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Abstract The theory of arrays, introduced by McCarthy in his seminal pa-
per “Towards a mathematical science of computation”, is central to Com-
puter Science. Unfortunately, the theory alone is not sufficient for many im-
portant verification applications such as program analysis. Motivated by this
observation, we study extensions of the theory of arrays whose satisfiability
problem (i.e. checking the satisfiability of conjunctions of ground literals)
is decidable. In particular, we consider extensions where the indexes of ar-
rays have the algebraic structure of Presburger Arithmetic and the theory of
arrays is augmented with axioms characterizing additional symbols such as
dimension, sortedness, or the domain of definition of arrays.

We provide methods for integrating available decision procedures for the
theory of arrays and Presburger Arithmetic with automatic instantiation
strategies which allow us to reduce the satisfiability problem for the exten-
sion of the theory of arrays to that of the theories decided by the available
procedures. Our approach aims to re-use as much as possible existing tech-
niques so as to ease the implementation of the proposed methods. To this
end, we show how to use model-theoretic, rewriting-based theorem proving
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(i.e., superposition), and techniques developed in the Satisfiability Modulo
Theories communities to implement the decision procedures for the various
extensions.

Keywords Constraint satisfiability problems · Decision procedures ·
Combination methods · Instantiation strategies · Theory of arrays with
extensionality · Presburger Arithmetic
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1 Introduction

Since its introduction by McCarthy in [17], the theory of arrays (A) has
played a very important role in Computer Science. Hence, it is not surprising
that many papers [9,21,26,15,16,25,2,6] have been devoted to its study in
the context of verification and many reasoning techniques, both automatic
(see, e.g., [2]) and manual (see, e.g., [21]), have been developed to reason in
such a theory.

Unfortunately, as many previous works [26,15,16,6] have already ob-
served, A alone or even extended with extensional equality between arrays
(as in [25,2]) is not sufficient for many applications of verification. For exam-
ple, the works in [26,15,16] tried to extend the theory to reason about sorted
arrays. More recently, Bradley et al [6] have shown the decidability of the
satisfiability problem for a restricted class of (possibly quantified) first-order
formulae that allows one to express many important properties about arrays.

In this paper, we consider the theory of arrays with extensionality whose
indexes have the algebraic structure of Presburger Arithmetic (P), and ex-
tend it with additional (function or predicate) symbols expressing important
features of arrays (e.g., the dimension of an array or an array being sorted).
The main contribution of the paper is a method to integrate two decision
procedures for the constraint satisfiability problem, one for A and one for P ,
with instantiation strategies that allow us to reduce the constraint satisfia-
bility problem of the extension of A ∪ P to the problem decided by the two
available procedures.

Our approach to show the correctness of a non-deterministic version of
the decision procedure for the constraint satisfiability problem for the theory
of arrays with dimension is inspired by model-theoretic methods for combi-
nations of satisfiability problems [13]. The key technical tools in the proof
are two: standard models and closures of sets of literals w.r.t. some of the
axioms of the theories. The former can be suitably augmented to cope with
various extensions of the theory of arrays with dimension which are of in-
terest for program verification (e.g., sorted arrays). The latter allows us to
design a uniform three-step methodology for the proofs of the correctness of
the various decision procedures: (a) define instantiation strategies to identify
(ground) instances of the axioms used to extend the base theory A∪P (e.g.,
those defining the dimension of an array) and define the notion of closing a
set of (ground) literals under such strategies, (b) show that the computation
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of closed sets of literals always terminates, and (c) prove that the result re-
turned by (a combination of) the available decision procedures for A and P
is correct for the extension of the theory of arrays we are dealing with, when
considering closed sets of literals. It is important to notice that instantiation
strategies give sufficient conditions for computing closed sets of literals. As a
consequence, any (possibly more efficient) refinement of a strategy satisfying
the closure properties can be used while preserving the correctness of the
decision procedure.

While non-deterministic procedures are useful for showing correctness,
they are not suited for implementation. We address implementation issues
in two ways. First, for certain extensions of the base theory, it is possible to
significantly reduce the non-determinism by using rewriting-based methods
to build decision procedures (see, e.g., [2,1]). Since rewriting-based methods
are sensitive to the axiomatization of the theories and they are not applica-
ble to all extensions considered in this work, we adapt ideas developed in the
Satisfiability Modulo Theories (SMT) community to design practical deci-
sion procedures for all extensions of the theory of arrays with dimension. In
particular, we exploit the insight in [5] of using a Boolean solver to efficiently
implement the guessing phase required by the non-deterministic procedures.
This paves the way to re-use the optimizations for efficiency already available
in SMT solvers and is the second (and main) way to solve non-determinism.

Related work. The work most closely related to ours is [6] by Bradley et al,
where a syntactic characterization of a class of full first-order formulae is
considered, which turns out to be expressive enough to specify many prop-
erties of interest about arrays. The main difference with our work is that we
have a semantic approach to extending A by considering a well-chosen class
of first-order structures. This allows us to get a more refined characterization
of some properties of arrays, yielding, e.g., the decidability of the constraint
satisfiability problem for the extension of A with the injectivity axiom (see
Section 5.1). The decidability of a similar problem is left open by Bradley et
al, since their class of models (associated to a set of axioms) is larger than
the one considered in this work.

Our instantiation strategy based on Superposition Calculus (see Section
5.2) has a similar spirit of the work in [12], where equational reasoning is
integrated in instantiation-based theorem proving. The main difference with
[12] is that we solve the state-explosion problem, due to the recombination of
formulae caused by the use of standard superposition rules (see, e.g., [20]), by
deriving a new termination result for an extension of A as recommended by
the rewriting approach to satisfiability procedures of [2]. This allows us to re-
use efficient state-of-the-art theorem provers without the need to implement
a new inference system as required by [12].

Plan of the paper. Section 2 introduces some formal notions necessary to the
development of the results in this paper. Section 3 gives the intuition under-
lying the models of the theory of arrays with dimension and formally defines
this theory. Section 4 describes a non-deterministic decision procedure for
the constraint satisfiability problem of such a theory and proves its correct-
ness. Section 5 considers several extensions of the base theory introduced
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in Section 3.1 and describes how to extend the procedure of Section 4 to
decide such extensions. Section 6 discusses two techniques to implement the
abstract decision procedures described in Sections 4 and 5. Finally, Section 7
presents some conclusions.

2 Formal Preliminaries

We work in many-sorted first-order logic with equality and we assume the
basic syntactic and semantic concepts as in, e.g., [11].

A signature Σ is a non-empty set of sort symbols together with a set
of function symbols and a set of predicate symbols (both equipped with
suitable lists of sort symbols as arity). The set of predicate symbols contains
a symbol =S for equality for every sort S (we usually omit its subscript). If
Σ is a signature, a simple expansion of Σ is a signature Σ′ obtained from
Σ by adding a set a := {a1, ..., an} of “fresh” constants (each of them again
equipped with a sort), i.e. Σ′ := Σ ∪ a, where a is such that Σ and a are
disjoint. Below, we write Σa as the simple expansion of Σ with a set a of
fresh constant symbols.

First-order terms and formulae over a signature Σ are defined in the
usual way, i.e. they must respect the arities of function and predicate symbols
and the variables occurring in them must also be equipped with sorts (well-
sortedness). A Σ-atom is a predicate symbol applied to (well-sorted) terms.
A Σ-literal is a Σ-atom or its negation. A ground literal is a literal not
containing variables. A constraint is a finite conjunction ℓ1 ∧ · · · ∧ ℓn of
literals, which can also be seen as a finite set {ℓ1, . . . , ℓn}. A Σ-sentence is a
first-order formula over Σ without free variables.

A Σ-structure M consists of non-empty and pairwise disjoint domains
SM for every sort S, and interprets each function symbol f and predicate
symbol P as functions fM and relations PM, respectively, according to their
arities. If t is a ground term, we also use tM for the element denoted by t
in the structure M. If Σ0 ⊆ Σ is a sub-signature of Σ and if M is a Σ-
structure, the Σ0-reduct of M is the Σ0-structure M|Σ0

obtained from M
by forgetting the interpretation of sorts, function and predicate symbols from
Σ \ Σ0. Validity of a formula ϕ in a Σ-structure M (in symbols, M |= ϕ),
satisfiability, and logical consequence are defined in the usual way. AΣ-theory
T is a (possibly infinite) set of Σ-sentences. The Σ-structure M is a model
of the Σ-theory T if and only if all the sentences of T are valid inM. Let T
be a theory; we refer to the signature of T as ΣT . If there exists a set Ax (T )
of sentences in T such that every formula ϕ of T is a logical consequence
of Ax(T ), then we say that Ax(T ) is a set of axioms of T . A theory T is
complete if and only if, given a sentence ϕ, we have that either ϕ or ¬ϕ is a
logical consequence of T .

In this paper, we are concerned with the (constraint) satisfiability problem
for a theory T , also called the T -satisfiability problem, which is the problem
of deciding whether a ΣT -constraint is satisfiable in a model of T . Notice that
a constraint may contain variables: since these variables may be equivalently
replaced by free constants, we can reformulate the constraint satisfiability
problem as the problem of deciding whether a finite conjunction of ground
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literals in a simply expanded signature Σ
a

T is true in a Σ
a

T -structure whose
ΣT -reduct is a model of T ; from now on we shall adopt the latter formulation.
We say that a ΣT -constraint is T -satisfiable if and only if there exists a
model of T satisfying it. Two ΣT -constraints ϕ and ψ are T -equisatisfiable
whenever the following condition holds: there exists a structureM1 such that
M1 |= T ∧ϕ if and only if there exists a structureM2 such thatM2 |= T ∧ψ.

Without loss of generality, when considering a set L of ground literals to
be checked for satisfiability, we may assume that each literal ℓ in L is flat,
i.e. ℓ is required to be either of the form a = f(a1, . . . , an), P (a1, . . . , an),
or ¬P (a1, . . . , an), where a, a1, . . . , an are (sort-preserving) constants, f is a
function symbol, and P is a predicate symbol (possibly also equality).

3 Arrays with Dimension

An array is a data structure that consists of a group of elements having a
single name. Elements in the array are usually numbered and individual el-
ements are accessed by their index (i.e. numeric position). We consider two
main types of arrays which are natively supported by imperative languages
(such as C): fixed-size and dynamically-allocated arrays. A fixed-size array
occupies a contiguous area of storage that never changes during run-time
and whose fixed dimension is known at compile-time. In contrast, the size
of the memory reserved to dynamically-allocated arrays can be unknown at
compile-time and may change at runtime, even though this may be an expen-
sive operation involving the copy of the entire content of an array (consider,
e.g., the C’s function realloc applied to a malloc’ed array). To be precise,
there exists a third type of arrays called dynamic, which are supported by
interpreted (e.g., Perl) and object-oriented programming languages (e.g., the
C++’s std::vector or the ArrayList classes of Java API and the .NET
Framework) in which memory handling is usually hidden. A detailed discus-
sion of such a data structure is beyond the scope of this paper. Here, it is
sufficient to observe that dynamic arrays can be efficiently implemented by
imposing an appropriate memory allocation policy on dynamically-allocated
arrays (see, e.g., [7]). For all types of arrays, their elements have usually the
same type.

After the declaration, the content of an array is in general not initialized,
both in the case of fixed-size or dynamically-allocated arrays (recall, e.g., the
difference between the C’s functions malloc and calloc). To formalize this,
we introduce a distinguished element ⊥ (for undefined), which is distinct
from every other element in arrays, and assume that any array contains ⊥ at
every position except one, after creation. This distinguished position is the
capacity of an array a (minus 1, since 0 is used to identify the first element of
a), i.e. how many elements a will be able to store. Under this assumption, the
situation where a predefined element is used to fill the array after declaration
can be simulated by using an appropriate sequence of assignments. In our
formal model, we abstract from memory and efficiency issues and assume the
capability of storing an element e at an arbitrary index i of an array a, by
allocating (only) the necessary extra space when i is bigger than the actual
size of a; the resulting array is denoted with store(a, i, e). In this way, we can
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formalize the capacity of an array as the function dim returning the smallest
index, after which no more elements of the array exist. For simplicity, we will
talk about the ‘dimension’ of an array instead of its capacity.

To summarize, we have chosen to formalize dynamically-allocated ar-
rays while abstracting away any considerations about memory handling. The
reader may wonder why we have taken such a decision. The answer is twofold.
First, dynamically-allocated arrays are at the core of many algorithms and
abstract data types (such as heaps, queues, and hash tables). So, the avail-
ability of a procedure (see Section 4) to reason about such a type of arrays
would greatly help the task of verifying many programs. The second reason is
that dynamically-allocated arrays more accurately model heaps, i.e. the areas
of memory where pointer-based data structures are dynamically allocated.
For example, as observed in [18], the absence of aliasing in linked lists can
be specified by using an axiom for injectivity of the function modelling the
heap. It is possible to extend dynamic arrays with a recognizer for “injective
arrays”, where ⊥ models the null-pointer, and obtain a decision procedure
also for this theory (see Section 5.1). As another example, consider Separa-
tion Logic as introduced by Reynolds in [21]. The key feature of this logic
is its capability to support “local reasoning” by formalizing heaps as partial
function from addresses to values and introducing new logical connectives,
such as the separating conjunction P ⋆ Q that asserts that P and Q hold
for disjoint portions of a certain heap. Indeed, the partial function mod-
elling heaps can be turned into total functions by using the standard trick
of returning an undefined value whenever they are undefined. In this sense,
heaps can naturally be seen as dynamic arrays, which can be extended with
a “domain” function, returning the set of non-⊥ elements. We will see that
also this extension of the theory of arrays with dimension is decidable (see
Section 5.2); this can also be seen as a first step in the direction of providing
automatic support for Separation Logic by decision procedures developed in
first-order logic.

We are now in the position to discuss the simple mathematical model
underlying dynamic arrays. Given a set A, by Arr(A) we denote the set of
finite arrays with natural numbers as indexes and whose elements are from
A. An element of Arr(A) is a sequence a : N −→ A ∪ {⊥} eventually equal
to ⊥ (here ⊥ is an element not in A denoting an “undefined” value). In this
way, for every array a ∈ Arr(A) there is a smallest index n ≥ 0, called the
dimension of a, such that the value of a at index j is equal to ⊥ for j ≥ n.
We do not require any value of a at k < n to be distinct from ⊥: this is also
the reason to use the word ‘dimension’ rather than ‘length’. There is just one
array whose dimension is zero which we indicate by ε and call it the empty
array. Since many applications of verification require arithmetic expressions
on indexes of arrays, we introduce Presburger Arithmetic P over indexes: any
other decidable fragment of Arithmetic would be a good alternative. Thus
the relevant operations on our arrays include addition over indexes, read,
write, and dimension. Below, we will consider a theory, denoted by ADP ,
capable of formally expressing the properties described above.
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3.1 Arrays with Dimension as a Combined Theory

Formally, the theory ADP can be seen as a combination of two well-known
theories: P and the theory Ae of arrays with extensionality (see, e.g., [2]),
extended with a function for the dimension which takes an array and returns
a natural number. Because of the function for dimension, the combination is
non-disjoint and cannot be handled by classical combination schemas such
as Nelson-Oppen [19]. Nevertheless, following [13], it is convenient to see
ADP as a combination of P with a theory of array with dimension Adim :
Adim extends Ae (both in the signature and in the axioms), but is contained
in ADP , because in Adim indexes are only endowed with a discrete linear
poset structure. In this way, we have that ADP = Adim ∪P and the theories
Adim and P share the well-known complete theory T0 of natural numbers
endowed with zero and successor (see e.g., [10]): this theory admits quan-
tifier elimination, so that the T0-compatibility hypothesis of [13] needed for
the non-disjoint Nelson-Oppen combination is satisfied. Unfortunately, the
combination result in [13] cannot be applied to ADP for mainly two reasons.
First, T0 is not locally finite (see, e.g., [13] for details). Secondly, Adim is
a proper extension of the theory Ae, hence the decision procedures for the
Ae-satisfiability problem (such as, e.g., the one in [2]) must be extended. In
the rest of the paper, we will show that it is sufficient to use decision proce-
dures for the P- and Ae-satisfiability problem to solve the ADP-satisfiability
problem, provided that a suitable pre-processing of the input set of literals
is performed.

We now introduce the basic theories of interests for this paper.

T0 has just one sort symbol index, the following function and predicate

symbols: 0 : index, s : index → index, and <: index × index. It is
axiomatized by the the following formulae:1

y 6= 0→ ∃z(y = s(z)) (1)

x < s(y)↔ (x < y ∨ x = y) (2)

¬(x < 0) (3)

x < y ∨ x = y ∨ y < x (4)

x < y → ¬(y < x) (5)

x < y → (y < z → x < z) (6)

where x, y and z are variables of sort index. This theory admits elimi-
nation of quantifiers and it is complete, see [10] for details.

P is the well-known Presburger Arithmetic (see, e.g., [10]) over indexes.
The signature is that of T0 extended with the function symbol for addi-
tion + : index × index → index, written infix. Since P is not finitely
axiomatizable (see, again [10]), we assume as axioms all the sentences
valid in the standard model of natural numbers. Notice that T0 ⊂ P .

A is the theory of arrays (see, e.g., [2]) which has the following signature:

1 Here and in the following, we omit the outermost universal quantification for
the sake of readability.
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– sort symbols: index, elem,array and
– function symbols: select : array×index→ elem and store : array×

index× elem→ array

and it is axiomatized by the following formulae:

select(store(a, i, e), i) = e (7)

i 6= j → select(store(a, i, e), j) = select(a, j) (8)

Ae is the theory of arrays with extensionality (see, e.g., [2]) which has the

same signature of A and it is axiomatized by (7), (8), and the axiom of
extensionality:

∀i(select(a, i) = select(b, i))→ a = b (9)

The converse implication is an obvious consequence of the congruence of
equality; hence, there is no need to explicitly take it into account since
we work in (many-sorted) first-order logic with equality (cf. first sentence
of Section 2). Notice also that A ⊂ Ae.

Adim is the simple theory of arrays with dimension whose signature is

the union of the signatures of T0 and Ae extended with the following
three symbols: ⊥ : elem, ε : array, and dim : array → index. It is
axiomatized by the axioms in T0, those in Ae, and the following formulae:

dim(a) ≤ i→ select(a, i) = ⊥ (10)

dim(a) = s(i)→ select(a, i) 6= ⊥ (11)

dim(ε) = 0 (12)

Notice that T0 ⊂ Adim and Ae ⊂ Adim .

ADP is the theory of arrays with dimension whose signature is the union
of the signatures of Adim and P and is axiomatized by the axioms in
Adim and all valid sentences in P .

The theories T0 and P are decidable (see [10]); moreover, the constraint
satisfiability problem for the theories A and Ae is decidable (see [2]). These
are important observations for the results of this paper, since the decision
procedure for ADP-satisfiability will assume the availability of two decision
procedures for the constraint satisfiability problems of P and A. The theories
Ae, Adim , and ADP admit a particular subclass of models, which we call the
standard ones and are exactly those introduced above in order to motivate
the definition of ADP . Formally, a standard model is the model induced by
a pair (A, κ), where A is a set of elements and κ is a distinguished element
of A as explained in the following definition.

Definition 3.1 Let A be a set and κ be an element of A. The standard model
of ADP induced by the pair (A, κ) is the ΣADP -structureM such that

(i) the sort index is interpreted inM as N and the symbols 0, <, s,+ have
their natural meaning;

(ii) the sort elem is interpreted inM asA and the constant⊥ is interpreted
as κ;
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(iii) the sort array is interpreted inM as the set of functions a : N −→ A
such that there is some na ∈ N for which we have a(m) = κ whenever
m ≥ na; moreover, the constant ε is interpreted as the constant function
with value κ;

(iv) dimM(a) is the smallest n ∈ N such that a(m) = κ holds for all m ≥ n;

(v) we have selectM(a, i) := a(i) and

storeM(a, i, e)(n) :=

{

a(n) if n 6= i,

e otherwise.

The standard models of Ae and Adim can be defined in a similar way by
taking the ΣAe

- and ΣAdim
-reduct (respectively) of ADP-standard models;

notice that the dimension of the empty array is 0 and the dimension of a
non-empty array is the successor of the index of the last element different
from ⊥. Of course, when investigating constraint satisfiability we are mainly
interested in satisfiability of constraints in standard models and we shall in
fact prove that a constraint is satisfiable in a model of ADP if and only if it
is satisfiable in a standard model (see Lemma 4.3, below).

4 A Decision Procedure for Arrays with Dimension

In the rest of the paper, we assume the availability of two decision procedures
solving the A- and P-satisfiability problems; we will see how to reduce to
these latter the ADP-satisfiability problem. In order to introduce the reader
into the details of the procedure, we consider an example which illustrates
some key ideas.

Example 4.1 Consider the problem of checking the ADP-satisfiability of

dim(a) = n ∧ dim(b) = m ∧ b = store(a, n, e) ∧
e 6= ⊥ ∧ m > 0 ∧ n = m+ 1

(13)

where a, b,m, n, e are free constants of appropriate sorts. To detect the unsat-
isfiability of (13), it is crucial to derive that m < n in Presburger Arithmetic.
In fact, we can detect the Ae-unsatisfiability of b = store(a, n, e) ∧ e 6= ⊥
in (13) and select(b, n) = ⊥, which is a logical consequence of (10) and
dim(b) = m < n = dim(a). If we were not able to derive facts in Presburger
Arithmetic, we would have failed to show the ADP-unsatisfiability of (13).

The capability of deriving all facts entailed by a constraint can be problem-
atic, since we only assume the availability of a decision procedure to solve the
P-satisfiability problem without further capabilities. To overcome this diffi-
culty, we will transform the problem of checking a logical consequence into a
satisfiability problem, i.e. if ϕ and ψ are two constraints in P , then in order
to check P ∪{ϕ} |= ψ, we will check the P-unsatisfiability of ϕ∧¬ψ. Indeed,
it will be necessary to guess the entailed constraint ψ. This is a standard
technique in the field of combining decision procedures (see, e.g., [13]), which
allows us to abstractly describe our decision procedure and more easily prove
its correctness.
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Flatten

DPP DPA

sat/unsat

all sat?

E-inst. G-inst.

Fig. 1 The architecture of
the decision procedure for
ADP

4.1 The Architecture

The overall schema of the decision procedure for the ADP-satisfiability prob-
lem is depicted in Fig. 1. The module Flatten pre-processes the literals in the
input constraint so as to make them flat and easily recognizable as belonging
to one theory among those used to define ADP (see Section 3.1), i.e. T0, P ,
Ae, or Adim . The module E-instantiation produces suitable instances of the
extensionality axiom, i.e. (9), so that a simpler decision procedure for the A-
satisfiability problem (with respect to one for Ae) is assumed available. The
module G-instantiation is non-deterministic and guesses sufficiently many
facts which are potentially entailed by the constraints in P . The modules
DPP and DPA implement the decision procedures for Presburger Arith-
metic and for the constraint satisfiability problem for the theory of arrays
(without extensionality). The module ‘all sat?’ returns “satisfiable” if both
decision procedures for P and A returned “satisfiable”; otherwise returns
“unsatisfiable”. Now, we are ready to describe the internal workings of each
module in detail.

4.1.1 Flattening

It is well-known (see, e.g., [2]) that it is possible to transform a constraint
ϕ into an equisatisfiable constraint ϕ′ containing only flat literals in linear
time by introducing sufficiently many fresh constant symbols to name sub-
terms. In our case, we assume that the module Flatten in Fig. 1 transforms
(in linear time) a set of arbitrary literals over the signature Σ

a

ADP into an
equisatisfiable set of flat literals on the signature Σ

c

ADP , for some set c ⊇ a of
constants (the constants in c \ a are said to be fresh). Notice that a flattened
set of literals L over a simple expansion of ΣADP can be represented as a
set-theoretic union LAdim

∪ LP , where LAdim
collects all the literals from L

over a simple expansion of ΣAdim
and LP collects all the literals from L over

a simple expansion of ΣP (thus LAdim
∩ LP contains precisely the literals

from L over a simple expansion of ΣT0
).
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4.1.2 E-instantiation closure

The module E-instantiation finds enough instances of the axiom (9) for ex-
tensionality of arrays so that it can be eliminated without compromising the
correctness of the decision procedure for ADP .

Definition 4.1 (E-instantiation closed set of literals) A set L of ground
flat literals is E-instantiation closed if and only if the following condition is
satisfied:

1. if a 6= b ∈ L, with a, b : array, then {select(a, i) = e1, select(b, i) =
e2, e1 6= e2} ⊆ L for some constants i : index, e1, e2 : elem;

It is not difficult to see that, given a set of ground flat literals L, there exists
an ADP-equisatisfiable set LE ⊇ L that contains the Skolemization of some
logical consequences of Ae ∪ L and is E-instantiation closed.

Lemma 4.1 There exists a linear time algorithm which takes a set L of flat
literals over the signature Σ

a

ADP and returns an E-instantiation closed set
LE of flat literals over the signature Σ

c

ADP such that (i) L ⊆ LE , (ii) L and
LE are ADP-equisatisfiable, and (iii) a ⊆ c.

The signature Σ
c

ADP of LE is a proper simple expansion of the signature
Σ

a

ADP of L, because Skolem constants are fresh. It is straightforward to see
that, if L contains n literals, at most 3n new literals are sufficient to obtain
an E-instantiation closed set of literals containing L. Under the assumption
that producing a new literal takes constant time, there exists a linear time
algorithm to compute E-instantiation closed sets.

4.1.3 G-instantiation closure

The module G-instantiation is non-deterministic and it is responsible to pro-
duce suitable instances of the axioms about the dimension of arrays, i.e. (10)
and (11), and to guess enough facts of P entailed by the input constraint so
as to guarantee the correctness of the overall decision procedure for ADP-
satisfiability.

Definition 4.2 (G-instantiation closed set of literals) A set L of ground
flat literals is G-instantiation closed if and only if the following conditions are
satisfied:

1. if ε occurs in L, then dim(ε) = 0 ∈ L;
2. if dim(a) = i ∈ L, with a : array and i : index, then {i = 0} ⊆ L or
{e 6= ⊥, select(a, j) = e, s(j) = i} ⊆ L for some constants j : index and
e : elem;

3. if i, j occur in L, with i, j : index, then i = j ∈ L or i 6= j ∈ L;
4. if i, j occur in L, with i, j : index and i 6= j ∈ L, then i < j ∈ L or
j < i ∈ L;

5. if {dim(a) = i, i ≤ j} ⊆ L, with a : array and i, j : index, then
{select(a, j) = ⊥} ⊆ L (here i ≤ j stands for i < j or i = j).

Given a set of literals, it is always possible to compute an equisatisfiable
G-instantiation closed set in (non-deterministic) polynomial time.
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Lemma 4.2 There exists a non-deterministic polynomial time algorithm
which takes as input a set L of ground flat literals over a signature Σ

a

ADP
and returns a G-instantiation closed set LG of flat literals over the signature
Σ

c

ADP such that (i) L ⊆ LG, (ii) L and LG are ADP-equisatisfiable, and (iii)
a ⊆ c.

Proof Let m be the number of literals in L of the form dim(ak) = dak
where

dak
is a constant of sort index. Let us consider a set b = {j1, . . . , jm, e1, . . . ,

em} of fresh constants, where jk : index, ek : elem, and k ∈ {1, . . . ,m}.
A G-instantiation LG of L can be computed by sequentially executing the
following three steps:

1. for each pair i, j of constants of sort index in a ∪ b ∪ {0}, exactly one of
the atoms i = j and i 6= j is added to LG , and in the latter case either
i < j or j < i is also added;

2. for each literal dim(ak) = dak
∈ LG , then:

(a) if 0 = dak
∈ LG or 0 ≡ dak

, then add {jk = 0, ek = ⊥} to LG ;
(b) if 0 < dak

∈ LG , then add {s(jk) = dak
, select(ak, jk) = ek, ek 6= ⊥} to

LG .
3. if {dim(a) = i, i ≤ j} ⊆ LG , then add {select(a, j) = ⊥} to LG .

There are two important observations. First, each new constant jk : index

(k ∈ {1, . . . ,m}) denotes the predecessor of the dimension of ak, when the
latter is guessed to be different from 0 (if the dimension of ak is guessed
to be 0, then jk is set to zero). Second, each new constant ek : elem (k ∈
{1, . . . ,m}) denotes the result of reading the content of array ak at position
jk.

These two observations together with the fact that the process described
above to build LG closely follows Definition 4.2 should make it clear that L
is ADP-satisfiable if and only if there exist a set LG which is G-instantiation
closed and ADP-satisfiable. The non-deterministic polynomial time result is
obtained by a straightforward inspection of the process described above. ⊓⊔

It is easy to check that one obtains a set of both E- and G-instantiation closed
set of literals by invoking first the E- and then the G-instantiation module.

4.2 The Algorithm

The algorithm in Fig. 2 gives a (non-deterministic) decision procedure to
solve the ADP-satisfiability problem. Without loss of generality (see Section
4.1.1), we assume that L contains only flat literals.

The function DPT , for T ∈ {ADP ,A,P}, denotes a decision procedure
to solve the T -satisfiability problem, i.e. DPT takes a set L of literals over
(a simple expansion of) the signature ΣT and returns “satisfiable” when L
is T -satisfiable; “unsatisfiable”, otherwise. If L is a set of flat literals, then

LT := {ℓ | ℓ ∈ L is a Σ
a

T -literal},

where T ∈ {A,P}. So, for example, LG
P is the subset of the literals in LG

over a simple expansion of the signature ΣP (for the sake of readability, when
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T←− {A,P}
function DPADP (L: set of flat literals)

LE ←− E-instantiation(L)
for each LG ←− G-instantiation(LE) do begin

for each T ∈ T do ρT ←− DPT (LG
T )

if
V

T∈T
(ρT = sat) then return sat

end
return unsat

end

Fig. 2 The (extensible)
decision procedure for
ADP

it is clear from the context, the term “simple expansion” will be omitted).
The set T in Fig. 2 contains the names of the theories for which a decision
procedure for the T -satisfiability problem is assumed available.

Let L be a set of flat literals over the signature ΣADP to be checked
for ADP-satisfiability. The decision procedure DPADP first computes the E-
instantiation LE of L (recall from Lemma 4.1 that this can be done in linear
time). Then, it enumerates all possible G-instantiations (cf. the for each loop
in Fig. 2). If it is capable of finding a G-instantiation LG such that its literals

in LG
P over the signature ΣP are P-satisfiable and its literals in LG

A over the
signature ΣA are A-satisfiable, then DPADP returns the ADP-satisfiability
of the input set L of literals. Otherwise, if all possible G-instantiations are
enumerated and the test of the conditional in the body of the loop always
fails, DPADP returns the ADP-unsatisfiability of the input set L of literals.

Theorem 4.1 The constraint satisfiability problem for ADP is NP-com-
plete.

The proof is based on the following considerations: (i) the constraint
satisfiability problem for the theory of Presburger Arithmetic reduces to the
Integer Linear Programming problem; (ii) both Integer Linear Programming
and constraint satisfiability for the theory of array are known to be NP-
complete problems (see, e.g., [24] and [25] respectively); (iii) the size of the
E- and G-instantiation closed set is polynomially bounded with respect to the
size of the original constraint. From (i) and (ii) it follows the NP-hardness
of the problem, whereas from (iii) and the correctness of DPADP (Theorem
4.2) it follows that the problem is in NP, hence the thesis.

4.3 Correctness of the Procedure

The termination of DPADP is obvious, since the computation of LE termi-
nates (see Lemma 4.1) and there are only finitely many possible sets LG to
be considered in the for each loop of Fig. 2 (see Lemma 4.2).

The soundness and completeness of DPADP are consequences of the fol-
lowing combination Lemma.

Lemma 4.3 (Combination) Let L be an E- and G-instantiation closed set.
Then the following conditions are equivalent:

(i) L is satisfiable in a standard model of ADP;
(ii) L is ADP-satisfiable;
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(iii) LA is A-satisfiable and LP is P-satisfiable.

Proof Since the implications (i) : (ii) : (iii) are trivial, it is sufficient to show
that (iii) : (i) to conclude the proof.

LetM′ be a structure such thatM′ |= A∪LA and N be a structure such
that N |= P ∪ LP . Since P is complete, we are entitled to assume that N
is the standard structure of natural numbers N. We are now ready to build
a standard model M for ADP ∪ L out of M′ as follows. We take elemM

to be elemM′

and ⊥M to be ⊥M′

; the free constants occurring in L are
interpreted as follows:

(A) for each constant i : index occurring in LP , let iM := iN ;

(B) for each constant e : elem occurring in LA, let eM := eM
′

;
(C) for each constant a : array occurring in LA, we define aM to be the

sequence {en} such that

en :=

{

select(a, i)M
′

if n = iM for some i occurring in LP ,

⊥M otherwise.

The construction in (C) is well-defined: indeed, if two constants i1 and i2
of sort index occurring in LP are interpreted into the same element in M,
then iN1 = iN2 ; since L is G-instantiation closed, the atom i1 = i2 is in LP

(and hence in LA) and soM′ |= select(a, i1) = select(a, i2).
Now, we show that for each ℓ ∈ L, we have M |= ℓ. This is obvious for

ℓ ∈ LP and for ℓ of the form e1 = e2 or e1 6= e2, with e1, e2 : elem. We are
left to consider the following cases depending on the form of ℓ:

(i) select(a, i) = e.M |= ℓ because of (A), (B), (C);

(ii) a1 = a2, with a1, a2 : array. M |= ℓ because aM
′

1 = aM
′

2 , so

select(a1, i)
M′

= select(a2, i)
M′

for each constant i : index occurring
in LP . Hence, aM1 = aM2 by (C);

(iii) store(a1, i, e) = a2. M |= ℓ by considering an argument similar to that
used for case (ii);

(iv) a1 6= a2, with a1, a2 : array. M |= ℓ since

{select(a1, i) = e1, select(a2, i) = e2, e1 6= e2} ⊆ LA

by Definition 4.1 of E-instantiation closed set of literals andM′ |= LA

and hence select(a1, i)
M 6= select(a2, i)

M because of (i). As a conse-
quence, we have aM1 6= aM2 .

(v) dim(a) = i. We consider two sub-cases, according to (2) of Definition
4.2:
– if i = 0 ∈ LP or i ≡ 0, then it is sufficient to prove that for each

integer n, en is equal to ⊥M where {en} = aM. If n = jM for some
constant j : index such that

{i < j} ⊆ LP or {i = j} ⊆ LP ,

then, since L is G-instantiation closed, select(a, j) = ⊥ ∈ LA hence
en = ⊥M by (C); otherwise, en = ⊥M by (C).
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– if i 6= 0 ∈ LP , then for each integer n ≥ iM, en = ⊥M by a similar
argument to the one used for the previous sub-case. In fact, we
observe that since L is G-instantiation closed, s(j) = i is in LP for
some constant j : index, and both select(a, j) = e and e 6= ⊥ must
also be in LA, therefore the thesis follows from (B), (C) and (i).

⊓⊔

Now, we are able to state and prove the correctness of DPADP .

Theorem 4.2 DPADP is a decision procedure for the ADP-satisfiability
problem, i.e. for any set L of flat literals, L is ADP-satisfiable if and only if
DPADP(L) returns “satisfiable”. Furthermore, DPADP decides the satisfia-
bility problem in the standard models of ADP.

Proof If L is ADP-satisfiable, then it is obvious that DPADP(L) returns
“satisfiable”. We are left with the task of proving that the converse holds. We
will prove that when DPADP(L) returns “satisfiable”, then L is satisfiable in
a standard model of ADP . If DPADP(L) returns “satisfiable”, then DPADP

has found a G-instantiation LG of LE at some iteration of the for each loop
in Fig. 2. The set LG is such that

LG
A is A-satisfiable and LG

P is P-satisfiable.

From these two facts, the existence of a standard ADP-model of LG imme-
diately follows by using Lemma 4.3 above. ⊓⊔

5 Extensions of the Theory of Arrays with Dimension

We now show the decidability of the constraint satisfiability problem for some
interesting extensions of ADP .

As observed in [18], certain properties of pointer-based data structures,
such as no-aliasing, can be specified by using first-order axioms. The first ex-
tension of ADP is obtained by adding an axiom recognizing injective arrays
(which, according to [18], may characterize memory configurations where
pointers satisfy the no-aliasing property) and then showing how to extend
the decision procedure for ADP by an instantiation strategy so as to con-
sider enough (ground) instances of the injectivity axiom. We notice that the
decidability of a similar problem in [6] is left open: we are capable of deriv-
ing a decidability result since we use a richer theory that identifies a more
restricted class of models.

The second extension of ADP we consider is again motivated by applica-
tions in program verification. As already observed in [21], it is quite helpful
to regard arrays as functions equipped with an operator to compute their
domains. This is used, for example, to define the semantics of separating
connectives (supporting local reasoning) in Separation Logic [22]. So, we ex-
tend ADP with a set of axioms characterizing a function which, given an
array a, returns the domain D of a, i.e. D is a set of indexes such that
select(a, i) 6= ⊥ for i in D. We regard this as a first step in the direction
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of providing automatic support for Separation Logic by decision procedures
developed in first-order logic.

The section concludes taking into account some other interesting exten-
sions, which exemplify the flexibility of our approach and are all relevant for
applications as discussed in, e.g., [6].

5.1 Injective Arrays

We extend the (empty) set of predicate symbols in ADP by the unary pred-
icate symbol Inj : array which, intuitively, recognizes injective arrays, i.e.
arrays containing unique elements, with the exception of the undefined ele-
ment ⊥. To formalize the intuitive meaning of Inj, we extend the set of axioms
of ADP by the following definition:

Inj(a) ↔ ∀i, j(select(a, i) = select(a, j)→ i = j ∨ select(a, i) = ⊥) (14)

where a is an implicitly universally quantified variable of sort array. Let
ADP inj be the theory obtained by extending ADP with axiom (14). Notice
that, since the new predicate Inj has an explicit definition in the theory
ADP inj, every model for ADP extends uniquely to a model for ADP inj (see,
e.g., [27]). Furthermore, standard models of ADP inj will be those models of
ADP inj whose reduct is a standard model of ADP .

In order to obtain a decision procedure for ADP inj, it is necessary to find
suitable extensions of Definitions 4.1 and 4.2 so that enough instances of
(14) are considered and the results of the available decision procedures for A
and P are conclusive about the satisfiability of the original constraint in the
extended theory. We formalize the meaning of “enough instances” for this
extension of ADP in the following two definitions.

Definition 5.1 (Einj-instantiation closed set of literals) A set L of
ground flat literals is Einj-instantiation closed if and only if L is E-instantiation
closed (cf. Definition 4.1) and the following condition is satisfied:

1. if ¬Inj(a) ∈ L, then {select(a, i) = e, select(a, j) = e, i < j, e 6= ⊥} ⊆ L for
some constants e : elem, i, j : index.

Definition 5.2 (Ginj-instantiation closed set of literals) A set L of
ground flat literals is Ginj-instantiation closed if and only if L is G-instantiation
closed (cf. Definition 4.2) and the following conditions are satisfied:

1. if Inj(a) ∈ L then, for each constant i of sort index occurring in L,
select(a, i) = ⊥ ∈ L or {select(a, i) = e, e 6= ⊥} ⊆ L for some constant
e : elem;

2. if {Inj(a), i < j, select(a, i) = e1, select(a, j) = e2, e1 6= ⊥, e2 6= ⊥} ⊆ L,
then e1 6= e2 ∈ L.

Lemmas 4.1 and 4.2 can easily be adapted to the theory ADP inj, taking
into consideration the additional requirements of Definitions 5.1 and 5.2. A
decision procedure DPADP inj

for ADP inj can be obtained from DPADP by
replacing the modules for E- and G-instantiation in Fig. 1 with those taking
into account Definitions 5.1 and 5.2. We are now ready to state and prove
the correctness of DPADP inj

.
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Theorem 5.1 DPADP inj
is a decision procedure for the ADP inj-satisfiability

problem. Furthermore, DPADP inj
decides the constraint satisfiability problem

in the standard models of ADP inj.

Proof Soundness is trivial. Regarding the key point for completeness, suppose
we are given an Einj- and a Ginj-instantiation closed finite set of literals

L = LADP ∪ Linj

(here Linj is the set of literals from L involving the predicate Inj) such that
LA is A-consistent and LP is P-consistent. The construction of Lemma 4.3
yields a standard model M of ADP satisfying LADP . We are left to prove
that the expansion ofM to a model of ADP inj is a model of Linj. But this is
easy by Definitions 5.1 and 5.2. ⊓⊔

5.2 Arrays with Domain

We equip arrays with a function computing their domain, i.e. the set of
indexes at which they store “defined” values, i.e. values distinct from ⊥. To
this end, we need to formalize a very simple theory of sets of indexes, which
is a straightforward extension of that used in [2]. Let S∅ be the theory whose
sort symbols are bool and set, whose function symbols are true, false : bool,
∅ : set, mem : index × set → bool, ins : index × set → set, and whose
axioms are the following:

mem(i, ∅) = false (15)

mem(i, ins(i, s)) = true (16)

i1 6= i2 → mem(i1, ins(i2, s)) = mem(i1, s) (17)

true 6= false ∧ ∀x : bool ( x = true ∨ x = false) (18)

where i, i1, i2 are implicitly universally quantified variables of sort index and
s is an implicitly universally quantified variable of sort set. Moreover, we
will call S∅− the theory given by the axioms (15), (16), and (17).

Intuitively, ∅ denotes the empty set, mem is the test for membership of
an index to a set, ins adds an index to a set if it is not already in the set. The
constants true and false allow us to encode the membership predicate with the
Boolean valued function mem. It is possible to adapt the decidability result
of [2] to S∅ (see the Technical Report [14] for further details). Hence, from
now on, we consider the availability of a decision procedure for the constraint
satisfiability problem of S∅ in addition to those for A and P .

Since we want to be able to compare sets by using the membership pred-
icate mem, we need to consider the theory S∅e obtained from S∅ by adding
the following axiom of extensionality for sets:

∀i(mem(i, s1) = mem(i, s2))→ s1 = s2 (19)

where s1, s2 are implicitly universally quantified variables of sort set. The
standard models of the theory S∅e are the models in which the sort set is
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interpreted as the set of (characteristic functions of) finite subsets of the
interpretation of the sort index.

We are now in the position to give a precise definition of the extension of
ADP by the domain function for arrays. Let ADPdom be the theory obtained
by extending the (disjoint) union of ADP with S∅e by the function symbol
dom : array→ set together with the following axiom:

select(a, i) = ⊥ ↔ mem(i, dom(a)) = false (20)

where i and a are implicitly universally quantified variables of sort index

and array, respectively. Again, notice that a standard model of ADP ∪ S∅e
can be expanded in a unique way to a model (called standard as well) of
ADPdom.

In order to obtain a decision procedure for the constraint satisfiability
problem of ADPdom, it is necessary to find suitable extensions of Definitions
4.1 and 4.2 so that enough instances of axioms (19) and (20) are considered
and the results of the available decision procedures for the constraint satis-
fiability problems of A, P , and S∅ are conclusive about the satisfiability of
the original constraint in the extended theory. We formalize the meaning of
“enough instances” for axioms (19) and (20) in the following definitions.

Definition 5.3 (Eset-instantiation closed set of literals) A set L of
ground flat literals is Eset-instantiation closed if and only if L is E-instan-
tiation closed (cf. Definition 4.1) and the following condition is satisfied:

1. if s1 6= s2 ∈ L, with s1, s2 constants of sort set, then {mem(i, s1) =
b1,mem(i, s2) = b2, b1 6= b2} ⊆ L for some constants b1, b2 : bool, i :
index.

Definition 5.4 (Gdom-instantiation closed set of literals) A set L of
ground flat literals is Gdom-instantiation closed if and only if L is G-instanti-
ation closed (cf. Definition 4.2) and the following conditions are satisfied:

1. if a literal of the kind dom(a) = sa belongs to L, then for each constant i
of sort index occurring in L, select(a, i) = ⊥ ∈ L or {select(a, i) = e, e 6=
⊥} ⊆ L for some constant e : elem;

2. if {select(a, i) = ⊥, dom(a) = sa} ⊆ L then {mem(i, sa) = b, b 6= true} ⊆
L for some constant b : bool; otherwise, if {select(a, i) = e, e 6= ⊥,
dom(a) = sa} ⊆ L then mem(i, sa) = true ∈ L;

Lemmas 4.1 and 4.2 can easily be adapted to the theory ADPdom. The deci-
sion procedure DPADPdom

for the theory ADPdom is obtained from DPADP

by (i) replacing the modules for E- and G-instantiation in Fig. 1 with those
taking into account Definitions 5.3 and 5.4 and by (ii) adding the decision
procedure for S∅ to the set of decision procedures available to the schema in
Fig. 2, i.e. by setting T to {A,P ,S∅}.

Theorem 5.2 DPADPdom
is a decision procedure for the ADPdom-satisfiabil-

ity problem. Furthermore, DPADPdom
decides the satisfiability problem in the

standard models of ADPdom.

Since the arguments used in the proof of the Theorem above are quite
similar to the ones used in Theorem 4.2, we omit the proof.
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5.3 Further Extensions of ADP

To show the flexibility of our approach, we consider here some further exten-
sions of ADP whose satisfiability problem can be checked by augmenting the
decision procedure of Section 4 with suitable instantiation strategies. The ex-
tensions considered below are all relevant for applications as discussed, e.g.,
in [6]. It is remarkable that the decision procedures for the constraint satis-
fiability problem for the various extensions considered below can simply be
obtained by modifying the modules for E-instantiation and G-instantiation
in Fig. 1.

Prefixes. We consider the new binary predicate symbol ⊑: array × array

and we extend the set of axioms of ADP by adding the following sentence:

a ⊑ b ↔ ∀i(i < dim(a)→ select(a, i) = select(b, i)) (21)

where i is a variable of sort index, a and b are implicitly universally quan-
tified variables of sort array. We denote the extended theory with ADPpfx.
Intuitively, a is a prefix of b whenever a ⊑ b holds.

Iterators. We consider two finite sets {mapf 1, . . . ,mapf n} and {f1, . . . , fn}
of fresh unary function symbols such that mapf k : array → array and
fk : elem → elem (k ∈ {1, . . . , n}). We extend the set of axioms of ADP
by adding a finite number of sentences of the following form:

select(mapf k(a), i) = fk(select(a, i)) (22)

fk(⊥) = ⊥, (23)

where i and a are implicitly universally quantified variables of sort index and
array, respectively (k ∈ {1, . . . , n}). We denote the extended theory with
ADPmap. Intuitively, mapf k(a) can be seen as an application of the higher-
order function map, which is routinely used in many functional languages,
such as ML or Haskell, i.e. mapf k(a) is equivalent to (map fk a).

Sorting. We consider the new binary predicate symbol �: elem× elem and
we extend the axioms of ADP by adding sentences stating that � is a total
order over the sort elem. We also add the unary predicate symbol Sorted
over the sort array, recognizing those arrays which are sorted in ascending
order according to the total order � (with the exception of ⊥ element). We
also extend the set of axioms by adding the following sentence:

Sorted(a)↔ ∀i, j
(

i < j →





select(a, i) � select(a, j) ∨
select(a, i) = ⊥ ∨
select(a, j) = ⊥





)

(24)

where a is an implicitly universally quantified variable of sort array. Notice
that, because of the ordering over the sort elem, in order to obtain a decision
procedure for the ADPord-satisfiability problem it is also needed to replace
the decision procedure for A-satisfiability with a decision procedure obtained
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by combining à la Nelson-Oppen [19] the decision procedure for A with one
for the theory of total order (see, e.g., [3]).

More details on the decision procedures for these extensions can be found
in [14]. All the extensions considered above can be combined together in
order to obtain a decidable fragment which is very expressive and able to
cope with many properties of interest for the field of software verification.

6 Implementation Issues

The following section is devoted to address some of the problems arising
in the implementation of the procedures presented above. The key issue is
how to efficiently handle the non-determinism introduced by the various G-
instantiation modules considered above (cf. Definitions 4.2, 5.2, and 5.4). An
ad hoc solution to this problem for the theory of arrays with domains will
be given by using the rewriting-approach to build satisfiability procedures.
Unfortunately, this solution is not general since, for example, the theory of
arrays augmented with the injective axiom does not seem to be amenable
to such an approach without resorting to suitable extensions of the calculus
to handle cancellation axioms (see, e.g,, [23]) which are not implemented
in state-of-the-art provers. A more general solution, relying on the use of
Satisfiability Modulo Theories solvers will then be described which is capable
of coping with all the extensions considered above.

6.1 A Rewriting-based Procedure for ADPdom

An alternative to the model-theoretic approach described in Section 5.2 is
represented by the rewriting-approach to satisfiability procedures described
in [2], which allows us to better handle the non-determinism introduced by
the guessing. In fact, we can use the Superposition Calculus (from now on
denoted by SP , see [20]) to build a decision procedure for the constraint
satisfiability problem in the union of the theories Ae and S∅e extended with
axiom (20). Such a procedure is then combined with a decision procedure for
the constraint satisfiability problem in P to build a decision procedure for
ADPdom.

In [2], it is shown how to use SP to build decision procedures for the
constraint satisfiability problem of theories axiomatized by a finite set of
first-order clauses. The key observation is that, in order to show that SP is a
decision procedure, it is sufficient to prove that SP terminates on the set of
clauses obtained by the union of the axioms of the theory and an arbitrary
set of ground and flat literals. According to [2], SP terminates also for some

of the theories considered in this paper, e.g., A and S∅− (when considered
in isolation). Modularity results in [1] allow us to conclude that SP also

terminates for the union A∪S∅−. Unfortunately, this is not enough since our
goal is to build a decision procedure for the ADPdom-satisfiability problem
whose set of axioms also contains (18) and (20).

As a preliminary step to applying SP , we need to partially instantiate
axioms (18) and (20) with the constants of sort array and bool occurring in
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L. This is so because SP does not seem to terminate on theories axiomatizing
enumerated data types such as the Booleans (see [4] for a discussion on this
point).

Definition 6.1 Let L be a set of ground and flat ΣAe∪S∅ -literals; we define
IL to be the following set of (partial) instances of axioms (18) and (20):

select(a, x) 6= ⊥ ∨mem(x, dom(a)) 6= true

select(a, x) = ⊥ ∨mem(x, dom(a)) = true

b = true ∨ b = false

true 6= false

for each dom(a) = s in L and for each constant b : bool occurring in L.

Along the lines of [2], to build a decision procedure for the ADPdom-satis-
fiability problem it is necessary to show that SP terminates on the class of
clauses obtained by the union of ground flat literals and the axioms which
have not been completely instantiated, namely those in A, S∅−, and those in
IL.

Lemma 6.1 SP terminates on A ∪ S∅− ∪ IL ∪ L for every finite set L of
ground and flat ΣA∪S∅-literals.

Let us call ASD the theory axiomatized by Ae ∪ S
∅
e ∪ {(20)}. The follow-

ing lemma is needed to prove the correctness of the decision procedure for
ADPdom.

Lemma 6.2 Let L be an Eset-instantiation closed set of ΣA∪S∅-literals.
Then, L is ASD-satisfiable if and only if L is (A ∪ S∅− ∪ IL)-satisfiable.

For lack of space, we omit the proofs of both of the technical lemmas above
(the interested reader can find them in [14]). Below, we denote with DPSP

the function taking a set L of ground ΣA∪S∅ -literals, computing IL and then
invoking SP on the clauses A ∪ S∅− ∪ IL ∪ L. If the empty clause is derived
by SP , then DPSP returns “unsatisfiable”; otherwise, it returns “satisfi-
able”. Hence, the new variant of the decision procedure DPADPdom

for the
theory ADPdom can be obtained from DPADP by replacing the module for
E-instantiation in Fig. 1 with a module for Eset-instantiation (cf. Definition
5.3) and by invoking DPSP and DPP in Fig. 2, i.e. by setting T to {SP,P}.

Now, we can state and prove the correctness of the new version of
DPADPdom

.

Theorem 6.1 DPADPdom
is a decision procedure for the ADPdom-satisfiabil-

ity problem.

Proof According to the result in Theorem 5.2, an Eset- and a Gdom-instantia-
tion closed finite set of literals

L = LADP ∪ LS∅ ∪ Ldom (25)

is ADPdom-satisfiable whenever LA, LP and LS∅ are A-, P- and S∅-satisfi-
able, respectively (here Ldom is the set of literals from L involving the function
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function Smt (ϕ: quantifier-free Σ
a

ADP-formula)
ϕ←− flatten(ϕ)
ϕ←− ϕ ∧ e-inst(ϕ) ∧ g2-inst(ϕ)
ϕ←− ϕ ∧ g3,4-inst(ϕ)
ϕp ←− fol2prop(ϕ)
while Bool-satisfiable(ϕp) do begin

βp ←− pick total assign(ϕp)
LG ←− g5-inst(prop2fol(βp))
(ρA, πA)←− DPA(LG

A)
(ρP , πP)←− DPP(LG

P)
if (ρA = sat ∧ ρP = sat) then return sat else

if (ρA = unsat) then ϕp ←− ϕp ∧ ¬fol2prop(πA)
if (ρP = unsat) then ϕp ←− ϕp ∧ ¬fol2prop(πP)

end while
return unsat

end function

Fig. 3 An SMT-solver for ADP-satisfiability

dom). From now on, we assume that the set of literals (25) is only Eset- and
a G-instantiation closed. We still assume that LP is P-satisfiable and (this
is the new fact due to Lemma 6.2) that LA ∪LS∅ ∪Ldom is ASD-satisfiable.
Now, consider a modelM of ASD∪LA ∪LS∅ ∪Ldom: looking at this model,

we can add to LA ∪LS∅ more literals true in M (let them be L̃A ∪ L̃S∅), in
such a way that

L̃ = (LADP ∪ L̃A) ∪ (LS∅ ∪ L̃S∅) ∪ Ldom

is Eset- and Gdom-instantiation closed (notice in fact that the newly introduced

literals do not contain new constants of sort index); now, L̃ ⊇ L satisfies the
requirements of Theorem 5.2 and is ADPdom-satisfiable. ⊓⊔

6.2 An SMT-based algorithm

We present an algorithm which integrates our instantiation-based schema
into an SMT solver by adapting the ideas described in [5], where a Boolean
solver is used in order to efficiently handle the guessing phase of non-deter-
ministic procedures.

The decision procedure described in Fig. 3 relies on two simple functions.
The former is a propositional abstraction function, i.e. a bijective function
fol2prop which maps a ground first-order formula ϕ into a Boolean formula
ϕp as follows: fol2prop maps Boolean atoms into themselves, ground atoms
into fresh Boolean atoms, and is homomorphic with respect to Boolean op-
erators. The second function, prop2fol (called, the refinement) is the inverse
of fol2prop. In the following, the procedure DPT is a decision procedure for
the constraint satisfiability problem for T , where T is A or P . If a constraint
L is T -satisfiable, DPT returns (sat , ∅), otherwise it returns (unsat , π) where
π ⊆ L and π is a T -unsatisfiable set, called the (theory) conflict set. The
associated (theory) conflict clause is ¬π.
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The algorithm runs as follows. First of all, the function flatten transforms,
by introducing sufficiently many fresh constants to name subterms, the input
formula ϕ into an equisatisfiable formula of the kind ϕu ∧ ϕs, where ϕu

is a constraint containing just positive flat equalities (including the literal
dim(ε) = 0) and ϕs is a Boolean combination of equalities between constants.
Then, according to Definitions 4.1 and 4.2, we add to the input formula ϕ
some of its logical consequences with respect to ADP . More in detail, we
have

ϕ←− ϕ ∧ e-inst(ϕ) ∧ g2-inst(ϕ)

ϕ←− ϕ ∧ g3,4-inst(ϕ)

where the functions e-inst, g2-inst and g3,4-inst are such that

– e-inst(ϕ) is the conjunction of the formulae a 6= b → (select(a, i) = e1 ∧
select(b, i) = e2 ∧ e1 6= e2) for each constants a, b : array such that a = b
occurs in ϕ (see Definition 4.1);

– g2-inst(ϕ) is the conjunction of the formulae i = 0 ∨ (e 6= ⊥ ∧
select(a, j) = e ∧ s(j) = i) for each constants a : array, i : index such
that dim(a) = i occurs in ϕ (see (2) of Definition 4.2); and

– g3,4-inst(ϕ) is the conjunction of the clauses of the kind i < j∨i = j∨j < i
for each constant i, j : index occurring in ϕ (see (3) and (4) of Definition
4.2).

At this point, ϕ contains almost all the atoms needed to eventually obtain E-
and G-instantiation closed sets of literals; the only missing closure is w.r.t.
condition (5) of Definition 4.2. This will be done by the function g5-inst in
the loop, as it will be clear in a moment.

The while loop is iterated until there exists a propositional assignment
βp which satisfies the propositional abstraction ϕp of ϕ. The propositional
assignment βp is refined, thus obtaining a constraint which is (determinis-
tically) closed under condition (5) of Definition 4.2 by the function g5-inst,
and then passed to the decision procedures for Presburger Arithmetic DPP

and for the constraint satisfiability problem for the theory of arrays DPA. If
both procedures return (sat , ∅), then the algorithm stops returning satisfia-
bility; otherwise, as it is customary in lazy SMT solvers (see, e.g., [5]), the
corresponding conflict clause is used to prune the search space in order to
avoid enumerating useless guesses, i.e. all those sharing the same conflict set.

The correctness of the procedure can be obtained along the lines of the
Delayed Theory Combination algorithm in [5]. The main differences lie in
showing that the pre-processing steps preserve the ADP-equisatisfiability
and that LG is an E- and G-instantiation closed set of literals so that Lemma
4.3 above can be re-used.

Finally, we notice that all the extensions considered in Section 5.3 can be
easily integrated in the algorithm of Fig. 3 by adapting the g∗’s functions in
order to mirror the extensions in the definition of G-instantiation closed sets.
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7 Conclusions and Future Work

We have considered extensions of the theory of arrays which are relevant for
many important applications such as program verification. These extensions
are such that the indexes of arrays have the algebraic structure of Presburger
Arithmetic and the theory of arrays is augmented with axioms characterizing
additional symbols such as dimension, injectivity, or the domain of definition
of arrays. We have obtained the decidability of the constraint satisfiability
problem for all the considered extensions by a combination of decision pro-
cedures for the theories of arrays and Presburger Arithmetic with various
instantiation strategies based both on model-theoretic and rewriting-based
methods. We have also described techniques for the efficient implementation
of the non-deterministic decision procedures by adapting techniques devel-
oped in the SMT community.

There are two lines of future work. First, we plan to implement the SMT-
based algorithm described in Section 6.2 in haRVey [8] and perform some
experimental evaluations. In particular, this should allow us to implement the
two variants of the decision procedure for ADP and to compare their relative
benefits on some significant problems. The second line of future work is longer
term and concerns the definition of a general framework to declaratively spec-
ify and prove correct procedures for theories obtained by augmenting a base
theory (for which a decision procedure is available) with instantiation strate-
gies for some selected class of axiomatic extension. Ideally, such a framework
should allow us to develop general decidability results which can be instan-
tiated to the theories of container data-structures such as those considered
in this paper as well as sets (with all the usual set-theoretic operations of
union, intersection, cardinality, and so on), lists, and multisets.
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