, closed ΦFM(c)-atoms are now of the kind c1 = c2,

Rk(c1, c2), ST (ψ, c/w), and ∀wST (ψ,w) (where second-order variables in ψ have been

replaced by first-order unary predicate constants). From the pointed definition of disjoint

I-copy given above and Lemma 4.4.10, it is then clear that the LFM(c)-structures M

and
∑

IM still are ΦFM(c)-equivalent and this is all what matters in order to check that

pointed disjoint I-copies are ΦFM -extensible structural operations over ΦFM0.

For the ΦFM0-isomorphism theorem, we just need to add to the invariants of a

LFM0(c)-structure N considered in the proof of Proposition 4.4.12 also the indication

about the truth/falsity in N of the ground atoms of the kind ε(c) and c1 = c2, varying

c, c1, c2 among the individual constants in c.

The statement of Theorem 4.4.15 seems not to allow the decidability transfer of only

positive A-Box satisfiability with respect to T-Box axioms; however this further decid-

ability transfer result follows immediately once one realizes that the combined algorithm

TComb never adds negative information to current constraints, so if non positive A-Boxes

are not present from the very beginning, there won’t be any call for a decision procedure

involving them (see also the Remark following Theorem 4.4.6 for the same observation).

The decidability transfer theorem for the non-normal case of Example 4.2.13 (i.e. for

the full strength of abstract description systems in the sense of [10]) requires a simple

adaptation of Definition 4.4.9 and of Lemma 4.4.10. We can also extend our transfer

results to fragments involving the µ-calculus fixed-points constructors of Example 4.2.14:

in fact, these constructors are invariant under bisimulation, hence Lemma 4.4.10 still holds

(notice also that fixed points can be eliminated from empty modal signatures, hence local

finiteness of the shared fragment is not compromised, even in case we wish to combine

two ‘µ-fragments’ with each other).

We now try to extend our decidability transfer results to cover also combinations of

packed guarded or of two-variable fragments. However, to get positive results, we need

to keep shared signatures under control (otherwise undecidability phenomena arise). In

addition, we still want to exploit the isomorphism theorem of Proposition 4.4.12 and, for

that, we need the shared signature to be empty and second-order variables appearing as

terms in the fragments to be monadic only. The kind of combination that arise in this

way is a form of fusion that we shall call monadic fusion. We begin by identifying a class

of fragments to which our techniques apply.

Let us call Φ∅ = 〈L∅, T∅,S∅〉 the following i.a.f.: (i) L∅ is the empty one-sorted first-

order signature (that is, L∅ does not contain any proper symbol, except for its unique

sort which is called D); (ii) T∅ consists of the terms which are βη-equivalent to terms

121

belonging to T
L∅
11 ;41 (iii) S∅ contains all L∅-structures.

Definition 4.4.16. A monadically suitable i.a.f. Φ = 〈L, T,S〉 is an i.a.f. such that:

(i) L is a relational one-sorted first-order signature;

(ii) T
L∅
11 ⊆ T ⊆ T

L
ω1;42

(iii) the Φ∅-structural operation of taking disjoint I-copies is Φ-extensible.

We remark that, despite the fact that the definition of a monadically suitable fragment

needs the present chapter settings to be formulated, there is some anticipation of it in

the literature on monodic fragments (see for instance statements like that of Theorem

11.21 in [40]). We give a couple of interesting examples of monadically suitable decidable

fragments:

Example 4.4.17. Packed guarded fragments are i.a.f.’s of the kind ΦG = 〈LG, TG,SG〉,

where TG is as defined in Example 4.2.15, whereas SG is a class of LG-structures closed

under isomorphisms and disjoint I-copies. To see that these are monadically suitable

fragments, recall Lemma 4.4.10: by this Lemma, it is easy to see that for every free

constants c of type D → Ω, for every A ∈ SG(c) and for every non-empty set of indexes

I, we have that A ≡ΦG(c)

∑

I A. Thus taking disjoint I-copies is trivially ΦG-extensible.

Before giving the second family of examples of monadically suitable fragments, we

introduce an alternative construction for proving extensibility of the operation of taking

disjoint I-copies. This construction is nicely behaved only for fragments without identity

and is called I-conglomeration:

Definition 4.4.18 (I-conglomeration). Consider a first-order one-sorted relational sig-

nature L and a (non-empty) index set I. The operation
∑I , defined on L-structures

and called I-conglomeration, associates with an L-structure M = 〈[[−]]M,IM〉 the L-

structure
∑IM such that [[D]]PI M is the disjoint union of I-copies of [[D]]M (here D

is the unique sort of L). The interpretation of relational constants is defined in such a

way that we have

I∑

M |= P (〈d1, i1〉, . . . , 〈dn, in〉) ⇐⇒ M |= P (d1, . . . , dn)

for every n-ary relational predicate P different from equality.

41See Example 4.2.9 for this notation and for other similar notation used below.
42The inclusion T ⊆ TL

ω1 should be intended up to βη-equivalence (namely, for every t ∈ T there is
t′ ∈ TL

ω1 such that t ∼βη t′).

122

Notice that, contrary to disjoint union, I-conglomeration cannot be defined for families

of I-indexed structures different from each other; on the other hand, I-conglomerations

and disjoint I-copies coincide for relational first-order signatures having only unary pred-

icates. The preservation Lemma 4.4.10 can be reformulated as follows:

Lemma 4.4.19. Consider a first-order one-sorted relational signature L and the L-

structures M and
∑IM. The following statements hold:

(i) for every first-order formula ϕ[x1, . . . , xn] not containing the equality predicate, for

every d1, . . . , dn in the support of M and for every indexes i1, . . . , in ∈ I, we have

that
I∑

M |= ϕ[〈d1, i1〉, . . . , 〈dn, in〉] ⇐⇒ M |= ϕ[d1, . . . , dn];

(ii) a first-order formula not containing the equality predicate is satisfiable in M iff it

is satisfiable in
∑IM.

Example 4.4.20. For a first-order relational one-sorted signature L2V , a two variables

i.a.f. over L2V is a fragment of the kind Φ2V = 〈L2V , T2V ,S2V 〉, where: (i) T2V contains

the terms without identity which are βη-equivalent to terms belonging to the set TL2V

NK of

Example 4.2.9 for K = 1 and N = 2; (ii) S2V is a class of L2V -structures closed under

isomorphisms and I-conglomerations.43

For two monadically suitable i.a.f.’s Φ1 and Φ2 operating on disjoint signatures, let

us call the combined fragment Φ1 ⊕ Φ2 the monadic fusion of Φ1 and Φ2. For monadic

fusions we have the following

Theorem 4.4.21 (Decidability Transfer for Monadically Suitable i.a.f.’s). If two monad-

ically suitable i.a.f.’s Φ1,Φ2 operating on disjoint signatures have decidable constraint

satisfiability problems, so does their monadic fusion.

Proof. Using Definition 4.4.16, we can say the following about the shared fragment Φ0 =

〈L0, T0,S0〉: (i) L0 is the empty signature L∅; (ii) T0 contains T
L∅
11 and hence it includes

the terms TM0 of Example 4.2.10 relative to the empty modal signature OM0 ; (iii) for

every tuple of free constants c0, the closed Φ0(c0)-terms t[c0], modulo βη-equivalence, are

a subset of the terms of the kind {x | ϕ[x]}, where ϕ[x] is a monadic formula of first-order

language, possibly with equality (that is, to build ϕ[x], at most equality and the free

constants c0 of type D → Ω can be used); (iv) the structures in S0(c0) are closed under

disjoint I-copies and are Φ0(c0)-equivalent to their disjoint I-copies.

To justify (iv), argue as follows: if A ∈ S0(c0), then by Definition 4.3.1 it is the L∅(c0)-

reduct of a Φi(c0)-structure B (i = 1, 2); since taking disjoint I-copies of L∅(c0)-structures

43These closure properties are guaranteed if L2V is axiomatized by first-order formulae without identity
(see [53] for recent interesting material, both in the decidable and in the undecidable case).

123

is Φi(c0)-extensible by Definition 4.4.16(iii), we have that for every index set I, there is a

Φi(c0)-structure B′ having
∑

I A as a L∅(c0)-reduct and such that B is Φi(c0)-equivalent

to B′. Taking L∅(c0)-reducts, it follows that A ≡Φ0(c0)

∑

I A.

Using (ii) and (iv) above, we can repeat word-by-word the proof of Proposition 4.4.12

and in order to apply Theorem 4.4.6 we only have to show that Φ0 is effectively locally

finite. Despite the fact that there are infinitely many non equivalent monadic first-order

sentences with equality, we shall show by using (iii)-(iv) that there are only finitely many

closed Φ0(c0)-terms t[c0] which are differently interpreted in at least one structure from

S0(c0) (here c0 := {P1, . . . , Pn} are free constants, which must be of type D → Ω, because

this is the only type of Φ0). Recall that t[c0] ∼βη {x | ϕ[x]}, where ϕ[x] is as in (iii)

above.

By closure under disjoint I-copies and Φ0(c0)-equivalence to disjoint I-copies (see

(iv)), we can limit ourselves to the consideration of at most 22n
-structures from S0(c0):

each of these structures is uniquely determined by the fact that the cardinal invariants44

aε are either 0 or m in it (here m is an infinite, big enough, cardinal).

Each of these at most 22n
structures AS is identified by a set S of formulae of the kind

ε(x), in the sense that we have AS |= ψS , where ψS is the one-variable monadic sentence
∧

ε∈S ∃x ε(x) ∧
∧

ε 6∈S ¬∃x ε(x) (notice also that for S 6= S′, we have AS 6|= ψS′).

We claim that quantifier elimination holds in AS, i.e. that for every first-order formula

ϕ[x] (built up from equality and from the unary predicates Pj) one can effectively compute

from S a formula ϑS [x] such that AS |= ∀x(ϕ[x]↔ ϑS [x]) holds and such that ϑS [x] does

not contain quantifiers. To show the claim, we use the fact that for every ε ∈ S, the

set ε(AS) is infinite; recall also that in order to eliminate quantifiers, it is sufficient to

eliminate them from primitive formulae, i.e. from formulae of the kind ∃y χ(y, x), where

χ(y, x) is a conjunction of literals. In our case, these literals can only be y = xi, y 6=

xi, Pj(y),¬Pj(y) (of course, literals in which y does not occur are not relevant). Since

equations y = xi causes the quantifier ∃y to be removed by replacement, we can assume

that our χ is equivalent to a conjunction of negative literals y 6= xi and of a Boolean

combination of atomic formulae of the kind Pj(y). The set defined by this Boolean

combination in AS is either infinite or empty, so within AS , the formula ∃y χ(y, x) is

equivalent either to ⊥ or to ⊤. As a consequence of the above claim, in the case in which

the tuple x reduces to a single variable x, ϑS[x] is a boolean combination of the atomic

formulae Pj(x). Thus, in all the structures that belongs to S0(c0), the Φ0(c0)-atom

{x | ϕ[x]} = {x |
∨

S

(ψS ∧ ϑS[x])}

is true, yielding the claim (because there are only finitely many possibilities for ϑS [x]).

44Here and below, we freely use notation from Proposition 4.4.12.

124

Theorem 4.4.21 offers various combination possibilities, however notice that: (a) the

conditions for a fragment to be monadically suitable are rather strong (for instance, the

two variable fragment with identity is not monadically suitable); (b) the notion of monadic

fusion is a restricted form of combination, because only unary second-order variables are

available for replacement when forming formulae of the combined fragment (thus, for

instance, the monadic fusion of two two-variables fragments does not contain sentences

like ∃x∃y(R1(x, y)∧R2(x, y)), if R1, R2 do not belong to the same component signature).

As already pointed out, the main ingredient of Theorem 4.4.21 (namely the notion

of a monadically suitable fragment) is somewhat implicit in the literature on monodic

temporal fragments (see for instance [40]). In the next chapter we will show that our main

decidability transfer result (Theorem 4.4.6) can be used to prove a decidability theorem

for monodic temporal/modal fragments whose extensional component is a monadically

suitable fragment, thus extending relevant results from the literature (see again [40]).

125

Chapter 5

Combination for Monodic

Fragments

Applications often require to handle properties that can be expressed as formulae be-

longing to first-order temporal or modal predicate logics. Unfortunately, fragments in

first-order temporal and modal predicate logics become undecidable quite soon: for in-

stance, classical decidability results for the monadic or the two-variables cases do not

extend to modal languages (see [57, 41, 54] and also [24] for an essential account of these

and related results). However, there are interesting modal predicate fragments which

are decidable: one-variable fragments (corresponding to products with S5) are usually

decidable (see [82, 40]), as well as many monodic fragments. We recall that a monodic

formula is a modal first order formula in which modal operators are applied only to sub-

formulae containing at most one free variable; monodic fragments are intended to be

classes of monodic formulae (of course the entire class of monodic formulae is too big to

be decidable, being an extension of classical first order language).

The interest in monodic fragments relies in the fact that properties which are relevant,

for example, in the field of temporal databases can be expressed using formulae belonging

to such fragments (see again [40]). Monodic fragments whose extensional (i.e. non modal)

components is decidable seem to be decidable too (see [94, 40]): we shall give this fact

a formulation in terms of a decidability transfer result for monodic fragments which are

obtained as combinations of a suitable extensional fragment and of a one-variable first-

order modal fragment. Since we prefer, for simplicity, not to introduce a specific formal

notion of a modal fragment, we shall proceed through standard translations and rely on

our usual notion of an i.a.f..

126

5.1 Constant Domains and Standard Translation

Modal predicate formulae are built up from first order atomic formulae of a given first-

order one-sorted relational signature L and from formulae of the kind X(x) (where X is

a unary second-order variable), by using boolean connectives, individual quantifiers and

a diamond operator ♦.1

There are actually different standard translations for first-order modal languages (see

[24]), we shall concentrate here on the translation corresponding to constant domain

semantics. The latter is defined as follows. The signature LW has, in addition to the

unique sortD of L, a new sort W ; relational constants of type Dn → Ω have corresponding

relational constants in LW of type DnW → Ω. We use equal names for corresponding

constants: this means for instance that if P has type D2 → Ω in L, the same P has type

D2W → Ω in LW . We shall make the same conventions for second-order variables: hence

a second-order L-variable X of type D → Ω has a corresponding second-order variable X

of type DW → Ω in LW .

Notice that a LW -structure A is nothing but a [[W]]A-indexed class of L-structures,

all having the same domain [[D]]A: we indicate by Aw the structure corresponding to

w ∈ [[W]]A and call it the index structure over w. To be more precise, Aw is the L-

structure having [[D]]A as a support and moreover, for P : Dn → Ω, we have that

IAw(P) contains the tuples a ∈ [[D]]nA such that A |= P (a,w) holds.

The signature LWR is obtained from LW by adding it also a binary ‘accessibility’

relation R of type WW → Ω. This is the signature we need for defining the standard

translation.

For a modal predicate L-formula ϕ[xD
1 , . . . , x

D
n] and for a variable w : W , we define

the (non modal) LWR-formula ST (ϕ,w) as follows:

ST (⊤, w) = ⊤

ST (⊥, w) = ⊥

ST (X(xi), w) = X(xi, w)

ST (P (xi1 , . . . , xim), w) = P (xi1 , . . . , xim , w)

ST (¬ψ,w) = ¬ST (ψ,w)

ST (ψ1 ∨ ψ2, w) = ST (ψ1, w) ∨ ST (ψ2, w)

ST (ψ1 ∧ ψ2, w) = ST (ψ1, w) ∧ ST (ψ2, w)

ST (♦ψ,w) = ∃vW (R(w, v) ∧ ST (ψ, v))

ST (∃xDψ,w) = ∃xDST (ψ,w).

1All the results in this section extend to the case of multimodal languages and to the case of n-ary
modalities like Since, Until, etc.

127

5.2 Monodic Fusions for Fragments

Next two definitions identify the ingredients of our combined problems.

Definition 5.2.1. Let F1M be a class of Kripke frames2 closed under disjoint unions

and isomorphisms. We call one-variable modal fragment induced by F1M the interpreted

algebraic fragment Φ1M = 〈L1M , T1M ,S1M 〉, where:

(i) L1M := LWR
∅ , where L∅ is the empty one-sorted first-order signature;3

(ii) T1M contains the terms which are βη-equivalent to terms of the kind

{wW , xD | ST (ϕ,w)}, where ϕ is a modal predicate formula having x as the only

(free or bound) variable;

(iii) S1M is the class of the L1M -structures A such that [[D]]A is not empty and such

that the Kripke frame ([[W]]A,IA(R)) belongs to F1M .

Definition 5.2.2. For a monadically suitable i.a.f. Φe = 〈Le, Te,Se〉 (recall Definition

4.4.16), we define the i.a.f. ΦW
e = 〈LW

e , TW
e ,SW

e 〉, as follows:

(i) TW
e contains the terms βη-equivalent to terms of the kind {wW , xD | ST (ϕ,w)}, for

{xD | ϕ} ∈ Te;

(ii) SW
e contains the LW

e -structures A whose index structures Aw are all in Se.

We first make sure that decidability is not lost when passing from Φe to ΦW
e :

Lemma 5.2.3. If constraint satisfiability in a monadically suitable fragment Φe is decid-

able, so is constraint satisfiability in ΦW
e .

Proof. Consider a ΦW
e -constraint:

∧n
i=1({wW , xD | ST (ϕi, w)} = {wW , xD | ST (ϕ′

i, w)}) ∧

∧
∧m

j=1({wW , xD | ST (ψj , w)} 6= {wW , xD | ST (ψ′
j , w)});

we claim that is is satisfiable iff the Φe-constraints

n∧

i=1

({x | ϕi} = {x | ϕ′
i}) ∧ {x | ψj} 6= {x | ψ

′
j} (5.1)

are all satisfiable. One side is clear (just look at index structures); for the other side,

consider Φe-structures Aj (j = 1, . . . ,m) satisfying (5.1); applying to their L∅-reducts

2Recall that a Kripke frame is a nonempty set W endowed with a binary relation R.
3This means that L∅ contains just the sort D and no other proper symbol.

128

a large disjoint I-copy, the supports of these structures get the same cardinality, which

means that such supports can be renamed to make them just the same. Since extensibility

of taking disjoint I-copies is part of the definition of a monadically suitable fragment, this

gives the desired model A for the original constraint: to this aim, it is sufficient to take

[[W]]A := {1, . . . ,m} and to let A be the LW -structure having the Aj so modified as

index structures.

Fix a one variable modal fragment Φ1M and a first-order monadically suitable fragment

Φe; we call monodic fusion of Φe and Φ1M the combined fragment ΦW
e ⊕Φ1M .

Thus one may for instance combine packed guarded or two-variables fragments with

one-variables modal fragments to get monodic fusions corresponding to the relevant cases

analyzed in [94, 40].4 In fact (modulo taking standard translation), in combined frag-

ments like ΦW
e ⊕ Φ1M we can begin with formulae ϕ[x] of Φe, apply to them a modal

operator, then use the formulae so obtained to replace second-order variables in other

formulae from Φe, etc. Fragments of the kind ΦW
e ⊕ Φ1M formalize the intuitive notion

of a monodic modal fragment whose extensional component is Φe. Since Φ1M is also in-

terpreted, constraint satisfiability in ΦW
e ⊕Φ1M is restricted to a desired specific class of

modal frames/flows of time. The class of Kripke frames on which Φ1M is based is taken to

be closed under disjoint unions, but this assumption is not really relevant for relativized

satisfiability (i.e. for conditional word problems): notice that a constraint containing at

most one negative literal is satisfied in a disjoint union iff it is satisfied in a component,

hence one can always close under disjoint unions the class of Kripke frames under con-

sideration, without loss of generality, as far as relativized satisfiability is concerned. We

shall prove the following general transfer result for monodic fusions:

Theorem 5.2.4. If the one variable modal i.a.f. Φ1M and the monadically suitable i.a.f.

Φe have decidable constraint satisfiability problems, then their monodic fusion ΦW
e ⊕Φ1M

also has decidable constraint satisfiability problems.

If we try to use directly Theorem 4.4.6 to prove this result, we find problems: these

problems are basically due to the fact that for the modal component the identity of two

individuals living on different worlds is an important information which is completely

out of the control of the extensional component. The idea is to include ‘trans-world’

identification into the semantics as an explicit data, following the classical suggestion of

counterpart theory (see [62]). Since we want our alternative models to provide a semantics

which is equivalent to the constant domains semantics, the most elegant solution seems

to be that of representing individual domains as descent data.

4We recall that the two-variable fragment is monadically suitable only if we take out identity; con-
sequently decidability of the monodic modal two-variable fragments with identity is not covered by our
results (and as a matter of fact, it is not true - see [40] for the relevant pointers to the literature).

129

5.3 An Alternative Translation

Fix a set W ; we call descent data for W 5 a triple (E, p, ϑ) where p : E → W and

ϑ : E × W → E are functions satisfying the following three requirements for all e ∈

E,w,w1, w2 ∈W :6

p(ϑ(e,w)) = w (5.2)

ϑ(e, p(e)) = e (5.3)

ϑ(ϑ(e,w1), w2) = ϑ(e,w2). (5.4)

To understand this definition from a modal point of view, we may think of E as the domain

of all possible individuals and of p as the function that associates with an individual e

the world p(e) where e lives: in this sense, ϑ(e,w) has to be thought as the counterpart

of e in the world w. Since we want to mimic a constant domain semantics, we would

like from conditions (5.2)-(5.4) to follow that counterparts behave in such a way that

fibers over W are in fact ‘constant’. This is true (provided W is not empty, which means

that the map W → {∗} is onto) by a ‘descent theorem’ that holds for instance in exact

categories: we shall explain (and check) what we need just for the very easy special case

we are interested in.

We call canonical descent data the descent data of the kind (D×W,pW , ϑW) where D

is a set, pW is the projection on the second component and ϑW (〈d,w′〉, w) = 〈d,w〉. Now

the descent theorem says the following: every triple (E, p, ϑ) forming descent data for a

non-empty set W is isomorphic to a canonical descent data. This is proved as follows:

take the equivalence relation over E given by e1 ≃ e2 iff (there is w ∈ W such that

ϑ(e1, w) = e2). We now let D to be the quotient set of E under ≃. To check that the

canonical descent data (D×W,pW , ϑW) are isomorphic to (E, p, ϑ), consider the bijective

function h : E → D ×W associating with e ∈ E the pair h(e) := 〈[e], p(e)〉 and observe

that this bijection commutes with p and ϑ (in the sense that we have pW (h(e)) = p(e)

and ϑW (h(e), w) = h(ϑ(e,w))).

The idea is now that of using descent data to define a new translation for modal

first order formulae: this translation (corresponding to an alternative equivalent ‘descent’

semantics) has the first advantage that we do not need to modify the original first order

signature L by altering the types of the relational symbols in it (as it happened for the

definition of LW in the case of the standard translation).

5One should better say ‘descent data for the unique map W → {∗}’. Descent theory is a powerful and
deep theory in pure mathematics (see, e.g., [52, 51]).

6From now on, we shall use the letters e, w, . . . both for (sorted) variables in a logical language and for
concrete elements of given structures (and for the names of these concrete elements in expanded languages,
like in Subsection 4.1.4): the context will carefully clarify, case by case, the intended use.

130

Let L be a first-order relational one-sorted signature; the signature Ld is obtained by

changing the name of the unique sort of L from D to E and then by adding to L a new

sort W , a binary relation R : WW → Ω and function symbols p : E →W , ϑ : EW → E.

For a modal L-formula ϕ[e1, . . . , en] (here e1, . . . , en are just individual variables of

the unique sort D of L) and for a variable w : W , we define the (non modal) Ld-formula

DT (ϕ,w) as follows:

DT (⊤, w) = ⊤

DT (⊥, w) = ⊥

DT (X(ei), w) = X(ei)

DT (P (ei1 , . . . , eim), w) = P (ei1 , . . . , eim)

DT (¬ψ,w) = ¬DT (ψ,w)

DT (ψ1 ∨ ψ2, w) = DT (ψ1, w) ∨DT (ψ2, w)

DT (ψ1 ∧ ψ2, w) = DT (ψ1, w) ∧DT (ψ2, w)

DT (♦ψ,w) = ∃vW (R(w, v) ∧DT (ψ,w)[ϑ(e1, v), . . . , ϑ(en, v), v])

DT (∃eDψ,w) = ∃eE(p(e) = w ∧DT (ψ,w)),

where, according to our usual conventions, the notation DT (ψ,w)[ϑ(e1, v), . . . , ϑ(en, v), v]

means the formula obtained from DT (ψ,w) by replacing w by v and the free variables ei

by the Ld-terms ϑ(ei, v). In the following, we shall use notations like DT (ψ[u1, . . . , un], t),

where u1, . . . , un are Ld-term of type E and t is an Ld-term of typeW , to mean the formula

obtained from DT (ψ[x1, . . . , xn], w) by applying it the substitution x1 7→ u1, . . . , xn 7→

un, w 7→ t.

We now reformulate the notions of a one variable modal i.a.f. and of a monadically

suitable i.a.f. into this equivalent alternative descent semantics. We shall be interested

in the terms of the kind {e | DT (ϕ[e], p(e))}, where ϕ is a first order modal formula.

However, these terms are not precisely closed under substitutions for second-order vari-

ables: to get closure under substitution, some equational reasoning (partially based on

the descent equations) would be needed, in addition to βη-equivalence. Since we are not

precisely interested here in investigating the related technical details, we prefer to close

under substitution the set of terms we need to build our i.a.f.’s. Such an operation of

taking the smallest substitution closed set cl(T) of Ld-terms extending a given set T of

Ld-terms is rather harmless for our purposes: for instance, in case T contains the relevant

variables (as it will always be the case in this Section), we can use a mechanism similar

to the purification procedure explained in Subsection 4.3.1 and assume without loss of

generality that the cl(T)-terms appearing in constraints are in fact terms from the original

set T .

131

We first translate one-variable modal fragments into descent semantics:

Definition 5.3.1. Let Φ1M = 〈L1M , T1M ,S1M 〉 be the one-variable modal fragment in-

duced by the frame class F1M . The i.a.f. Φd
1M = 〈Ld

1M , T
d
1M ,Sd

1M 〉 is so defined:

(i) T d
1M is the substitution closure of the set of the terms of the kind {eE | DT (ϕ[e], p(e))},

where ϕ[x] is a one-variable modal predicate formula;

(ii) Sd
1M contains the Ld

1M -structures A such that [[E]]A, IA(p), IA(ϑ) satisfy the descent

data equations (5.2)-(5.4), IA(p) is surjective and the Kripke frame ([[W]]A,IA(R))

belongs to F1M .

The requirement of surjectivity of IA(p) corresponds to the fact that the domain of the

constant domain semantics is not empty and, on the basis of the descent equations, it is

equivalent to the fact that [[E]]A is not empty. Suppose now we are given a monadically

suitable i.a.f. Φe = 〈Le, Te,Se〉; this is a purely extensional fragment, hence the DT -

translations of the terms in it do not contain the descent multiplication ϑ: this is why

we can translate Φe into the signature L−d
e (the latter is like Ld

e except that ϑ and R are

omitted). The related definition is the following one:

Definition 5.3.2. Let Φe = 〈Le, Te,Se〉 be a monadically suitable i.a.f.. We let Φ−d
e to

be the i.a.f. 〈L−d
e , T−d

e ,S−d
e 〉, where:

(i) T−d
e is the substitution closure of the set of the terms {eE | DT (ϕ[e], p(e))} such

that {x | ϕ[x]} ∈ Te;

(ii) S−d
e contains the L−d

e -structures A which are isomorphic to [[W]]A-indexed disjoint

unions of structures Aw from Se (these Aw, varying w ∈ [[W]]A, are called the fiber

components of A).

In full details, condition (ii) from Definition 5.3.2 means the following. Notice first

that it makes sense to consider Le as a subsignature of L−d
e (modulo the change of name

of the unique sort of Le from D to E). Thus in (ii) we are asking that A ∈ S−d
e if and

only if (up to isomorphism): (a) the Le-reduct of A is the disjoint union
∑

w∈[[W]]A
Aw of

some Le-structures Aw, varying w ∈ [[W]]A; (b) the Le-structures Aw all belong to Se;

(c) IA(p) is given by IA(p)(d,w) = w, for every (d,w) ∈ [[E]]A.

The definition of IA(p) is well set because, by (a), the elements of [[E]]A can be

represented as pairs (d,w), where w ∈ [[W]]A and d is from the support of Aw; moreover,

since the supports of the Aw’s are not empty, IA(p) is surjective. In other words, this

means that the following quite simple schema builds (up to isomorphism) precisely the

structures in S−d
e : take a family {Aw | w ∈ I} of structures from Se, interpret W as

the index set I, E as the disjoint union of the supports of the Aw, all predicates as in

132

standard disjoint union of relational structures and p as the functions associating with an

element the index of its support.

We now make an important observation, to be fixed in Lemma 5.3.3 below. If the

L−d
e -structure A is isomorphic to the [[W]]A-indexed disjoint union of the Le-structures

Aw, satisfiability in A of Φ−d
e -constraints is fiberwise, in the following sense. For every

w ∈ [[W]]A, for every d1, . . . , dn in the support of Aw and for every (non modal) Le-

formula ϕ[x1, . . . , xn], we have

A |= DT (ϕ[(d1, w), . . . , (dn, w)], w) iff Aw |= ϕ[d1, . . . , dn] (5.5)

(a trivial induction is sufficient to establish this fact). Notice that (5.5) holds also in

case Le is expanded by free constants c whose type is a Φe-type (there is only one Φe-

type, namely the type of the subsets of the domain). Since [[E]]A is the disjoint union

of the supports of the Aw, the interpretation of the c’s in A is obtained by gluing their

restrictions to the supports of the Aw. Thus, if we consider A as a Le(c)-structure, it

is still isomorphic to the [[W]]A-indexed disjoint unions of Le(c)-structures (that we still

call Aw). Now a Φ−d
e (c)-closed constraint is formed by positive literals

{eE | DT (ϕi[e], p(e))} = {eE | DT (ϕ′
i[e], p(e))} (i = 1, . . . , n)

and by negative literals

{eE | DT (ψj[e], p(e))} 6= {e
E | DT (ψ′

j[e], p(e))} (j = 1, . . . ,m);

according to (5.5), such a constraint is satisfied in A iff (i) for every w ∈ [[W]]A, we have

Aw |=
∧

i({x | ϕi[x]} = {x | ϕ′
i[x]})7 and (ii) for every j there is wj ∈ [[W]]A such that

Awj
|= {x | ψj [x]} 6= {x | ψ′

j[x]}. Of course, the same observation applies to generalized

constraints too.

To sum up, we introduce the following notion: if a generalized Φ−d
e (c)-closed constraint

Γ is given, a Φe(c)-positive literal of Γ is a positive literal of the form {x | ϕ[x]} =

{x | ϕ′[x]} such that {eE | DT (ϕ[e], p(e))} = {eE | DT (ϕ′[e], p(e))} ∈ Γ (the definition of

a Φe(c)-negative literal of Γ is analogous). The above observation now reads as:

Lemma 5.3.3. Let Φe = 〈Le, Te,Se〉 be a monadically suitable i.a.f. and let Φ−d
e be the

i.a.f. of Definition 5.3.2. Given free constants c, suppose that the L−d
e (c)-structure A is

isomorphic to the [[W]]A-indexed disjoint union of the Le(c)-structures Aw ∈ Se(c). Now

A satisfies a generalized Φ−d
e (c)-closed constraint Γ iff the Φe(c)-positive literals of Γ hold

7In more detail: we have that A |= {eE | DT (ϕi[e], p(e))} = {eE | DT (ϕ′
i[e], p(e))} iff for every

w ∈ [[W]]A and for every d in the support of Aw, we have A |= DT (ϕ[(d, w)] ↔ ϕ′[(d, w)], w). By
(5.5), this is the same as Aw |= ϕ[d] ↔ ϕ′[d] for all w and d in Aw, which means that the Φe(c)-atom
{x | ϕi[x]} = {x | ϕ′

i[x]} is true in all fiber structures Aw.

133

in all fiber components Aw and every Φe(c)-negative literal of Γ holds in at least one fiber

component Aw.

Remark 5.3.4. The following strong consequence of the above Lemma will be repeatedly

used in the following: we know that a structure A ∈ S−d
e (c) is isomorphic to a [[W]]A-

indexed disjoint union of structuresAw from Se(c). Suppose now that we replace, in such a

disjoint union, the structures Aw by some structures A′
w ∈ Se(c) such that Aw ≡Φe(c) A

′
w:

call A′ the [[W]]A′-indexed structure obtained in this way (here the interpretation of W

has not changed, namely we have [[W]]A′ := [[W]]A). Clearly A′ ∈ S−d
e (c) and Lemma

5.3.3 implies that we have A ≡Φ−d
e (c) A

′: thus Φ−d
e (c)-equivalence is preserved, whenever

we apply fiberwise a Φe(c)-equivalence preserving construction.

5.4 Proof of the Monodic Decidability Transfer Result

Let now Φ1M be a one-variable modal i.a.f. and Φe be a monodically suitable i.a.f..

Our plan is the following: we first check that ΦW
e ⊕ Φ1M can be equivalently replaced

by Φ−d
e ⊕ Φd

1M and then we apply Theorem 4.4.6 to the latter.

The first part of the plan just consists of unwinding the definitions we gave. In fact

ΦW
e and Φ−d

e (as well as Φ1M versus Φd
1M , and ΦW

e ⊕Φ1M versus Φ−d
e ⊕Φd

1M), are basically

the same i.a.f.; however for our purposes the statement of the following lemma is sufficient:

Lemma 5.4.1. Satisfiability of pure constraints in ΦW
e ⊕Φ1M can be reduced to satisfia-

bility of pure constraints in Φ−d
e ⊕ Φd

1M , and vice versa. Constraint satisfiability for ΦW
e

(resp. for Φ1M) can also be reduced to constraint satisfiability for Φ−d
e (resp. for Φd

1M),

and vice versa.

Proof. A pure ΦW
e ⊕Φ1M -constraint contains equations and inequations among terms of

the kind {wW , xD | ST (ϕ,w)}, where ϕ[x] is either a one-variable modal predicate formula

or it is such that {x | ϕ} is a Φe-term. On the other hand, a pure Φ−d
e ⊕ Φd

1M -constraint

contains equations and inequations among terms of the kind {eE | DT (ϕ[e], p(e))}, where

ϕ[x] is either a one-variable modal predicate formula or it is such that {x | ϕ} is a

Φe-term. Hence it is clear how to convert a pure ΦW
e ⊕ Φ1M -constraint Γ into a pure

Φ−d
e ⊕ Φd

1M -constraint Γd, and vice versa: it remains to show the equisatisfiability.

To any ΦW
e ⊕ Φ1M -structure A we can associate a Φ−d

e ⊕ Φd
1M -structure Ad as fol-

lows: we let [[W]]Ad := [[W]]A and IAd(R) := IA(R); the symbols E, p, ϑ are interpreted

as canonical descent data for [[W]]A relatively to [[D]]A. Thus by definition [[E]]Ad =

[[D]]A×[[W]]A, so it makes sense to put IAd(P) := {〈(d1, w), . . . , (dn, w)〉 | 〈d1, . . . , dn, w〉 ∈

IA(P)} for every predicate symbol P having type Dn → Ω in L.8 Actually every

8Recall that, in correspondence to a P : Dn → Ω, the signature LWR contains P : DnW → Ω, whereas
Ld contains P : En → Ω.

134

Φ−d
e ⊕Φd

1M -structure is isomorphic to one of the kind Ad, for some ΦW
e ⊕Φ1M -structure

A: in fact, the L−d
e -reduct of a Φ−d

e ⊕ Φd
1M -structure B is a [[W]]B-disjoint union of

Le-structures Bw (see Definition 5.3.2(ii)), whereas by the descent theorem we can as-

sume that, up to isomorphism, the descent data in B are canonical. The combination

of these two facts means that B ≃ Ad for some A. To explain this fact in full details,

we can reason as follows: since descent data in B are canonical, we can assume that

[[E]]B = D̃× [[W]]B, for some D̃ and that the descent symbols p, ϑ are interpreted in the

canonical way. We define A by taking [[W]]A := [[W]]B, IA(R) := IB(R), [[D]]A := D̃

and IA(P) := {〈d1, . . . , dn, w〉 | 〈(d1, w), . . . , (dn, w)〉 ∈ IB(P)}, for every n-ary predicate

symbol P (the index structures of A are now isomorphic to the corresponding fiber com-

ponents of B, hence A ∈ SW
e). Since the Le-reduct of B is the disjoint union of the Bw,

it turns out that B ≃ Ad.

That Γ is satisfied in A iff Γd is satisfied in Ad is straightforward: to see it, just check

by induction that, for every modal formula ϕ[x1, . . . , xn],

A |= ST (ϕ[d1, . . . , dn], w) iff Ad |= DT (ϕ[(d1, w), . . . , (dn, w)], w) (5.6)

holds for all d1 . . . , dn ∈ [[D]]A and all w ∈ [[W]]A under the corresponding assignments

to the second-order variables. By ‘corresponding’ we obviously mean here that (d,w)

belongs to the subset assigned to X in Ad iff (d,w) belongs to the subset assigned to X in

A. To understand this and to check inductively the above condition, recall that descent

data in Ad are canonical (thus, e.g. elements of [[E]]Ad are pairs (d,w), the symbol p is

interpreted as the second projection, etc.).

The statement for the fragments Φ1M and Φd
1M is shown in the same way. For frag-

ments ΦW
e and Φ−d

e , we need a preliminary observation, because the supports of the fiber

components in a Φ−d
e -structure may not be isomorphic (there are no full descent data

here). The observation is the following: Φe is monadically suitable, so by taking suitably

large disjoint I-copies we can expand the cardinalities of the non-empty supports in the

fiber components of a Φ−d
e -structure and make such supports to coincide, up to renaming

of their elements (see Remark 5.3.4). At this point, canonical descent data exists and the

above argument based on (5.6) applies.

In view of Lemma 5.4.1, to complete the proof of Theorem 5.2.4 it is sufficient now to

show the following

Proposition 5.4.2. If the one variable modal i.a.f. Φ1M and the monadically suitable

i.a.f. Φe have decidable constraint satisfiability problems, then the combined fragment

Φ−d
e ⊕ Φd

1M also has decidable constraint satisfiability problems.

Proof. Since by Lemmas 5.2.3, 5.4.1 the component fragments Φ−d
e and Φd

1M have decid-

135

able constraint satisfiability problems, we can try to apply Theorem 4.4.6, by checking

the remaining conditions.

Notice that both i.a.f.’s have E → Ω as the only type for their terms and that the

shared signature L0 contains the two sorts E,W and the function symbol p of type

E → W . According to the definitions of a one variable modal and of a monadically

suitable fragment, the set of terms T0 in the shared fragment Φ0 = 〈L0, T0,S0〉 contains

the terms of the kind {eE | DT (ϕ[e], p(e))}, where ϕ[x] is a one-variable (non modal)

first-order formula in the empty one-sorted signature L∅: this implies, in particular, that

Φ0 is effectively locally finite (only second-order variables for subsets, Boolean connectives

and the quantifier ∀x,∃x can be used to build ϕ). We do not have complete information

about the L0-structures A ∈ S0, but we know that IA(p) is always surjective in them

(because the interpretation of p is a surjective function in structures coming from both

Sd
1M and S−d

e).

We need to identify suitable structural operations on Φ0 to apply Theorem 4.4.6,9 but

first we study invariants for L0(c0)-structures. To this aim, suppose we are given free

constants c0 := {P1, . . . , Pn} (all having type E → Ω, which is the only Φ0-type) and a

L0(c0)-structure A. For w ∈ [[W]]A, we denote by Aw the fiber component over w: this is

the L∅(c0)-structure whose support is given by the e ∈ [[E]]A such that IA(p)(e) = w (in

Aw the predicates Pj are interpreted by taking the restriction of IA(Pj) to the support

of Aw).

Consider, as in the proof of Proposition 4.4.12, the boolean combinations of the form

ε(e) = Q1(e) ∧ · · · ∧ Qn(e) where Qj ≡ Pj or Qj ≡ ¬Pj . With each w ∈ [[W]]A we

associate the 2n cardinal invariants of Proposition 4.4.12 for the fiber component Aw.

That is: for ε = 1, . . . , 2n, we let κε(w) to be the cardinality of the set of the e ∈ [[E]]A

living in the support of the w-fiber component such that Aw |= ε(e); also, we let µ(w)

to be equal to the set of the ε such that κε(w) > 1. Finally, we let µ(A) to be the set

of sets formed by the µ(w), varying w ∈ [[W]]A. Notice that the fact that µ(A) = J is

equivalent to

A |=
∧

S∈J ∃w [
∧

ε∈S ∃e (p(e) = w ∧ ε(e)) ∧
∧

ε 6∈S ¬∃e (p(e) = w ∧ ε(e))] ∧

∧
∧

S 6∈J ¬∃w [
∧

ε∈S ∃e (p(e) = w ∧ ε(e)) ∧
∧

ε 6∈S ¬∃e (p(e) = w ∧ ε(e))]

i.e. to

A |=
∧

S∈J ∃wDT [
∧

ε∈S ∃x ε(x) ∧
∧

ε 6∈S ¬∃x ε(x), w] ∧

∧
∧

S 6∈J ¬∃wDT [
∧

ε∈S ∃x ε(x) ∧
∧

ε 6∈S ¬∃x ε(x), w]

9In the statement of Theorem 4.4.6, we take Φ⋆
0 equal to Φ0, so only condition 4.4.6 (4) has not yet

been checked.

136

Since IA(p) is surjective, this is the same as

A |=
∧

S∈J ∃eDT [
∧

ε∈S ∃x ε(x) ∧
∧

ε 6∈S ¬∃x ε(x), p(e)] ∧

∧
∧

S 6∈J ¬∃eDT [
∧

ε∈S ∃x ε(x) ∧
∧

ε 6∈S ¬∃x ε(x), p(e)];

the latter simply says that the Φ0(c0)-closed constraint

∧

S∈J({e | DT [
∧

ε∈S ∃x ε(x) ∧
∧

ε 6∈S ¬∃x ε(x), p(e)]} 6= {e | DT (⊥, p(e))}) ∧

∧
∧

S 6∈J({e | DT [
∧

ε∈S ∃x ε(x) ∧
∧

ε 6∈S ¬∃x ε(x), p(e)]} = {e | DT (⊥, p(e))})

is satisfied in A(c0).

Suppose now that the L0(c0)-structures A1 and A2 are Φ0(c0)-equivalent: then we

have µ(A1) = µ(A2), as explained above. We will make A1 and A2 Φ0(c0)-isomorphic in

two steps: each step needs a Φ0-structural operation that will be proved to be extensible

both to Φ−d
e and to Φd

1M (notice that the composition of extensible structural operations

is extensible).

The first structural operation is taking disjoint I-copies
∑

I : notice that taking disjoint

I-copies operation applies to structures over a multi-sorted first-order relational language

having also unary function symbols (like our p).10 Consequently, the operation applies

to the language L−d
e (and, in particular, to L0); it is a Φ−d

e -structural operation (hence

its restriction to L0 is in particular Φ−d
e -extensible), because the fiber components in

∑

I A are the same as the fiber components in A (we just made more copies of each fiber

component) and Lemma 5.3.3 applies, guaranteeing that A ≡Φ−d
e (c0)

∑

I A.

The operation
∑

I is Φd
1M -extensible: to see this, first observe that the frame class F1M

defining Φ1M is closed under disjoint unions. IfA is now a structure from S1M (c0), in order

to make
∑

I A a S1M (c0)-structure as well, we only need to introduce a descent multipli-

cation on
∑

I A. This is done as follows: put IP

I A(ϑ)((e, i), (w, j)) := (IA(ϑ)(e,w), j).

The descent equations (5.2)-(5.4) can be checked in a straightforward way. In addition,

to show that truth of closed Φd
1M (c0)-atoms is preserved, one simply check by induction

that, for every modal one-variable L∅-formula ϕ[x] (in which second-order variables have

been replaced by the free constants c0), for every index i ∈ I, for every e ∈ [[E]]A, for

every w ∈ [[W]]A, if IA(p)(e) = w, then we have

∑

I

A |= DT (ϕ[(e, i)], (w, i)) iff A |= DT (ϕ[e], w).

If we apply
∑

I for sufficient large I to our Φ0(c0)-equivalent structures A1 and A2,

10This is because one can put, for unary p and i ∈ I , IP

I
A(p)(e, i) := (IA(p)(e), i).

137

then we get L0(c0)-structures A′
1 and A′

2
11 such that for every S the cardinality of the

w1 ∈ [[W]]A′
1

with µ(w1) = S is the same as the cardinality of the w2 ∈ [[W]]A′
2

with

µ(w2) = S. Thus we have a bijection ιW : [[W]]A′
1
→ [[W]]A′

2
, preserving the invariant µ.

To make A′
1 and A′

2 Φ0(c0)-isomorphic, we need the fiber components over w and ι(w)

to be isomorphic (for all w): to that aim, since µ(w) is equal to µ(ι(w)), it is sufficient

to apply ‘fiberwise’ the argument of Proposition 4.4.12, provided we are allowed to take

suitably large disjoint I-copies of the sets [[E]]A′
1

and [[E]]A′
2

only. This will be achieved

through the second structural operation we are going to introduce.

Let A be a L0(c0)-structure and let I be a non-empty set of indexes; we call
∑E

I (A)

the L0(c)-structure so defined: (i) we interpret the sort W as in A and the sort E as the

disjoint union
∑

I [[E]]A; (ii) we interpret the symbol p as the function mapping (e, i) to

IA(p)(e); (iii) we interpret the unary predicate P ∈ c0 as the set of all (e, i) such that

e ∈ IA(P). That
∑E

I (A) is Φ0(c0)-equivalent to A will be checked below (directly for the

stronger cases of Φd
1M (c0)- and of Φ−d

e (c0)-equivalence).

The operation
∑E

I is Φ−d
e -extensible: this comes from Remark 5.3.4 and from the fact

that Φe is a monadically suitable fragment (so that taking disjoint copies is Φe-extensible

at each fiber component separately).

Finally, the operation
∑E

I is Φd
1M -extensible: we can interpret the descent multipli-

cation symbol ϑ in
∑E

I (A) into the function associating (IA(ϑ)(e,w), i) with the pair

((e, i), w) (equations (5.2)-(5.4) are easily checked).12 Of course, the accessibility relation

R is interpreted in
∑E

I (A) as it was interpreted in A. Thus it remains to prove that

A ≡Φd
1M (c0)

∑E
I (A): to this aim, it is sufficient to check inductively that for every one-

variable modal formula ϕ[x], for w ∈ [[W]]A, e ∈ [[E]]A (such that IA(p)(e) = w) and for

i ∈ I, we have that

E∑

I

(A) |= DT (ϕ[(e, i)], w) iff A |= DT (ϕ[e], w).

This completes the proof because, as already pointed out, for sufficiently large I the

structures
∑E

I (A′
1) and

∑E
I (A′

2) are now Φ0(c0)-isomorphic.

11A′
1 and A′

2 are still Φ0(c0)-equivalent (in fact, we observed that, more generally, truth of closed
Φd

1M (c0)- and Φ−d
e (c0)-literals is preserved).

12One may also use the complete formulation of the descent theorem here, saying that the category of
sets is equivalent to the category of descent data for the non-empty set W , and realize that the above
definition is just the definition of an I-indexed coproduct.

138

Conclusions

In this thesis we considered the decidability of fragments of different logical languages

and the problem of transferring the decidability to their combination. In particular, after

presenting a result of ours about the decidability of the universal fragment of the theory

of arrays with dimension, we mainly focused on one of the simplest methodologies for the

combination of decision procedures, the Nelson-Oppen procedure, which was originally

designed only for the disjoint signatures case and which is guaranteed to be terminating

and complete under the following assumptions: (i) Σ1 and Σ2 are disjoint; (ii) the theories

T1 and T2 are stably infinite.

We proved that, if we drop the hypothesis (ii), it is possible to incur in undecidability.

On the other hand, if we consider strongly ∃∞-decidable theories over disjoint signatures,

we proved that the decidability can be transferred to the union of the theories. Moreover,

we considered the assumption (i) about the disjointness of the signatures. By introduc-

ing a suitable notions of noetherian theory and Ti-basis enumerator, we extended the

results in [44] offering, for example, the opportunity of guaranteeing the decidability of

the constraint satisfiability problem for the combination of theories coming from the field

of computer algebra.

Finally, relying on a suitable notion of algebraic fragment, we showed that it is pos-

sible to recast the Nelson-Oppen schema into an higher-order framework by adopting

type-theoretic signatures in Church’s style and that, using it in conjunction with model-

theoretic results, it succeeds in dealing with various classes of combination problems.

Thus, we were able to prove a general decidability transfer result that covers as special

cases, besides new applications, the extension of Nelson-Oppen procedure to non-disjoint

signatures, the fusion transfer for decidability of global consequence relation in modal

logic, the fusion transfer of decidability of A-Boxes with respect to T-Boxes axioms in

local abstract description systems, and the transfer decidability result for the monodic

fusion of the one variable modal fragment and the monadically suitable one.

139

Index

Symbols
I-conglomeration, see Structural operation
K

-algebras, 61, 95
-vector spaces, 62, 95

S0-derivation, see Derivation
T0

-basis, 56
-compatibility, 47

Σ
-atom, 1
-clause, 1

ground, 2
positive, 1

-constraint, 3
-embedding, 2

elementary, 2
-formula

ground, 2
satisfiability of, 2
truth of, 2

-literal, 1
flat, 17
ground, 2

-structure, 2
reduct of, 2

-term
ground, 2

-theory, 2
Σ0-convex, 25, 60
∃-decidable, see ∃-decidable
∃∞-decidable, see ∃∞-decidable
complete, 2
consistent, 2
convex, 25
effectively locally finite, 54

locally finite, 54
model of, 2
noetherian, 57
stably infinite, see Fragment(s), first-

order
sub-model complete, 45
universal, 2

α-conversion, 77
βη

-equivalence, 78
-normal form, 78

long, 78
∃

-decidable, 26
-superposition-decidable, 38

weakly, 43, 73
∃∞-decidable, 26

strongly, 32, 71
λ

-abstraction, 76
-calculus, see Fragment(s)

ALC, see Description logics
µ-calculus, see Fragment(s)
Φ(c)

-equivalence, 109
-isomorphism, 109

Φ(x)
-atom, 81
-clause, 81
-constraint, 81
-literal, 81
-term, 81

Φ0

-basis, 91
full, 93

-compactness, see Fragment(s)

140

τ -term, 76
n-shifting, see Shifting
E-instantiation closed set, see Set
G-instantiation closed set, see Set
Φ

-atom, 81
closed, 81

-clause, 81
closed, 81
positive, 81
productive, 108

-compatibility, 111
-consequence, 90
-constraint, 81

closed, 81
generalized, 81
pure, 97

-extensibility, 110
-isomorphism theorem, 109
-literal, 81

closed, 81
-term, 81

degree, 97
pure, 97

-type, 81
-variable, 81

A
Algebraic fragment, see Fragment
Antecedent-mgu, see Mgu
Arity, 75
Arrays, theory of, 13
Assignment, 79

B
Branch

closed, 101
open, 101

Buchberger, algorithm, 62

C
Cardinality constraint clause, 38
Codomain variable, see Variable
Combination procedure, 102
Combined fragment, see Fragment(s)
Completeness, 111

towards, 106
Constant domain, 127
Constraint satisfiability problem, 3, 81
Convex

fragment, see Fragment(s), Φ0-convex
theory, see Σ-theory, Σ0-convex

D
Degree of a term, see Φ-term
Derivation, 34

S0-, 37
Descent data, 130

canonical, 130
Description logics
ALC, 6

atom, 8
A-Box, 7

consistency, 8
assertions

concept, 7
role, 7

concept(s), 6
atomic, 6
disjointness, 7
equivalence, 7
satisfiability, 7
subsumption, 7

individual, 7
interpretation, 6
role, 6
satisfiability

full, see Fragment(s), modal
local, see Fragment(s), modal

T-Box, 7
Diagram, 44

elementary, 44
Disjoint I-copy, see Structural operation
Disjoint union, see Structural operation
Domain variable, see Variable

E
Effective local finiteness, see Σ-theory
Elementary

class, 85
equivalence, 110

Exhaustive set, see Set

141

Expansion, see Fragment(s)
Extension, see Fragment(s)

F
Fiber components, 132
Finite expansion, see Fragment(s)
Flat literal, see Σ-literal
Formula, 76

first-order, 77
modal predicate, 127
packed guarded, 89

elementary, 90
satisfiability of, 79
truth of, 79

Fourier-Motzkin, algorithm, 66
Fragment(s), 2, 80

βη-equivalence of, 119
λ-calculus, simply typed, 84
µ-calculus, 88
Φ0

-compact, 105
-convex, 95

A-Box, 116
algebraic, 80

interpreted, 81
combined, 96
convex, 95
decidability, 2
elementary, 3
equational, 3
expansion, 91

finite, 109
extension, 91
first-order, 85
NK, 85
equational, 84
stably infinite, 25, 111
universal, 84

locally finite, 94
modal

full, 8, 88
global, 86
local, 8, 87
non-normal, 88
one-variable, 128

monadically suitable, 122

monodic fusion, 129
noetherian, 93

combination of, 115
packed guarded, 89
restriction, 91
shared, 96
specialization of, 110
subfragment, 91
universal, 3
universal Horn, 3

Frame, Kripke, see Kripke
Fusion, modal, 119

G
Gröbner, basis, 62

I
I.a.f., see Fragment, algebraic, interpreted
Index structure, see Structure(s)
Interpreted algebraic fragments, see Frag-

ment(s)
Invariant superposition module, see Super-

position
Isomorphism, 2
Isomorphism theorems, 109

K
Kripke

frame, 87
model, 87

L
Labeling function, 10
Language, 75
Local finiteness (1), see Σ-theory
Local finiteness (2), see Fragment(s)
Logical consequence, 2

M
Mgu

antecedent, 38
Model completion, 45
Model, Kripke, see Kripke
Model-saturated, 37
Monodic fusion, see Fragment(s)

142

N
Nelson-Oppen

assumptions, 25
procedure, 24

Noetherian
fragment, see Fragment(s)
theory, see Σ-theory

O
Operation, see Structural operation
Ordering triple

suitable, 35

P
P.b.e., see Positive basis enumerator
P.r.e., see Positive residue enumerator
Packed guarded formula, see Formula
Positive basis enumerator, 56

Σ0-convex, 60
Positive residue chain, see Residue chain
Positive residue enumerator, 91

Φ0-convex, 95
complete, 92
noetherian, 94
non-redundant, 92
terminating, 92

Predicate symbol, see Symbol(s)
Presburger arithmetic, 4, 13
Productive Φ-clause, see Φ-clause
Proper symbols, see Symbol(s)
Purification, 25, 98

Q
Quantifier elimination, 45

R
Reduction operation, see Structure(s)
Redundancy notion, 90

full, 91
Renaming, 77, 80
Residue chain, positive, 49
Restriction operation, see Fragment(s)

S
Satisfiability, 79

Satisfiability problem, see Constraint satis-
fiability problem

Saturated set, see Set
Selection function, 101
Sentence, 77
Set
E-instantiation closed, 18
G-instantiation closed, 18
exhaustive, 50, 107
saturated, 51, 106

Shifting, n, 37
Signature, 1, 75

first-order, 75
functional, 76
relational, 76

intersection, 76
one-sorted, 75
union, 76

Simply typed λ-calculus, see Fragment(s)
Sort, 75
Soundness, 104
Specialization, see Fragment(s)
Stable infiniteness, see Fragment(s), first-

order
Standard models, 15
Standard translation, 8, 86
Strongly ∃∞-decidable, see ∃∞-decidable
Structural operation, 109

I-conglomeration, 122
disjoint I-copy, 116, 118
disjoint union, 116
ultrapower, 110, 113

Structure(s), 78
index, 127
isomorphism of, 80
reduct, 80

Sub-model complete theory, see Σ-theory
Subfragment, see Fragment(s)
Subsignature, 1, 76
Substitution, 77

composite, 77
substructure, 2
Suitable ordering triple, see Ordering triple
Superposition

calculus, 33
module, 37

143

invariant, 38
Symbol(s)

predicate, 75
proper, 75

T
Term, 76

closed, 77
first-order, 76

Termination, 105
Towards completeness, see Completeness
Tree, 9

disjoint union of, 10
labeled, 10

Types, 75
primitive, 75

U
Ultrapower, see Structural operation

V
Valuation, 76
Variable

bounded occurrence, 77
codomain, 80
domain, 80
free occurrence, 77

W
Weakly ∃-superposition-decidable, see ∃-su-

perposition-decidable
Word problem, 81

conditional, 113

144

List Of Symbols

(·)+n n-shifting function, page 37

(Si)
+n n-shifting of Si, page 38

≺ Term reduction ordering, page 33

{x | ϕ} If ϕ is a formula, it means λxϕ, page 76

a-mgu Antecedent most general unifier, page 38

⊲1
βη βη-rewriting relation (one-step), page 77

∼βη βη-equivalence relation, page 78

C(−→x ,
−−−→
∀R.X) It indicates that the ALC atoms of C not occurring in under the scope

of the connective ∀R are −→x and
−−−→
∀R.X, where −→x are the ALC atoms

which are atomic concepts and
−−−→
∀R.X are the remaining ones, page 8

∆(A) Diagram of the structure A, page 44

∆e(A) Elementary diagram of the structure A, page 44

fvar(t) Set of variables that occur free in the term t, page 77

fvarτ (t) Set of variables of type τ that occur free in the term t, page 77

〈L, T 〉 (Algebraic) fragment, page 80

〈L, T,S〉 Interpreted algebraic fragment, page 81

Φ Interpreted algebraic fragment, page 81

Φ|L0
Restriction of the interpreted algebraic fragment to the language L0,
page 91

Φ(c) (Finite) expansion of the interpreted algebraic fragment Φ, page 109

Φ⋆ Specialization of the interpreted algebraic fragment Φ, page 110

Φ1 ⊕ Φ2 Combination of the interpreted algebraic fragments Φ1 and Φ2, page 96

ΦL
NK First-order algebraic fragment, NK version, page 85

145

LNK First-order language, NK version, page 85

k(e, n) (Non-computable) function associating to each pair (e, n) the number
k(e, n) of computation steps of the Turing Machine e on the input n,
page 27

I Given a language L = 〈T ,Σ, a〉, it is a function assigning to a constant
c ∈ Σ of type τ , an element I(cτ) ∈ [[τ]], page 79

[[−]] Given a language L = 〈T ,Σ, a〉, it is an (inductively extensible to all
types) function assigning to a sort S ∈ T , a set [[S]], page 78

〈T ,Σ, a〉 Higher-order language, page 75
∏

U Ultrapower operation over the ultrafilter U , page 110

∑I I-conglomeration operation over the index set I, page 122
∑

I Disjoint I-copy operation over the index set I, page 116

ResΦ Positive residue enumerator, page 91

RedΦ Redundancy notion, i.e. recursive binary relation between a finite set
of Φ-clauses and a Φ-clause, page 90

Σ
a
T Expansion of the signature ΣT with the finite set of constant a (if a T

is specified, usually ΣT means the signature of the theory T), page 1

ΣK Expansion of the signature Σ with a countable set of constants K,
page 35

〈[[−]],I〉 L-structure, page 78

A|L0
Reduct of the structure A to the language L0, page 80

≡Φ(c) Φ(c)-equivalence relation between L(c)-structures, page 109

≃Φ(c) Φ(c)-isomorphism between L(c)-structures, page 109

SP Superposition calculus, page 33

ST (·, ·) Standard translation function, page 86

(Σ,K,≺) Suitable ordering triple, page 35

t : τ , tτ Term t of type τ , page 76

t[x1, . . . , xn] If t is a term, it means that fvar(t) ⊆ {x1, . . . , xn}, page 77

TM∞ ∃-decidable theory which is not ∃∞-decidable, page 27

TMω ∃-decidable theory over a finite signature which is not ∃∞-decidable,
page 28

TM∀ω Universal ∃-decidable theory over a finite signature which is not ∃∞-de-
cidable, page 30

146

Bibliography

[1] H. Andréka, J. van Benthem, and I. Nemeti. Modal languages and bounded fragments
of predicate logics. Journal of Philosophical Logic, 27:217–274, 1998.

[2] P. B. Andrews. Classical type theory. In A. Robinson and A. Voronkov, editors,
Handbook of Automated Reasoning, volume 2, chapter 15, pages 966–1007. Elsevier
and MIT Press, 2001.

[3] P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth
Through Proof, volume 27 of Applied Logic Series. Kluwer Academic Publishers,
Dordrecht (Holland), second edition, 2002.

[4] A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz. On a rewriting approach
to satisfiability procedures: extension, combination of theories and an experimental
appraisal. In Proceedings of 5th International Workshop on Frontiers of Combining
Systems (FroCoS 2005), volume 3717 of Lecture Notes in Computer Science, pages
65–80, Wien (Austria), 2005. Springer.

[5] A. Armando, S. Ranise, and M. Rusinowitch. A rewriting approach to satisfiability
procedures. Information and Computation, 183(2):140–164, 2003.

[6] G. Audemard, P. Bertoli, A. Cimatti, A. Korni lowicz, and R. Sebastiani. A SAT
based approach for solving formulas over boolean and linear mathematical propo-
sitions. In Proceedings of 18th International Conference on Automated Deduction
(CADE 2002), volume 2392 of Lecture Notes in Computer Science, pages 195–210,
Copenhagen (Denmark), 2002. Springer.

[7] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

[8] F. Baader and S. Ghilardi. Connecting many-sorted theories. In Proceedings of
the 20th International Conference on Automated Deduction (CADE 2005), volume
3632 of Lecture Notes in Computer Science, pages 278–294, Tallinn (Estonia), 2005.
Springer.

[9] F. Baader, S. Ghilardi, and C. Tinelli. A new combination procedure for the word
problem that generalizes fusion decidability results in modal logics. In Proceedings of
the Second International Joint Conference on Automated Reasoning (IJCAR 2004),
volume 3097 of Lecture Notes in Computer Science, pages 183–197, Cork (Ireland),
2004. Springer.

147

[10] F. Baader, C. Lutz, H. Sturm, and F. Wolter. Fusions of description logics and
abstract description systems. Journal of Artificial Intelligence Research, 16:1–58,
2002.

[11] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, Cambridge (UK), 1998.

[12] F. Baader and C. Tinelli. Deciding the word problem in the union of equational
theories. Information and Computation, 178(2):346–390, 2002.

[13] L. Bachmair and H. Ganzinger. On restrictions of ordered paramodulation with sim-
plification. In Proceedings of 10th International Conference on Automated Deduction
(CADE 1990), volume 449 of Lecture Notes in Computer Science, pages 427–441,
Kaiserslautern (Germany), 1990. Springer-Verlag.

[14] L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with
selection and simplification. Journal of Logic and Computation, 4(3):217–247, 1994.

[15] L. Bachmair, H. Ganzinger, and U. Waldmann. Theorem proving for hierarchic first-
order theories. In Algebraic and Logic Programming (ALP 1992), volume 632 of
Lecture Notes in Computer Science, pages 420–434, Volterra (Italy), 1992. Springer-
Verlag.

[16] H. P. Barendregt. The Lambda Calculus. Its Syntax and Semantics, volume 103 of
Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co.,
Amsterdam (Holland), revised edition, 1984.

[17] C. W. Barrett, D. L. Dill, and A. Stump. A generalization of Shostak’s method for
combining decision procedures. In Proceedings of the 4th International Workshop
on Frontiers of Combining Systems (FroCoS 2002), volume 2309 of Lecture Notes in
Computer Science, pages 132–147, Santa Margherita Ligure (Italy), 2002. Springer.

[18] P. Baumgartner, U. Furbach, and U. Petermann. A unified approach to theory rea-
soning. Research Report 15–92, Universität Koblenz-Landau, Koblenz (Germany),
1992. Fachberichte Informatik.

[19] A. Bockmayr and V. Weispfenning. Solving numerical constraints. In A. Robinson
and A. Voronkov, editors, Handbook of Automated Reasoning, volume 1, chapter 12,
pages 751–842. Elsevier and MIT Press, 2001.

[20] M. P. Bonacina, S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Decidability
and undecidability results for Nelson-Oppen and rewrite-based decision procedures.
In U. Furbach and N. Shankar, editors, Proceedings of the 3rd International Joint
Conference on Automated Reasoning (IJCAR 2006), volume 4130 of Lecture Notes
in Computer Science, pages 513–527, Seattle (USA), 2006. Springer.

[21] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Universitext.
Springer, Berlin (Germany), 2001. Reprint of the 1997 original.

[22] R. J. Brachman. What’s in a concept: Structural foundations for semantic networks.
International Journal of Man-Machine Studies, 9(2):127–152, 1977.

148

[23] R. J. Brachman. Structured inheritance networks. In Research in Natural Language
Understanding, pages 13–46. Bolt, Beranek & Newman Inc., Cambridge (MA, USA),
1978. Quarterly Progress Report No. 1, BBN Report No. 3742.

[24] T. Bräuner and S. Ghilardi. First-order modal logic. In J. van Benthem, P. Blackburn,
and F. Wolter, editors, Handbook of Modal Logic. 2005. (To appear).

[25] C.-C. Chang and H. J. Keisler. Model Theory. North-Holland, Amsterdam (Holland),
third edition, 1990.

[26] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, Cambridge
(MA, USA), 1999.

[27] H. Comon. Solving symbolic ordering constraints. International Journal of Founda-
tions of Computer Science, 1(4):387–412, 1990.

[28] H. Comon, P. Narendran, R. Nieuwenhuis, and M. Rusinowitch. Decision problems in
ordered rewriting. In Proceedings of the 13th IEEE Symposium on Logic in Computer
Science (LICS 1998), pages 276–286, Indianapolis (IN, USA), 1998. IEEE Computer
Society Press.

[29] M. Davis, G. Longemann, and D. Loveland. A machine program for theorem proving.
Communication of the ACM, 5(7):394–397, 1962.

[30] M. Davis and H. Putnam. A computing procedure for quantification theory. Journal
of the ACM, 7(3):201–215, 1960.

[31] H. de Nivelle and I. Pratt-Hartmann. A resolution-based decision procedure for the
two-variable fragment with equality. In Proceedings of the 1st International Joint
Conference on Automated Reasoning (IJCAR 2001), volume 2083 of Lecture Notes
in Computer Science, pages 211–225, Siena (Italy), 2001. Springer.

[32] D. Déharbe and S. Ranise. Light-weight theorem proving for debugging and verifying
units of code. In Proceedings of the 1st International Conference on Software En-
gineering and Formal Methods (SEFM 2003), pages 220–228, Brisbane (Australia),
2003. IEEE Computer Society Press.

[33] G. Dowek. Higher order unification and matching. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, volume 2, chapter 16, pages 1009–1062.
Elsevier and MIT Press, 2001.

[34] H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, New York-
London, 1972.

[35] C. Fermüller, A. Leitsch, T. Tammet, and N. Zamov. Resolution Methods for the
Decision Problem, volume 679 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin (Germany), 1993.

[36] J.-C. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: Integrated canonizer and
solver. In Proceedings of the 13th International Conference on Computer-Aided Ver-
ification (CAV 2001), volume 2101 of Lecture Notes in Computer Science, pages
246–249, Paris (France), 2001. Springer.

149

[37] M. J. Fischer and M. O. Rabin. Super-exponential complexity of Presburger arith-
metic. In Proceedings of the SIAM-AMS Symposium in Applied Mathematics, vol-
ume 7, pages 27–41, New York (USA), 1974. American Mathematical Society.

[38] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2002), volume 37 of
ACM SIGPLAN Notices, pages 234–245, Berlin (Germany), 2002. ACM Press.

[39] H. Friedman. Equality between functionals. In Logic Colloquium, volume 453 of
Lecture Notes in Mathemathics, pages 22–37, Boston (MA, USA), 1975. Springer-
Verlag.

[40] D. M. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-Dimensional
Modal Logics: Theory and Applications, volume 148 of Studies in Logic and the
Foundations of Mathematics. North-Holland Publishing Co., Amsterdam (Holland),
2003.

[41] D. M. Gabbay and V. B. Shehtman. Undecidability of modal and intermediate first-
order logics with two individual variables. Journal of Symbolic Logic, 58:800–823,
1993.

[42] H. Ganzinger and H. de Nivelle. A superposition decision procedure for the guarded
fragment with equality. In 14th Symposium on Logic in Computer Science (LICS
1999), pages 295–303, Trento (Italy), 1999. IEEE Computer Society Press.

[43] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T):
Fast decision procedures. In Proceedings of the 16th International Conference on
Computer-Aided Verification (CAV 2004), volume 3114 of Lecture Notes in Computer
Science, pages 175–188, Boston (MA, USA), 2004. Springer.

[44] S. Ghilardi. Model theoretic methods in combined constraint satisfiability. Journal
of Automated Reasoning, 33(3-4):221–249, 2004.

[45] S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Deciding extensions of the
theory of arrays by integrating decision procedures and instantiation strategies. In
M. Fischer, W. van der Hoek, B. Konev, and A. Lisitsa, editors, Proceedings of the
10th European Conference on Logic in Artificial Intelligence (JELIA 2006), volume
4160 of Lecture Notes in Computer Science, pages 177–189, Liverpool (UK), 2006.
Springer.

[46] S. Ghilardi, E. Nicolini, and D. Zucchelli. A comprehensive combination framework.
ACM Transactions on Computational Logic, 2006. (To appear).

[47] J. Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types, volume 7 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge
(UK), 1989.

[48] V. Goranko and M. Otto. Model theory of modal logic. In J. van Benthem, P. Black-
burn, and F. Wolter, editors, Handbook of Modal Logic. 2005. (To appear).

150

[49] E. Grädel. Decision procedures for guarded logics. In Proceedings of 16th Interna-
tional Conference on Automated Deduction (CADE 1999), volume 1632 of Lecture
Notes in Computer Science, pages 31–51, Trento (Italy), 1999. Springer-Verlag.

[50] D. Jackson and M. Vaziri. Finding bugs with a constraint solver. In Proceedings of
the International Symposium on Software Testing and Analysis (ISSTA 2000), ACM
SIGSOFT Software Engineering Notes, pages 14–25, Portland (OR, USA), 2000.
ACM Press.

[51] G. Janelidze and W. Tholen. Facets of descent, I. Applied Categorical Structures,
2(3):245–281, 1994.

[52] A. Joyal and M. Tierney. An extension of the Galois theory of Grothendieck. Memoirs
of the American Mathematical Society, 51(309):vii+71, 1984.

[53] E. Kieronski and M. Otto. Small substructures and decidability issues for first-
order logic with two variables. In Twentieth Annual IEEE Symposium on Logic
in Computer Science (LICS 2005), pages 448–457, Chicago (IL, USA), 2005. IEEE
Computer Society Press.

[54] R. Kontchakov, A. Kurucz, and M. Zakharyaschev. Undecidability of first-order
intuituionistic and modal logics with two variables. Manuscript, 2004.

[55] K. Korovin and A. Voronkov. Knuth-Bendix constraint solving is NP-complete. ACM
Transactions on Computational Logic, 6(2):361–388, 2005.

[56] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27(3):333–354, 1983.

[57] S. Kripke. The undecidability of monadic modal quantificational theory. Zeitschrift
für Mathematische Logik und Grundlagen der Mathematik, 8:113–116, 1962.

[58] J. Lambek and P. J. Scott. Introduction to higher order categorical logic, volume 7
of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cam-
bridge (UK), 1988. Reprint of the 1986 original.

[59] J.-L. Lassez and M. J. Maher. On Fourier’s algorithm for linear arithmetic con-
straints. Journal of Automated Reasoning, 9(3):373–379, 1992.

[60] J.-L. Lassez and K. McAloon. A canonical form for generalized linear constraints.
Journal of Symbolic Computation, 13(1):1–24, 1992.

[61] F. W. Lawvere. Functorial semantics of algebraic theories. Proceedings of the National
Academy of Science, 50:869–872, 1963.

[62] D. Lewis. Counterpart theory and quantified modal logic. Journal of Philosophy,
65(5):113–126, 1968.

[63] L. Löwhenheim. Über möglichkeiten im relativkalkül. Mathematische Annalen,
76:228–251, 1915.

151

[64] S. MacLane and G. Birckhoff. Algebra. Chelsea Publishing Co., New York (USA),
third edition, 1988.

[65] M. Makkai and G. E. Reyes. First-Order Categorical Logic, volume 611 of Lecture
Notes in Mathematics. Springer-Verlag, Berlin (Germany), 1977.

[66] M. Marx. Tolerance logic. Journal of Logic, Language and Information, 10:353–374,
2001.

[67] A. Middeldorp and H. Zantema. Simple termination revisited. In Proceedings of
12th International Conference on Automated Deduction (CADE 1994), volume 814 of
Lecture Notes in Computer Science, pages 451–465, Nancy (France), 1994. Springer-
Verlag.

[68] M. Mortimer. On languages with two variables. Zeitschrift für Mathematische Logik
und Grundlagen der Mathematik, 21:135–140, 1975.

[69] G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures. ACM
Transaction on Programming Languages and Systems, 1(2):245–257, 1979.

[70] R. Nieuwenhuis and J. M. Rivero. Practical algorithms for deciding path ordering
constraint satisfaction. Information and Computation, 178(2):422–440, 2002.

[71] R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In A. Robin-
son and A. Voronkov, editors, Handbook of Automated Reasoning, volume 1, chap-
ter 7, pages 371–443. Elsevier and MIT Press, 2001.

[72] P. Odifreddi. Classical Recursion Theory, volume 125 of Studies in Logic and the
Foundations of Mathematics. North-Holland Publishing Co., Amsterdam (Holland),
1989.

[73] D. C. Oppen. Complexity, convexity and combinations of theories. Theoretical Com-
puter Science, 12:291–302, 1980.

[74] RTI - Health, Social and Economics Research. The economic impacts of inadequate
infrastructure for software testing. Planning Report 02-3, National Institute of Stan-
dards & Technology (NIST) - U.S. Department of Commerce, 2002. Available at
http://www.nist.gov/director/prog-ofc/report02-3.pdf.

[75] W. Rudin. Functional Analysis. International Series in Pure and Applied Mathe-
matics. McGraw-Hill, Inc., Boston (MA, USA), second edition, 1991.

[76] K. Schild. A correspondence theory for terminological logics: Preliminary report.
In Proceedings of the 12th International Joint Conference on Artificial Intelligence
(IJCAI 1991), pages 466–471, Sidney (Australia), 1991. Morgan Kaufmann.

[77] M. Schmidt-Schauss and G. Smolka. Attributive concept descriptions with comple-
ments. Artificial Intelligence, 48(1):1–26, 1991.

[78] A. Schrijver. Theory of Linear and Integer Programming. John Wiley, New York
(USA), 1986.

152

http://www.nist.gov/director/prog-ofc/report02-3.pdf

[79] S. Schulz. E - a brainiac theorem prover. AI Communications, 15(2/3):111–126,
2002.

[80] D. Scott. A decision method for for validity of sentences in two variables. Journal of
Symbolic Logic, 27:477, 1962.

[81] K. Segerberg. Two-dimensional modal logic. Journal of Philosophical Logic, 2:77–96,
1973.

[82] V. B. Shehtman. On some two-dimensional modal logics. In 8th Congress on Logic
Methodology and Philosophy of Science, volume 1, pages 326–330. Nauka, Moskow
(Russia), 1987.

[83] A. Stump, C. W. Barrett, D. L. Dill, and J. Levitt. A decision procedure for an
extensional theory of arrays. In Proceedings of the 16th IEEE Symposium on Logic
in Computer Science (LICS 2001), pages 29–37, Boston (MA, USA), 2001. IEEE
Computer Society.

[84] C. Tinelli. A DPLL-based calculus for ground satisfiability modulo theories. In Pro-
ceedings of the 8th European Conference on Logics in Artificial Intelligence (JELIA
2002), volume 2424 of Lecture Notes in Artificial Intelligence, pages 308–319, Cosenza
(Italy), 2002. Springer.

[85] C. Tinelli. Cooperation of background reasoners in theory reasoning by residue
sharing. Journal of Automated Reasoning, 30(1):1–31, 2003.

[86] C. Tinelli and M. T. Harandi. A new correctness proof of the Nelson–Oppen com-
bination procedure. In Proceedings of the 1st International Workshop on Frontiers
of Combining Systems (FroCoS 1996), Applied Logic, pages 103–120, Munich (Ger-
many), 1996. Kluwer Academic Publishers.

[87] D. van Dalen. Logic and Structure. Springer-Verlag, Berlin (Germany), second
edition, 1989.

[88] C. Weidenbach. Combining superposition, sorts and splitting. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume 2, chapter 27, pages
1965–2013. Elsevier and MIT Press, 2001.

[89] V. Weispfenning. Existential equivalence of ordered abelian groups with parameters.
Archive for Mathematical Logic, 29(4):237–248, 1990.

[90] V. Weispfenning. Complexity and uniformity of elimination in Presburger arithmetic.
In Proceedings of the 1997 International Symposium on Symbolic and Algebraic Com-
putation (ISSAC 1997), pages 48–53, Maui, Hawaii (USA), 1997. ACM Press.

[91] C. A. Welty and N. Guarino. Supporting ontological analysis of taxonomic relation-
ships. Data & Knowledge Engineering, 39(1):51–74, 2001.

[92] W. H. Wheeler. Model-companions and definability in existentially complete struc-
tures. Israel Journal of Mathematics, 25:305–330, 1976.

153

[93] F. Wolter. Fusions of modal logics revisited. In M. Kracht, M. de Rijke, H. Wansing,
and M. Zakharyaschev, editors, Advances in Modal Logic, volume 87 of CSLI Lecture
Notes, pages 361–379. CSLI Publ., Stanford (CA, USA), 1998.

[94] F. Wolter and M. Zakharyaschev. Decidable fragments of first-order modal logics.
Journal of Symbolic Logic, 66:1415–1438, 2001.

154

	Introduction
	Overview
	Motivations

	1 Deciding First-Order Fragments
	1.1 Preliminaries
	1.2 Examples from the Literature
	1.2.1 Presburger Arithmetic
	1.2.2 The Description Logic ALC

	1.3 Arrays with Dimension
	1.3.1 A Decision Procedure for Arrays with Dimension
	1.3.2 The Architecture
	1.3.3 The Algorithm
	1.3.4 Correctness of the Procedure

	2 Combining Theories over Disjoint Signatures
	2.1 The Nelson-Oppen Combination Schema
	2.2 Undecidability Results
	2.2.1 The Theory TM-inf
	2.2.2 Refined Undecidability Results

	2.3 Decidability Results
	2.4 Combination by Superposition
	2.4.1 Superposition Calculus: an Overview
	2.4.2 Superposition Modules
	2.4.3 Superposition Modules and Rewrite-based Decision Procedures
	2.4.4 Invariant Superposition Modules and Cardinality Constraints
	2.4.5 Combining Superposition Modules and SMT Procedures

	3 Combining Theories over Non-Disjoint Signatures
	3.1 Some Notions from Model Theory
	3.2 Compatibility
	3.3 Combining Compatible Theories
	3.3.1 Proofs of the Combination Result

	3.4 Locally Finite Theories and their Combinations
	3.5 Positive Basis Enumerators
	3.5.1 Noetherian Theories and their Combinations

	3.6 Examples

	4 A Higher-Order Framework for Combination
	4.1 Type-Theoretic Languages
	4.1.1 Signatures
	4.1.2 Terms
	4.1.3 Substitutions and Conversions
	4.1.4 Models

	4.2 Fragments
	4.2.1 Algebraic Fragments
	4.2.2 Examples
	4.2.3 Reduced Fragments and Residues
	4.2.4 Noetherian, Locally Finite and Convex Fragments
	4.2.5 Further Examples

	4.3 Combined Fragments
	4.3.1 The Purification Steps
	4.3.2 The Combination Procedure
	4.3.3 Soundness
	4.3.4 Termination
	4.3.5 Towards Completeness

	4.4 Isomorphism Theorems and Completeness
	4.4.1 The Main Combination Result
	4.4.2 Applications: Decidability Transfer through Ultrapowers
	4.4.3 Applications: Decidability Transfer through Disjoint Copies

	5 Combination for Monodic Fragments
	5.1 Constant Domains and Standard Translation
	5.2 Monodic Fusions for Fragments
	5.3 An Alternative Translation
	5.4 Proof of the Monodic Decidability Transfer Result

	Conclusions
	Index
	List Of Symbols
	Bibliography

