
A Comprehensive Combination Framework

SILVIO GHILARDI and ENRICA NICOLINI
Università degli Studi di Milano
and
DANIELE ZUCCHELLI
Università degli Studi di Milano and LORIA & INRIA-Lorraine

We define a general notion of a fragment within higher-order type theory; a procedure for con-
straint satisfiability in combined fragments is outlined, following Nelson-Oppen schema. The
procedure is in general only sound, but it becomes terminating and complete when the shared
fragment enjoys suitable noetherianity conditions and admits an abstract version of a ‘Keisler-
Shelah like’ isomorphism theorem. We show that this general decidability transfer result covers
recent work on combination in first-order theories as well as in various intensional logics such as
description, modal, and temporal logics.
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1. INTRODUCTION AND GLOBAL OVERVIEW

Decision procedures for fragments of various logics and theories play a central role
in many applications of logic in computer science, for instance in formal methods
and in knowledge representation. Within these application domains, relevant data
appear to be heterogeneously structured, so that modularity in combining and re-
using both algorithms and concrete implementations becomes crucial. This is why
the development of meta-level frameworks, accepting as input specialized devices,
turns out to be of strategic importance for future advances in building powerful,
fully or partially automated systems. In this paper, we shall consider one of the most
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popular and simple schemata (due to Nelson-Oppen) for designing a cooperation
protocol among separate reasoners, we plug it into a higher-order framework, and
show how it can be used to cope with various classes of combination problems, often
quite far from the originally intended application domain. In this introduction, we
incrementally explain the intuitions and the ideas underlying the whole plan of the
paper.

1.1 Nelson-Oppen Method: the Universal First-Order Case

The Nelson-Oppen method [Nelson and Oppen 1979; Oppen 1980; Tinelli and Ha-
randi 1996] was originally designed in order to combine decision procedures for the
universal fragment of first-order theories; this is the kind of problems arising in
software verification, but on the other hand it should be noted that most stan-
dard topics in computational algebra [Chenadec 1986] concern equality in finitely
presented algebras, and hence they can be equivalently reformulated as decision
problems for universal fragments of first-order equational theories.

Recall that deciding the universal fragment of a first-order language for validity
is equivalent to deciding constraints (i.e. finite conjunction of literals) for satis-
fiability. The basic feature of Nelson-Oppen method is quite simple: constraints
involving mixed signatures are purified into two equisatisfiable pure constraints and
then the specialized reasoners try to share all the information they can acquire con-
cerning constraints in the common subsignature, till an inconsistency is detected
or a saturation state is reached. We illustrate the procedure by an example:

Example 1.1. Suppose that theory T1 is Presburger arithmetic and that theory T2 is the
theory of two uninterpreted function symbols f, g (f is unary and g is binary). We want to check
unsatisfiability modulo T1 ∪ T2 of the constraint

Γ ≡ {x+ f(y) = x, g(f(y) + z, z) 6= g(z, z)}.

We use two decision procedures for satisfiability of literals modulo T1 and T2, as black boxes. In
the first step, Nelson-Oppen method repeatedly abstracts out alien subterms with fresh variables,
till an equisatisfiable finite set of literals Γ1 ∪ Γ2 is produced, where Γ1 contains only literals in
the signature of T1 and Γ2 contains only literals in the signature of T2. In practice, subterms t
are replaced by fresh variables x and new equations x = t are added to the current constraint, till
the the desired purified status is reached: in the present example, we get

Γ1 ≡ {x+ w = x, u = w + z}, Γ2 = {w = f(y), g(u, z) 6= g(z, z)}.

In the second step, information exchange concerning the common subsignature is performed. In
our case, for instance, the decision procedure for T1 realizes that u = z is a logical consequence
of T1 ∪ Γ1; as soon as the decision procedure for T2 knows this fact, it reports the inconsistency.
Notice that this example is very simple: in general, the exchange of entailed atoms from the
common subsignature is not sufficient, one needs to exchange entailed disjunctions of atoms
(such an exchange of disjunctions of atoms may be implemented for instance by case-split and
backtracking).

There are two main problems that must be adequately addressed in this Nelson-
Oppen approach, namely termination and completeness of the proposed combined
procedure. Termination can be guaranteed in case the total amount of exchangeable
information is finite, i.e. in case there are only finitely many ‘representative’ atoms
in the common subsignature (this is certainly the case if signatures are disjoint).
Although this is the most frequently used method to enforce termination, weaker
requirements might be sufficient: we shall see in the paper that it is sufficient
ACM Transactions on Computational Logic, Vol. 9, No. 2, March 2008.



A Comprehensive Combination Framework · 3

to assume a ‘noetherianity’ condition, i.e. it is sufficient to assume finiteness of
properly ascending chains of positive constraints. Completeness is however the
most serious problem: since it might happen that constraint satisfiability in T1∪T2

is undecidable even if constraint satisfiability in T1 and T2 are decidable (and even if
the signatures of T1 and T2 are disjoint, as recently shown in [Bonacina et al. 2006]),
conditions for completeness are indispensable. In fact, Nelson-Oppen method was
guaranteed to be complete only for disjoint signatures and stably infinite theories,1
till quite recently, when it was realized [Ghilardi 2004] that stable infiniteness is just
a special case of a compatibility notion, which is related to model completions of
shared sub-theories. The results of this paper will cover (and also strengthen to the
noetherian case) such recent completeness results, as shown by Theorem 5.7 below.
For the moment, however, we leave apart termination and completeness issues and
concentrate on the design of extensions of Nelson-Oppen procedure beyond the case
of universal fragments of first-order theories.

1.2 Nelson-Oppen Method: from First-Order to Higher-Order Logic

People working on decidability transfer results for fusions of modal/description log-
ics (see, e.g., [Wolter 1998; Baader et al. 2002]) elaborated interesting and powerful
results by applying specific methodologies: the unifying approach of this paper
will demonstrate that such methodologies can often be reduced to Nelson-Oppen,
provided the latter is revisited in a suitable general framework.

In order to illustrate the reduction, we examine the case of description logics. To
introduce a description language (see [Baader et al. 2003] for more information),
we need a set of atomic concepts x, y, . . . , a set of role names R,S, . . . and a set of
individual names a, b, . . . ; concepts are built up from atomic concepts, Boolean op-
erators ⊥,>,u,t,¬, and relativized existential quantification ∃R (here R is a role
name). Concepts only notationally differ from propositional multimodal formulae
(in modal logic the notation for ∃R is the ‘possibility’ operator 3R), however de-
scription logics are richer because they allow to write also assertions. We have three
kinds of assertions, namely concepts assertions C(a) (here a is an individual name
and C is a concept), role assertions R(a, b) (here a, b are individual names and R
is a role name) and concept equalities C = D (here C,D are concepts). A finite set
of concept assertions or of role assertions is called an A-Box, whereas a finite set of
concept equalities is called a T-Box;2 a pair given by a T-Box and an A-Box is said
to be a knowledge basis. The semantics for a description language is rather intuitive:
an interpretation is a pair I = (W I , ·I), whereW I is a non-empty set (the domain)
and ·I is the interpretation function, assigning to each atomic concept x a subset
xI ⊆ W I , to each role name R a binary relation RI ⊆ W I ×W I , and to every
individual name a an element aI ∈W I . The interpretation function is inductively
extended to concepts by interpreting the Boolean operators as intersection, union
and complement and by interpreting relativized existential quantification as

(∃R.C)I := {w ∈W I | ∃v (w, v) ∈ RI ∧ v ∈ CI}.

1A theory T is stably infinite iff every constraint in the signature of T which is satisfiable in a
model of T is satisfiable in an infinite model of T .
2Sometimes, in the literature, concept inclusions are used instead of concept equalities; the differ-
ence is immaterial, as far as concepts are closed under intersection.
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An interpretation I satisfies a concept assertion C(a) iff aI ∈ CI , it satisfies a
role assertion R(a, b) iff (aI , bI) ∈ RI and it satisfies a concept equality C = D iff
CI = DI ; I is a model of a knowledge basis iff it satisfies all assertions from it.

There are different and interesting reasoning tasks in description logic; as soon as
concepts are closed under all Boolean operators, such reasoning tasks all reduce to
satisfiability problems; satisfiability problems can however be formulated at differ-
ent levels and it is important to keep such distinctions for instance for complexity
reasons. For the purposes of this paper, it is useful to distinguish three different
satisfiability problems: (i) the global satisfiability problem is the problem of de-
ciding whether there exists a model I of a given T-Box in which we have CI 6= ∅
for a preassigned concept C; (ii) the local satisfiability problem is the problem of
deciding whether there exists a model of a given A-Box; (iii) the full satisfiability
problem is the problem of deciding whether there exists a model of a knowledge
basis. Problem (i) is a notational variant of the relativized satisfiability problem in
modal logic, whereas problem (ii) is the same as the local satisfiability problem in
modal logic, if we restrict to A-Boxes consisting on a single concept assertion.

It should be noticed that the above definitions just cover the basic description
logic ALC. A lot of expressive interesting extensions of ALC have been considered
in the literature [Baader et al. 2003]: one may add some restricted form of counting,
constructors (e.g., Boolean constructors) operating on roles, etc. Such extensions
sometimes go beyond the limits of a first-order formalism, for various reasons we
are going to analyze.

A first (obvious) higher-order source is due to the direct use of higher-order
constructors: among such constructors, the most popular ones are fixed points.
Notice that usually not all fixed points operators of monotonic concepts are added
to the language, on the contrary one preferably makes a selected choice of them:
for instance, specific fixed points are used in order to capture relativized existen-
tial quantification over transitive closure of roles, or to express path quantifiers
(the latter is more typical of temporal logics). In description logics, there is also
an implicit use of fixed points: in this implicit use, there are no fixed points in
the language at all, but T-Boxes are given an alternative ‘definitorial’ semantics
through certain fixed points, see [Baader et al. 2003] for details. A second way of
passing the expressive limits of first-order logic is semantically driven and arises
when only interpretations in some specific structure (or in a non elementary class
of structures) are allowed: this is typical of temporal logic, when satisfiability in
specific flows of time (e.g., natural, real numbers) is investigated, but there are
similar semantic restrictions in description logics too when concrete domains are
taken into consideration [Baader and Hanschke 1991].

There is a third hidden higher-order feature that is specific for combination pur-
poses. We illustrate it by an example; the example also clarifies why we think
that a simple adaptation of the Nelson-Oppen combination procedure analyzed in
Subsection 1.1 works here too.

Example 1.2. Suppose our description language contains roles R,R∗, S, S` and that we re-
strict to interpretations in which R∗ is the reflexive-transitive closure of R and S` is the converse
relation of S; suppose also that we know how to process satisfiability problems involving reflexive-
transitive closures and converse relations separately, but we do not know how to process a problem
involving both of them (or that we do not want to re-implement from scratch a device for solving
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such combined problems). Consider the following global satisfiability problem

y = ∃R∃Rx, (∀R∗¬x) u (∃S∀S`y) 6= ⊥

(where ∀ is defined as ¬∃¬). To solve the problem, we first purify it as

y = ∃R∃Rx, (∀R∗¬x) u z 6= ⊥
z = ∃S∀S`y

and then we begin constraint propagation. In fact, the ‘converse relation’ procedure discovers the
entailed equality zu y = z and, using this information, the ‘reflexive-transitive closure’ procedure
can report the unsatisfiability of the problem.

There is a clear parallelism between the procedures employed in Examples 1.1
and 1.2: in both cases, abstraction equations are added to the current problem
and propagation of shared information is used to detect inconsistency. However
in order to make similarities more explicit, we must be able to translate asser-
tions formulated in the description logic formalism into some more standard logical
formalism. A first possibility in this sense is offered by the translation into the
formalism of Boolean algebras with operators, but this strategy is unable to cover
description logic constructors which does not seem to have a clear algebraic coun-
terpart. Alternatively, we can use translations known from modal logic literature.
The simplest of such translations is the so-called standard translation [van Ben-
them 1985] of a concept C to a first-order formula ST (C,w) containing only the
free variable w: in more detail, concept names x are translated into atomic for-
mulae X(w), boolean connectives are translated identically and ∃RC is translated
into ∃v(R(w, v) ∧ ST (C, v)). However, we must take a little step further: we want
to represent description logic satisfiability problems as equations and disequations
between terms. This is important for the design of our Nelson-Oppen procedure:
as it is clear from Example 1.1, the procedure uses abstraction variables, adds to
the current constraint equations between an abstraction variable and a term, prop-
agates equations from the shared signature, etc. Our solution is simple: we just
associate to a concept C the second-order term {w | ST (C,w)} and consider con-
cept names as second order variables in satisfiability problems. In this way, we
get back the framework of Example 1.1 (modulo some βη-conversions). Let us for
instance turn to Example 1.2:

Example 1.2. (Continued) The translated constraint is

{w | Y (w)} = {w | ∃w1(R(w,w1) ∧ ∃w2(R(w1, w2) ∧X(w2)))},

{w | ⊥} 6= {w | ∀v(R∗(w, v)→ ¬X(v)) ∧ ∃w1(S(w,w1) ∧ ∀w2(S`(w1, w2)→ Y (w2)))}.

In order to purify it, we take a fresh variable Z and we modify the constraint as follows

{w | Y (w)} = {w | ∃w1(R(w,w1) ∧ ∃w2(R(w1, w2) ∧X(w2)))},
{w | ⊥} 6= {w | ∀v(R∗(w, v)→ ¬X(v)) ∧ Z(w)}

{w | Z(w)} = {w | ∃w1(S(w,w1) ∧ ∀w2(S`(w1, w2)→ Y (w2)))}.

The third equation is our abstraction equation: in fact {w | Z(w)} is the long βη-normal form of
Z and the substitution Z 7→ {w | ∃w1(S(w,w1) ∧ ∀w2(S`(w1, w2) → Y (w2)))}, once applied to
the remaining equations, gives back the original constraint (modulo β-conversion). The constraint
is now purified and propagation can begin and lead to unsatisfiability as before.

We stress that for the whole mechanism to work, there are some formal aspects
to be taken care of: abstraction equations should have the same shape as the
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remaining part of the constraint, which means that types of the variables and types
of the terms that are left and right members of the (dis)equations in the constraint
should match. This is the reason why we need precise definitions of a fragment and
of a constraint within higher-order logic: we consider these definitions to be one of
the most important contributions of this paper. Once these definitions are settled,
one can easily design a suitable higher-order generalization of the Nelson-Oppen
procedure and then investigate sufficient conditions for it to be terminating and/or
complete.

1.3 Constraint Satisfiability in Fragments

We choose Church’s type theory as our framework for higher-order logic: thus our
syntax deals with types and terms, terms being endowed with a (codomain) type.
Types can be built up from primitive sorts by using function type constructor,
whereas terms can be built up from typed variables and constants, by using λ-
abstraction and function evaluation. Types include the truth-value type Ω and
constants include symbols for boolean connectives and for equality over each type.
Formulae are treated as special terms, namely terms of type Ω, and quantifiers can
be introduced through explicit definitions (see Section 2 for more details). If ϕ has
type Ω and x is a variable (of type, say, τ), we write {x ∈ τ | ϕ} (or simply {x | ϕ})
for the term λxϕ of type τ → Ω.

The first task to be accomplished in this framework is to find a definition of
what we mean by a fragment (only relatively small fragments can indeed have a
chance to be decidable in this context). A fragment should be a pair consisting of a
signature for type theory and of a recursive set of terms in that signature; however,
the discussion of Subsection 1.2 makes clear that the set of terms must enjoy some
minimal properties to make the fragment suitable for our combination purposes.
These properties are fixed in the notion of an algebraic fragment (Definition 3.2
below): basically in an algebraic fragment Φ = 〈L, T 〉, the set of terms T in the
signature L must be closed under composition (i.e. under substitution) and must
contain all variables whose type is a Φ-type (a Φ-type is the type of a term in T
or of a variable occurring free in some t ∈ T ). An algebraic fragment Φ = 〈L, T 〉 is
interpreted when a class S of (ordinary set-theoretic) models for L is attached to
it (S is assumed to be closed under isomorphisms). All the algebraic fragments we
consider are interpreted and if S is not specified, it is intended to be the class of
all L-structures.

Given an algebraic fragment Φ = 〈L, T 〉, a Φ-atom is an equation like t1 = t2 for
terms t1, t2 ∈ T having the same type, a Φ-literal is a Φ-atom or the negation of a
Φ-atom, a Φ-clause is a disjunction of Φ-literals and a Φ-constraint is a conjunction
of Φ-literals. Now the word problem for an interpreted algebraic fragment Φ =
〈L, T,S〉 is the problem of deciding unsatisfiability of a negative Φ-literal in all
A ∈ S, whereas the constraint satisfiability problem for Φ is the problem of deciding
the satisfiability of a Φ-constraint in some A ∈ S.

Notice that there are truly higher-order interpreted algebraic fragments whose
word problem is decidable (see for instance Friedman theorem for simply typed
λ-calculus [Friedman 1975]) and also whose constraint satisfiability problem is de-
cidable (see Rabin results on monadic second order logic over trees [Rabin 1969]).
Literature on modal/temporal/description logics provides many examples of inter-
ACM Transactions on Computational Logic, Vol. 9, No. 2, March 2008.
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preted algebraic fragments having decidable word or constraint satisfiability prob-
lems (the former usually corresponds to local satisfiability, whereas the latter to
global satisfiability, but the precise relationship depends on the specific version of
the fragment that is adopted, see the remarks below). The whole literature on com-
putational algebra deals with examples of interpreted algebraic fragments consisting
of first-order individual terms with decidable word or conditional word problems
(the latter correspond to our constraint satisfiability problems, given the convexity
of equational theories).

It should be pointed out that a ‘honest’ fragment can be formally turned into
an algebraic fragment in many ways and this flexibility is crucial when designing
appropriate satisfiability problems and also when considering combined algebraic
fragments (these are defined to be the minimum algebraic fragments extending two
given ones, see the definition at the beginning of Section 4).

Let us examine, for instance, the case of the fragments corresponding to the de-
scription languages illustrated in Subsection 1.2. If we take the fragment consisting
of terms that are βη-equivalent to terms of the kind {w | ST (C,w)}, then the only
type in this fragment is W → Ω, and constraint satisfiability in this fragment is
equivalent to simultaneous satisfiability of finitely many concepts w.r.t. a given
T-Box;3 if we combine this fragment with another fragment of the same kind (but
based on a disjoint description language), we get the fragment corresponding to the
fusion (i.e. to the union) of the underlying description languages (this is precisely
what happened in Example 1.2).

By contrast, if we take the fragment consisting (besides variables) of terms of
the kind ST (C,w) and R(w, v), then the combination with another fragment of the
same kind does not produce anything really interesting (just variables can be used
to try to form combined terms by replacement); the types in the fragment are now
Ω andW , which means that the fragment is ready for non trivial combinations with
fragments containing non-variable first-order individual terms, like the fragments
considered in Example 1.1 above. From the point of view of satisfiability prob-
lems, constraint satisfiability in this fragment is essentially local satisfiability (i.e.
satisfiability of an A-Box), see Example 3.11 below for a more detailed analysis.

Finally, for satisfiability of a full knowledge basis (i.e. of an A-Box w.r.t. a
T-Box), the fragment comprising (besides variables) all terms {w | ST (C,w)},
ST (C,w), and R(w, v) should be taken into consideration. Such a more complex
fragment is ready for a nontrivial combination with another similar fragment as
well as with a fragment consisting of first-order individual terms. The moral of this
discussion is that an algebraic fragment must be appropriately designed, taking into
consideration both actual expressive power and potential combination opportuni-
ties.

3This is the problem of finding a model I of a given T-Box in which we simultaneously have
CI1 6= ∅, . . . , CIn 6= ∅. If the fragment is interpreted in a class of structures S closed under
disjoint unions (as it is usually the case), then this simultaneous satisfiability reduces to standard
satisfiability (in the global sense). This reduction can be recovered as an instance of a general
convexity property for fragments, to be introduced in Subsection 3.4 below.
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1.4 Why Nelson-Oppen May Happen to Succeed

Our main goal is the combination of decision procedures for constraint satisfiabil-
ity. The definition of an algebraic fragment we gave is sufficient to substantially
reproduce Nelson-Oppen purification steps in our framework, hence we may freely
suppose that combined constraints can be split into two sets of equisatisfiable pure
constraints. The interpreted algebraic fragments Φ1,Φ2 to be combined share some
interpreted algebraic subfragment Φ0 in the common subsignature and a Nelson-
Oppen style fair exchange protocol can then be used. In Subsection 4.2 we describe
it in a detailed way, assuming only the availability of two abstractly axiomatized
sound ‘residue enumerators’ for the positive Φ0-clauses which are entailed by the
current Φ1- (resp. Φ2-) constraints. The procedure terminates in case certain
noetherianity conditions are satisfied (this is always the case whenever Φ0 is locally
finite, namely whenever there are only finitely many non Φ0-equivalent terms in a
fixed finite number of variables).

The main problem we are facing now is the completeness of the procedure: can
we infer that the input combined constraint is satisfiable in case the system halts
with a saturation message? In general this cannot be the case: we already men-
tioned that taking combined fragments may lead to undecidability, even in the very
simple context of Subsection 1.1. The point is that a ‘saturation-found’ run of our
procedure means at the semantic level (see Proposition 4.12 below) that there exist
Φi-structures Ai (i = 1, 2), whose Φ0-reducts are only Φ0(c0)-equivalent (i.e. such
Φ0-reducts satisfy the same closed Φ0-atoms in a signature augmented with finitely
many free constants c0): this is far from being enough to build a combined structure
satisfying the union of the pure constraints.

In order to analyze hypotheses under which Nelson-Oppen approach neverthe-
less succeeds, let us turn to the original Nelson-Oppen case. Here, signatures are
one-sorted, first-order, and disjoint; in addition, the stably infiniteness hypotheses
on the component theories says that we can safely limit ourselves to consider only
infinite structures. Now if we are given infinite structures Ai for the input signa-
tures whose Φ0-reducts satisfy the same equations among the free constants in c0,
then it is indeed possible to build a structure for the combined signature out of
them. The reasons for this are the following: (i) the theory of an infinite set in the
pure equality signature enjoys quantifier elimination, hence from the fact that A1

and A2 are Φ0(c0)-equivalent it follows that they are also elementarily equivalent,
as far as the language L0(c0) of Φ0(c0) is concerned (this is due to standard model-
theoretic arguments, see the proof of Theorem 5.7 below); (ii) by Keisler-Shelah
theorem [Chang and Keisler 1990], applying ultrapowers to A1 and A2, we can
make them L0(c0)-isomorphic and this is clearly sufficient to build the combined
structure. Roughly speaking (see Section 5 for details), let us call isomorphism the-
orem a theorem saying that the application of a certain semantic operation makes
two Φ0(c0)-equivalent structures L0(c0)-isomorphic. The above outlined argument
says that the existence of a suitable isomorphism theorem is sufficient for our com-
bined procedure to be complete: this is formally stated in our Main Decidability
Transfer Theorem 5.6.

Of course, isomorphisms theorems are quite peculiar and rare. However, another
isomorphism theorem justifies the completeness of the procedure in the case of
ACM Transactions on Computational Logic, Vol. 9, No. 2, March 2008.
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global satisfiability problems for combination - alias fusions - of modal/description
logics (this argument applies more generally to combined relativized satisfiability in
abstract description systems in the sense of [Baader et al. 2002]). In that case, the
shared fragment Φ0(c0) is included into the one-variable fragment of first-order clas-
sical logic. Here a structure is specified up to Φ0(c0)-equivalence once we are given
the information about emptiness of subsets definable through Boolean combina-
tions of the finitely many unary predicates c0. If A1 and A2 are Φ0(c0)-equivalent,
then they can be made L0(c0)-isomorphic by taking disjoint unions, provided that
the set indexing the cardinality of the disjoint copies is sufficiently large. Now, if
the input modal fragments are interpreted in a semantic class closed under disjoint
unions, Theorem 5.6 applies.

Since in the above argument involving disjoint unions, there is nothing very spe-
cific to fragments obtained through standard translations of description languages,
it is evident that we can get analogous transfer results starting from interpreted
guarded and packed guarded fragments [Andréka et al. 1998; Grädel 1999; Marx
2001], which are also preserved under taking disjoint copies of the same structure.
Of course, guarded and packed guarded fragments should be designed in such a way
that all predicate symbols, except unary ones, are taken to be constants: in other
words, second order variables (not to be used in guards) should be used for unary
predicates and not for relations (in this way shared fragments are still contained
into the monadic fragment of first-order classical logic). But further possible com-
binations arise, for instance because first-order formulae without equality are also
preserved under taking disjoint copies, provided the operation of taking disjoint
copies is defined in a proper alternative way (that we will call ‘conglomeration’ in
Subsection 5.3). Theorem 5.21 summarize these new decidability transfer results in
a unique statement, referring to the notion of a monadically suitable fragment. We
also show in Theorem 5.11 how to get decidability transfer results for the combi-
nation of an A-Box and of a stably infinite first-order theory, operating on disjoint
signatures.

A further application shows how to analyze monodic modal/temporal fragments
(in the sense of [Wolter and Zakharyaschev 2001; Gabbay et al. 2003]) as combina-
tions of extensional first-order fragments and standard translations of one variable
modal/temporal fragments. Since a suitable isomorphism theorem (based on dis-
joint copies and fiberwise disjoint copies) holds here too, our procedure is complete
and justifies rather general decidability transfer results: however, since in order to
apply Theorem 5.6 to this case, specific ‘descent’ techniques are needed, we prefer
to leave details for a separated paper (readers may get full information from the
Technical Report [Ghilardi et al. 2005] or from the PhD thesis [Nicolini 2006]).

1.5 Related and Future Work

There has been remarkable amount of work in recent literature on decidability
transfer results for various kinds of combined satisfiability problems, both within
the automated reasoning community and within the modal/description logic com-
munity. The closest paper is of course [Ghilardi 2004] where completeness results
for first-order non-disjoint Nelson-Oppen procedure are established. The methods
in [Ghilardi 2004] gave rise to further contributions. In [Ganzinger et al. 2005]
a general schema for combination of decision procedures for first-order theories is
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proposed: in such a schema, every decision procedure is formalized as an infer-
ence system, and their combination is formalized through the so-called inference
modules. Applications to fusion decidability transfer in modal logic are already
mentioned in [Ghilardi 2004] and are further developed in [Ghilardi and Santo-
canale 2003]. Additional applications (sometimes involving non trivial extensions
of the method as well as integration with other work) concern transfer of decid-
ability of global consequence relation to E-connections [Baader and Ghilardi 2005b;
Baader and Ghilardi 2005a], as well as transfer of decidability of local consequence
relation to fusions [Baader et al. 2006]. The latter result was rather remarkable
and also surprising, not only because the generality of the formulation solved an
open problem in modal logic, but also because Nelson-Oppen method is not de-
signed itself to solve word problems and conditions for decidability transfer of word
problems were previously formulated in a completely different way for non-disjoint
signatures (see [Baader and Tinelli 2002; Fiorentini and Ghilardi 2003]).

Thus, most of previously existing decidability results on fusions of modal logics
(for instance those in [Wolter 1998]) were recaptured and sometimes also improved
by using general automated reasoning methods based on Nelson-Oppen ideas. How-
ever, the standard approach to decision problems in modal/temporal/description
logics is directly based on Kripke models (see for instance [Baader et al. 2002;
Gabbay et al. 2003]), without the mediation of an algebraic formalism, whereas
the mediation of the formalism of Boolean algebras with operators is essential in
the approach of papers like [Ghilardi 2004; Ghilardi and Santocanale 2003; Baader
et al. 2006; Baader and Ghilardi 2005b]. The appeal to the algebraic formulation of
decision problems on one side produces proofs which are much smoother and apply
also to semantically incomplete propositional logics, but on the other side it limits
the method to the cases in which such a purely algebraic counterpart of semantic
decision problems can be identified. For instance, whenever A-Boxes are involved,
the results of the present paper go beyond the cases analyzed in [Ghilardi 2004;
Ghilardi and Santocanale 2003; Baader et al. 2006; Baader and Ghilardi 2005b].

The main concern of this paper are higher-order signatures, whereas [Ghilardi
2004] deals only with first-order theories, this is the most evident difference between
the two papers; however a closer comparison to [Ghilardi 2004] from a strictly tech-
nical point of view reveals further substantial novelties. There is a lemma in this
paper (Lemma 4.14 below), whose proof closely follows the proof of a similar re-
sult (Lemma 9.4) from [Ghilardi 2004]; however the completeness argument for our
main Theorem 5.6 is now based on the existence of an isomorphism theorem, instead
on Robinson’s joint consistency theorem. Moreover, termination is now obtained
on the basis of a weaker noetherianity hypothesis which replaces local finiteness
from [Ghilardi 2004]. This weaker hypothesis first requires the formulation of a
suitable weak compactness property for truly higher-order fragments; in addition,
noetherianity is useless if it is not accompanied by suitable devices called residue
enumerators. In Subsection 3.3, we develop topics concerning residue enumerators
from an automated reasoning perspective, in the style of partial theory reasoning.
Residue enumerators are eventually integrated within our combination procedure
thanks to Proposition 4.8. Notice also that the purification preprocessing steps re-
quired by the Nelson-Oppen procedure reveal some specific subtleties in this paper,
ACM Transactions on Computational Logic, Vol. 9, No. 2, March 2008.
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due to the generality of our context, as shown in Subsection 4.1.
The area of combination methods in automated reasoning is currently receiving

increasing interest: modularity and re-usability of existing software give remark-
able additional value to decision and semi-decision procedures obtained through
combination methods, especially in case the combination schema is a rather simple
exchange protocol among specialized reasoners. Our higher-order logic approach to
combination problems seems to be fruitful, in the sense that it encompasses rele-
vant known results and suggests new applications. We believe that our framework
is flexible and open enough to support further substantial extensions: decidabil-
ity transfer results for E-connections [Kutz et al. 2004] and for description logics
with concrete domains [Baader and Hanschke 1991] are just few examples in this
sense. In a larger perspective, we hope our framework might also contribute to the
integration of fully automatized specialized reasoners into higher-order proof assis-
tants: indeed, the main point of this paper consists in emphasizing that a rather
simple higher-order interface can handle black boxes modules for disparate decision
problems.

2. FORMAL PRELIMINARIES

We fix our notation for higher-order syntax, by adopting a type theory in Church’s
style (see, e.g., [Andrews 2002; Andrews 2001; Lambek and Scott 1988]).

Signatures. Given a set S (the set of sorts), the set of types over S is the set
recursively defined as follows: (i) every sort S ∈ S is also a type; (ii) Ω is a type
(this is called the truth-values type); (iii) if τ1, τ2 are types, so is (τ1 → τ2).

As usual external brackets are omitted; moreover, we shorten the expression
τ1 → (τ2 → . . . (τn → τ)) into τ1 . . . τn → τ . In the following, we use the notation
T (S) or simply T to indicate a types set, i.e. the totality of types that can be built
up from the set of sorts S. In this way, S is sometimes left implicit in the notation,
however we always reserve to sorts the letters S1, S2, . . . (as opposed to the letters
τ, υ, etc. which are used for arbitrary types).

A signature is a triple L = 〈T ,Σ, a〉, where T is a types set, Σ is a set of constants
and a is an arity map, namely a map a : Σ −→ T ; we write f : τ1 . . . τn → τ to
express that f is a constant of type τ1 . . . τn → τ , i.e. that a(f) = τ1 . . . τn → τ . We
require special constants to be always present in a signature; the special constants
are (i) the symbols >,⊥,∧,∨,¬ denoting the Boolean operations on Ω (their types
are the obvious ones); (ii) the equality symbols =τ of type τ τ → Ω (we have one
such symbol for every type τ , but we write it as ‘=’ omitting the subscript τ).

The proper symbols of a signature are its sorts and its non special constants. A
signature is one-sorted iff its set of sorts is a singleton. A signature L is first-order
if for any proper f ∈ Σ, we have that a(f) = S1 . . . Sn → τ , where τ is a sort or it
is Ω. A first-order signature is called relational iff any proper f ∈ Σ is a first-order
relation, that is we have a(f) = S1 . . . Sn → Ω. By contrast, a first-order signature
is called functional iff any proper f ∈ Σ has arity S1 . . . Sn → S.

Terms. Given a signature L = 〈T ,Σ, a〉 and a type τ ∈ T , we define the notion
of an L-term (or just term) of type τ - written t : τ or also tτ - as follows (for the
definition we need countable pairwise disjoint sets Vτ of variables of type τ):
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– x : τ (for x ∈ Vτ ) is an L-term of type τ ;
– c : τ (for c ∈ Σ and a(c) = τ) is an L-term of type τ ;
– if t : υ → τ and u : υ are L-terms of types υ → τ and υ, respectively, then
valυ(t, u) : τ (also written as val(t, u) : τ or as t(u) : τ) is an L-term of type τ ;

– if t : τ is an L-term of type τ and x ∈ Vυ is a variable of type υ, λxυ t : υ → τ is
an L-term of type υ → τ .

If it can be deduced from the context, the specification of the type of a term may be
omitted ; moreover we shorten val(· · · (val(t, u1), · · · ), un) to t(u1, . . . , un). Terms
of type Ω are also called formulae; given a formula ϕ, we write {xτ | ϕ} for λxτ ϕ.

For formulae ϕ,ϕ1, ϕ2 and for a type υ, we define the formulae ∀xυ ϕ, ∃xυ ϕ,
ϕ1 → ϕ2, and ϕ1 ↔ ϕ2 to be {xυ | ϕ} = {xυ | >}, ¬∀xυ ¬ϕ, ¬ϕ1 ∨ ϕ2, and
(ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1), respectively (but notice that ϕ1 ↔ ϕ2 can be defined in a
semantically equivalent way also as ϕ1 = ϕ2).

By the above definitions, first-order formulae can be considered as a subset of
the higher-order formulae defined in this section. More specifically, when we speak
of first-order terms, we mean variables x : S, constants c : S and terms of the
kind f(t1, . . . , tn) : S, where t1, . . . , tn are (inductively given) first-order terms and
a(f) = S1 · · ·Sn → S. Now first-order formulae are obtained from formulae of
the kind > : Ω,⊥ : Ω, P (t1, . . . , tn) : Ω (where t1, . . . , tn are first-order terms and
a(P ) = S1 · · ·Sn → Ω) by applying ∃xS ,∀xS ,∧,∨,¬,→,↔.

Substitutions and Conversions. Free and bound occurrences of a variable
are defined in the usual way. If E is a term or a set of terms, by fvar(E) we
mean the set of the variables that occur free in E, whereas fvarτ (E) is the set
of variables of type τ that occur free in E; the notation E[x1, . . . , xn] means that
fvar(E) ⊆ {x1, . . . , xn}. A term without free variables is called a closed term and
a formula without free variables is called a sentence. Two terms are said to be
equivalent modulo α-conversion iff they differ only by a bound variables renaming;
in the following, we shall identify α-equivalent terms, i.e. we consider terms as
representatives of their equivalence class modulo α-conversion.

Let V be the union of the disjoint sets of variables Vτ (τ ∈ T ). We define the
notion of substitution as usual: a substitution is a map σ : V → T (from the set
V of the variables into the set T of the terms) that respects types (i.e. if x ∈ Vτ
then xσ is a term of type τ) and such that the set {x | x 6≡ xσ} is finite.4 The set
dom(σ) := {x | x 6≡ xσ} is called the domain of the substitution σ. A substitution
σ will be written as x1 7→ xσ1, . . . , xn 7→ xnσ, where dom(σ) ⊆ {x1, . . . , xn}. A
substitution is a renaming iff it is a variable permutation.

Substitutions can be extended in the domain from variables to all terms in the
usual way; notice however that, when defining inductively the term tσ, it might
happen that α-conversions must be applied before actual replacements, in order to
avoid clashes. If σ = {x1 7→ u1, . . . , xn 7→ un} and fvar(t) ⊆ {x1, . . . , xn}, the
term tσ can also be written as t[u1, . . . , un].

We assume the reader is familiar with the notion of βη-equivalence ∼βη between

4Since the equality symbol ‘=’ is present in the object language, we prefer to use ‘≡’ in the
metalanguage for coincidence of syntactic expressions.
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terms and of (long)-βη-normal form of a term (see, e.g., [Dowek 2001] for a quick
brief account to what is needed for this paper).

Models. In order to introduce our computational problems, we need to recall the
notion of an interpretation of a type-theoretic signature; for the purposes of this
paper, we just need standard set-theoretic interpretations.

If we are given a map that assigns to every sort S ∈ S a set [[S ]], we can inductively
extend it to all types over S, by taking [[ τ → υ ]] to be the set of functions from [[ τ ]]
to [[ υ ]]. Given a signature L = 〈T ,Σ, a〉, a L-structure (or just a structure) A is a
pair 〈[[− ]]A, IA〉, where:

(i) [[− ]]A is a function assigning to a sort S ∈ T , a set [[S ]]A;
(ii) IA is a function assigning to a constant c ∈ Σ of type τ , an element IA(cτ ) ∈

[[ τ ]]A (here [[− ]]A has been extended from sorts to types as explained above).

In every structure A, we finally require also that [[ Ω ]]A = {0, 1}, that IA(⊥) = 0,
that IA(>) = 1, that IA(=τ ) is the characteristic function of the identity relation
on [[ τ ]]A, and that IA(¬), IA(∨), IA(∧) are the usual truth tables functions (notice
that, in these and similar passages, we implicitly use the isomorphisms (XY )Z '
XY×Z in order to treat in the natural way curryfied binary function symbols).

Given a L-structure A = 〈[[− ]]A, IA〉, let LA be the signature enriched by a
constant ā of type τ for every a ∈ [[ τ ]]A; A can be canonically considered as a LA-
structure once IA is extended to the new constants by stipulating that IA(ā) := a.
By induction, it is now possible to extend IA to all closed LA-terms t as follows:

– IA(val(t, u)) = IA(t)(IA(u)) (this is set-theoretic functional application);
– IA(λxτ t) is the function that maps each element a ∈ [[ τ ]]A into IA(t[ā]).

From now on, we shall not distinguish for simplicity between a and its name ā. A
LA-sentence ϕ is true in A (in symbols A |= ϕ) iff IA(ϕ) = 1.

To introduce the notion of satisfiability we use finite assignments. Let A =
〈[[− ]]A, IA〉 be a L-structure and let x be a finite set of variables; an x-assignment
(or simply an assignment if x is clear from the context) α is a map associating with
every variable xτ ∈ x an element α(x) ∈ [[ τ ]]A. An L-formula ϕ is satisfied in A
under the x-assignment α (here x ⊇ fvar(ϕ)) iff IαA(ϕ) = 1, where IαA(ϕ) is the
LA-sentence obtained by replacing in ϕ the variables x ∈ x by (the names of) α(x).
We usually write A |=α ϕ for IαA(ϕ) = 1.

A formula is satisfiable iff it is satisfied under some assignment and a set of
formulae Θ (containing altogether only finitely many variables) is satisfiable iff for
some assignment α we have that A |=α ϕ holds for each ϕ ∈ Θ (of course, for this
to make sense, α must be an x-assignment for some x ⊇ fvar(Θ) - and one can
even assume x = fvar(Θ) without loss of generality).

3. FRAGMENTS

General type theory is very hard to attack from a computational point of view,
this is why we are basically interested only in more tractable fragments and in
combinations of them. Fragments are defined as follows:

Definition 3.1. A fragment is a pair 〈L, T 〉 where L = 〈T ,Σ, a〉 is a signature
and T is a recursive set of L-terms. a
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3.1 Algebraic Fragments

We want to use fragments as ingredients of larger and larger combined fragments:
a crucial notion in this sense is that of an algebraic fragment.

Definition 3.2. A fragment 〈L, T 〉 is said to be an algebraic fragment iff T sat-
isfies the following conditions:

(i) T is closed under composition, i.e. if u[x1, . . . , xn] ∈ T , then uσ ∈ T , where
σ : {x1 7→ t1, . . . , xn 7→ tn} is a substitution such that ti ∈ T for all i =
1, . . . , n;

(ii) T contains domain variables, i.e. if τ is a type such that some variable of type
τ occurs free in a term t ∈ T , then every variable of type τ belongs to T ;

(iii) T contains codomain variables, i.e. if t : τ belongs to T , then every variable
of type τ belongs to T . a

Observe that from the above definition it follows that T is closed under renamings,
i.e. that if t ∈ T and σ a renaming, then tσ ∈ T . The role of Definition 3.2(i) is
that of making fragment combinations non trivial, whereas the other conditions of
Definition 3.2 will be needed in order to apply preprocessing purification steps to
combined constraints.5

Quite often, one is interested in interpreting the terms of a fragment not in the
class of all possible structures for the signature of the fragment, but just in some
selected ones (e.g., when checking satisfiability of some temporal formulae, one
might be interested only in checking satisfiability in particular flows of time, those
which are for instance discrete or continuous). This is the reason for ‘interpreting’
fragments:

Definition 3.3. An interpreted algebraic fragment (to be shortened as i.a.f.) is
a triple Φ=〈L, T,S〉, where 〈L, T 〉 is an algebraic fragment and S is a class of
L-structures closed under isomorphisms. a

The notion of isomorphism we used in Definition 3.3 is the expected one: two L-
structures A1 = 〈[[− ]]A1 , IA1〉 and A2 = 〈[[− ]]A2 , IA2〉 are said to be isomorphic iff
there are bijections ιτ : [[ τ ]]A1 −→ [[ τ ]]A2 (varying τ ∈ T ) such that ιτ (IA1(c)) =
IA2(c) holds for all c : τ ∈ Σ and such that ιτ→υ(h) = ιυ ◦ h ◦ ι−1

τ holds for all
h ∈ [[ τ → υ ]]A1 (notice that to give such an isomorphism it is sufficient to specify
the bijections ιS for all sorts S of L).

The set of terms T in an i.a.f. Φ=〈L, T,S〉 is called the set of Φ-terms and the
set of types τ such that t : τ is a Φ-term for some t is called the set of Φ-types. A Φ-
variable is a variable x : τ such that τ is a Φ-type (or equivalently, a variable which
is a Φ-term). It is also useful to identify a (non-interpreted) algebraic fragment
〈L, T 〉 with the interpreted algebraic fragment Φ=〈L, T,S〉, where S is taken to be
the class of all L-structures.

5We would like to draw the reader’s attention to the fact that in Definition 3.2, when formulating
the closure under composition requirement for the set of the terms T of an algebraic fragment, we
asked that if t[x1, . . . , xn] ∈ T and u1, . . . , un ∈ T , then precisely the term t[u1, . . . , un] belongs
to T (and not just some other term which is βη-equivalent to it, like for instance its βη-normal
form). This strict requirement guarantees terms belonging to a combined fragment to be effectively
decomposable into iterated compositions of pure terms (see Subsection 4.1).
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Definition 3.4. Given an i.a.f. Φ, a Φ-atom is an equation t1 = t2 between Φ-
terms t1, t2 of the same type; a Φ-literal is a Φ-atom or a negation of a Φ-atom, a
Φ-constraint is a finite conjunction of Φ-literals, a Φ-clause is a finite disjunction of
Φ-literals. Infinite sets of Φ-literals (representing an infinite conjunction) are called
generalized Φ-constraints (provided they contain altogether only finitely many free
variables). a

Some Conventions. Without loss of generality, we may assume that > is a Φ-
atom in every i.a.f. Φ (in fact, to be of any interest, a fragment should at least
contain one term t and we can let > be t = t). As a consequence, ⊥ will always
be a Φ-literal; by convention, however, we shall include ⊥ among Φ-atoms (hence
a Φ-atom is either an equation among Φ-terms - > included - or it is ⊥). Since we
have ⊥ as an atom, there is no need to consider the empty clause as a clause, so
clauses will be disjunctions of at least one literal. The reader should keep in mind
these slightly non standard conventions for the whole paper.

A Φ-clause is said positive if only Φ-atoms occur in. A Φ-atom t1 = t2 is closed
if and only if ti is closed (i ∈ {1, 2}); the definition of closed Φ-literals, -constraints
and -clauses is analogous. For a finite set x of variables and an i.a.f. Φ, a Φ(x)-atom
(-term, -literal, -clause, -constraint) is a Φ-atom (-term, -literal, -clause, -constraint)
A such that fvar(A) ⊆ x.

We deal in this paper mainly with the constraint satisfiability problem for an
interpreted algebraic fragment Φ=〈L, T,S〉: this is the problem of deciding whether
a Φ-constraint is satisfiable in some structure A ∈ S. On the other hand, the word
problem for Φ is the problem of deciding if the universal closure of a given Φ-atom
is true in every structure A ∈ S.

Remark. More generally, one may consider the problem of deciding satisfiability
of Boolean combinations of Φ-atoms: for this problem, one should develop ‘DPLL
modulo Φ’ techniques analogous to recent ‘DPLL modulo theory’ techniques [Tinelli
2002; Nieuwenhuis et al. 2005] (see also [Bozzano et al. 2005], among others, for
efficient implementations). If we take this direction, it might be useful to allow the
possibility of restricting Φ-atoms occurring in Φ-constraints to a subset SΦ of the
whole set of the equations among Φ-terms: the only condition to be imposed is that
any Φ-atom is equivalent in all Φ-structures to a Boolean combination of an atom
from SΦ.

3.2 Examples

We give here a list of examples of i.a.f.’s; we shall mainly concentrate on those
examples which play a central role in the positive results of the paper. In all cases,
the easy proof that the properties of Definition 3.2 are satisfied is just sketched or
entirely left to the reader.

Example 3.5 (Simply Typed λ-Calculus). This is the i.a.f. Φ that one gets by keeping
only the terms that can be built by ‘omitting any reference to the type Ω’. According to Friedman
theorem [Friedman 1975], this i.a.f. has decidable word problem because βη-normalization can
decide equality of Φ-terms in all interpretations (remember that, when no semantic class S is
mentioned in the definition of an i.a.f., it is intended that S consists of all possible interpretations
for the signature). However, constraint satisfiability problem in this fragment is not decidable.
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Example 3.6 (First-order equational fragments). Let us consider a first-order signa-
ture L = 〈T ,Σ, a〉 (for simplicity, we also assume that L is one-sorted). Let T be the set of the
first-order L-terms and let S consists of the L-structures which happen to be models of a certain
first-order theory in the signature L. Obviously, the triple Φ = 〈L, T,S〉 is an i.a.f.. The Φ-atoms
will be equalities between Φ-terms, i.e. first-order atomic formulae of the kind t1 = t2. Word
problem in Φ=〈L, T,S〉 is standard uniform word problem (as defined for the case of equational
theories for instance in [Baader and Nipkow 1998]), whereas constraint satisfiability problem is
the problem of deciding satisfiability of a finite set of equations and disequations.

Example 3.7 (Universal first-order fragments). The previous example disregards the
relational symbols of the first-order signature L. To take also them into consideration, it is
sufficient to make some slight adjustments: besides first-order terms, also atomic formulae (>,⊥
included), as well as propositional variables - namely variables having type Ω - will be terms
of the fragment (notice that propositional variables are added to the set of terms in order for
closure under codomain variables to be satisfied, see Definition 3.2). The semantic class S where
the fragment is to be interpreted is again the class of the models of some first-order theory.
Then, for Φ=〈L, T,S〉 so defined, the constraint satisfiability problem is essentially the problem
of deciding the satisfiability of an arbitrary finite set of L-literals in the models belonging to S (the
complementary problem is equivalent to the problem of deciding validity of a universal first-order
formula in S). We said ‘essentially’ because we need little minor observations here: first, notice
that L-atomic formulae A (resp. negated L-atomic formulae ¬A) can be identified to the Φ-atoms
A = > (resp. A = ⊥). Second, in a constraint also equations A = B and disequations A 6= B

(among L-atomic formulae and/or propositional variables) are included. However, for instance,
A = B is satisfiable iff A ∧ B is satisfiable or ¬A ∧ ¬B is satisfiable: this means that, by case
splitting, we can anyway reduce satisfiability of Φ-constraints to satisfiability of conjunctions of
L-atomic and negated L-atomic formulae (this is a case in which one may apply the approach
suggested in the last Remark of the previous subsection).

We now define different kinds of i.a.f.’s starting from the set F of first-order
formulae of a first-order signature L; for simplicity, let us suppose also that L is
relational and one-sorted (call W the unique sort of L).

Example 3.8 (Full First-Order Language, plain version). We take T to be the union
of F with the sets of the individual variables and of the propositional variables. Of course,
Φ=〈L, T 〉 so defined is an algebraic fragment, whose types are W and Ω. By Church theorem,
both word and constraint satisfiability problem are undecidable here (the two problems reduce to
satisfiability of a first-order formula with equality); they may be decidable in case the fragment is
interpreted into some specific semantic class S. If S is an elementary class (i.e. it is the class of
the models of a first-order theory), then the i.a.f. Φ = 〈L, T,S〉 is called a first-order fragment.

In the next example, we build formulae (out of the symbols of our fixed first-order
relational one-sorted signature L) by using at most N (free or bound) individual
variables; we are allowed to use also second order variables of arity at most K:

Example 3.9 (Full First-Order Language, NK-version). Fix cardinals K ≤ N ≤ ω
and consider, instead of F , the set FNK of formulae ϕ that contains at most N (free or bound) in-
dividual variables and that are built up by applying boolean connectives and individual quantifiers
to atomic formulae of the following two kinds:

– P (xi1 , . . . , xin ), where P is a relational constant and xi1 , . . . , xin are individual variables (since
at most x1, . . . , xN can be used, we require that i1, . . . , in ≤ N);

– X(xi1 , . . . , xin ), where i1, . . . , in ≤ N , and X is a variable of type Wn → Ω with n ≤ K (here
Wn abbreviates W · · ·W , n-times).

The terms in the algebraic fragment ΦLNK = 〈L, TLNK〉 are now the terms t such that t ∼βη
{x1, . . . , xn | ϕ}, for some n ≤ K and for some ϕ ∈ FNK , with fvarW (ϕ) ⊆ {x1, . . . , xn}.6

6We need to use βη-equivalence here to show that the properties of Definition 3.2 (namely closure
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Types in such ΦLNK are now Wn → Ω (n ≤ K) and this fact makes a big difference with the
previous example (the difference will become apparent later when combined fragments enter into
the picture). Constraint satisfiability problems still reduce to satisfiability problems for sentences:
in fact, once second order variables are replaced by the names of the subsets assigned to them
by some assignment α in a L-structure, ΦLNK -atoms like {x | ϕ} = {x | ψ} are equivalent to
first-order sentences ∀x(ϕ↔ ψ) and conversely any first-order sentence θ (with at most N bound
individual variables) is equivalent to the ΦLNK -atom θ = >.

The cases N = 1, 2 are particularly important, because in these cases the sat-
isfiability problem for sentences (and hence also constraint satisfiability problems
in our fragments) is decidable, see [Börger et al. 2001] and the references quoted
therein.

We mention that the previous two examples admit very important weaker versions
in which some of the first-order operators are omitted. For instance, if universal
quantifiers and negations are omitted, constraint satisfiability in the ωω-version be-
comes the problem of deciding whether a geometric sequent is entailed by a finitely
axiomatized geometric theory (for this terminology, see for example [Baader and
Ghilardi 2005b]). Further examples can be obtained by using the large information
contained in the textbook [Börger et al. 2001] (see also [Fermüller et al. 1993]). We
introduce now fragments that arise from research in knowledge representation area,
especially in connection to modal and description logics.

Example 3.10 (Modal/Description Logic Fragments, global version). A modal sig-
nature is a set OM , whose elements are called unary ’Diamond’ modal operators (the case of n-ary
modal operators does not create special difficulties and it is left to the reader). OM -concepts are
built up from a countable set of atomic concepts x, y, z, . . . by applying >,⊥,¬,u,t as well as
the diamond operators 3k ∈ OM (we prefer to use here modal notation instead of the equivalent
description logic notation of Subsection 1.2).

With every modal signature OM we associate the first-order signature LM , containing a unique
sortW and, for every 3k ∈ OM , a relational constant Rk of typeWW → Ω. Suppose we are given
a bijective correspondence x 7−→ X between atomic concepts and second order variables of type
W → Ω. Given an OM -modal concept C and a variable w of type W , the standard translation
ST (C,w) is the LM -term of type Ω inductively defined as follows:

ST (>, w) = >; ST (⊥, w) = ⊥;

ST (x, w) = X(w); ST (¬D,w) = ¬ST (D,w);

ST (D1 uD2, w) = ST (D1, w) ∧ ST (D2, w), ST (D1 tD2, w) = ST (D1, w) ∨ ST (D2, w);

ST (3kD,w) = ∃v(Rk(w, v) ∧ ST (D, v)),

where v is a variable of type W (different from w). Let TM be the set of those LM -terms t for
which there exists a concept C s.t. t ∼βη {w | ST (C,w)}. The pair 〈LM , TM 〉 is an algebraic
fragment and it becomes an i.a.f. ΦM = 〈LM , TM ,SM 〉 if we specify also a class SM of LM -
structures closed under isomorphisms (notice that LM -structures, usually called Kripke frames in
modal logic, are just sets endowed with a binary relation Rk for every 3k ∈ OM ). Using Boolean
connectives, ΦM -constraints can be equivalently represented in the form

{w | ST (D,w)} = {w | >} ∧ {w | ST (D1, w)} 6= {w | ⊥} ∧ · · · ∧ {w | ST (Dn, w)} 6= {w | ⊥}.

Thus constraint satisfiability problem becomes, in the description logics terminology, just the
(simultaneous) satisfiability problem of concepts with respect to a given T-Box (see Subsection
1.2).

Example 3.11 (Modal/Description Logic Fragments, local version). If we want to
capture A-Box reasoning too, we need to build a slightly different fragment. The type-theoretic

under composition and under domain/codomain variables) are satisfied, see also Footnote 5.
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signature LML of our fragment 〈LML, TML〉 is again LM , but TML now contains: a) the ‘concept
assertions’, i.e. the terms which are βη-equivalent to terms of the kind ST (C,w); b) the ‘role
assertions’, i.e. the terms of the kind Rk(v, w); c) the variables of type W,Ω and W → Ω.

The pair 〈LML, TML〉 is an algebraic fragment and it becomes an interpreted algebraic frag-
ment ΦML = 〈LML, TML,SML〉 if we specify also a class SML of LML-structures closed under
isomorphisms. Let us now analyze constraints in this fragment: as in Example 3.7, we can elim-
inate (by Boolean case splitting) atoms of the kind ST (ϕ,w) = ST (ψ, v), ST (ϕ,w) = R(v1, v2),
etc. (and their negations), in favor of plain concept assertions and role assertions. In addition
we have: a) identities among individual names (i.e. among variables of type W ); b) identities
among atomic concepts (i.e. among second order variables of type W → Ω); c) propositional vari-
ables (i.e. variables of type Ω); d) negations of identities among atomic concepts; e) negations of
propositional variables; f) negations of role assertions; g) negations of identities among individual
names.

Now, a)-b)-c)-d)-e) can be eliminated without loss of generality: in fact, (i) all variable iden-
tities can be eliminated by replacements; (ii) negations of identities among atomic concepts can
be replaced by concept assertions involving fresh variables; (iii) propositional variables and their
negations do not interact with the remaining part of the constraint and can be ignored. In con-
clusion, ΦLM -constraints are just standard A-Boxes with, in addition, negations of role assertions
and of identities among individual names (notice that traditional A-Boxes automatically include
all negations of identities among distinct individual variables by the so-called ‘unique name as-
sumption’, see [Baader et al. 2003]). Let us call A-Boxes these slightly more general constraints
and let us reserve the name of positive A-Boxes to conjunctions of concept assertions and role
assertions.

Example 3.12 (Modal/Description Logic Fragments, full version). To deal with sat-
isfiability of a whole knowledge basis, it is sufficient to join the two previous fragments. More
precisely, we can build the fragments ΦMF = 〈LMF , TMF ,SMF 〉, where LMF = LM and
TMF = TM ∪ TML. Types in this fragment are W,Ω and W → Ω; constraints are conjunc-
tions of a T-Box and an A-Box.

Example 3.13 (Modal/Description Logic Fragments, non-normal case). If we want
to consider the case in which some of the operators in OM are non-normal, we can use higher-order
constants fk : (W → Ω) → (W → Ω) (instead of binary relations Rk : WW → Ω) and define a
different translation. Such a translation NT (C,w) differs from ST (C,w) for the inductive step
relative to modal operators which now reads as follows:

NT (3kD,w) = fk({w | NT (D,w)})(w).

Now global, local and full algebraic fragments can be defined as in the normal case. If the
easy extension to n-ary non normal operators is included and if we also interpret the resulting
fragments, we get precisely the abstract description systems of [Baader et al. 2002].

Example 3.14 (µ-calculus). We show how to build a truly second-order fragment out of a
modal signature OM (in the sense of Example 3.10). In the syntax of µ-calculus [Kozen 1983], we
are allowed to apply the minimum fixed point operator µxD to a concept D provided x occurs
only positively or only negatively in D. According to well-known fixed point characterization, we
can extend the translation ST from Example 3.10, by using the second-order formulae

ST (µxD,w) := ∀Y (({w | ST (D,w)}[Y 7→ X] ⊆ Y )→ Y (w))

Armed by this translation, we can easily design suitable µ-fragments.

Guarded and packed guarded fragments were introduced as generalizations of
modal fragments [Andréka et al. 1998; Grädel 1999; Marx 2001]: in fact, they form
classes of formulae which are remarkably large but still inherit relevant syntactic
and semantic features of the more restricted class of formulae which are standard
translations of modal concepts. In particular, guarded and packed guarded formulae
are decidable for satisfiability (with the appropriate settings, decision procedures
can also be obtained by running standard superposition provers [Ganzinger and
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de Nivelle 1999]). For simplicity, we give here the instructions on how to build
only one version of the packed guarded fragment with equality (other versions
can be built by following the methods we used above for the first-order and the
modal cases). We notice that packed guarded fragments without equality are also
important: to built them it is sufficient to erase any reference to the equality
predicate in the relevant definitions.

Example 3.15 (Packed Guarded Fragments). Let us consider a first-order one-sorted re-
lational signature LG.7 A guard π is a LG-formula like

∧k
i=1 πi, where:

– πi is obtained by applying existential quantifiers to atomic formulae Pi(xi1, . . . , xini ) where the
Pi are constants of type Wni → Ω and xi1, . . . , xini are variables of type W ;

– for all x1, x2 ∈ fvar(π), there exists an i ∈ {1, . . . , k} such that {x1, x2} ⊆ fvar(πi).

We define the packed guarded formulae as follows:

– if X : W → Ω and x : W are variables, X(x) is a packed guarded formula;
– if P : Wn → Ω is a constant and y1 : W, . . . , yn : W are variables, P (y1, . . . , yn) is a packed

guarded formula;
– if ϕ is a packed guarded formula, ¬ϕ is a packed guarded formula;
– if ϕ1 and ϕ2 are packed guarded formulae, ϕ1 ∧ ϕ2 and ϕ1 ∨ ϕ2 are packed guarded formulae;
– if ϕ is a packed guarded formula and π is a guard such that fvarW (ϕ) ⊆ fvar(π), then
∀y(π[x, y]→ ϕ[x, y]) and ∃y(π[x, y] ∧ ϕ[x, y]) are packed guarded formulae.8

Guarded formulae are obtained by limiting the guards in the above definition to atomic formu-
lae. Notice that we used second order variables of type W → Ω only (and not of type Wn → Ω

for n > 1): the reason, besides the applications to combined decision problems we have in mind, is
that we want constraint problems to be equivalent to sentences which are still packed guarded, see
below. Packed guarded formulae not containing variables of type W → Ω are called elementary
(or first-order) packed guarded formulae.

If we let TG be the set of LG-terms t such that t is βη-equivalent to a term of the kind {w | ϕ}
(where ϕ is a packed guarded formula such that fvarW (ϕ) ⊆ {w}), then the pair 〈LG, TG〉 is an
algebraic fragment. The only type in this fragment isW → Ω and constraint satisfiability problem
in this fragment is equivalent to satisfiability of guarded sentences: this is because, in case ϕ1, ϕ2

are packed guarded formulae with fvarW (ϕi) ⊆ {w} (for i = 1, 2), then {w | ϕ1} = {w | ϕ2} is
equivalent to ∀w(ϕ1 ↔ ϕ2) which is packed guarded (just use w = w as a guard).

3.3 Reduced Fragments and Residues

Let Φ be an i.a.f.; we shall use Greek letters Γ,∆, . . . for Φ-constraints (i.e. for
finite sets of Φ-literals) and letters Θ,Λ, . . . for finite sets of Φ-clauses. If Θ is a
finite set of Φ-clauses and C ≡ L1 ∨ · · · ∨ Lk is a Φ-clause, we say that C is a
Φ-consequence of Θ (written Θ |=Φ C) iff Θ ∪ {¬L1, . . . ,¬Lk} is not Φ-satisfiable
(i.e. iff such a set is not satisfiable in any A ∈ S).9

The notion of Φ-consequence is too strong for certain applications; for instance,
when we simply need to delete certain deductively useless data, a weaker notion
of redundancy (based, for example, on subsumption) is preferable. We give here
an abstract axiomatization for a notion of redundancy (to understand properly the

7There exist some variations to the packed guarded fragment presented here, for a quick compar-
ison among them see [Hirsch and Hodkinson 2002], Chapter 19.
8If y = {y1, . . . , yn}, then ∀y means ∀y1 · · · ∀yn and ∃y means ∃y1 · · · ∃yn. Notice that second
order variables do not appear in guards.
9Notice that variables in clauses are treated here ‘rigidly’ (i.e. they are not implicitly universally
quantified).
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definitions of this subsection, recall that we conventionally included > and ⊥ among
Φ-atoms for any i.a.f. Φ):

Definition 3.16. A redundancy notion for a fragment Φ is a recursive binary
relation RedΦ between finite sets of Φ-clauses Θ and Φ-clauses C satisfying the
following properties:

(i) RedΦ(Θ, C) implies Θ |=Φ C (soundness);
(ii) RedΦ(∅,>) and RedΦ({⊥}, C) both hold;
(iii) RedΦ(Θ, C) and Θ ⊆ Θ′ imply RedΦ(Θ′, C) (monotonicity);
(iv) RedΦ(Θ, C) and RedΦ(Θ ∪ {C}, D) imply RedΦ(Θ, D) (transitivity);
(v) if C is subsumed by some C ′ ∈ Θ (i.e. if every literal occurring in C ′ occurs

also in C), then RedΦ(Θ, C) holds.

Whenever a redundancy notion RedΦ is fixed, we say that C is Φ-redundant with
respect to Θ when RedΦ(Θ, C) holds. a

For example, the minimum redundancy notion is obtained by stipulating that
RedΦ(Θ, C) holds precisely when (⊥ ∈ Θ or C ≡ > or C ≡ >∨D or C is subsumed
by some C ′ ∈ Θ). In contrast, if the constraint solving problem for Φ is decidable,
there is a maximum redundancy notion, called the full redundancy notion, given
by the Φ-consequence relation: in fact, by introducing case-splitting for disjunc-
tions, a recursive procedure for Φ-constraint solving can be turned into a recursive
procedure deciding Θ |=Φ C.

Let Φ=〈L, T,S〉 be an i.a.f. on the signature L=〈T ,Σ, a〉 and let L0 = 〈T0,Σ0, a0〉
be a subsignature of L (this means that the proper symbols of L0 are included in
the proper symbols of L and that a0 is the restriction of a). The i.a.f. restricted to
L0 is the i.a.f. Φ|L0 = 〈L0, T|L0 ,S|L0〉 that is so defined:

– T|L0 is the set of terms obtained by intersecting T with the set of L0-terms;
– S|L0 consists of the structures B for which there exists some A ∈ S such that
B ' A|L0 . Here A|L0 is the L0-reduct of A, i.e. it is the structure obtained
from A by forgetting the interpretation of the proper symbols of L which are not
proper symbols of L0.

An i.a.f. Φ0 = 〈L0, T0,S0〉 is said to be a L0-subfragment (or simply a subfragment,
leaving the subsignature L0 ⊆ L as understood) of Φ=〈L, T,S〉 iff T0 ⊆ T|L0 and
S0 ⊇ S|L0 . In this case, we may also say that Φ is an expansion (or an extension)
of Φ0.

Recall that a Φ(x)-constraint is a constraint in which at most the variables x
occur free. Given such a Φ(x)-constraint Γ and a redundancy notion RedΦ0 on a
subfragment Φ0 of Φ, we call Φ0-basis for Γ a set Θ of Φ0(x0)-clauses such that
(here x0 collects those variables among the x which happen to be Φ0-variables):

(i) all clauses D ∈ Θ are positive and are such that Γ |=Φ D;
(ii) every positive Φ0(x0)-clause C such that Γ |=Φ C is Φ0-redundant with respect

to Θ.

Since we will be interested in in exchanging information concerning consequences
over shared signatures, we need a notion of a residue, like in partial theory reasoning
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(see, e.g., [Baumgartner et al. 1992] for comprehensive information on the subject
and the relevant pointers to the literature). Again, we prefer an abstract approach
and we treat residues as clauses which are recursively enumerated by a suitable
device (the device may for instance be an enumerator of certain proofs of a calculus,
but there is no need to think of it in this way):10

Definition 3.17. Suppose we are given a subfragment Φ0 of a fragment Φ. A
positive residue Φ-enumerator for Φ0 (often shortened as a Φ-enumerator) is a
recursive function mapping a finite set x of Φ-variables, a Φ(x)-constraint Γ and a
natural number i to a Φ0-clause Res

x
Φ(Γ, i) (to be written simply as ResΦ(Γ, i)) in

such a way that:

– ResΦ(Γ, i) is a positive clause;
– fvar(ResΦ(Γ, i)) ⊆ x;
– Γ |=Φ ResΦ(Γ, i) (soundness).

Any Φ0-clause of the kind ResΦ(Γ, i) (for some i ≥ 0) will be called a Φ0-residue
of Γ. a

Having also a redundancy notion for Φ0 at our disposal, we can axiomatize the
notion of an ‘optimized’ (i.e. of a non-redundant) Φ-enumerator for Φ0. The version
of the Nelson-Oppen combination procedure we give in Subsection 4.2 has non-
redundant enumerators as main ingredients and it is designed to be automatically
terminating in the relevant cases when termination follows from our results. These
are basically the noetherian and the locally finite cases mentioned in Subsection 3.4,
where enumerators which are non redundant with respect to the full redundancy
notion usually exist and enjoy the termination property below.

Definition 3.18. A Φ-enumerator ResΦ for Φ0 is said to be non-redundant (with
respect to a redundancy notion RedΦ0) iff it satisfies also the following properties
for every x, for every Φ(x)-constraint Γ of and for every i ≥ 0 (we write Γ|Φ0 for
the set of literals in Γ which are Φ0-literals):

(i) if ResΦ(Γ, i) is Φ0-redundant with respect to Γ|Φ0 ∪{ResΦ(Γ, j) | j < i}, then
ResΦ(Γ, i) is either ⊥ or >;

(ii) if ⊥ is Φ0-redundant with respect to Γ|Φ0 ∪ {ResΦ(Γ, j) | j < i}, then
ResΦ(Γ, i) is equal to ⊥;

(iii) if ResΦ(Γ, i) is equal to >, then Γ|Φ0 ∪ {ResΦ(Γ, j) | j < i} is a Φ0-basis for
Γ. a

Definition 3.19. A non-redundant Φ-enumerator for Φ0 is said to be complete
iff for every x, for every Φ(x)-constraint Γ and for every positive Φ0(x)-clause
C, we have that Γ |=Φ C implies that C is Φ0-redundant with respect to Γ|Φ0 ∪
{ResΦ(Γ, j) | j ≤ i} for some i. A non-redundant Φ-enumerator ResΦ is said to be
terminating iff for for every x and for every for every Φ(x)-constraint Γ there is an
i such that ResΦ(Γ, i) is equal to ⊥ or to >. a

10In [Ghilardi et al. 2005] we introduced residues operating on finite sets of clauses, here we prefer
to restrict to residues operating on finite sets of literals (i.e. on constraints), because they are
sufficient for our combination purposes.
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Let us make a few comments on Definition 3.18: first, only non redundant residues
can be produced at each step (condition (i)), if possible. If this is not possible, this
means that all the relevant information has been accumulated (a Φ0-basis has been
reached). In this case, if the inconsistency ⊥ is discovered (in the sense that it is
perceived as redundant), then the residue enumeration in practice stops, because
it becomes constantly equal to ⊥ (condition (ii)). The tautology > has the special
role of marking the opposite outcome: it is the residue that is returned precisely
when Γ is consistent and a Φ0-basis has been produced, meaning that all relevant
semantic consequences of Γ have been discovered (conditions (ii)-(iii)).

If the redundancy notion we use is trivial (i.e. it is the minimum one), then
only very mild corrections are needed for any Φ-enumerator for Φ0 to become
non-redundant: apart from minor ad hoc modifications,11 we only need to make
it constantly equal to ⊥, as soon as ⊥ becomes redundant in the enumeration.
This observation shows that, in practice, any Φ-enumerator for Φ0 can be made
non-redundant and can consequently be used as input of our combined decision
procedure.

In certain special situations (typically exemplified in computational algebra, see
Subsection 3.4 below), we have an effective procedure which is able to recognize
whether a given set of positive Φ0-clauses forms a Φ0-basis for a constraint Γ with
respect to the full redundancy notion: if these full Φ0-bases for Γ can be effectively
recognized and if also Φ0-consequence is decidable, we can always turn a complete
Φ-enumerator for Φ0 into a complete and non-redundant one with respect to the
full redundancy notion. The advantage of this optimization is that the combined
decision procedure of Subsection 4.2, after getting > or ⊥ as residues, automatically
recognizes that the residue exchange is over and halts.

3.4 Noetherian, Locally Finite and Convex Fragments

The above mentioned optimization for enumerators usually apply to the cases in
which the ‘small’ fragment Φ0 is noetherian: this important notion is borrowed from
Algebra. Noetherianity conditions known from Algebra [MacLane and Birckhoff
1988] say that there are no infinite ascending chains of congruences. In finitely
presented algebras, congruences are represented as sets of equations among terms,
hence noetherianity can be expressed there by saying that there are no infinite
ascending chains of sets of atoms, modulo logical consequence. If we translate this
into our general setting, we get the following definition.

Definition 3.20. An i.a.f. Φ0 is called noetherian if and only if for every finite
set of variables x, every infinite ascending chain

∆1 ⊆ ∆2 ⊆ · · · ⊆ ∆n ⊆ · · ·

11These modifications are possible provided that there are countably many closed Φ0-atoms equiv-
alent to > but syntactically different from it: if there are such infinitely many closed Φ0-atoms
which are ‘copies’ of >, then we can replace ResΦ(Γ, i) by one of them in case ResΦ(Γ, i) (but
not ⊥) is redundant with respect to Γ|Φ0 ∪ {ResΦ(Γ, j) | j < i}. By using this trick, conditions
(i) and (iii) of Definition 3.18 can be forced, if the underlying redundancy notion for Φ0 is the
minimum one. The hypothesis that Φ0 is endowed with such infinitely many ‘copies’ of > is not
really restrictive and can be always obtained by slight modifications of Φ0.
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of sets of Φ0(x)-atoms is eventually constant for Φ0-consequence (meaning that
there is an n such that for all m and A ∈ ∆m, we have ∆n |=Φ0 A). a

The following effective local finiteness notion is often used in order to make
Nelson-Oppen procedures terminating [Ghilardi 2004; Baader et al. 2006; Baader
and Ghilardi 2005b]:12

Definition 3.21. An i.a.f. Φ0 is said to be effectively locally finite iff

(i) the set of Φ0-types is recursive and constraint satisfiability problem for Φ0 is
decidable;

(ii) for every finite set of Φ0-variables x, there are finitely many computable Φ0(x)-
terms t1, . . . , tn such that for every further Φ0(x)-term u one of the literals
t1 6= u, . . . , tn 6= u is not Φ0-satisfiable (that is, in the class of the structures in
which Φ0 is interpreted, every Φ0(x)-term is equal, as an interpreted function,
to one of the ti).

The terms t1, . . . , tn in (ii) are called the x-representative terms of Φ0. a

Noetherianity clearly implies local finiteness and it is strictly weaker than it (as
shown by Examples 3.27, 3.28, 3.29 below); nevertheless, it is sufficient for termina-
tion of our combined procedure, once it is accompanied by a suitable effectiveness
condition. In order to formulate such an effectiveness condition, we need the fol-
lowing Proposition:

Proposition 3.22. In a noetherian fragment Φ0 every infinite ascending chain
of sets of positive Φ0(x)-clauses is eventually constant for Φ0-consequence.

Proof. Suppose not; in this case, an equivalent formulation of the negation
of the statement of the Proposition says that there are infinitely many positive
Φ0(x)-clauses C1, C2, . . . ,such that for all i, the clause Ci is not a Φ0-consequence
of {Ck | k < i}.

Let us build a chain of trees T0 ⊆ T1 ⊆ T2 ⊆ · · · , whose nodes are labeled by
Φ0(x)-atoms as follows. T0 consists of the root only, which is labeled >. Suppose
Ti−1 is already built and consider the clause Ci ≡ B1 ∨ · · · ∨ Bm. To build Ti, do
the following for every leaf K of Ti−1 (let the branch leading to K be labeled by
A1, . . . , Ak): append new sons to K labeled B1, . . . , Bm, respectively, if Ci is not a
Φ0-consequence of {A1, . . . , Ak} (if it is, do nothing for the leaf K).

Consider now the union tree T :=
⋃
Ti: since, whenever a node labeled Ak+1 is

added, Ak+1 is not a Φ0-consequence of the formulae labeling the predecessor nodes,
by the noetherianity of Φ0, all branches are finite and by König lemma the whole
tree is itself finite. This means that for some index j, the examination of clauses
Ci (for i > j) did not yield any modification of the already built tree. Now, Ci+1 is
not a Φ0-consequence of {C1, . . . , Ci}: this means that there is a structure A in the
class of the structures in which Φ0 is interpreted, in which under some assignment
α, all atoms of Ci+1 are false and the C1, . . . , Ci are all true. By induction on
j = 0, . . . , i, it is easily seen that there is a branch in Tj whose labeling atoms are

12Notice that the definition of local finiteness below becomes slightly redundant in the first-order
universal case considered in these papers.
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true in A: this contradicts the fact that the tree Ti has not been modified in step
i+ 1.

Suppose that Φ0 is noetherian, that Φ0-constraint satisfiability is decidable, and
that Φ is an expansion of Φ0: by the above Proposition, it is immediate to see that
every Φ(x)-constraint Γ has a finite full Φ0-basis (i.e. there is a finite Φ0-basis for
Γ with respect to the full redundancy notion). The following noetherianity require-
ment for a enumerator is intended to be nothing but an effectiveness requirement
for the computation of finite full Φ0-bases.

Definition 3.23. A Φ-enumerator ResΦ for a noetherian subfragment Φ0 is said
to be noetherian iff it is non redundant with respect to the full redundancy notion
for Φ0. a

An immediate consequence of Proposition 3.22 is that:

Proposition 3.24. A noetherian Φ-enumerator ResΦ for Φ0 is terminating and
also complete.

The following proposition is also easy, but let us fix it for future reference:

Proposition 3.25. If Φ0 is effectively locally finite and Φ is any extension of it
having decidable constraint satisfiability problem, then there always exists a noethe-
rian Φ-enumerator for Φ0.

Proof. Once a Φ(x)-constraint Γ is given, first check Γ for consistency: if it is
inconsistent, the residue enumeration just returns ⊥. If it is consistent, test the
finitely many Φ0(x0)-positive clauses built up from the x0-representative terms of
Φ0 for being a Φ-consequence of Γ (here x0 are those variables among the x’s which
are Φ0-variables). To build the desired Φ-enumerator, it is then sufficient to list
(up to Φ0-redundancy, which can be effectively checked) the clauses whose test is
positive and to give > as a final output.

We shall see that, when dealing with noetherian enumerators over a noetherian
shared fragment, the combination procedure of Subsection 4.2 becomes automati-
cally terminating. If noetherianity is the essential requirement for the termination
of Nelson-Oppen combination procedure, convexity is the crucial property for ef-
ficiency, as it makes the combination procedure deterministic [Oppen 1980]. The
following Definition is an adaptation to our context of an analogous notion intro-
duced in [Tinelli 2003]:

Definition 3.26. Let Φ0 be a subfragment of Φ; we say that Φ is Φ0-convex iff
every finite set Γ of Φ-literals having as a Φ-consequence the disjunction of n > 1
Φ0-atoms, actually has as a Φ-consequence one of them. When we say that a
fragment Φ is convex tout court, we mean that it is Φ-convex. a

As an example, notice that fragments Φ = 〈L, T,S〉 analyzed in Example 3.6 are
convex in case S is the class of the models of a first-order Horn theory.

A Φ-enumerator ResΦ for Φ0 is Φ0-convex iff ResΦ(Γ, i) is always an atom (recall
that by our conventions, this includes the case in which it is > or ⊥). Any complete
non-redundant Φ-enumerator for Φ0 can be turned into a Φ0-convex complete non-
redundant Φ-enumerator for Φ0, in case Φ is Φ0-convex. Thus the combination
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procedure of Subsection 4.2 is designed in such a way that it becomes automatically
deterministic if the component fragments are both convex with respect to the shared
fragment.

Example 3.27 (K-algebras). Given a fieldK, let us consider the one-sorted language LKalg ,
whose signature contains the constants 0, 1 of type V (V is the unique sort of LKalg), the two
binary function symbols +, ◦ of type V V → V , the unary function symbol − of type V → V
and a K-indexed family of unary function symbols gk of type V → V . We consider the i.a.f.
ΦKalg = 〈LKalg , TKalg ,SKalg〉 where TKalg is the set of first-order terms in the above signature
(we shall use infix notation for + and write kv, v1v2 for gk(v), ◦(v1, v2), respectively). Fur-
thermore, the class SKalg consists of the structures which happen to be models for the theory
of (commutative, for simplicity) K-algebras [MacLane and Birckhoff 1988]: these are structures
having both a commutative ring with unit and a K-vector space structure (the two structures are
related by the equations k(v1v2) = (kv1)v2 = v1(kv2)). It is clear that ΦKalg is an interpreted
algebraic fragment, which is also convex and noetherian. Constraint satisfiability problem in this
fragment is equivalent to the ideal membership problem and hence it is solved by Buchberger
algorithm computing Gröbner bases (see, e.g., [Cox et al. 1997] for a textbook on this topic).

Example 3.28 (K-vector spaces). As a subfragment of ΦKalg we can consider the inter-
preted algebraic fragment corresponding to the theory of K-vector spaces (this is also convex and
noetherian, although still not locally finite). In order to obtain a noetherian ΦKalg-enumerator
for ΦK , we need a condition that is satisfied by common admissible term orderings, namely that
membership of a linear polynomial to a finitely generated ideal to be decided only by linear re-
duction rules of a Gröbner basis. If this happens, we get a noetherian ΦKalg-enumerator for ΦK
simply by listing the linear polynomials of a Gröbner basis (see [Ghilardi et al. 2005] or [Nicolini
2006] for more details).

Example 3.29. For general algebraic reasons [MacLane and Birckhoff 1988], the observations
of the previous example concerning noetherianity and convexity of the i.a.f. ΦK = 〈LK , TK ,SK〉
applies also in the analogous case of the theory of modules over a noetherian ring K. This implies
that the theory of abelian groups is a noetherian fragment and, since integer or rational linear
arithmetic (namely the theory of the integers or of the rationals under addition) is an extension
of the latter, it is noetherian too (however noetherianity is lost if we add the ordering to the
language).

Example 3.30 (K-vector spaces endowed with an endomorphism). This is an expan-
sion of the fragment in Example 3.28. We augment the signature LK with a unary function
symbol f and, in order to interpret the fragment, we take K-vector spaces endowed with a linear
endomorphism (call this fragment ΦKend = 〈LKend, TKend,SKend〉 and the structures in SKend
f -K-vector spaces). A decision procedure for constraint satisfiability in this fragment can be ob-
tained by modifying Buchberger completion algorithm; such completion algorithm is easily seen
to provide also a noetherian ΦKend-enumerator for the subfragment ΦK (see again [Ghilardi et al.
2005] or [Nicolini 2006] for more details).

4. COMBINED FRAGMENTS

We give now the formal definition for the operation of combining fragments.

Definition 4.1. Let Φ1 = 〈L1, T1,S1〉 and Φ2 = 〈L2, T2,S2〉 be i.a.f.’s on the
signatures L1 and L2 respectively; we define the shared fragment of Φ1,Φ2 as the
i.a.f. Φ0 = 〈L0, T0,S0〉, where:

– L0 := L1 ∩ L2;
– T0 := T1|L0 ∩ T2|L0 ;
– S0 := S1|L0 ∪ S2|L0 . a
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Thus the Φ0-terms are the L0-terms that are both Φ1-terms and Φ2-terms,
whereas the Φ0-structures are the L0-structures which are reducts either of a Φ1- or
of a Φ2-structure. According to the above definition, Φ0 is a subfragment of both
Φ1 and Φ2.

Definition 4.2. The combined fragment of the i.a.f.’s Φ1 and Φ2 is the i.a.f.

Φ1 ⊕ Φ2 = 〈L1 ⊕ L2, T1 ⊕ T2,S1 ⊕ S2〉

so defined:

(i) L1 ⊕ L2 is the union of the signatures L1 and L2 (i.e. it is the signature
obtained by joining the proper symbols of L1 and L2);

(ii) T1 ⊕ T2 is the smallest set of L1 ⊕ L2-terms which includes T1 ∪ T2, is closed
under composition and contains domain and codomain variables;

(iii) S1 ⊕ S2 = {A | A is a L1 ⊕ L2-structure s.t. A|L1 ∈ S1 and A|L2 ∈ S2}. a

T1 ⊕ T2 is defined in such a way that conditions (i)-(ii)-(iii) from Definition 3.2
are matched;13 of course, since Φ1 ⊕ Φ2-types turn out to be just the types which
are either Φ1- or Φ2-types, closure under domain and codomain variables comes for
free, i.e. it needs not to be postulated in (ii) above.

4.1 The Purification Steps

We say that a Φ1 ⊕ Φ2-term is pure iff it is a Φi-term (i = 1 or i = 2) and that a
Φ1 ⊕Φ2-constraint Γ is pure iff it for each literal L ∈ Γ there is i = 1 or i = 2 such
that L is a Φi-literal. Constraints in combined fragments can be purified, as we
shall see. Before giving the related procedure, we first have a better look to terms
in a combined fragment Φ1 ⊕ Φ2 = 〈L1 ⊕ L2, T1 ⊕ T2,S1 ⊕ S2〉. For a L1 ⊕ L2-
term t and for a natural number n, the relation δ(t, n) (written as δ(t) ≤ n) holds
whenever one of the following non mutually exclusive conditions apply:

– n ≥ 0 and t is a shared variable (i.e. a Φ0-variable);
– n ≥ 1 and t ∈ T1 ∪ T2;
– n ≥ 2 and there are r, s > 0, there are terms u[x1, . . . , xk], t1, . . . , tk such that
n = r + s, δ(u) ≤ r, δ(t1) ≤ s, . . . , δ(tk) ≤ s and t is equal to u[t1, . . . , tk].

Notice that if δ(t) ≤ n holds and if n ≤ m, then δ(t) ≤ m holds too. The degree
δ(t) of a L1 ⊕ L2-term t is the minimum d such that δ(t) ≤ d holds - provided
such a d exists, otherwise the degree of t is said to be infinite. It turns out that
terms having degree 0 are just shared variables and terms having degree 1 are pure
Φi-terms which are not shared variables. The following Lemma is easily proved by
induction:

Lemma 4.3. L1 ⊕ L2-terms t satisfying δ(t) ≤ n are closed under substitutions
mapping variables into variables.

Lemma 4.4. A term t ∈ L1 ⊕ L2 belongs to T1 ⊕ T2 iff it has a finite degree.

13In Corollary 4.5 below, we prove that T1 ⊕ T2 is recursive, given that T1 and T2 are recursive.
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Proof. Let us show that terms having finite degree are closed under compo-
sition: take terms u[x1, . . . , xk] and t1, . . . , tk (all having finite degree) and sup-
pose that types are compatible for substitution. We must show that u[t1, . . . , tk]
has finite degree: this is immediate, as we can suppose that δ(u[x1, . . . , xk]) ≤ r,
δ(t1), . . . , δ(tk) ≤ s, for some r, s > 0.

Since terms having finite degree contain domain and codomain variables (essen-
tially because T1, T2 contain their domain and codomain variables), we proved that
terms of finite degree satisfy conditions (i)-(ii)-(iii) of Definition 3.2. Viceversa, if
δ(t) ≤ n, then it is immediate to see by induction on n that t belongs to any set of
L1 ⊕ L2-terms containing T1 ∪ T2 and satisfying such conditions.

Corollary 4.5. T1 ⊕ T2 is recursive.

Proof. This is an effective procedure (based on Lemma 4.4) that determines
whether a given term t ∈ L1⊕L2 belongs to the combined fragment. We associate
with t the complexity measure ρ(t) given by the sum of the size of t and of the
number of occurrences of constants in t. We first check whether t is a pure Φi-
term; if not, in order for t to belong to T1 ⊕ T2, the degree of t (namely the
smallest n such that δ(t) ≤ n holds) must be some n > 1, which means that
we can split it as u[t1, . . . , tk], where δ(u) ≤ r, δ(t1), . . . , δ(tk) ≤ s, r + s = n,
and r, s > 0. Since n > r, by Lemma 4.3 it follows that at least one of the ti
is not a variable and u cannot be a variable too because n > s; but this means
that ρ(u) < ρ(t), ρ(t1) < ρ(t), . . . , ρ(tk) < ρ(t), i.e. that we can recursively check
whether u, t1, . . . , tk have finite degree.

The membership problem t ∈ T1 ⊕ T2 might be computationally hard: since
we basically have to guess a subtree of the position tree of the term t, the pro-
cedure we outlined in Corollary 4.5 is in NP. For instance, if we combine T1 =
{f1(f2n+1

0 (x)) | n ≥ 0} with T2 = {f2n+1
0 (f2(x)) | n ≥ 0},14 then it is evident that

in order to get a good splitting of f1(f4
0 (f2(x))) one might need to backtrack from

a first inappropriate attempt like

f1(f2
0 (y)) and y 7→ f2

0 (f2(x)).

Notice however that these complications in complexity (with respect to the plain
Nelson-Oppen case) are due to our level of generality and that they disappear in
customary situations where don’t know non-determinism can be avoided by looking
for ‘alien’ subterms, see [Baader and Tinelli 2002] for a thorough discussion of the
problem in standard first-order cases.

Let Γ be now any Φ1 ⊕ Φ2-constraint: we shall provide finite sets Γ1,Γ2 of
Φ1- and Φ2-literals, respectively, such that Γ is Φ1 ⊕ Φ2-satisfiable iff Γ1 ∪ Γ2 is
Φ1 ⊕ Φ2-satisfiable. The purification process is obtained by iterated applications
of the Purification Rule of Figure 1 (to understand the Rule, recall that, from our
conventions in Section 2, the notation A[y, x] means that fvar(A) ⊆ {y, x} and
A[t, x] means the formula obtained by applying to A the substitution y 7→ t).

14To complete the settings for this example, we may assume that a(f1) = S0 → S1, a(f2) = S2 →
S0, a(f0) = S0 → S0 (f0 is the unique shared symbol). Suitable variables should also be added
to T1, T2 to formally fulfill the conditions of Definition 3.2.
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The meaning of the Purification Rule is that we are allowed to simultaneously
abstract out in a constraint one or more occurrences of a non-variable subterm t,
provided we still produce a Φ1 ⊕ Φ2-constraint (for termination, we also take care
of not introducing variable equations).

Γ′, A[t, x]
Γ′, A[y, x], y = t

where (we use notations like Γ′, A[t, x] for the constraint Γ′ ∪ {A[t, x]})

– t is a non-variable term (let τ be its type);
– y is a variable of type τ occurring in A[y, x] but not occurring in Γ′, A[t, x].
– the literal A[y, x] is not an equation between variables;
– Γ′, A[y, x], y = t is a Φ1 ⊕ Φ2-constraint (this means that it still consists of equations and

disequations among Φ1 ⊕ Φ2-terms).

Fig. 1. The Purification Rule.

Proposition 4.6. An application of Purification Rule produces an equisatisfi-
able constraint.

Proof. The constraint Γ′, A[t, x] is satisfied in a L1⊕L2-structure A ∈ S1⊕S2

under the (finite) assignment α iff the constraint Γ′, A[y, x], y = t produced by
the rule is satisfied in A under the assignment obtained by incrementing α with
y 7→ IαA(t).

The purification process takes as input an arbitrary Φ1 ⊕ Φ2-constraint Γ and
applies the Purification Rule as far as possible. The Purification Rule can be applied
in a don’t care non deterministic way; however recall that in order to apply the
rule one must check in advance that the constraint produced by it still consists
of Φ1 ⊕ Φ2-literals, hence don’t know non-determinism may arise inside a single
application of the rule.

Proposition 4.7. The purification process terminates and returns a set Γ1∪Γ2,
where Γi is a set of Φi-literals (i = 1, 2).

Proof. The termination property is proved as follows. First notice that, after
an application of the Purification Rule, the number N of the non variable subterm
positions of the current constraint cannot increase. New equations are added by
the rule, but these are only equations between a variable and a non-variable term
occurring in the constraint, so that the overall number of equations that can be
added during the purification process does not exceed N (notice that, after the rule
has produced Γ′, A[y, x], y = t, the new position in which the subterm t is now is
not available for another purification step, since purification steps cannot produce
variables equations).

Let us now show that if the Purification Rule does not apply to Γ, then Γ splits
into two pure Φi-constraints. We first claim that, since Purification Rule does not
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apply to Γ, any term t in a literal t = v or t 6= v of Γ has degree at most 1 (i.e. it is ei-
ther in T1 or in T2): otherwise we have t ≡ u[t1, . . . , tk], with u[x1, . . . , xk], t1, . . . , tk
all having lower degree than t. Since the degree of u and of the ti’s is lower than
the degree of t, both u and at least one of the ti are not a variable (see Lemma
4.3); suppose for instance that t1 is not a variable and that the constraint Γ is
Γ′, u[t1, . . . , tk] = v. Contrary to the assumption, the Purification Rule applies to
Γ and produces the constraint

Γ′, u[x1, t2, . . . , tk] = v, x1 = t1 (1)

(x1 can be renamed, if needed):15 in fact fragments are closed under domain/co-
domain variables, hence the variable we need is at our disposal, so that (1) is a
Φ1⊕Φ2-constraint (notice that u[x1, t2, . . . , tk] has a degree, hence it is a Φ1⊕Φ2-
term by Lemma 4.4).

Having established that terms in Γ are all pure, we wonder whether there are
impure (in)equations. This is also impossible, because the Purification Rule can
replace e.g., t1 = t2 by t1 = x∧x = t2 in case t1 ∈ T1, t2 ∈ T2 are non-variable terms
(since fragments are closed under codomain variables, if t1 : τ1 ∈ T1, t2 : τ2 ∈ T2

and τ := τ1 = τ2, then the type τ is shared and ti = x is a Φi-atom for every
variable x : τ).

Actually, one can prove that the Purification Rule (if exhaustively applied) can
bring the current constraint not only into a pure form, but also in a form in which
negative literals just contain variables and positive literals do not contain equations
among two non-variable terms.

4.2 The Combination Procedure

In this subsection, we develop a procedure which is designed to solve constraint
satisfiability problems in combined fragments: the procedure is sound and we shall
investigate afterwards sufficient conditions for it to be terminating and complete.
Let us fix (once and for all) relevant notation for the involved data.

Assumptions/Notational Conventions. We suppose that we are given two i.a.f.’s
Φ1 = 〈L1, T1,S1〉 and Φ2 = 〈L2, T2,S2〉, with shared fragment Φ0 = 〈L0, T0,S0〉.
We suppose also that a redundancy notion RedΦ0 for Φ0 and two Φi-enumerators
for Φ0 (call them ResΦ1 , ResΦ2) are available; ResΦ1 and ResΦ2 are assumed to be
both non-redundant with respect to RedΦ0 . We also fix a purified Φ1⊕Φ2-constraint
Γ1∪Γ2 to be tested for Φ1⊕Φ2-consistency and we indicate by xi the free variables
occurring in Γi (i = 1, 2). We let Γ0 be the set of those literals among Γ1∪Γ2 which
happen to be Φ0-literals and we let x0 be a tuple containing those variables among
x1 ∪ x2 which happen to be Φ0-variables. Notice that we can freely suppose that
Γ0 = Γ1 ∩Γ2 and that x0 = x1 ∩ x2: otherwise, Φ0-literals and/or trivial equations
like x = x can be added to Γ1 and Γ2 till this holds.

The Procedure TComb. We introduce our combined procedure in a tableau form:
our tableau procedure generates a tree whose internal nodes are labeled by sets of
Φ0(x0)-atoms; the root of the tree is labeled by the empty set, leaves are the unique

15This might be needed to fulfill the Purification Rule requirement that x1 does not occur in Γ.
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nodes whose label set contains either > or ⊥. Leaves whose label set contains >
are called saturated and leaves whose label set contains ⊥ are called unsatisfiable.

We have just one Tableau Expansion Rule, which is explained in Figure 2: the
rule applies to any node whose label set does not contain ⊥ or > and attaches son
nodes to it as shown in the consequent of the Tableau Expansion Rule itself.

∆
∆, A1 ‖ · · · ‖ ∆, Ak

where the positive clause C :≡ A1 ∨ · · · ∨Ak satisfies the following requirements:

(i) C is a Φi-consequence of Γi ∪∆, for i = 1 or i = 2;
(ii) if ⊥ is Φ0-redundant with respect to Γ0 ∪∆, then C is ⊥;
(iii) if C is Φ0-redundant with respect to Γ0 ∪∆, then C is > or ⊥.

Fig. 2. The Tableau Expansion Rule.

The tableau branches which are infinite or end with a saturated leaf are called
open, whereas the branches ending with an unsatisfiable leaf are called closed. The
procedures stops (and the generation of the above tree is interrupted) iff all branches
are closed or if there is an open finite branch. The tableau returns “saturated” iff
it has a saturated leaf and it returns “unsatisfiable” iff all branches are closed (of
course termination is not guaranteed in the general case).

A tableau is non deterministically generated in the sense that many instances of
the Tableau Expansion Rule can be applied to a given node, in order to produce
its successors: a strategy (i.e. a ‘selection function’, see below) for application
of the Tableau Expansion Rule is needed in order to concretely implement our
procedure. Not all strategies are equally productive, in order for a strategy to be
really productive, it must fulfill a fairness requirement.

A tableau is fair iff the following happens for every open branch ∆0 ⊆ ∆1 ⊆ · · · :
if C ≡ ResΦi(Γi ∪ ∆k, l) for some i = 1, 2 and for some k, l ≥ 0, then C is Φ0-
redundant with respect to Γ0 ∪∆n for some n (roughly, residues with respect to Φi
of an open branch are redundant with respect to the atoms in the branch).

We first show how to effectively build a fair tableau (under the current assump-
tions/notational conventions):

Proposition 4.8. There exists a fair tableau.

Proof. A selection function is a recursive function returning to a finite list ∆
of Φ0(x0)-atoms a Φ0(x0)-positive clause Choose(∆) matching the requirements
(i)-(ii)-(iii) from Figure 2. A selection function is said to be fair iff the tableau
generated according to it is fair; thus, we simply need to find a fair selection func-
tion.16

16Notice that, since a selection function takes as input a list (and not just a set) of atoms, it
might be sensible not only to the atoms labeling the current node, but also to the order in which
such atoms have been produced along the branch.
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For a finite set ∆ of Φ0(x0)-literals and for a list Θ of Φ0(x0)-clauses, let us define
the auxiliary procedure LMin(∆,Θ). We have that

– LMin(∆, [C]) = C;
– LMin(∆, [C|Θ′]) = LMin(∆,Θ′), if RedΦ0(∆ ∪ {D}, C) holds for some D ∈ Θ′;
– LMin(∆, [C|Θ′]) = C, otherwise

(roughly, the procedure takes the leftmost RedΦ0-maximal element of the list Θ,
using the set ∆ as a parameter).

Fix now a surjective recursive function

δ = (δ1, δ2, δ3) : N −→ {1, 2} × N× N

such that n ≥ δ2(n) holds for every n (this function can be easily built by using a
recursive encoding of pairs, see, for example, [Odifreddi 1989]).

For ∆ = [A1, . . . , An], define now Choose(∆) to be

LMin(Γ0 ∪∆, [D1, D2, D3]), (2)

where D1 is ResΦδ1(n)(Γδ1(n) ∪ {A1, . . . , Aδ2(n)}, δ3(n)), whereas D2, D3 are the
clauses ResΦ1(Γ1 ∪ ∆, 0) and ResΦ2(Γ2 ∪ ∆, 0), respectively. The intuitive ex-
planation of this definition is as follows: for i = 1, 2 and j ≤ n, the residues
ResΦi(Γi ∪ {A1, . . . , Aj}, k) can be disposed into two matrices having n infinite
rows (ResΦi(Γi ∪ {A1, . . . , Aj}, k) is the k-th entry of the j-th row in the i-th ma-
trix). Now our selection function explores the rows of these two matrices by a
diagonal path, but before making the final choice it checks whether in the first en-
tries of the two last rows there is anything more informative from the redundancy
viewpoint.

Clearly Choose(∆) is a Φi-consequence of Γi ∪∆, for i = 1 or i = 2, because of
the soundness condition of Definition 3.17; moreover if Choose(∆) is redundant
with respect to Γ0∪∆, then (by Definition 3.16 (iii)) it must be equal to ResΦ2(Γ2∪
∆, 0), hence it is > or ⊥, according to Definition 3.18 (i) (and it is ⊥, if ⊥ is
redundant with respect to Γ0 ∪∆, by Definition 3.18 (ii)). Thus conditions (i)-(iii)
from Figure 2 are satisfied.

To show fairness of the tableau, pick an open branch labeled by the increasing
sets of Φ0-atoms ∆0 ⊆ ∆1 ⊆ · · · and suppose that C ≡ ResΦi(Γi ∪∆k, l) for some
i = 1, 2 and for some k, l ≥ 0. Let us distinguish the case in which the open branch
is finite and the case in which it is infinite.

If it is finite, it ends with a saturated label, which means that for some n, we
have that > is a disjunct of Choose(∆n). From (2) and Definition 3.16 (ii)-(iii)-
(iv), we must have that Choose(∆n) ≡ > and that both ResΦ1(Γ1 ∪ ∆n, 0) and
ResΦ2(Γ2 ∪ ∆n, 0) are equal to >. To show this, notice that: (a) a residue equal
to > or to >∨D selected by the function Choose(∆n) according to (2) cannot be
either ResΦδ1(n)(Γδ1(n) ∪ {A1, . . . , Aδ2(n)}, δ3(n)) or ResΦ1(Γ1 ∪∆n, 0), because >
and > ∨ D are always redundant; (b) hence it must be ResΦ2(Γ2 ∪ ∆n, 0), which
implies however (by the way the procedure LMin is defined) that ResΦ1(Γ1∪∆n, 0)
is redundant with respect to Γ0 ∪ ∆n ∪ {ResΦ2(Γ2 ∪ ∆n, 0)} (which is equal to
Γ0 ∪ ∆n ∪ {> ∨ D} or to Γ0 ∪ ∆n ∪ {>}) and hence with respect to Γ0 ∪ ∆n by
transitivity. All this implies that ResΦ1(Γ1∪∆n, 0) and ResΦ2(Γ2∪∆n, 0) are both
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redundant w.r.t. Γ0 ∪∆n and consequently they are both equal to > by Definition
3.18 (i).17

Since ResΦ1(Γ1∪∆n, 0) and ResΦ2(Γ2∪∆n, 0) are both equal to >, by Definition
3.18 (iii), we conclude that Γ0 ∪∆n is a Φ0-basis for both Γ1 ∪∆n and Γ2 ∪∆n,
which means that the Φi-residue C is redundant with respect to Γ0 ∪∆n: in fact,
since C ≡ ResΦi(Γi ∪∆k, l), by Definition 3.17, C is a Φi-consequence of Γi ∪∆k

(for ∆k ⊆ ∆n) and hence also of Γi ∪∆n, thus the definition of a Φ0-basis applies.
If the branch is infinite, for some n, we have δ1(n) = i, δ2(n) = k, δ3(n) = l.

Hence, either C has been selected, or some better choice (from the redundancy
point of view) has been made according to (2). Since this better choice D cannot
be > or ⊥ because the branch is infinite, some atom of D (or of C, if C has
been directly selected) is in ∆n+1: this means that C is redundant with respect to
Γ0 ∪∆n+1 because of Definition 3.16(iii)-(iv)-(v).

We remark that the fair selection function given in (2) above can be optimized
in specific situations, where extra information on the input residue enumerators is
available; however, the existence of a uniform schema for defining a fair tableau is
an interesting property of our combination procedure. From now on, when we refer
to the procedure TComb, we refer to any deterministic version of it producing fair
tableaux.

4.3 Soundness and Termination

One possible exit of our procedure is when it generates a finite tree whose leaves
are all unsatisfiable: this is precisely the case in which the whole procedure returns
“unsatisfiable”.

Proposition 4.9 (Soundness). If the procedure TComb returns “unsatisfi-
able”, then the purified constraint Γ1 ∪ Γ2 is Φ1 ⊕ Φ2-unsatisfiable.

Proof. All branches of the tree generated by the execution of the procedure
described in Section 4.2 are closed: hence, an easy inductive argument shows that,
if a node in the tree is labeled by ∆, then Γ1 ∪ Γ2 ∪∆ is Φ1 ⊕Φ2-unsatisfiable. As
a consequence, Γ1 ∪ Γ2 itself is Φ1 ⊕ Φ2-unsatisfiable, because the root is labeled
by the empty set of atoms.

Next, we identify a relevant termination case:

Proposition 4.10 (Termination). If Φ0 is noetherian and RedΦ0 is the full
redundancy notion, then the procedure TComb terminates on the purified constraint
Γ1 ∪ Γ2.

Proof. Let us consider the tree T generated by the execution of the procedure
TComb as described in Section 4.2. Recalling that T is finite iff the procedure
terminates, we now suppose that the procedure does not terminate. In this way T ,
which is a finitely branching tree by construction, is not finite and has an infinite

17They cannot be equal to ⊥, because of redundancy with respect Γ0∪∆n: recall from Definition
3.18(ii) that the residue is ⊥, if ⊥ is redundant (and our residue cannot be ⊥ because the branch
is open).
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branch by König lemma. This means that there is a infinite chain of sets of Φ0(x0)-
atoms

∆1 ⊂ ∆2 ⊂ · · · ⊂ ∆n ⊂ · · · ,

where ∆i is the label of a node that belongs to that infinite path, ∆i+1 = ∆i∪{Ai}
and RedΦ0(Γ0 ∪∆i, Ai) does not hold by Definitions 3.16(iv)-(v) and by condition
(iii) from Figure 2. Since RedΦ0 is the full redundancy notion, we obtained an
infinite sequence A1, A2, A3, . . . such that Γ0 ∪ {Aj | j < i} 6|=Φ0 Ai for every i.
This contradicts noetherianity of Φ0.

4.4 Towards Completeness

Completeness of the procedure TComb cannot be achieved easily, heavy conditions
are needed. In this section, we nevertheless identify what is the ‘semantic meaning’
of a run of the procedure that either does not terminate or terminates with a
saturation message.

Since our investigations are taking a completeness-oriented route, it is quite ob-
vious that we must consider from now on only the case in which the input Φi-
enumerators are complete (see Definition 3.19). In addition we need a compactness-
like assumption. We say that an i.a.f. Φ is Φ0-compact (where Φ0 is a subfragment
of Φ) iff, given a Φ-constraint Γ and a generalized Φ0-constraint Γ0, we have that
Γ ∪ Γ0 is Φ-satisfiable if and only if for all finite ∆0 ⊆ Γ0, we have that Γ ∪∆0 is
Φ-satisfiable.

Proposition 4.11. Any extension Φ of a locally finite i.a.f. Φ0 is Φ0-compact.

Proof. Recall that, according to Definition 3.4, a generalized Φ0-constraint Γ0

is an infinite set of Φ0-literals in which only finitely many Φ0-variables (call them
x) occur free. Since Φ0 is locally finite, there exist finitely many Φ0(x)-terms
representing all Φ0(x)-terms up to Φ0-equivalence: for this reason, a generalized
Φ0(x)-constraint Γ0 is equivalent to the constraint in which all terms have been
replaced by their representatives.

The above Proposition means that, if we assume effective local finiteness in
order to guarantee termination, Φ0-compactness is guaranteed too. Notice that
only special kinds of generalized Φ-constraints are involved in the definition of
Φ0-compactness, namely those that contain finitely many proper Φ-literals; thus,
Φ0-compactness is a rather weak condition. Finally, it goes without saying that,
by the compactness theorem for first-order logic, Φ0-compactness is guaranteed
whenever Φ is a first-order fragment from Examples 3.6, 3.7, 3.8.

Proposition 4.12. Suppose that Φ1,Φ2 are both Φ0-compact, that the two Φi-
enumerators ResΦi are complete, and that the procedure TComb does not return
“unsatisfiable” when applied to the purified constraint Γ1 ∪ Γ2. Then there are Li-
structuresMi ∈ Si and Li-assignments αi (i = 1, 2) such that:

(i) M1 |=α1 Γ1 andM2 |=α2 Γ2;
(ii) for every Φ0(x0)-atom A, we have thatM1 |=α1 A iffM2 |=α2 A.

Proof. A set of positive Φ0(x0)-clauses Θ?
0 is saturated if and only if it is closed
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under the two rules:

Γ1 ∪Θ?
0 |=Φ1 C ⇒ C ∈ Θ?

0

Γ2 ∪Θ?
0 |=Φ2 C ⇒ C ∈ Θ?

0,

for every positive Φ0(x0)-clause C.
Let us suppose that ResΦ1 and ResΦ2 are complete enumerators and suppose that

the fair tableau generated by TComb for the purified constraint Γ1 ∪ Γ2 does not
return “unsatisfiable”: by König’s lemma, this tableau must contain an open (finite
or infinite) branch. Let this open branch be labeled by ∆0 ⊆ ∆1 ⊆ · · · and let us
take ∆ :=

⋃
j ∆j ; we define Θ?

0 to be {C | C is a positive Φ0(x0)-clause s.t. Γ1 ∪
∆ |=Φ1 C} (we remark that ∆ ⊆ Θ?

0). Θ?
0 is saturated and (for i = 1, 2) Γi ∪ Θ?

0

is Φi-satisfiable, as shown by Lemma 4.13. Thus, Lemma 4.14 applies and there
are two Li-structuresMi ∈ Si satisfying Γi ∪Θ?

0 under assignments αi, such that
M1, α1 andM2, α2 satisfy the same Φ0(x0)-atoms.

Lemma 4.13. The set Θ?
0 defined above is saturated, Γ1 ∪ Θ?

0 is Φ1-satisfiable
and Γ2 ∪Θ?

0 is Φ2-satisfiable.

Proof. To prove that Θ?
0 is saturated, we need to show that

Γ2 ∪Θ?
0 |=Φ2 C ⇒ C ∈ Θ?

0

where C is a positive Φ0(x0)-clause. We first prove that Γ1 ∪ ∆ |=Φ1 C implies
Γ2 ∪∆ |=Φ2 C (and conversely, but the proof of the converse is the same).

Γ1 ∪∆ |=Φ1 C iff there exists n such that Γ1 ∪∆n |=Φ1 C (by Φ0-compactness
of Φ1) iff there exists k such that18 RedΦ0(Γ0 ∪∆n ∪{C0, . . . , Ck}, C) holds, where
Cj ≡ ResΦ1(Γ1∪∆n, j) (by the completeness of the Φ1-enumerator). By the fairness
requirement on our tableau, there exist mj ’s such that RedΦ0(Γ0 ∪∆mj , Cj) holds
(j ∈ {1, . . . , k}), hence by monotonicity of redundancy there exists m ≥ n,m ≥ mj

such that RedΦ0(Γ0 ∪ ∆m, Cj) holds for each j ∈ {1, . . . , k}; by transitivity of
redundancy we have RedΦ0(Γ0 ∪ ∆m, C) and consequently also Γ0 ∪ ∆m |=Φ0 C.
Thus Γ2 ∪∆m |=Φ2 C and finally Γ2 ∪∆ |=Φ2 C.

We showed that Γ1 ∪∆ |=Φ1 C holds iff Γ2 ∪∆ |=Φ2 C holds; it follows that:

Θ?
0 = {C is a positive Φ0(x0)-clause | Γ1 ∪∆ |=Φ1 C} (3)

Θ?
0 = {C is a positive Φ0(x0)-clause | Γ2 ∪∆ |=Φ2 C}, (4)

that is Γ2 ∪Θ?
0 |=Φ2 C ⇒ C ∈ Θ?

0.
We finally prove that Γi ∪ Θ?

0 is Φi-satisfiable for i = 1, 2. To this aim notice
that Γi ∪ Θ?

0 is Φi-satisfiable iff Γi ∪ ∆̃ is Φi-satisfiable for each ∆̃ ⊆ ∆, ∆̃ finite
(by Φ0-compactness of Φi and by (3)-(4)). For each such ∆̃, there exists an index
n such that ∆̃ ⊆ ∆n, thus it is sufficient to prove that Γi ∪ ∆n is Φi-satisfiable
for each n. But if Γi ∪ ∆n |=Φi ⊥ for some n, then ⊥ appears as a residue of
Γi ∪∆n (by completeness of ResΦi and by Definition 3.18 (ii)) and by the fairness
of our tableau, ⊥ is then redundant with respect to some Γ0 ∪ ∆m: this implies
that ⊥ ∈ ∆m+1 by condition (ii) of Figure 2, contrary to fact that the branch is
not closed.

18Recall that Γ0 = Γ1|Φ0 = Γ2|Φ0 according to the ‘Notational Conventions’ at the beginning of
Subsection 4.2.
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Lemma 4.14. Suppose that we are given a saturated set of positive Φ0(x0)-
clauses Θ?

0, such that Γ1 ∪Θ?
0 is Φ1-satisfiable and Γ2 ∪Θ?

0 is Φ2-satisfiable. Then
there are structures M1 ∈ S1, M2 ∈ S2 and two assignments α1, α2 such that
M1 |=α1 Γ1 ∪ Θ?

0 and M2 |=α2 Γ2 ∪ Θ?
0. Moreover, for every Φ0(x0)-atom A,

M1 |=α1 A holds if and only ifM2 |=α2 A holds.

Proof. A set Ξ of Φ0(x0)-literals is exhaustive iff for each Φ0(x0)-atom A, A ∈ Ξ
or ¬A ∈ Ξ.

Let us consider any terminating strict total order on Φ0(x0)-atoms (it exists by
the well ordering principle) and let us extend it to a terminating strict total order on
multisets of Φ0(x0)-atoms.19 We use such an ordering to define increasing subsets
ΞC , varying C among positive Φ0(x0)-clauses in Θ?

0 (positive clauses are identified
here with the multiset of their atoms).

We say that the Φ0(x0)-clause C ≡ A ∨ A1 ∨ · · · ∨ An from Θ?
0 is productive

(and produces the Φ0(x0)-atom A) iff {A} > {A1, . . . , An} and A1, . . . , An 6∈ Ξ+
<C

where Ξ+
<C :=

⋃
D<C,D∈Θ?0

Ξ+
D. If C is productive and produces A, then we put

Ξ+
C := Ξ+

<C ∪ {A}, otherwise we put Ξ+
C := Ξ+

<C .
Let us define Ξ+ :=

⋃
C∈Θ?0

Ξ+
C and Ξ := Ξ+∪{¬A | A is a Φ0(x0)-atom and A 6∈

Ξ+}. By construction, Ξ |=Φ0 Θ?
0 (because Ξ contains a Φ0(x0)-atom for every

Φ0(x0)-clause in Θ?
0).

We need to show that Γ1 ∪ Ξ is Φ1-satisfiable and Γ2 ∪ Ξ is Φ2-satisfiable. First
of all, we claim that if a Φ0(x0)-clause C ≡ A ∨ A1 ∨ · · · ∨ An is productive and
{A} > {A1, . . . , An}, then A1, . . . , An 6∈ Ξ+. To show this, recall that, by definition,
Ai ∈ Ξ+ (i ∈ {1, . . . , n}) iff Ai belongs to a productive Φ0(x0)-clause Ci and Ai
is the maximum atom in it, thus Ci < C (by multisets ordering): however none of
the Ai can be in Ξ+

<C , because C is productive, thus justifying our claim.
We suppose now that Γ1 ∪Ξ is Φ1-unsatisfiable. By Φ0-compactness of the i.a.f.

Φ1, there are Φ0(x0)-atoms B1, . . . , Bm 6∈ Ξ+ and productive Φ0(x0)-clauses

C1 ≡ A1 ∨A11 ∨ · · · ∨A1k1

· · ·
Cn ≡ An ∨An1 ∨ · · · ∨Ankn

(with maximum Φ0(x0)-atoms A1, . . . , An respectively) s.t. the constraint Γ1 ∪
{A1, . . . , An,¬B1, . . . ,¬Bm} is Φ1-unsatisfiable. It follows that

Γ1 ∪ {C1, . . . , Cn} ∪ {¬A11, · · · ,¬Ankn ,¬B1, . . . ,¬Bm}

is also unsatisfiable. As C1, . . . , Cn are positive Φ0(x0)-clauses in Θ?
0 and Θ?

0 is
saturated, the positive Φ0(x0)-clause

D ≡
∨
i,j

Aij ∨B1 ∨ · · · ∨Bm

is also in Θ?
0.20 By construction, some of the atoms of this positive clause belongs

19We are using basic information on multiset orderings that can be found in textbooks like [Baader
and Nipkow 1998].
20Notice that we cannot have k1 = · · · = kn = m = 0, because Γ1 ∪ {C1, . . . , Cn} ⊆ Γ1 ∪Θ?0 and
the latter is Φ1-satisfiable by hypothesis.
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to Ξ+: A11, . . . , Ankn cannot be there because the C1, . . . , Cn are productive (see
the above claim), thus at least one of the Bj ’s is in Ξ+: contradiction. The proof
of the Φ2-satisfiability of Γ2 ∪ Ξ is analogous.

We finally show that, given two structures M1 ∈ S1, M2 ∈ S2 and two assign-
ments α1, α2 such thatM1 |=α1 Γ1 ∪Ξ andM2 |=α2 Γ2 ∪Ξ, we have thatM1, α1

andM2, α2 satisfy the same Φ0(x0)-atoms. This is clear, because Ξ an exhaustive
set of Φ0(x0)-literals.

5. ISOMORPHISM THEOREMS AND COMPLETENESS

Proposition 4.12 explains what is the main problem for completeness: we would like
an open branch to produce Φi-structures (i = 1, 2) whose L0-reducts are isomorphic
and we are only given Φi-structures whose L0-reducts are Φ0(x0)-equivalent (in
the sense that they satisfy the same Φ0(x0)-atoms). Hence we need a powerful
criterion which states when Φ0(x0)-equivalence is sufficient for the existence of an
L0-isomorphism: this criterion will be called an isomorphism theorem. The precise
formulation of what we mean by an isomorphism theorem needs some preparation.
First of all, we introduce fragments extended with free constants; in fact, whereas
the use of variables in constraints was precious so far as it emphasized the role
of substitutions (and substitutions act on variables, not on free constants), now it
is better to have at hand also the formalism of free constants, otherwise standard
model-theoretic results would get an unnatural formulation.

Given an i.a.f. Φ=〈L, T,S〉, we denote by Φ(c) = 〈L(c), T (c),S(c)〉 the following
i.a.f.: (i) L(c) := L ∪ {c} is obtained by adding to L finitely many new constants c
(the types of these new constants must be types of Φ); (ii) T (c) contains the terms
of the kind t[c, y] for t[x, y] ∈ T ; (iii) S(c) contains precisely the L(c)-structures
whose L-reduct is in S. Fragments like Φ(c) are called finite expansions of Φ.

Let Φ(c) be a finite expansion of Φ = 〈L, T,S〉 and let A,B be L(c)-structures.
We say that A is Φ(c)-equivalent to B (written A ≡Φ(c) B) iff for every closed
Φ(c)-atom A we have that A |= A iff B |= A. By contrast, we say that A is Φ(c)-
isomorphic to B (written A 'Φ(c) B) iff there is an L(c)-isomorphism from A onto
B.

We can now specify what we mean by a structural operation on an i.a.f. Φ0 =
〈L0, T0,S0〉. We will be very liberal here and define structural operation on Φ0 any
family of correspondences O = {Oc0} associating with any finite set of free constants
c0 and with any A ∈ S0(c0) some Oc0(A) ∈ S0(c0) such that A ≡Φ0(c0) O

c0(A). If
no confusion arises, we omit the indication of c0 in the notation Oc0(A) and write
it simply as O(A).

A collection O of structural operations on Φ0 is said to admit a Φ0-isomorphism
theorem if and only if, for every c0, for every A,B ∈ S0(c0), if A ≡Φ0(c0) B then
there exist O1, O2 ∈ O such that O1(A) 'Φ0(c0) O2(B).

Example 5.1 (Ultrapowers). Ultrapowers [Chang and Keisler 1990] are basic constructions
in the model theory of first-order logic. An ultrapower

∏
U (technically, an ultrafilter U over a

set of indices is needed to describe the operation) transforms a first-order structure A into a first-
order structure

∏
U A which is elementarily equivalent to it (meaning that A and

∏
U A satisfy

the same first-order sentences). Hence if we take a first-order fragment Φ0 = 〈L0, T0,S0〉 in the
sense of Examples 3.6, 3.7, or 3.8, then

∏
U is a structural operation on Φ0. If Φ0 is a first-

order fragment from Example 3.8, the following deep result in classical model theory (known as
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the Keisler-Shelah isomorphism theorem [Chang and Keisler 1990]) gives here a Φ0-isomorphism
theorem in our sense:

Theorem 5.2 (Keisler-Shelah Isomorphism Theorem). Let L be a first-
order signature and let A,B be L-structures. Then A is elementarily equivalent
to B iff there is an ultrafilter U such that the ultrapowers

∏
U A and

∏
U B are

L-isomorphic.

We shall mainly be interested into operations that can be extended to a preas-
signed expanded fragment. Here is the related definition. Let an i.a.f. Φ = 〈L, T,S〉
extending Φ0 = 〈L0, T0,S0〉 be given; a structural operation O on Φ0 is Φ-extensible
if and only if for every c and every A ∈ S(c) there exist B ∈ S(c) such that

B|L0(c0) 'Φ0(c0) O(A|L0(c0)) and B ≡Φ(c) A,

(where c0 denotes the set of those constants in c whose type is a Φ0-type).
Example 5.3. Taking the reduct of a first-order structure to a smaller signature commutes

with ultrapowers; consequently, if we are given two first-order fragments Φ = 〈L, T,S〉 and Φ0 =

〈L0, T0,S0〉 from Examples 3.6, 3.7, or 3.8 such that Φ is an extension of Φ0, then the Φ0-structural
operation

∏
U is Φ-extensible (the structure B required in the definition of Φ-extensibility is again∏

U A, where the ultrapower is now taken at the level of L-structures).

Sometimes an isomorphism theorem does not hold precisely for a fragment Φ0 =
〈L0, T0,S0〉, but for a variation (called specialization) of it. A specialization of Φ0 is
an i.a.f. Φ?0 = 〈L0, T0,S?0 〉, which has the same signature and the same terms as Φ0,
but whose class of L0-structures is a smaller class S?0 ⊆ S0 satisfying the following
condition: for every c0 and for every A ∈ S0(c0), there exists A? ∈ S?0 (c0) such that
A ≡Φ0(c0) A?. Thus, the condition simply means that Φ0 and its specialization Φ?0
satisfy the same generalized constraints.

Given an i.a.f. Φ = 〈L, T,S〉 extending Φ0, we say that Φ is compatible with
respect to a given specialization Φ?0 = 〈L0, T0,S?0 〉 of Φ0 iff Φ? = 〈L, T,S?〉 is a
specialization of Φ, where S? is defined by S? := {A ∈ S | A|L0 ∈ S?0}.

This Φ0-compatibility notion is intended to recapture, in our general setting, T0-
compatibility as introduced in [Ghilardi 2004]. The latter generalizes, in its turn,
the standard stable infiniteness requirement of Nelson-Oppen procedure:

Example 5.4 (Stably Infinite First-Order Theories). Let Φ = 〈L, T,S〉 be an i.a.f. of
the kind considered in Example 3.6 or in Example 3.7: we say that Φ is stably infinite iff every
satisfiable Φ-constraint is satisfiable in some infinite L-structure A ∈ S. To see that this is a Φ0-
compatibility requirement, consider the i.a.f. Φ0 = 〈L0, T0,S0〉 so specified: (i) L0 is the empty
one-sorted signature; (ii) T0 contains only the individual variables; (iii) S0 is the totality of L0-
structures (i.e. the totality of sets). A specialization Φ?0 of Φ0 is obtained by restricting S0 to the
class S?0 formed by the infinite sets. By a compactness argument, it is easily seen that Φ is stably
infinite iff it is compatible with respect to the specialization Φ?0 of Φ0.

5.1 The Main Combination Result

We are now ready to formulate a sufficient condition for our combined procedure
to be complete:

Proposition 5.5. Suppose that Φ1,Φ2 are both Φ0-compact and Φ0-compatible
with respect to a specialization Φ?0 of Φ0; suppose also that there is a collection O
of structural operations on Φ?0 which are all Φ?1- and Φ?2-extensible and admit a Φ?0-
isomorphism theorem. In this case, if the Φi-enumerators ResΦi are complete and
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the procedure TComb does not return “unsatisfiable” once applied to the purified
constraint Γ1 ∪ Γ2, then such a constraint is Φ1 ⊕ Φ2-satisfiable.

Proof. By Proposition 4.12, there are two structuresM1,M2 and two assign-
ments α1, α2 such that: (i)M1 ∈ S1,M2 ∈ S2; (ii)M1 |=α1 Γ1 andM2 |=α2 Γ2;
(iii) M1, α1 and M2, α2 satisfy the same Φ0(x0)-atoms. If we put variables into
bijective correspondence with free constants, we may identify the pairs (Mi, αi)
with structures in Si(ci), for finite sets of free constants ci. Thus we can say that
there are structures N1 ∈ S(c1),N2 ∈ S(c2) satisfying Γ1[c1],Γ2[c2], respectively,
such that N1|L0(c0) ≡Φ0(c0) N2|L0(c0) (where c0 = c1 ∩ c2 are the free constants
whose types are Φ0-types). Now we show that there is a L1(c1) ∪ L2(c2)-structure
M such thatM|Li ∈ Si andM |= Γi[ci] (i = 1, 2).

By Φ0-compatibility with respect to Φ?0, we may assume that N1|L0(c0) and
N2|L0(c0) are in a class S?0 , over which the collection of structural operations O ad-
mits an isomorphism theorem. Thus there are two structural operations O1, O2 ∈ O
such that O1(N1|L0(c0)) 'Φ0(c0) O2(N2|L0(c0)). Since O1, O2 are Φ?1- and Φ?2-
extensible, there exist two structures B1 ∈ S?1 (c1) and B2 ∈ S?2 (c2) such that
B1|L0(c0) 'Φ0(c0) O1(N1|L0(c0)) and B2|L0(c0) 'Φ0(c0) O2(N2|L0(c0)), B1 ≡Φ1(c1) N1

and B2 ≡Φ2(c2) N2. Thus, B1 satisfies Γ1[c1] and B2 satisfies Γ2[c2]. Moreover,
B1|L0(c0) 'Φ0(c0) B2|L0(c0); we can now easily build the desiredM in two steps.

In the first step, we define B′2 such that B1|L0(c0) = B′2|L0(c0) and B2 'Φ2(c2) B′2
(notice that B′2 ∈ S2(c2) by the closure under isomorphisms of S2, see Definition
3.3). Let ι be the isomorphism B1|L0(c0) −→ B2|L0(c0); to define B′2, we interpret
L0-sorts as in B1 and L2 \ L0-sorts as in B2. Put now ι′S := ιS for S ∈ L0 and
let ι′S be the identity for L2 \ L0-sorts; by taking standard inductive extension to
all L2-types, we get a family of bijections ι′ = {ι′τ : [[ τ ]]B′2 −→ [[ τ ]]B2} (indexed
by the L2-types) that can be used in order to complete the definition of B′2 (in
the sense that we define the B′2-interpretation of every constant d : τ of L2(c2) as
(ι′τ )−1(IB2(d))). It is easily seen that the L2(c2)-structure B′2 matches the desired
requirements.

Since the L0(c0)-reducts of B1 and B′2 are now just the same structure, it is
easy to define (through a trivial join of both sorts and constants interpretations) a
L1(c1) ∪ L2(c2)-structure M such that M|L1(c1) = B1 and M|L2(c2) = B′2. Thus,
the L1 ⊕ L2-reduct ofM belongs to S1 ⊕ S2 and satisfies Γ1[x1] ∪ Γ2[x2].

The facts we established so far can be collected into our main combination the-
orem:

Theorem 5.6 (Main Decidability Transfer Theorem). Suppose that:

(1) the interpreted algebraic fragments Φ1,Φ2 have decidable constraint satisfiability
problems;

(2) the shared fragment Φ0 is effectively locally finite (or, more generally, Φ1,Φ2 are
both Φ0-compact, Φ0 is noetherian and there exist noetherian positive residue
Φ1- and Φ2-enumerators for Φ0);

(3) Φ1 and Φ2 are both Φ0-compatible with respect to a specialization Φ?0 of Φ0;
(4) there is a collection O of structural operations on Φ?0 which are all Φ?1- and

Φ?2-extensible and admit a Φ?0-isomorphism theorem.
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Then the tableau procedure TComb (together with the preprocessing Purification
Rule) decides constraint satisfiability in the combined fragment Φ1 ⊕ Φ2.

Proof. From Propositions 4.6, 4.7, 4.8,4.9, 3.25, 4.10, 4.11, 3.24, and 5.5.

Remark. Theorem 5.6 cannot be used to transfer decidability of word problems
to our combined fragments: the reason is that, in case the procedure TComb is
initialized with only a single negative literal, constraints containing positive literals
are generated during the execution (and also by the Purification Rule). However,
since negative literals are never run-time generated, Theorem 5.6 can be used to
transfer decidability of conditional word problems, namely of satisfiability problems
for constraints containing just one negative literal. Notice that in convex fragments,
conditional word problems and constraint satisfiability problems are inter-reducible.

In the next two subsections we investigate families of concrete applications of
Theorem 5.6, based on suitable isomorphism theorems.

5.2 Applications: Decidability Transfer through Ultrapowers

We shall use the isomorphism Theorem 5.2 to get the transfer decidability results
of [Ghilardi 2004] as a special case of Theorem 5.6. Let Φ1 = 〈L1, T1,S1〉 and
Φ2 = 〈L2, T2,S2〉 be universal first-order i.a.f.’s (i.e. i.a.f.’s of the kind considered in
Example 3.7) and let Φ0 = 〈L0, T0,S0〉 be their shared fragment. The hypothesis for
the decidability transfer result of [Ghilardi 2004] are (equivalent to) the following:

(C1) there is an L0-theory T ?0 admitting elimination of quantifiers such that, taking
S?0 to be the class of all models of T ?0 , we have that S?0 ⊆ S0 and that
Φ?0 = 〈L0, T0,S?0 〉 is a specialization of Φ0;

(C2) Φ1 and Φ2 are both compatible with respect to Φ?0;
(C3) Φ0 is effectively locally finite.

Theorem 5.7 [Ghilardi 2004]. Suppose that Φ1 and Φ2 are first-order univer-
sal i.a.f.’s satisfying conditions (C1)-(C3) above; if constraint satisfiability problems
are decidable in Φ1 and Φ2, then they are decidable in Φ1 ⊕ Φ2 too.

Proof. We check the conditions of Theorem 5.6. Since we have two decision
procedures for the constraint satisfiability problems in Φ1 and Φ2, 5.6 (1) holds;
(C3) guarantees 5.6 (2) and 5.6 (3) follows from (C2). To check the remaining
condition 5.6 (4), we use ultrapowers and the isomorphism Theorem 5.2.

Let us first check that for every c0, if A,B ∈ S?0 (c0) are such that A ≡Φ0(c0) B,
then A and B are L0(c0)-elementarily equivalent. In fact a first-order Φ0(c0)-
sentence ϕ[c0] which is true in A is true also in B, for the following reason. Since
both structures are models of T ?0 and since T ?0 eliminates quantifiers, ϕ[c0] is equiv-
alent modulo T ?0 to some quantifier-free ϕ′[c0]: the latter holds in A iff it holds in
B, because A ≡Φ0(c0) B (recall that atomic formulae are atoms in the fragments of
the kind of Example 3.7).

Since, within the class S?0 (c0), we have that ≡Φ0(c0) is the same as elementary
equivalence, Keisler-Shelah Theorem implies that ultrapowers are a collection of
structural operations on Φ?0 admitting a Φ?0-isomorphism theorem.

It remains to check extensibility; to this aim, recall that Si is an elementary class
(by the conditions from Example 3.7), hence S?i is an elementary class too (we
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have A ∈ S?i iff both A ∈ Si and A |= T ?0 ). For elementary classes of structures,
extensibility of ultrapowers as structural operations has been already observed in
Example 5.3.

As a special case, suppose that the signatures L1,L2 are disjoint (i.e. they share
just their unique sort and no other proper symbol) and that S1,S2 are the classes of
the models of two (consistent) stably infinite first-order theories T1, T2; if we take T ?0
to be the theory of an infinite set, then it is immediately seen that conditions (C1)-
(C3) are satisfied (see the discussion in Example 5.4). Thus, Theorem 5.7 implies
the standard Nelson-Oppen result [Nelson and Oppen 1979; Oppen 1980; Tinelli
and Harandi 1996] concerning stably infinite theories over disjoint signatures.

We recall from [Ghilardi 2004] that among relevant examples of theories to which
Theorem 5.7 is easily seen to apply, we have the (convex) theories axiomatizing
varieties of Boolean algebras with operators: thus, decidability of conditional word
problem transfers from two such theories to their union (provided only Boolean
operators are shared). This result, proved in [Wolter 1998] by specific techniques,
is the algebraic version of the fusion transfer of decidability of global consequence
relation in modal logic.

We remark that condition (C3) can be weakened to

(C3′). Φ0 is noetherian and there exist noetherian positive residue Φ1- and Φ2-
enumerators for Φ0

(as suggested by Theorem 5.6 (2)): we give an example of an application of Theorem
5.7 under this weaker condition.

Example 5.8 (A Combination of noetherian fragments). Consider the combined frag-
ment Φ1⊕Φ2, where Φ1 is the fragment ΦKalg of the Example 3.27 and Φ2 is the fragment ΦKend
of Example 3.30 (here, however, we require K-algebras to be non degenerate, i.e. to satisfy the
condition 0 6= 1). From Definition 4.2, it follows that the class S1⊕S2 consists of the models of the
theory of the non degenerate K-algebras endowed with a linear endomorphism (i.e. endowed with
a function f preserving sum and scalar multiplication). The class S0 of the structures of the shared
fragment Φ0 consists of the models of the theory T0 of K-vector spaces. As T ?0 , we take the theory
T0 ∪ {∃x (x 6= 0)}, if K is an infinite field, and the theory T0 ∪ {∃x1 · · · ∃xn

∧
i6=j xi 6= xj}n∈N,

otherwise: in both cases, the models of T ?0 are just infinite K-vector spaces. Thus conditions (C1)
is easily seen to be satisfied. Since every non degenerate K-algebra (resp. every f -K-vector space)
can be embedded into an infinite K-algebra (resp. into an infinite f -K-vector space), condition
(C2) holds too. Condition (C3′) is also satisfied, as pointed out in Subsection 3.4 when discussing
Examples 3.27, 3.28 and 3.30. Hence the combination procedure TComb decides conditional word
problems for the theory of (non degenerate) K-algebras endowed with a linear endomorphism.

As another application of Theorem 5.6 based on Keisler-Shelah isomorphism
theorem, we show how to include a first-order equational theory within an A-Box.

An A-Box fragment is an i.a.f. of the kind ΦML = 〈LML, TML,SML〉, where
〈LML, TML〉 is defined (out of a modal signature OM ) as in Example 3.11 and SML

is a class of LML-structures closed under isomorphisms and disjoint I-copies. The
latter operation is defined as follows:

Definition 5.9 (Disjoint I-copy). Consider a first-order one-sorted relational sig-
nature L and a (non empty) index set I. The operation

∑
I , defined on L-structures

and called disjoint I-copy, associates with an L-structure M = 〈[[− ]]M, IM〉 the
L-structure

∑
IM such that [[W ]]∑

IM is the disjoint union of I-copies of [[W ]]M
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(here W is the unique sort of L). The interpretation of relational predicates is de-
fined as follows (elements of the disjoint union of I-copies of a set S are represented
as si - meaning that si is the i-th copy of s ∈ S)∑

I

M |= P (di11 , . . . , d
in
n ) ⇐⇒ i1 = i2 = · · · = in andM |= P (d1, . . . , dn) (5)

for every n-ary predicate P . a

Disjoint I-copy is a special case of a more general disjoint union operation: the
latter is defined again by (5) and applies to any I-indexed family of structures
(which may not coincide with each other). Our specific interest for disjoint I-copies
is motivated by the following Lemma, concerning satisfiability of packed guarded
formulae:21

Lemma 5.10. Consider a first-order one-sorted relational signature L, the L-
structureM and its disjoint I-copy

∑
IM. The following statements hold:

(i) for every elementary packed guarded formula ϕ[x1, . . . , xn] (n ≥ 0), for every
d1, . . . , dn in the support ofM and for every index i ∈ I, we have that∑

I

M |= ϕ[di1, . . . , d
i
n] ⇐⇒ M |= ϕ[d1, . . . , dn];

(ii) a packed guarded elementary sentence is satisfiable inM iff it is satisfiable in∑
IM.

Proof. We check the first claim by induction on ϕ (the second claim follows
immediately for the case n = 0). If ϕ is atomic, just apply (5), and the case
of Boolean connectives is immediate. Suppose now that ϕ is the packed guarded
existential quantification

∃y1 · · · ∃ym(π[xi1 , . . . , xik , y1, . . . , ym] ∧ ψ[xi1 , . . . , xik , y1, . . . , ym])

where xi1 , . . . , xik are the variables among x1, . . . , xn that really occur free in
ϕ[x1, . . . , xn] (notice that they must all occur free in the guard π, as well as the
y1, . . . , ym). That M |= ϕ[d1, . . . , dn] implies

∑
IM |= ϕ[di1, . . . , d

i
n] is trivial; for

the converse suppose that∑
I

M |= π[dii1 , . . . , d
i
ik
, ej11 , . . . , e

jm
m ] ∧ ψ[dii1 , . . . , d

i
ik
, ej11 , . . . , e

jm
m ]

for some ej11 , . . . , e
jm
m . By (5) and the definition of a guard, all indices j1, . . . , jm

must be equal to some j (and, if k 6= 0, then j must be i). As a consequence,M |=
π[di1 , . . . , dik , e1, . . . , em] ∧ ψ[di1 , . . . , dik , e1, . . . , em] holds by induction hypothesis
and by (5).

The following result combines an equational first-order i.a.f. Φ = 〈L, T,S〉 from
Example 3.6 and an A-Box fragment ΦML = 〈LML, TML,SML〉:

21See Example 3.15 for the related definition. Lemma 5.10 can be seen as a special case of
invariance under a suitable notion of ‘guarded’ bisimulation.
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Theorem 5.11. Suppose that we are given an equational first-order i.a.f. Φ =
〈L, T,S〉 and an A-Box fragment ΦML = 〈LML, TML,SML〉; suppose also that the
signatures L and LML are disjoint, that Φ is stably infinite and that SML is an
elementary class. Then decidability of constraint satisfiability problems transfers
from Φ and ΦML to Φ⊕ ΦML.

Proof. We preliminarily observe that formulae ST (C,w) are packed guarded,
hence if we replace in them the second order variables of type W → Ω by free
constants for subsets of W (which are first-order relational symbols), Lemma 5.10
(i) applies to them.

Since our data are all first-order, the argument in the proof of Theorem 5.7 works,
provided conditions (C1)-(C3) hold. Notice that terms in the shared fragment
are just first-order individual variables; we take as T ?0 the theory of an infinite
set, so that we only have to check condition (C2) for both Φ and ΦML. For the
former, the condition holds trivially by stably infiniteness; for the latter, given a
LML(c)-structure A(c), we must produce an infinite LML(c)-structure B(c) such
that A(c) ≡ΦML(c) B(c). To this aim, let I be an infinite set and let us take the
disjoint I-copy

∑
I A(c). However, Definition 5.9 tells us how to interpret binary

and unary predicate symbols from LML(c), but not the free individual constants c
that might occur in c: we interpret them as IA(c)(c)i, where i is some arbitrarily
chosen element of I (to be the same for all the free individual constants c that
belong to c). By Lemma 5.10(i), we can now conclude that A(c) ≡ΦML(c)

∑
I A(c)

holds, as desired.

The fragment Φ⊕ΦML of Theorem 5.11 is quite peculiar, because combined terms
all arise from a single composition step (they all have degree 2, in the terminology
of Lemma 4.4). To understand a possible meaning of such a fragment, notice that
individual terms from Φ may be seen as functions that enrich the domain of a ΦML-
structure with some more concrete algebraic operations (e.g., numerical operations,
data structure operations, etc.). Thus the fragments Φ⊕ΦML of Theorem 5.11 may
play a role similar to concrete domains in description logics [Baader and Hanschke
1991] (it should be noted, however, that description logics with concrete domains
are two-sorted formalisms, whereas the combination schema of Theorem 5.11 is
one-sorted).

5.3 Applications: Decidability Transfer through Disjoint Copies

Disjoint copies are the key tool for decidability transfer results in modal fragments
too. Let OM be a modal signature, as defined in Example 3.10. A modal i.a.f.
over OM is a fragment of the kind ΦM = 〈LM , TM ,SM 〉, where LM and TM are
as defined in Example 3.10, whereas SM is a class of LM -structures closed under
isomorphisms and disjoint I-copies. In the following, we indicate by OM0 the empty
modal signature.

Proposition 5.12. Let ΦM be a modal i.a.f. over the modal signature OM and
consider a modal subfragment ΦM0 of it, based on the empty modal signature; the
structural operations {

∑
I}I over ΦM0 are ΦM -extensible and form a collection

admitting a ΦM0-isomorphism theorem.

Proof. Recall from Example 3.10 that W → Ω is the only type of the i.a.f.
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ΦM , hence the relevant free constants c in expanded signatures are constants for
subsets of W (this means, in particular, that their interpretation can be extended
to disjoint I-copies like any other relational first-order predicate symbol as shown
in Definition 5.9).

That taking disjoint I-copies
∑
I is a structural ΦM -extensible operation is clear:

to define N ∈ SM (c) which is ΦM (c)-equivalent to some M ∈ SM (c) and whose
ΦM0(c)-reduct is LM0(c)-isomorphic to

∑
I(M|LM0 (c)) it is sufficient to take the

LM (c)-structure
∑
IM as N and apply Lemma 5.10 (ii) (recall that constraints

in ΦM are equivalent to conjunctions of formulae of the kind ∀wST (C,w) and
their negations). That taking disjoint I-copies is a structural operation (i.e. that
a LM0(c)-structure and its disjoint I-copy are ΦM0(c)-equivalent) is clear by the
same reasons.

To show that a ΦM0-isomorphism theorem holds, suppose that we are given free
constants c0 := {P1, . . . , Pn} and two structuresM1 andM2 in SM0(c0) such that
M1 ≡ΦM0 (c0) M2; we show that

∑
IM1 'ΦM0 (c0)

∑
IM2 holds for some I.

Consider every boolean combination of the form ε(w) = Q1(w) ∧ · · · ∧ Qn(w)
where Qj ≡ Pj or Qj ≡ ¬Pj (thus the number of such formulae is 2n). For a given
LM0(c0)-structure N , let ε(N ) := {a ∈ [[W ]]N | N |= ε(a)} and let us associate
with N the 2n cardinal invariants aε(N ) := ]ε(N ). Now two LM0(c0)-structures N1

and N2 having the same invariants are isomorphic, because we can glue bijections
ε(N1) −→ ε(N2) to a LM0(c0)-isomorphism N1 ' N2.

Finally, we note thatM1 ≡ΦM0 (c0) M2 means thatM1 |= A holds iffM2 |= A
holds for every closed ΦM0(c0)-atom A. In particular,M1 |= {w | ε(w)} = {w | ⊥}
iff M2 |= {w | ε(w)} = {w | ⊥}: thus ε(M1) = ∅ iff ε(M2) = ∅ holds for all ε.
Let now consider a set I whose cardinality m is such that m ≥ ε(Mi) for all ε
and for i ∈ {1, 2}: we show that

∑
IM1 'ΦM0 (c0)

∑
IM2 proving that the two

structures have the same invariants. In fact the cardinal identities aε(
∑
IM1) =

m · aε(M1) = m = m · aε(M2) = aε(
∑
IM2) hold for all ε.

We indicate by OM1⊕M2 the disjoint union of the modal signatures OM1 and
OM2 (OM1⊕M2 is called the fusion of the modal signatures OM1 and OM2). Given
a modal i.a.f. ΦM1 over OM1 and a modal i.a.f. ΦM2 over OM2 , let us define their
fusion as the modal i.a.f.

ΦM1⊕M2 = 〈LM1⊕M2 , TM1⊕M2 ,SM1 ⊕ SM2〉.

Let the two modal i.a.f.’s ΦM1 = 〈LM1 , TM1 ,SM1〉 and ΦM2 = 〈LM2 , TM2 ,SM2〉
have disjoint modal signatures; the shared fragment ΦM0 = 〈LM0 , TM0 ,SM0〉 is
locally finite, because it is a modal i.a.f. over the empty modal signature (for any
finite set of ΦM0 -variables x0, the ΦM0(x0)-terms are terms of the kind {w | ψ(w)},
where ψ is a boolean combination of the second order variables x0).

Now if ΦM1 and ΦM2 have decidable constraint satisfiability problems, then so
does the combined i.a.f. ΦM1 ⊕ ΦM2 : in fact, the hypotheses of Theorem 5.6 are
satisfied by Proposition 5.12.22 To infer the transfer decidability result for the fusion
modal i.a.f., we need to clarify the relationship between ΦM1⊕M2 and ΦM1 ⊕ ΦM2 .
These two i.a.f.’s have the same signatures and the classes of structures in which

22We obviously take Φ?0 to be ΦM0 in 5.6 (3).
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they are interpreted are also the same; there is however a little difference between
their sets of terms.

Given two i.a.f.’s Φ1 = 〈L1, T1,S1〉 and Φ2 = 〈L2, T2,S2〉, we say that they are
βη-equivalent (written Φ1 ∼βη Φ2) iff L1 = L2, S1 = S2 and moreover for every
t1 ∈ T1 one can effectively compute some t2 ∈ T2 such that t1 ∼βη t2, and vice
versa. Clearly, βη-equivalent i.a.f.’s can be considered to be just the same. The
following Lemma is easily proved by exploiting basic properties of βη-equivalence:

Lemma 5.13. If ΦM1⊕M2 and ΦM1⊕ΦM2 are as above, we have that ΦM1⊕M2 ∼βη
ΦM1 ⊕ ΦM2 .

Proof. Since TM1 ⊕ TM2 is defined to be the minimum set of terms closed
under substitutions and containing TM1 and TM2 and since TM1⊕M2 enjoys these
properties, clearly any t ∈ TM1 ⊕ TM2 belongs to TM1⊕M2 .

Conversely, let us take t ∈ TM1⊕M2 ; then t ∼βη {w | ST (C,w)} for some
OM1⊕M2-modal concept C.23 By induction on C, we define u ∈ TM1 ⊕ TM2 such
that u ∼βη {w | ST (C,w)} (then t ∼βη u follows by transitivity). If C is a propo-
sitional variable we can take u to be {w | ST (C,w)}. If C is D1 uD2, by induction
there are u1, u2 ∈ TM1 ⊕ TM2 such that ui ∼βη {w | ST (Di, w)} for i = 1, 2. Then
{w | ST (C,w)} = {w | ST (D1, w) ∧ ST (D2, w)} ∼βη {w | {w | ST (D1, w)}(w) ∧
{w | ST (D2, w)}(w)} ∼βη {w | u1(w) ∧ u2(w)}. The latter is obtained by re-
placing in the term {w | ST (x1 ∧ x2, w)} = {w | X1(w) ∧ X2(w)} the terms
u1, u2 ∈ TM1 ⊕ TM2 for the second order variables X1, X2, respectively, hence it
is a term that belongs to TM1 ⊕ TM2 too, because the latter is closed under substi-
tution. The cases of t,¬,3k are analogous.

We have so proved the following well-known decidability transfer result (see, e.g.,
[Baader et al. 2002] and the literature quoted therein):

Theorem 5.14 (Decidability transfer for modal i.a.f.’s). If two modal
i.a.f.’s ΦM1 and ΦM2 have decidable constraint satisfiability problems, so does their
fusion ΦM1⊕M2 .

Fragments of the kind examined in Example 3.11 are not interesting for being
combined with each other, because the absence of the type W → Ω makes such
combinations trivial. On the contrary, full modal fragments from Example 3.12
are quite interesting in this respect (we recall that they perform both A-Box and
T-Box reasoning from the point of view of description logics). In fact very slight
modifications are sufficient to get a result analogous to Theorem 5.14: we just
sketch how to do it.

Let OM be a modal signature; a full modal i.a.f. over OM is a fragment of the
kind ΦFM = 〈LFM , TFM ,SFM 〉, where LFM and TFM are as defined in Example
3.12, whereas SFM is again a class of LM -structures closed under isomorphisms
and disjoint I-copies.

There is a little complication arising now: sinceW is a type of an i.a.f. like ΦFM ,
when we expand signatures with free constants, we now get (besides constants of

23Notice that {w | ST (C,w)} - hence also C - can be effectively computed because it is in long-
βη-normal form and so it is the long-βη-normal form of t.
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type W → Ω) also individual constants of type W . The interpretation of these
constants is not defined in disjoint I-copies, because taking disjoint I-copies is an
operation defined only for first-order relational signatures. We proceed like in the
proof of Theorem 5.11: we take index sets I which are pointed, namely some i0 ∈ I
is specified. Then, we define the interpretation of an individual constant c of type
W in

∑
IM as 〈IM(c), i0〉.

The definition of fusion for full modal i.a.f.’s is the obvious one and it leads to
the following result [Baader et al. 2002]:

Theorem 5.15 (Decidability transfer for full modal i.a.f.’s) . If two
full modal i.a.f.’s have decidable constraint satisfiability problems, so does their
fusion.

Proof. We sketch the little modifications required to prove Proposition 5.12 in
the present context (Lemma 5.13 extends trivially).

Let ΦFM be a full modal i.a.f. over OM and let ΦFM0 be a subfragment of it on
the empty modal signature. According to the considerations in Examples 3.10-3.11,
when considering signatures expanded with free constants c, closed ΦFM (c)-atoms
are now of the kind c1 = c2, Rk(c1, c2), ST (D, c), and ∀wST (D, c) (where second
order variables in D have been replaced by first-order unary predicate constants).
From the pointed definition of disjoint I-copy given above and Lemma 5.10, it is
then clear that the LFM (c)-structures M and

∑
IM still are ΦFM (c)-equivalent

and this is all what matters in order to check that pointed disjoint I-copies are
ΦFM -extensible structural operations over ΦFM0 .

For the ΦFM0-isomorphism theorem, we just need to add to the invariants of a
LFM0(c)-structure N considered in the proof of Proposition 5.12 also the indication
about the truth/falsity in N of the ground atoms of the kind ε(c) and c1 = c2,
varying c, c1, c2 among the individual constants in c.

The statement of Theorem 5.15 seems not to allow the decidability transfer of
only positive A-Box satisfiability with respect to T-Box axioms; however this further
decidability transfer result follows immediately once one realizes that the combined
algorithm TComb never adds negative information to current constraints, so if non
positive A-Boxes are not present from the very beginning, there won’t be any call
for a decision procedure involving them (see also the Remark following Theorem
5.6 for the same observation).

The decidability transfer theorem for the non-normal case of Example 3.13 (i.e.
for the full strength of abstract description systems in the sense of [Baader et al.
2002]) requires a simple adaptation of Definition 5.9 and of Lemma 5.10. We can
also extend our transfer results to fragments involving the µ-calculus fixed-points
constructors of Example 3.14: in fact, these constructors are invariant under bisimu-
lation, hence Lemma 5.10 still holds (notice also that fixed points can be eliminated
from empty modal signatures, hence local finiteness of the shared fragment is not
compromised, even in case we wish to combine two ‘µ-fragments’ with each other).

We now try to extend our decidability transfer results to cover also combinations
of packed guarded and/or of two-variable fragments. However, to get positive
results, we need to keep shared signatures under control. In addition, we still want
to exploit the isomorphism theorem of Proposition 5.12 and for that reason we need
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the shared signature to be empty and second order variables appearing as terms in
the fragments to be monadic only. The kind of combination that arise in this way
can be considered as a form of fusion, that we shall call monadic fusion. We begin
by identifying a class of fragments to which our techniques apply.

Let us call Φ∅ = 〈L∅, T∅,S∅〉 the following i.a.f.: (i) L∅ is the empty one-sorted
first-order signature (that is, L∅ does not contain any proper symbol, except for its
unique sort which is called W ); (ii) T∅ is T

L∅
11 ;24 (iii) S∅ contains all L∅-structures.

Definition 5.16. A monadically suitable i.a.f. Φ = 〈L, T,S〉 is an i.a.f. such that:

(i) L is a relational one-sorted first-order signature;

(ii) TL∅11 ⊆ T ⊆ TLω1;
(iii) the Φ∅-structural operation of taking disjoint I-copies is Φ-extensible. a

We give a couple of interesting examples of monadically suitable decidable frag-
ments:

Example 5.17. Packed guarded fragments are i.a.f.’s of the kind ΦG = 〈LG, TG,SG〉, where
TG is as defined in Example 3.15, whereas SG is a class of LG-structures closed under isomorphisms
and disjoint I-copies. To see that these are monadically suitable fragments, recall Lemma 5.10: by
this Lemma, it is easy to see that for every free constants c of type W → Ω, for every A ∈ SG(c)

and for every non empty set of indices I, we have that A ≡ΦG(c)

∑
I A. Thus taking disjoint

I-copies is trivially a ΦG-extensible operation.

Before giving the second family of examples of monadically suitable fragments,
we introduce an alternative construction for proving extensibility of the operation
of taking disjoint I-copies. This construction is nicely behaved only for fragments
without identity and is called I-conglomeration:

Definition 5.18 (I-conglomeration). Consider a first-order one-sorted relational
signature L and a (non empty) index set I. The operation

∑I , defined on L-
structures and called I-conglomeration, associates with a given L-structure M =
〈[[− ]]M, IM〉 the L-structure

∑IM such that [[W ]]∑IM is the disjoint union of
I-copies of [[W ]]M (hereW is the unique sort of L). The interpretation of relational
constants is defined in such a way that we have

I∑
M |= P (di11 , . . . , d

in
n ) ⇐⇒ M |= P (d1, . . . , dn)

for every n-ary relational predicate P different from equality. a

Notice that I-conglomerations and disjoint I-copies coincide for relational first-
order signatures having only unary predicates. The preservation Lemma 5.10 can
be reformulated as follows:

Lemma 5.19. Consider a first-order one-sorted relational signature L and the
L-structuresM and

∑IM. The following statements hold:

(i) for every first-order formula ϕ[x1, . . . , xn] not containing the equality predi-
cate, for every d1, . . . , dn in the support ofM and for every indices i1, . . . , in ∈

24See Example 3.9 for this notation and for other similar notation used below.
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I, we have that
I∑
M |= ϕ[di11 , . . . , d

in
n ] ⇐⇒ M |= ϕ[d1, . . . , dn];

(ii) a first-order formula not containing the equality predicate is satisfiable in M
iff it is satisfiable in

∑IM.
Example 5.20. For a first-order relational one-sorted signature L2V , a two variables i.a.f.

over L2V is a fragment of the kind Φ2V = 〈L2V , T2V ,S2V 〉, where: (i) T2V contains the terms
without identity belonging to the set TL2V

NK of Example 3.9 for K = 1 and N = 2; (ii) S2V is a
class of L2V -structures closed under isomorphisms and I-conglomerations. Notice that the closure
properties in (ii) are guaranteed if S2V is axiomatized by first-order formulae without identity.

For two monadically suitable i.a.f.’s Φ1 and Φ2 operating on disjoint signatures,
let us call the combined fragment Φ1 ⊕ Φ2 the monadic fusion of Φ1 and Φ2. For
monadic fusions we have the following:

Theorem 5.21 (Decidability transfer for monadic fusions). If the mo-
nadically suitable i.a.f.’s Φ1,Φ2 operating on disjoint signatures have decidable con-
straint satisfiability problems, so does their monadic fusion.

Proof. Using Definition 5.16, we can say the following about the shared frag-
ment Φ0 = 〈L0, T0,S0〉: (i) L0 is the empty signature L∅; (ii) T0 contains TL∅11 and
hence it includes the terms TM0 of Example 3.10 relative to the empty modal sig-
nature OM0 ; (iii) for every tuple of free constants c0, the closed Φ0(c0)-terms t[c0],
modulo βη-equivalence, are a subset of the terms of the kind {x | ϕ[x]}, where ϕ[x]
is a monadic formula of first-order language, possibly with equality (that is, to build
ϕ[x], at most equality and the free constants c0 of type W → Ω can be used); (iv)
the structures in S0(c0) are closed under disjoint I-copies and are Φ0(c0)-equivalent
to their disjoint I-copies.

To justify (iv), argue as follows: if A ∈ S0(c0), then by Definition 4.1 it is
the L∅(c0)-reduct of a Φi(c0)-structure B (i = 1, 2); since taking disjoint I-copies
of L∅(c0)-structures is Φi(c0)-extensible by Definition 5.16(iii), we have that for
every index set I, there is a Φi(c0)-structure B′ having

∑
I A as a L∅(c0)-reduct

and such that B is Φi(c0)-equivalent to B′. Taking L∅(c0)-reducts, it follows that
A ≡Φ0(c0)

∑
I A.

Using (ii) and (iv) above, we can repeat word-by-word the proof of Proposition
5.12 and in order to apply Theorem 5.6 we only have to show that Φ0 is effectively
locally finite. Despite the fact that there are infinitely many non equivalent monadic
first-order sentences with equality, by using (iii)-(iv) we show that there are only
finitely many closed Φ0(c0)-terms t[c0] which are differently interpreted in structures
from S0(c0) (here c0 := {P1, . . . , Pn} are free constants, which must be of type
W → Ω, because this is the only type of Φ0). Recall that t[c0] ∼βη {x | ϕ[x]},
where ϕ[x] is as in (iii) above.

By closure under disjoint I-copies and Φ0(c0)-equivalence to disjoint I-copies
(see (iv)), we can limit ourselves to the consideration of at most 22n -structures
from S0(c0): each of these structures is uniquely determined by the fact that the
cardinal invariants25 aε are either 0 or m in it (here m is an infinite, big enough,

25Here and below, we freely use notation from the proof of Proposition 5.12.
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cardinal). Each of these at most 22n structures AS is characterized by a set S of
formulae of the kind ε(x), in the sense that we have AS |= ψS , where ψS is the
one-variable monadic sentence

∧
ε∈S ∃x ε(x) ∧

∧
ε 6∈S ¬∃x ε(x) (notice also that for

S 6= S′, we have AS 6|= ψS′).
We claim that quantifier elimination holds in AS , i.e. that for every first-order

formula ϕ[x] (built up from equality and from the unary predicates Pj) one can
effectively compute from S a formula θS [x] such that AS |= ∀x(ϕ[x]↔ θS [x]) holds
and such that θS [x] does not contain quantifiers. To show the claim, we use the
fact that for every ε ∈ S, the set ε(AS) is infinite; recall also that in order to
eliminate quantifiers, it is sufficient to eliminate them from primitive formulae, i.e.
from formulae of the kind ∃y χ(y, x), where χ(y, x) is a conjunction of literals. In
our case, these literals can only be y = xi, y 6= xi, Pj(y),¬Pj(y) (of course, literals
in which y does not occur are not relevant). Since equations y = xi causes the
quantifier ∃y to be removed by replacement, we can assume that our χ is equivalent
to a conjunction of negative literals y 6= xi and of a Boolean combination of atomic
formulae of the kind Pj(y). The set defined by this Boolean combination in AS is
either infinite or empty, so within AS , the formula ∃y χ(y, x) is equivalent either to
⊥ or to >.

As a consequence of the above claim, in the case in which the tuple x reduces to
a single variable x, θS [x] is a boolean combination of the atomic formulae Pj(x).
Thus, in all the structures that belongs to S0(c0), the Φ0(c0)-atom

{x | ϕ[x]} = {x |
∨
S

(ψS ∧ θS [x])}

is true, yielding effective local finiteness of Φ0 (because there are only finitely many
possibilities for S).

Theorem 5.21 offers various combination possibilities, we can for example, com-
bine a guarded and a two-variable fragment, thus getting a rather ‘hybrid’ combined
fragment. However notice that: (a) the conditions for a fragment to be monadically
suitable are rather strong (for instance, the two variable fragment with identity is
not monadically suitable); (b) the notion of monadic fusion is a restricted form of
combination, because only unary second order variables are available for replace-
ment when forming formulae of the combined fragment.

The main ingredient of Theorem 5.21 (namely the notion of a monadically suit-
able fragment) needs the present paper settings to be defined, but it is somewhat
implicit in the literature on monodic temporal fragments (see for instance state-
ments like that of Theorem 11.21 in [Gabbay et al. 2003]). As already mentioned in
Subsection 1.4, our Main Decidability Transfer Theorem 5.6 can be used to prove
a decidability theorem for monodic temporal/modal fragments whose extensional
component is a monadically suitable fragment (see [Ghilardi et al. 2005; Nicolini
2006] for details), thus extending relevant results from the literature (see again
[Gabbay et al. 2003]).
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