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Abstract. We define a general notion of a fragment within higher order
type theory; a procedure for constraint satisfiability in combined frag-
ments is outlined, following Nelson-Oppen schema. The procedure is in
general only sound, but it becomes terminating and complete when the
shared fragment enjoys suitable noetherianity conditions and allows an
abstract version of a ‘Keisler-Shelah like’ isomorphism theorem. We show
that this general decidability transfer result covers as special cases, be-
sides applications which seem to be new, the recent extension of Nelson-
Oppen procedure to non-disjoint signatures [16] and the fusion transfer
of decidability of consistency of A-Boxes with respect to T-Boxes axioms
in local abstract description systems [9]; in addition, it reduces decidabil-
ity of modal and temporal monodic fragments [32] to their extensional
and one-variable components.

1 Introduction

Decision procedures for fragments of various logics and theories play a central
role in many applications of logic in computer science, for instance in formal
methods and in knowledge representation. Within these application domains,
relevant data appears to be heterogeneously structured, so that modularity in
combining and re-using both algorithms and concrete implementations becomes
crucial. This is why the development of meta-level frameworks, accepting as in-
put specialized devices, turns out to be strategic for future advances in building
powerful, fully or partially automatized systems. In this paper, we shall consider
one of the most popular and simple schemata (due to Nelson-Oppen) for de-
signing a cooperation protocol among separate reasoners; we shall plug it into a
higher order framework and show how it can be used to deal with various classes
of combination problems, often quite far from the originally intended application
domain.
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The basic feature of Nelson-Oppen method is simple: constraints involving
mixed signatures are transformed into equi-satisfiable pure constraints and then
the specialized reasoners try to share all the information they can acquire con-
cerning constraints in the common subsignature, till an inconsistency is detected
or till a saturation state is reached.

Nelson-Oppen method was guaranteed to be complete only for disjoint sig-
natures and stably infinite theories, till quite recently, when it was realized [16]
that stable infiniteness is just a special case of a compatibility notion, which
is related to model completions of shared sub-theories. The above extension of
Nelson-Oppen method to combination of theories operating over non disjoint sig-
natures lead to various applications to decision problems in modal logics: such
applications (sometimes involving non trivial extensions of the method as well
as integration with other work) concerned transfer of decidability of global con-
sequence relation to fusions [16] and to £-connections [4[5], as well as transfer of
decidability of local consequence relation to fusions [§].

Thus, most of previously existing decidability results on fusions of modal
logics (for instance those in [33]) were recaptured and sometimes also improved
by general automated reasoning methods based on Nelson-Oppen ideas. How-
ever, this is far from exhausting all the potentialities of such ideas and further
extensions are possible. In fact, the standard approach to decision problems in
modal/temporal /description logics is directly based on Kripke models (see for
instance [9/T5]), without the intermediation of an algebraic formalism, whereas
the intermediation of the formalism of Boolean algebras with operators is es-
sential in the approach of papers like [I6l8/4)5]. The appeal to the algebraic
formulation of decision problems on one side produces proofs which are much
smoother and which apply also to semantically incomplete propositional logics,
but on the other side it limits the method to the cases in which such a purely
algebraic counterpart of semantic decision problems can be identified.

One of the main reasons for avoiding first-order formalisms in favor of propo-
sitional modal logic-style languages lies in the better computational perfor-
mances of the latter. However, from a purely declarative point of view, first-order
formalisms are essential in order to specify in a semantically meaningful language
the relevant decision problems. This goal is mainly achieved in the case of modal
logic through first-order translations, the role of such translations being simply
that of codifying the intended semantics (and not necessarily that of providing
computational tools).

If a semantic class S of Kripke frames is given, relevant decision problems are
formulated as satisfiability problems (within members of S) for standard trans-
lations of propositional modal formulae. In these formulations, unary predicates
occurring in standard translations are considered in practice as second order
variables: in fact, satisfiability requires the existence of suitable Kripke mod-
els and the latter differ from mere Kripke frames precisely by the specification
of a second order assignment. The role played by second order variables be-
comes even more evident if we analyze the way in which standard translations of
modal formulae in fusions are obtained from standard translations of formulae in
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the component languages. For instance, ST (Q102x, w) is obtained by substitut-
ing into ST(Q1y,w) := Jv(Ry(w,v) A Y (v)) the ‘abstracted’ second order term
{v ] ST (Q2x,v)} :={v | Fz(Ra2(v,2) AX(2))} for Y (a S-conversion should follow
the replacement in order to get as normal form precisely ST(0102x,w)). Thus,
even if we do not ‘computationally’ trust first-order logic (and consequently not
even higher order logic, for much stronger reasons), it makes nevertheless sense
to analyze combination problems in the framework where they arise, that is in
the framework which is the most natural for them.

We shall work within Church’s type theory: thus our syntax deals with types
and terms, terms being endowed with a (codomain) type. In this higher order
context, we shall provide a general definition of a fragment (more specifically of
an interpreted algebraic fragment, see Definitions and of a constraint
satisfiability problem, in such a way that fragments can be combined into each
other and a Nelson-Oppen procedure for constraint satisfiability in combined
fragments can be formally introduced.

The general procedure is only sound and specific conditions for guarantee-
ing termination and completeness are needed. For termination, we rely on local
finiteness (better, on noetherianity) of the shared fragment, whereas for com-
pleteness we use heavy model-theoretic tools. These tools (called isomorphism
theorems) transform equivalence with respect to satisfiability of shared atoms
into isomorphism with respect to the shared signature, in such a way that sat-
isfiability of pure constraints is not compromised. The results of this analysis is
summarized in our general decidability transfer result (Theorem [5.1]).

Of course, isomorphisms theorems are quite peculiar and rare. However, the
classical Keisler-Shelah isomorphism theorem based on ultrapowers [I1] is suf-
ficient to justify through Theorem the recent extension [16] of the Nelson-
Oppen results to non disjoint first-order signatures and another isomorphism
theorem, based on disjoint unions (better, on disjoint copies), is sufficient to
justify in a similar way the decidability transfer result of [9] concerning A-Box
consistency with respect to T—BoxesE] Having identified the conceptual core of
the method, we are now able to apply it to various situations, thus getting
further decidability transfer results: these results cover the combination of A-
Boxes with a stably infinite first-order theory (Theorem , the combination of
two so-called monadically suitable fragments (Theorem and the combination
(leading to monodic modal fragments in the sense of [32]) of a one-variable modal
fragment with a monadically suitable extensional fragment (Theorem .

For space reasons, we can only explain here our settings, give examples and
state the main results (for proofs and for more information, the reader is referred
to the full technical report [17]).

! Thus, the difference between the semantically oriented proofs of [9] and the al-
gebraically oriented proofs of papers like [16/8] seem to be mainly a question of
choosing a different isomorphism theorem to justify the combined procedure.
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2 Higher-Order Signatures

We adopt a type theory in Church’s style (see [2/3J21] for introductions to the
subject). We use letters S, Ss, ... to indicate sorts (also called primitive types)
of a signature. Formally, sorts are a set S and types over S are built inductively
as follows: (i) every sort S € S is also a type; (ii) {2 is a type (this is called the
truth-values type); (iii) if 71, 72 are types, so is (11 — 72).

As usual external brackets are omitted; moreover, we shorten the expression
71— (12 = ...(T, — 7)) into 7y ... 7, — 7 (in this way, every type 7 has the
form 71 ...7, — 7, where n > 0 and 7 is a sort or it is §2). In the following,
we use the notation 7 (S) or simply 7 to indicate a types set, i.e. the totality of
types that can be built up from the set of sorts S. We always reserve to sorts the
letters S, .S, ... (as opposed to the letters 7, v, etc. which are used for arbitrary
types).

A signature (or a language) is a triple £ = (7, X, a), where T is a types set,
X is a set of constants and « is an arity map, namely a map a : X — 7. We
write f : 7y ...7T, — T to express that f is a constant of type 7y ... 7, — T, i.€.
that a(f) = 71...7, — 7. According to the above observation, we can assume
that 7 is a sort or that 7 = (2; in the latter case, we say that f is a predicate or
a relational symbol (predicate symbols are preferably indicated with the letters
PQ,...).

We require the following special constants to be always present in a signature:
T and L of type {2; — of type {2 — (2; V and A of type 22 — (2; =, of type
77 — {2 for each type 7 € T (we usually write it as ‘=" without specifying the
subscript 7). The proper symbols of a signature are its sorts and its non special
constants.

A signature is one-sorted iff its set of sorts is a singleton. A signature £ is
first-order if for any proper f € X, we have that a(f) = S1...S, — 7, where
T is a sort or it is £2. A first-order signature is called relational iff any proper
f € X is a relational constant, that is a(f) = S1...S, — 2. By contrast, a first
order signature is called functional iff any proper f € X has arity S1...5, — S.

Given a signature £ = (7, X, a) and a type 7 € 7, we define the notion of
an L-term (or just term) of type 7, written ¢ : 7, as follows (for the definition
we need, for every type 7 € 7, a countable supply V; of variables of type 7):

— z:7 (for x € V;) is an L-term of type 7;

— c¢: 71 (for ¢ € X and a(c) = 7) is an L-term of type 7;

—ift:v — 7 and u : v are L-terms of types v — 7 and v, respectively, then
val,(t,u) : 7 (also written as t(u) : 7) is an L-term of type T;

—if ¢t : 7 is an L-term of type 7 and = € V,, is an L-variable of type v,
AzVt:v — 7 is an L-term of type v — T.

In the following, we consider the notation x” (¢”) equivalent to = : 7 (c :
7), where x (resp. ¢) is a variable (resp. a constant); if it can be deduced
from the context, the specification of the type of a term may be omitted. More-
over, a term of type 7 is also called a 7-term and terms of type (2 are also
called formulae. Given a formula ¢, we write {x | ¢} for Az p. Moreover,
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we shorten wval,(--- (val,,_,(t,u1), ), un) to t(u1,...,u,). Free and bound
variables are defined in the usual way; we use the notation t[xq,...,x,] (or
fvar(t) € {z1,...,2,}) to mean that the variables occurring freely in ¢ are in-
cluded in the finite set z = {x1,...,2,}. We often indicate finite sets or finite
tuples of variables by the letters z, v, . ...

Substitutions are defined in the usual way, but a-conversion (that is, bound
variables renaming) might be necessary to avoid clashes. We also follow standard
practice of considering terms as equivalence classes of terms under a-conversion.
(- and n-conversions are defined in the standard way and we shall make use of
them whenever needed (for a very brief account on the related definitions and
results, the reader is referred to [12]).

For each formula ¢, we define the formulae Vz¥ ¢ and Jz¥ ¢ as {2V | ¢} =
{zV | T} and as = Va¥ -y, respectively (the latter can also be defined differently,
in an intuitionistically acceptable way, see [21]). For terms 1, o of type (2, the
terms 1 — o and 1 <> o of type {2 are defined in the usual way.

By the above definitions, first-order formulae can be considered as a subset
of the higher order formulae defined in this section. More specifically, when we
speak of first-order terms, we mean variables = : .S, constants ¢ : S and terms
of the kind f(¢1,...,t,) : S, where ¢,...,t, are (inductively given) first-order
terms and a(f) = S1---S, — S. Now first-order formulae are obtained from
formulae of the kind T : 2, 1L : 2, P(t1,...,t,) : 2 (where ty,...,t, are first-
order terms and a(P) = Sy --- S, — £2) by applying 327, Vz% A, V, =, —, <.

In order to introduce our computational problems, we need to recall the
notion of an interpretation of a type-theoretic language. Formulae of higher
order type theory which are valid in ordinary set-theoretic models do not form
an axiomatizable class, as it is well-known from classical limitative results. We
shall nevertheless confine ourselves to standard set-theoretic models, because
we are not interested in the whole type theoretic language, but only in more
tractable fragments of it.

If we are given a map that assigns to every sort S € S a set [S], we can
inductively extend it to all types over S, by taking [T — wv] to be the set
of functions from [7] to [v] (we shall freely refer to such an extension below,
without explicitly mentioning it). Given a language £ = (7, X, a), an L-structure
(or just a structure) A is a pair ([ —].4,Z4), where:

(i) [—]a is a function assigning to a sort S € 7, a (non empty, if you like)
set [ S].a;

(ii) Z4 is a function assigning to a constant ¢ € X of type 7, an element
IA(CT) S [[T]]A.

In every structure A, we require that [2]4 = {0,1} and that T, L, = A,V
are given their standard ‘truth-table’ meaning.

Given an L-structure A = ([ — ] 4,Z4) and a type-conformal assignment « to
the variables of L, it is possible to define (in the expected way) the interpretation
Z4G(t) of the term ¢ under the assignment «: notice that, if ¢ has type 7, then we
have Z4(t) € [7]a. An L-formula ¢ is satisfied in A under the assignment « iff
Z%(p) = 1 (we usually write A =, ¢ for Z4(¢) = 1). A formula is satisfiable iff
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it is satisfied in some structure under some assignment and a set of formulae I
is satisfiable iff all formulas in I" are simultaneously satisfied.

For signature inclusions Lo C £, there is an obvious taking reduct operation
mapping a L-structure A to a Lo-structure A, ; we can similarly take the Lo-
reduct of an assignment, by ignoring the values assigned to variables whose types
are not in Ly (we leave the reader to define these notions properly).

3 Fragments

General type theory is very hard to attack from a computational point of view,
this is why we are basically interested only in more tractable fragments and in
combinations of them. Fragments are defined as follows:

Definition 3.1. A fragment is a pair (L, T) where L = (T,X,a) is a signature
and T 1is a recursive set of L-terms.

3.1 Algebraic Fragments

We want to use fragments as ingredients of larger and larger combined fragments:
a crucial notion in this sense is that of an algebraic fragment.

Definition 3.2. A fragment (L, T) is said to be an algebraic fragment iff T
satisfies the following conditions:

(i) T is closed under composition (that is, it is closed under substitution): if
u[zy,...,xy) €T and t; €T for alli=1,...,n, then ulty,...,t,] €T;
(i) T contains domain variables: if T is a type such that some variable of type
T occurs free in a term t € T, then every variable of type T belongs to T';
(#ii) T contains codomain variables: if t : 7 belongs to T, then every variable of
type T belongs to T'.

Observe that from the above definition it follows that T is closed under
renaming of terms. Quite often, one is interested in interpreting the terms of
a fragment not in the class of all possible structures for the language of the
fragment, but only in some selected ones (e.g. when checking satisfiability of
some temporal formulae, one might be interested only in checking satisfiability
in particular flows of time, those which are for instance discrete or continuous).
This is the reason for ‘interpreting’ fragments:

Definition 3.3. An interpreted algebraic fragment (to be shortened as i.a.f.) is
a triple =(L,T,S), where (L,T) is an algebraic fragment and S is a class of
L-structures closed under isomorphisms.

The set of terms T in an i.a.f. $=(L T,S) is called the set of @-terms and
the set of types 7 such that ¢ : 7 is a @-term for some ¢t is called the set of
D-types. A P-variable is a variable 7 such that 7 is a @-type (or equivalently,
a variable which is a @-term). It is also useful to identify a (non-interpreted)
algebraic fragment (L, T) with the interpreted algebraic fragment ¢=(L,T,S),
where S is taken to be the class of all L-structures.
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Definition 3.4. Given an i.a.f. fragment @, a ®-atom is an equation t1 = to
between @-terms ti,to of the same type; a ®-literal is a P-atom or a negation
of a ®-atom, a P-constraint is a finite conjunction of P-literals, a P-clause is
a finite disjunction of ®-literals. Infinite sets of ®-literals (representing an in-
finite conjunction) are called generalized @-constraints (provided they contain
altogether only finitely many free variables).

Some Conventions. Without loss of generality, we may assume that T is a
@-atom in every i.a.f. @ (in fact, to be of any interest, a fragment should at least
contain a term ¢ and we can let T to be ¢t = t). As a consequence, | will always
be a @-literal; by convention, however, we shall include L among ®-atoms (hence
a P-atom is either an equation among P-terms - T included - or it is L). Since
we have | as an atom, there is no need to consider the empty clause as a clause,
so clauses will be disjunctions of at least one literal. The reader should keep in
mind these slightly non standard conventions for the whole paper.

A &-clause is said positive if only ®-atoms occur in. A P-atom t; = to is
closed if and only if ¢; is closed (i € {1,2}); the definition of closed @-literals,
-constraints and -clauses is analogous. For a finite set x of variables and an i.a.f.
®, a P(x)-atom (-term, -literal, -clause, -constraint) is a @-atom (-term, -literal,
-clause, -constraint) A such that fvar(A) C z.

We deal in this paper mainly with the constraint satisfiability problem for
an iaf. @=(L,T,S): this is the problem of deciding whether a ®-constraint is
satisfiable in some structure A € S. On the other hand, the word problem for @
is the problem of deciding if the universal closure of a given ®-atom is true in
every structure A € S.

3.2 Examples

Although there are genuinely intended higher order interpreted algebraic frag-
ments whose word problem is decidable (see for instance Friedman theorem
for simply typed A-calculus) and also whose constraint satisfiability problem is
decidable (see Rabin results on monadic second order logic), we shall mainly
concentrate on examples providing applications at first-order level. The reader
should however notice that we need to use higher order variables and to pay
special attention to the types of a fragment in order for fragment combination
defined in Subsection to cover the desired applications.

Ezample 3.1 (First-order equational fragments). Let us consider a first-order
language £ = (7, X, a) (for simplicity, we also assume that £ is one-sorted). Let
T be the set of the first-order £L-terms and let S be an elementary class, i.e. the
class of the L-structures which happen to be the models of a certain first-order
theory in the signature £. Obviously, the triple @ = (£, T, S) is an i.a.f.. The &-
atoms will be equalities between &-terms, i.e. first-order atomic formulae of the
kind t; = to. Word problem in ¢=(L, T, S) is standard uniform word problem (as
defined for the case of equational theories for instance in [6]), whereas constraint
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satisfiability problem is the problem of deciding satisfiability of a finite set of
equations and inequations.

Ezample 3.2 (Universal first-order fragments). The previous example disregards
the relational symbols of the first-order signature £. To take also them into
consideration, it is sufficient to make some slight adjustment: besides first-order
terms, also atomic formulae and T, as well as propositional variables (namely
variables having type 2) will be terms of the fragmentﬂ The semantic class
S where the fragment is to be interpreted is again taken to be an elementary
class. For =(L,T,S) so defined, the constraint satisfiability problem becomes
essentially the problem of deciding the satisfiability of an arbitrary finite set of
literals in the models belonging to & E]

We now define different kinds of i.a.f.’s starting from the set F of first-order
formulae of a first-order signature £; for simplicity, let’s suppose also that L is
relational and one-sorted (call W this unique sort).

Ezample 3.3 (Full First-Order Language, plain version). We take T to be the
union of F' with the sets of the individual variables and of the propositional
variables. Of course, d=(L,T) so defined is an algebraic fragment, whose types
are W and {2. By Church theorem, both word and constraint satisfiability prob-
lem are undecidable here (the two problems both reduce to satisfiability of a
first-order formula with equality); they may be decidable in case the fragment
is interpreted into some specific semantic class S.

In the next example, we build formulae (out of the symbols of our fixed first
order relational one-sorted signature £) by using at most N (free or bound)
individual variables; however we are allowed to use also second order variables
of arity at most K:

Ezample 3.4 (Full First-Order Language, N K -version). Fix cardinals K < N <
w and consider, instead of F', the set Fiyk of formulae ¢ that contains at most IV
(free or bound) individual variables and that are built up by applying boolean
connectives and individual quantifiers to atomic formulae of the following two
kinds:

- P(ziy,...,x;,), where P is a relational constant and z;,,...,z; are in-
dividual variables (since at most x1,...,xy5 can be used, we require that
’il,...,’in S N),

- X(x4y,...,2;,), where i1,...,i, < N, and X is a variable of type W" — (2
with n < K (here W™ abbreviates W - - - W, n-times).

The terms in the algebraic fragment @5, = (Lnk,T5y) are now the terms
t such that t ~g, {z1,...,2, | ¢}, for some n < K and for some ¢ € Fyg,

2 Propositional variables are added here in order to fulfill Definition iii).
3 Notice that, by case splitting, equations A = B among terms of type {2 can be
replaced by A A B or by =A A =B (and similarly for inequations).
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with fvar(p) C {z1,... ,a:n}E] Types in such %, are now W" — 2 (n < K)
and this fact makes a big difference with the previous example (the difference
will be sensible when combined fragments enter into the picture). Constraint
satisfiability problems still reduce to satisfiability problems for sentences: in fact,
once second order variables are replaced by the names of the subsets assigned to
them by some assignment in an L-structure, &% -atoms like {z | ¢} = {z | ¥}
are equivalent to the first-order sentences Va (¢ < ) and conversely any first-
order sentence # (with at most N bound individual variables) is equivalent to
the ®% ,-atom 0 = T.

The cases N = 1,2 are particularly important, because in these cases the sat-
isfiability problem for sentences (and hence also constraint satisfiability problems
in our fragments) becomes decidable [22J27/24]28)].

Further examples can be built by using the large information contained in
the textbook [I0] (see also [I3]). We shall continue here by investigating frag-
ments that arise from research in knowledge representation area, especially in
connection to modal and description logics. Before, we introduce a construction
that will play a central role in some applications of our results:

Definition 3.5 (Disjoint I-copy). Consider a first order one-sorted relational
signature L and a (non empty) index set I. The operation 1y, defined on L-
structures and called disjoint I-copy, associates with an L-structure M = ([ — ] am, Zm)
the L-structure Iy M such that [W ], m is the disjoint union of I-copies of
[W]m (here W is the unique sort of L). The interpretation of relational predi-
cates is defined as followf]

I M P({di,i1),... (dp,in)) <= i1 = =i, and M = P(dy, ..., d,)
(1)

for every n-ary predicate P.

Disjoint I-copy is a special case of a more general disjoint union operation:
the latter is defined again by and applies to any I-indexed family of structures
(which may not coincide with each other).

Ezample 3.5 (Modal/Description Logic Fragments, global version). A modal sig-
nature is a set Oy, whose elements are called unary 'Diamond’ modal operatorsﬁ
Opr-modal formulae are built up from a countable set of propositional variables
X,¥,%,... by applying T, L, =, A,V as well as the operators ¢ € O)y.

With every modal signature O); we associate the first-order signature £y,
containing a unique sort W and, for every O € Oy, a relational constant Ry

4 We need to use equivalence up to Bn-conversion here to fulfil the properties of Defini-
tion We recall that Sn-equivalence (noted as ~g,,) is decided by the normalization
procedure of simply typed lambda calculus.

5 Elements of the disjoint union of I-copies of a set S are represented as pairs (s,1)
(meaning that (s, i) is the i-th copy of s € S).

5 The case of n-ary (also non-normal) modal operators does not create special diffi-
culties and it is left to the reader.
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of type WW — (2. Suppose we are given a bijective correspondence x +——
X between propositional variables and second order variables of type W —
2. Given an Ojs-modal formula ¢ and a variable w of type W, the standard
translation ST (p,w) is the L/-term of type §2 inductively defined as follows:

ST(T,w)=T; ST(L,w) =1;

ST(x,w) = X(w); ST (—p,w) = =ST(, w);
T(¢1 0 ¢, w) = ST (Y1, w) o ST ()2, w), where o € {V, A};

ST (O, w) = Fv(R(w,v) A ST (¢, v)),

n

where v is a variable of type W (different from w). Let Ths be the set of those
Lr-terms ¢ for which there exists a modal formula ¢ s.t. t ~g, {w | ST (¢, w)}.
A modal fragment is an i.a.f. of the kind ®pr = (Lar, Tor, Sar), where Ly, Thy
are as above and Sy; is a class of Lj/-structures closed under isomorphisms
and disjoint I-copies (notice that £ys-structures, usually called Kripke frames in
modal logic, are just sets endowed with a binary relation Ry, for every O € Opy).
& ps-constraints are (equivalent to) finite conjunctions of equations of the form
{w | ST (¢, w)} = {w | T} and of inequations of the form {w | ST(p;,w)} #
{w | L}; such constraints are satisfied iff there exists a Kripke model’| based
on a frame in Sy in which the v; hold globally (namely in any state), whereas
the ¢; hold locally (namely in some states s;). Thus constraint satisfiability
problem becomes, in the description logics terminology, just the (simultaneous)
relativized satisfiability problem for concept descriptions ¢; wrt to a given T-Box
(we call T-Box a conjunction of @y-atoms like {w | ST (s, w)} = {w | T}).

Ezample 3.6 (Modal/Description Logic Fragments, local version). If we want to
capture A-Box reasoning too, we need to build a slightly different fragment. The
type-theoretic signature L7, of our fragment is again Ly;, but Ty, now con-
tains: a) the set of terms which are Sn-equivalent to terms of the kind ST (¢, w)
(these terms are called ‘concept assertions’); b) the terms of the kind Ry (v, w)
(these terms are called ‘role assertions’); c¢) the variables of type W, {2 and
W — (2.

The i.a.f @y = (Lyn, Ty, Smr) (where Syrp is again a class of Lyyp-
structures closed under isomorphisms and disjoint I-copies) is called an A-Box
fragment. By a thorough case analysis [17], it is possible to show that, without
loss of generality, constraints in this fragments can be represented as conjunc-
tions of concept assertions and role assertions, plus in addition negations of
role assertions and of identities among individual names. We shall call A-Bozxes
these constraintﬁ{ﬂ and we reserve the name of positive A-Bozes to conjunctions
of concept assertions and role assertions.

7 A Kripke model is a Kripke frame together with an assignment of subsets for second
order variables of type W — (2.

8 Standard description logics A-Boxes are just slightly more restricted, because they
include only concept assertions, role assertions and also all negations of identities
among distinct individual variables (by the so-called ‘unique name assumption’).
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Ezample 3.7 (Modal/Description Logic Fragments, full version). If we want to
deal with satisfiability of an A-Box wrt a T-Box, it is sufficient to join the two
previous fragments. More precisely, we can build full modal fragments over a
modal signature Oy, which are i.a.f.’s of the kind ®yr = (Lyr, Tarr, Smr),
where Ly r = Ly, Smr is a class of Ly -structures closed under isomorphisms
and disjoint I-copies, and Thyr = Ty UT - Types in these fragments are W, (2
and W — {2; constraints are conjunctions of a T-Box and an A-Box.

Guarded and packed guarded fragments were introduced as generalizations
of modal fragments [I/I823]: in fact, they form classes of formulae which are
remarkably large but still inherit relevant syntactic and semantic features of the
more restricted modal formulae. In particular, guarded and packed guarded for-
mulae are decidable for satisfiability. For simplicity, we give here the instructions
on how to build only one kind of guarded fragments with equality (other similar
fragments can be built by following the methods we used above).

Ezample 3.8 (Guarded Fragments). Let us consider a first-order one-sorted re-
lational signature L. We define the guarded formulae as follows:

~if X : W — 2 and x : W are variables, X (z) is a guarded formula;

— if P: W™ — (2 is a relational constant and ¢1 : W,... ¢, : W are variables,
P(t1,...,t,) is a guarded formula;

— if ¢ is a guarded formula, —p is a guarded formula;

— if 1 and @9 are guarded formulae, 1 Ay and 1 Vo are guarded formulae;

— if ¢ is a guarded formula and 7 is an atomic formula such that fvary (¢) C
fvar(m) (fvarw (p) are the variables of type W which occurs free in o),
then Vy(r[z, y] — ¢lz,y]) and Jy(r[z, y] A @[z, y]) are guarded formulae.

Notice that we used second order variables of type W — 2 only (and not
of type W™ — (2 for n > 1): the reason, besides the applications to combined
decision problems we have in mind, is that we want constraint problems to be
equivalent to sentences which are still guarded, see below. Guarded formulae
not containing variables of type W — (2 are called elementary (or first-order)
guarded formulae.

Let T be the set of Lg-terms ¢ such that ¢ is Sn-equivalent to a term of the
kind {w | p(w)} (where ¢ is a guarded formula such that fvary (¢(w)) C {w})
and let Sg be a class of Lg-structures closed under isomorphisms and disjoint
I-copies: we call the i.af. &¢ = (Lg,Tq,Sq) a guarded fragment. The only
type in this fragment is W — (2 and constraint satisfiability problem in this
fragment is equivalent to satisfiability of guarded sentences: this is because, in
case 1,y are guarded formulae with fvarw (p;) C {w} (for ¢ = 1,2), then
{w | g1} = {w | 2} is equivalent to Vw(p; < @) which is guarded (just use
w = w as a guard).

3.3 Reduced Fragments and Residues

If =(L,T,S) is an i.a.f. and z is a finite set of P-variables, we let @(x) denote
the @-clauses whose free variables are among the z. If I" is a set of such @(x)-
clauses and C' = Ly V---V Ly is a &(z)-clause, we say that C' is a $-consequence
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of I' (written I' =g C), iff the (generalized, in case I' is infinite) constraint
I'u{=Ly,...,~Ly} is not P-satisfiable.

The notion of consequence is too strong for certain applications; for instance,
when we simply need to delete certain deductively useless data, a weaker notion
of redundancy (based e.g. on subsumption) is preferable. Our abstract axioma-
tization of a notion of redundancy is the following (recall that we conventionally
included T and L among @-atoms in any i.a.f. @):

Definition 3.6. A redundancy notion for a fragment @ is a recursive binary
relation Redg between a finite set of @-clauses I' and a P-clause C satisfying
the following properties:

(i) Redg(I",C) implies I' =g C (soundness);
(i) Redg(D, T) and Redg({L},C) both hold;
(iii) Redg(I,C) and I' C I"" imply Redg(I”,C) (monotonicity);
(iv) Reds(I',C) and Redg(I" U {C}, D) imply Reds (I, D) (transitivity);
(v) if C is subsumed by some C' € I'°| then Redg (I, C) holds.

Whenever a redundancy notion Redg is fived, we say that C is ®-redundant wrt
I' when Reds(I',C) holds.

For example, the minimum redundancy notion is obtained by stipulating
that Redg(I,C) holds precisely when (L € I"'or C = Tor C = TV D or
C' is subsumed by some C’ € I'). On the contrary, if the constraint solving
problem for @ is decidable, there is a maximum redundancy notion (called the
full redundancy notion) given by the @-consequence relation.

Let &=(L,T,S) be an i.a.f. on the signature L=(7,X a) and let Ly, =
(To, Yo, ap) be a subsignature of £. The i.a.f. restricted to L is the i.a.f. &)z =
(Lo, T\z,,S|,) that is so defined:

— Tz, is the set of terms obtained by intersecting 7" with the set of Lo-terms;
— S|, consists of the structures of the kind A, , varying A € S.

An iaf. &9 = (Ly,To,So) is said to be a Lo-subfragment (or simply a sub-
fragment, leaving the subsignature £y C £ as understood) of &=(L,T,S) iff
To € Tiz, and Sp 2 Siz,- In this case, we may also say that @ is an expansion
of @0.

Given a set I' of ¢(z)-clauses and a redundancy notion Redg, on a subfrag-
ment §q of @, we call Py-basis for I' a set A of Py(x,)-clauses such that (here
z, collects those variables among the z which happen to be @p-variables):

(i) all clauses D € A are positive and are such that I' =g D;
(i) for every positive Pg(zy)-clause C, if I' |=¢ C, then C is Pp-redundant
with respect to A.

Since we will be interested in exchange information concerning consequences
over shared signatures, we need a notion of a residue, like in partial theory
reasoning. Again, we prefer an abstract approach and treat residues as clauses
which are recursively enumerated by a suitable device:

9 As usual, this means that every literal of C’ is also in C.
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Definition 3.7. Suppose we are given a subfragment @y of a fragment . A
positive residue @-enumerator for @ (often shortened as @-p.r.e.) is a recursive
function mapping a finite set x of P-variables, a finite set I' of ®(x)-clauses and
a natural number i to a Dy-clause Resg(I,i) (to be written simply as Resq(I,i))
i such a way that:

— Resg(I,1) is a positive clause;
— fvar(Resg(I,1)) C z;
- I' =g Resg(Iyi) (soundness).

Any Pg-clause of the kind Rese (I, i) (for some i > 0) will be called a Py-residue
of I

Having also a redundancy notion for &g at our disposal, we can axiomatize
the notion of an ‘optimized’ (i.e. of a non-redundant) @-p.r.e. for $;. The Nelson-
Oppen combination procedure we give in Subsection has non-redundant
p.r.e.’s as main ingredients and it is designed to be ‘self-adaptive’ for termi-
nation in the relevant cases when termination follows from our results. These
are basically the noetherian and the locally finite cases mentioned in Subsection
where p.r.e.’s which are non redundant with respect to the full redundancy
notion usually exist and enjoy the termination property below.

Definition 3.8. A ®-p.r.e. Resg for @q is said to be non-redundant (wrt a
redundancy notion Redg,) iff it satisfies also the following properties for every
z, for every finite set I' of @(z)-clauses and for every i > 0 (we write I'g, for
the set of clauses in I' which are ®g-clauses):

(i) if Resg(I',i) is $Po-redundant with respect to I'g, U {Resa(I,j) | j < i},
then Resg(I',1) is either L or T;
(ii) if L is $o-redundant with respect to I'g, U {Rese(I',j) | j < i}, then
Resg(I,1) is equal to L;
(iii) if Resg(I,1) is equal to T, then Ig, U{Rese(I',j) | j < i} is a Po-basis
for I.

Definition 3.9. A non-redundant ®-p.r.e. for &g is said to be complete iff for
every x, for every finite set I' of ®(zx)-clauses and for every positive ®o(x)-
clause C, we have that I' =g C implies that C is Po-redundant wrt Iip, U
{Resg(I,7) | j <i} for some i.

A non-redundant ®-p.r.e. Resg is said to be terminating iff for for every z,
for every finite set I' of ®(z)-clauses there is an i such that Resg(I,1) is equal
to L ortoT.

Let us make a few comments on Definition first, only non redundant
residues can be produced at each step (condition (i), if possible. If this is not
possible, this means that all the relevant information has been accumulated (a
®y-basis has been reached). In this case, if the inconsistency L is discovered
(in the sense that it is perceived as redundant), then the residue enumeration
in practice stops, because it becomes constantly equal to L (condition )
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The tautology T has the special role of marking the opposite outcome: it is
the residue that is returned precisely when I is consistent and a ®g-basis has
been produced, meaning that all relevant semantic consequences of I" have been
discovered (conditions (ii)- ().

If the redundancy notion we use is trivial (i.e. it is the minimum one), then
it is possible to show that only very mild corrections are needed for any ®-p.r.e.
for &y to become non-redundant. This observation shows that, in practice, any
@-p.r.e. for &y can be used as input of our combined decision procedure.

3.4 Noetherian, Locally Finite and Convex Fragments

Noetherianity conditions known from Algebra say that there are no infinite as-
cending chains of congruences. In finitely presented algebras, congruences are
represented as sets of equations among terms, hence noetherianity can be ex-
pressed there by saying that there are no infinite ascending chains of sets of
atoms, modulo logical consequence. If we translate this into our general setting,
we get the following notion.

An i.a.f. &g is called noetherian if and only if for every finite set of variables
x, every infinite ascending chain

61C6,C---CO, C---

of sets of ®y(x)-atoms is eventually constant for Pp-consequence (meaning that
there is an n such that for all m and A € ©,,, we have O,, =g, A).
An i.a.f. @ is said to be effectively locally finite iff

(i) the set of Py-types is recursive and constraint satisfiability problem for @
is decidable;

(i) for every finite set of Py-variables z, there are finitely many computable
@y (z)-terms tq,...,t, such that for every further @¢(z)-term u one of the
literals ¢; # wu,...,t, # wu is not Pp-satisfiable (that is, in the class of
the structures in which @ is interpreted, every ®¢(z)-term is equal, as an
interpreted function, to one of the t;).

The terms tq,...,t, in are called the z-representative terms of @.

Effective local finiteness is often used in order to make Nelson-Oppen proce-
dures terminating [L6/8/4]{") we shall see however that noetherianity (which is
clearly a weaker condition) is already sufficient for that, once it is accompanied
by a suitable effectiveness condition.

If &g is noetherian and @ is an expansion of it, one can prove [I7] that every
finite set I" of @(z)-clauses has a finite full @p-basis (i.e. there is a finite Pp-basis
for I with respect to the full redundancy notion). The following noetherianity
requirement for a p.r.e. is intended to be nothing but an effectiveness requirement
for the computation of finite full @y-bases.

10 Notice that the above definition of local finiteness becomes slightly redundant in the
first order universal case considered in these papers.
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A &-p.r.e. Resg for a noetherian fragment &g is said to be noetherian iff it
is non redundant with respect to the full redundancy notion for @,.

It is possible to prove that a noetherian @-p.r.e. Resg for @y is terminating
and also complete. Moreover, if @ is effectively locally finite and @ is any exten-
sion of it having decidable constraint satisfiability problems, then there always
exists a noetherian @-p.r.e. for @y [17].

Noetherianity is the essential ingredients for the termination of Nelson-Oppen
combination procedures; on the other hand, for efficiency, convexity is the crucial
property, as it makes the combination procedure deterministic [26]. Following an
analogous notion introduced in [30], we say that an i.a.f. @ is $y-convexr (here
@ is a subfragment of @) iff every finite set I' of P-literals having as a &-
consequence the disjunction of n > 1 @p-atoms, actually has as a d-consequence
one of themE] Similarly, a @-p.r.e. for @q is Py-convex iff Resqe (I, i) is always
an atom (recall that by our conventions, this includes the case in which it is
T or L1). Any complete non-redundant @-p.r.e. for @y can be turned into a Py-
convex complete non-redundant @-p.r.e. for @q, in case @ is Py-convex. Thus
the combination procedure of Subsection is designed in such a way that
it becomes automatically deterministic if the component fragments are both
convex with respect to the shared fragment.

An example from Algebra may help in clarifying the notions introduced in
this section.

Ezample 3.9 (K-algebras). Given a field K, let us consider the one-sorted lan-
guage Lxqig, whose signature contains the constants 0,1 of type V' (V is the
unique sort of Lxqi4), the two binary function symbols +, o of type VV — V,
the unary function symbol — of type V — V and a K-indexed family of
unary function symbols g; of type V' — V. We consider the i.a.f. @xay =
(Lxalg Tkalgs Skalg) Where Tqq is the set of first order terms in the above sig-
nature (we shall use infix notation for 4+ and write kv, v1vs for gx(v), o(v1,va), re-
spectively). Furthermore, the class Sx 414 consists of the structures which happen
to be models for the theory of (commutative, for simplicity) K-algebras: these
are structures having both a commutative ring with unit and a K-vector space
structure (the two structures are related by the equations k(viv2) = (kvy)vg =
v1(kva)). It is clear that @Pxqy, is an interpreted algebraic fragment, which is
also convex and noetherian. Constraint satisfiability problem in this fragment is
equivalent to the ideal membership problem and hence it is solved by Buchberger
algorithm computing Grébner bases.

As a subfragment of @k,;y we can consider the interpreted algebraic frag-
ment corresponding to the theory of K-vector spaces (this is also convex and
noetherian, although still not locally finite). In order to obtain a noetherian
Praig-p-r.e. for P, we need a condition that is satisfied by common admissi-
ble term orderings, namely that membership of a linear polynomial to a finitely
generated ideal to be decided only by linear reduction rules. If this happens, we

1 When we say that a fragment @ is convez tout court, we mean that it is $-convex.
The fragments & = (£,T,S) analyzed in Example are convex in case S is the
class of the models of a first-order Horn theory.
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get a noetherian @ qi4-p.1r.e. for P simply by listing the linear polynomials of
a Grébner basis.

4 Combined Fragments

We give now the formal definition for the operation of combining fragments.

Definition 4.1. Let &1 = (£1,T1,81) and P = (L4,T5,82) be i.a.f.’s on the
languages L1 and Lo respectively; we define the shared fragment of @1, Py as the
zaf on = <£07T0,50>, where

- Lo:=L1NLy;
= To =T, NToizy5
-8 2281‘£0U82‘£0.

Thus the @g-terms are the Lo-terms that are both @;-terms and ®»-terms,
whereas the @g-structures are the Lg-structures which are reducts either of a
@1- or of a dy-structure. According to the above definition, &g is a subfragment
of both &; and @.

Definition 4.2. The combined fragment of the i.a.f.’s 1 and P2 is the i.a.f.
D1 O Py = (L1 ULy, T1 ©T5, 81 @ So)

on the language L1 U Lo such that:

- Ty @15 is the smallest set of L1 U Lo-terms which includes Ty U Ty, is closed
under composition and contains domain and codomain variables;

- 8188 ={A| Ais a Ly ULy-structure s.t. Az, € S1 and Ajz, € Sa}.

T, & T5 is defined in such a way that conditions —— from Definition
3.2] are matched; of course, since &1 & Po-types turn out to be just the types
which are either @1- or @o-types, closure under domain and codomain variables
comes for free.

4.1 The Purification Steps

We say that a @1 @ Po-term is pure iff it is a @;-term (¢ = 1 or 4 = 2) and that
a &1 P Po-constraint I is pure iff it for each literal L € I" thereisi=1ori =2
such that L is a @;-literal. Constraints in combined fragments can be purified,
as we shall see.

One can effectively determine whether a given term ¢ € £ U Lo belongs or
not to the combined fragment: it can be shown [I7] that it is sufficient to this
aim to check whether it is a pure ®;-term and, in the negative case, to split
it as t = wfty,...,tx) and to recursively check whether u,ty,...,t; are in the
combined fragmentFE] The problem however might be computationally hard:

!2 This is well defined (by an induction on the size of t), because we do not require
our terms to be in Bn-normal form (that is, we do not require in Definition (1)
substitution to be followed by normalization).
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since we basically have to guess a subtree of the position tree of the term ¢,
the procedure we sketched is in NP. Notice that these complexity complications
(absent in the standard Nelson-Oppen case) are due to our level of generality and
that they disappear in customary situations where don’t know non-determinism
can be avoided by looking for ‘alien’ subterms, see [7] for a thorough discussion
of the problem.

Let I' be any @, ® P5-constraint: we shall provide finite sets I, I'5 of &1- and
®o-literals, respectively, such that I" is @1 & Po-satistiable iff 17 U I is @1 D Po-
satisfiable. This purification process is obtained by iterated applications of the
following{¥

Purification Rule

I’ A )
I, A([x]P)’ T = A\P

where (we use notations like I, A for the constraint I U {A})

— P is a set of positions of A;

— A|p is a non-variable subterm of A occurring in all the positions in P (let 7
be its type);

— 1o free variable in A|p is bound in A;

x is a fresh variable of type T;

the literal A([z]p) (obtained by replacing in A in all the positions in P the

subterm A|p by the variable x) is not an equation between variables;

~ I, A([z]p), * = A|p is a §; © Py-constraint (this means that it still consists
of equations and inequations among @1 ® Po-terms).

The purification process applies the Purification Rule as far as possible; the
rule can be applied in a don’t care non deterministic way (however recall that
one must take care of the fact that the constraint produced by the rule still
consists of @1 @ Py-literals, hence don’t know non-determinism may arise inside
a single application of the rule).

Proposition 4.1. The purification process terminates and returns an equi-sa-
tisfiable constraint It U I's, where I is a set of ®;-literals.

4.2 The Combination Procedure

In this subsection, we develop a procedure which is designed to solve constraint
satisfiability problems in combined fragments: the procedure is sound and we
shall investigate afterwards sufficient conditions for it to be terminating and
complete. Let us fix relevant notation for the involved data.

* Added on July 20, (2005): The formulation of the Purification Rule has been modified
according to the remarks of [17], concerning the need of the simultaneous abstraction
of many occurrences of the same subterm.
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Assumptions/Notational Conventions. We suppose that we are given two
i.a.f’s @1 = (L1,T1,51) and ®o = (Lo, T, Se), with shared fragment o =
(Lo, To,So). We suppose also that a redundancy notion Redg, for o and two
non-redundant $;-p.r.e.’s for &y (call them Ress,, Ress,) are availablePE] We
also fix a purified &1 ® DPo-constraint I'1 U Ty to be tested for &1 P Do-consistency;
we can freely suppose that Iy and I3 contain the same subset Iy of @q-literals
(i.e. that Iy == I'n\g, = I2jg,). We indicate by x; the free variables occurring
in I (i = 1,2); xy are those variables among x, U x5 which happen to be Po-
variables (again we can freely suppose that xy = 1 N zy).

In order to describe the procedure we also need a selection function in the
sense of the following definition:

Definition 4.3. A selection function CHOOSE(A) is a recursive function accept-
ing as input a set A of Py(xy)-atoms and returning a positive Py(z,)-clause C
such that:

(i) C is a §;-consequence of I; UA, fori=1 ori=2;
(i) if L is @o-redundant wrt Iy U A, then C is L;
(iii) if C is ®g-redundant wrt Iy U A, then C is T or L.

The recursive function CHOOSE(A) will be subject also to a fairness require-
ment that will be explained below.

The Procedure FCoMB. Qur combined procedure generates a tree whose in-
ternal nodes are labeled by sets of Po(zy)-atoms; leaves are labeled by “unsatisfi-
able” or by “saturated”. The root of the tree is labeled by the empty set and if a
node is labeled by the set A, then the successors are:

— a single leaf labeled “unsatisfiable”, if CHOOSE(A) is equal to L;
- or a single leaf labeled “saturated”, if CHOOSE(A) is equal to T;
— or nodes labeled by AU {A1},..., AU{Ax}, if CHOOSE(A) is A1 V -+ V Ag.

The branches which are infinite or end with the “saturated” message are
called open, whereas the branches ending with the “unsatisfiable” message are
called closed. The procedures stops (and the generation of the above tree is
interrupted) iff all branches are closed or if there is an open finite branch (of
course termination is not guaranteed in the general case).

Fair Selection Functions. The function CHOOSE(A) is fair iff the following
happens for every open branch Ag C Ay C ---: if C is equal to Resg, (I3 U A, 1)
for some ¢ = 1,2 and for some k,I > 0, then C is @y-redundant with respect to
I'hUA,, for some n (roughly, residues wrt @; of an open branch are redundant with
respect to the atoms in the branch). Under the current assumptions/notational
conventions, it can be shown that

13 0Of course, Resy, and Ress, are assumed to be both non-redundant with respect to
Redg, .
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Algorithm 1 The combination procedure

1: procedure FCoMmB(A)
2: C — CHOOSE(A)

3: if C = | then

4: return “unsatisfiable”
5: else if C' = T then

6: return “saturated”

7 end if

8: for all A € C do

9: if FCoMB(A U {A}) = “saturated” then
10: return “saturated”
11: end if

12: end for

13: return “unsatisfiable”

14: end procedure

Proposition 4.2. There always exists a fair selection function.

Next Proposition says that our procedure is always sound and that it termi-
nates under noetherianity assumptions:

Proposition 4.3. (i) If the procedure FCOMB returns “unsatisfiable”, then
the purified constraint Iy U Iy is @1 @ Po-unsatisfiable.
(i) If §y is noetherian and Redg, is the full redundancy notion, then the pro-
cedure FCOMB terminates on the purified constraint I U I's.

Completeness of the procedure FCOMB cannot be achieved easily, heavy con-
ditions are needed. Since our investigations are taking a completeness-oriented
route, it is quite obvious that we must consider from now on only the case in
which the input @;-p.r.e.’s are complete (see Deﬁnition. In addition we need
a compactness-like assumption. We say that an i.a.f. @ is @g-compact (where P
is a subfragment of @) iff, given a @-constraint I" and a generalized @(-constraint
Iy, we have that I" U I is P-satisfiable if and only if for all finite Ag C I, we
have that I' U Ag is $-satisfiable.

Since it can be shown that any extension @ of a locally finite fragment @
is @g-compact [17], if we assume effective local finiteness in order to guarantee
termination, @y-compactness is guaranteed too@

The following Proposition gives relevant information on the semantic mean-
ing of a run of the procedure that either does not terminate or terminates with
a saturation message:

14 Notice that only special kinds of generalized ®-constraints are involved in the defi-
nition of @p-compactness, namely those that contain finitely many proper @-literals;
thus, ®o-compactness is a rather weak condition (that’s why it may hold for any
extension whatsoever of a given fragment, as shown by the locally finite case). Fi-
nally, it goes without saying that, by the compactness theorem for first order logic,
®p-compactness is guaranteed whenever @ is a first-order fragment.
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Proposition 4.4. Suppose that @1,Po are both ®g-compact, that the function
CHOOSE(A) is fair wrt two complete ®;-p.r.e.’s and that the procedure FCOMB
does not return “unsatisfiable” on the purified constraint I'1 U Iy. Then there are
L;-structures M; € S; and L;-assignments «; (i = 1,2) such that:

(i) My f=a, I and My [=q, Is;
(i1) for every Do(zy)-atom A, we have that My =4, A iff Mo Eq, A.

5 Isomorphism Theorems and Completeness

Proposition [£.4] explain what is the main problem for completeness: we would
like an open branch to produce &;-structures (i = 1,2) whose Lo-reducts are
isomorphic and we are only given @;-structures whose Ly-reducts are ®o(z,)-
equivalent (in the sense that they satisfy the same @g(x)-atoms). Hence we
need a powerful semantic device that is able to transform ®g(x,)-equivalence
into Ly-isomorphism: this device will be called an isomorphism theorem. The
precise formulation of what we mean by an isomorphism theorem needs some
preparation. First of all, for the notion of an isomorphism theorem to be useful
for us, it should apply to fragments extended with free constants.

Given an i.a.f. =(L,T,S), we denote by &(c) = (L(c),T(c),S(c)) the fol-
lowing i.a.f.: (i) £L(c) := LU {c} is obtained by adding to £ finitely many new
constants ¢ (the types of these new constants must be types of ®); (ii) T'(¢) con-
tains the terms of the kind t[c/z, y] for t[z,y] € T (iii) S(c) contains precisely
the £(c)-structures whose £-reduct is in S. Fragments of the kind &(c) are called
finite expansions of @.

Let @(c) be a finite expansion of @ = (£, T, S) and let A, B be L(c)-structures.
We say that A is @(c)-equivalent to B (written A =g B) iff for every closed
L(c)-atom A we have that A = A iff B = A. By contrast, we say that A is
&(c)-isomorphic to B (written A ~g() B) iff there is an L£(c)-isomorphism from
A onto B.

We can now specify what we mean by a structural operation on an i.a.f.
Do = (Lo, To,So). We will be very liberal here and define structural operation
on @ any family of correspondences O = {O%} associating with any finite set
of free constants ¢, and with any A € Sy(c¢,) some O%(A) € Sy(c,) such that
A =¢4(c,) O%(A). If no confusion arises, we omit the indication of ¢, in the
notation O% (A) and write it simply as O(.A).

A collection O of structural operations on @ allows a ®y-isomorphism the-
orem if and only if, for every ¢, for every A,B € So(cy), if A =g, B then
there exist O, 02 € O such that O1(A) ~g,(c,) O2(B).

We shall mainly be interested into operations that can be extended to a
preassigned expanded fragment. Here is the related definition. Let an i.a.f. & =
(L, T,S) extending &y = (Lo, Tp, Sp) be given; a structural operation O on Py
is @-extensible if and only if for every ¢ and every A € S(c) there exist B € S(c)
such that

Bizo(ey) =o(cy) OMjLo(ey)) and B =a() A,

(where ¢, denotes the set of those constants in ¢ whose type is a $p-type).
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Ezample 5.1 (Ultrapowers). Ultrapowers [11] are basic constructions in the mod-
el theory of first-order logic. An ultrapower [[,, (technically, an ultrafilter ¢
over a set of indices is needed to describe the operation) transforms a first-order
structure A into a first-order structure [[,, A which is elementarily equivalent
to it (meaning that A and [],, A satisfy the same first-order sentences). Hence
if we take a fragment @9 = (Lo, Ty, Sp), where Sy is an elementary class and
(Lo, To) is an algebraic fragment of the kind analyzed in Example then [],,
is a structural operation on @y. A deep result in classical model theory (known
as the Keisler-Shelah isomorphism theorem [11]) says that two Lo-structures
A and B are elementarily equivalent iff there is an ultrafilter ¢ such that the
ultrapowers [[,, A and [[,, B are Lo-isomorphic. Thus, if @y is as above, Keisler-
Shelah theorem is a ®y-isomorphism theorem in our sense["’| Notice also that
taking the reduct of a first-order structure to a smaller signature commutes with
ultrapowers, hence if ® = (£, T, S) is an extension of @; and S is elementary and
(L£,T) is again a fragment of the kind analyzed in Example then we have
that the @g-structural operation [],, is P-extensible (the structure B required
in the definition of P-extensibility is again [],, A, where the ultrapower is now
taken at the level of L-structures).

Ezample 5.2 (Disjoint Copies). Consider a modal fragment @y, based on the
empty modal signature Oy, (see Example; given any non empty set I, taking
disjoint I-copy 11 is easily seen to be a structural operation on @,;,. Moreover,
the totality of such operations (varying I) allows a @y, -isomorphism theorem: to
show this, it is sufficient to observe that @y, (cy)-equivalent structures becomes
isomorphic if a sufficiently large disjoint union is applied to them, because the
cardinality of subsets definable through boolean combinations of the ¢,’s are
complete invariants for £y, (¢)-isomorphism (see [17] for details).

Now notice that a guarded elementary sentence is true in M iff it is true in
II; M. Hence, taking disjoint I-copies is a ®-extensible operation, provided @ is
a modal or a guarded fragment (in the sense of Examples [3.5 and [3.8): notice
in fact that @(c)-atoms are equivalent to elementary guarded sentences, because
the second order variables of type W — (2 have been replaced in them by the
corresponding free constants ¢ (which are constants of type W — (2, that is they
are unary first-order predicate letters).

Sometimes an isomorphism theorem does not hold precisely for a fragment
by = (Lo, To, Sp), but for an inessential variation (called specialization) of it. A
specialization of @ is an i.a.f. &F which has the same language and the same
terms as @y, but whose class of Ly-structures is a smaller class S5 C Sy satisfying
the following condition: for every ¢, and for every A € Sy(cy), there exists
A* € 85(cy) such that A =g ) A"

I &g = (Lo, To,So) is from Example and quantifier elimination holds in
Sop, then the Hu’s are also structural operations on @y allowing a ®p-isomorphism
theorem (this observation is a key point for the proof of Theorem [5.2] below.)
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Given an i.af. & = (£,T,S) extending Py, we say that @ is compatible with
respect to a specialization &f of P if and only if for every ¢ and A € S(c), there
exists a A’ € S(c) such that A =g(,) A" and A/, € Sj.

Ezample 5.3 (Stably Infinite First-Order Theories). The ®y-compatibility no-
tion is intended to recapture, in our general setting, Ty-compatibility as intro-
duced in [16]. The latter generalizes, in its turn, the standard stable infiniteness
requirement of Nelson-Oppen procedure. Let & = (£,T,S) be an i.a.f. of the
kinds considered in Example or in Example we say that @ is stably in-
finite iff every satisfiable @-constraint is satisfiable in some infinite £-structure
AeS.

Let now &g = (Lg, Tp, So) be the i.a.f. so specified: (i) Ly is the empty one-
sorted signature; (ii) Tp contains only the individual variables; (iii) Sp is the
totality of Lo-structures (i.e. the totality of sets). A specialization @f of @y is
obtained by considering the class Sy formed by the infinite sets.

By an easy compactness argument (compactness holds because @ is a first-
order fragment and S is an elementary class), it is easily seen that @ is stably
infinite iff it is compatible with respect to the specialization & of @.

5.1 The Main Combination Result

By assuming the existence of @;-extensible structural operations allowing a @g-
isomorphism theorem, it is possible to formulate a sufficient condition for our
combined procedure to be complete; if we put together this condition, the termi-
nation condition of Proposition [4.3|and various remarks we made in the previous
sections, we obtain the following decidability transfer result (see [17] for proof
details):

Theorem 5.1. Suppose that:

(1) the interpreted algebraic fragments &1, Py have decidable constraint satisfia-
bility problems;

(2) the shared fragment ®q is effectively locally finite (or more generally, &1, P
are both ®g-compact, Py is noetherian and there exist noetherian positive
residue $1- and Po-enumerators for P );

(3) @1 and D2 are both compatible with respect to a specialization &f of Po;

(4) there is a collection O of structural operations on ®f which are all $1- and
Dy-extensible and allow a DF-isomorphism theorem.

Then the procedure FCOMB (together with the preprocessing Purification Rule)
decides constraint satisfiability in the combined fragment &1 & .

Remark. In case the shared fragment @ is locally finite, a combination procedure
can be also obtained simply by guessing a maximal set Oy of Pg(z)-literals and
by testing the @;-satisfiability of @y U I;. This non-deterministic version of the
procedure does not require the machinery developed in Section (but it does
not apply to noetherian cases and does not yield automatic optimizations in
®g-convexity cases).
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Remark. Theorem cannot be used to transfer decidability of word problems
to our combined fragments: the reason is that, in case the procedure FCOMB is
initialized with only a single negative literal, constraints containing positive liter-
als are nevertheless generated during the execution (and also by the Purification
Rule). However, since negative literals are never run-time generated, Theorem
can be used to transfer decidability of conditional word problems, namely of
satisfiability problems for constraints containing just one negative literal.

5.2 Applications: Decidability Transfer through Ultrapowers

We shall use the Keisler-Shelah isomorphism Theorem of Example to get the
transfer decidability result of [16] as a special case of Theorem

Let &1 = (£1,T1,51) and &3 = (L9,T5,Ss) be i.a.f.’s of the kinds consid-
ered in the Example or in Example and let &g = (L, Ty, Sp) be their
shared fragment. The hypothesis for the decidability transfer result of [16] are
the following:

(C1) there is a universal theory T in the shared signature £y such that every
A € 8 is a model of Tp;

(C2) Tp admits a model-completion TO*PE]

(C3) for i = 1,2, every A € S; embeds into some A" € S; which is a model of
155

(C4) Py is effectively locally finite.

Theorem 5.2 ([16]). Suppose that ®1 and P2 are i.a.f.’s of the kinds consid-
ered in Examples which moreover satisfy conditions ((1)-(CH)) above.
If constraint satisfiability problems are decidable in @1 and Po, then they are
decidable in &1 ® Do too.

If we take as Ty the empty theory (in the one-sorted first-order empty lan-
guage with equality), then 7§ is the theory of an infinite set and condition ((3))
is equivalent to stable infiniteness (by a simple argument based on compactness);
thus, Theorem reduces to the standard Nelson-Oppen result [2526/31] con-
cerning stably infinite theories over disjoint signatures. We recall from [16] that
among relevant examples of theories to which Theorem is easily seen to ap-
ply, we have Boolean algebras with operators (namely the theories axiomatizing
algebraic semantics of modal logic): thus, decidability of conditional word prob-
lem transfers from two theories axiomatizing varieties of modal algebras with
operators to their union (provided only Boolean operators are shared). This re-
sult, proved in [33] by specific techniques, is the algebraic version of the fusion
transfer of decidability of global consequence relation in modal logic.

We remark that condition ( can be weakened to

(C4") @ is noetherian and there exist noetherian positive residue @;- and Ps-
enumerators for @,

6 We refer the reader to [I6] for the definition and to any textbook on model theory
like [1I] for more information.
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as suggested by Theorem . As an example of an application of Theorem
under this weaker condition one can consider the theory of K-algebras endowed
with a linear endomorphism: this theory is the combination of the theory of K-
algebras and of the theory of K-vector spaces endowed with an endomorphism
(positive residue enumerators for the noetherian shared fragment can be obtained
in both cases by the method outlined in Example [3.9).

As another application of Theorem based on Keisler-Shelah isomorphism
theorem, we show how to include a first order equational theory within descrip-
tion logic A-Boxes. To get a decidability transfer result for the combination of
an equational i.a.f. & = (£,T,S) from Example and of an A-Box fragment
Dy = (Lyr, Tarr, Syr) from Example we only need mild additional hy-
potheses. These are explained in the statement of the following Theorem:

Theorem 5.3. Suppose that we are given an equational i.a.f. & = (L, T,S) from
Example and an A-Bozx fragment @prr, = (Layrn, Tairn, Sar) from Example
5.6 suppose also that the signatures L and Ly, are disjoint, that @ is stably
infinite and that Sy is an elementary class. Then decidability of constraint
satisfiability problems transfers from @ and @prp, to D ® Ppsy, .

Notice that the fragment @@y, of Theorem [5.3]is quite peculiar (combined
terms all arise from a single composition step).

5.3 Applications: Decidability Transfer through Disjoint Copies

Disjoint copies are the key tool for transfer decidability results in modal frag-
ments. If Oy, and Oy, are modal signatures, we let Opr, g, indicate their
disjoint union (Oppenm, is called the fusion of the modal signatures Oy, and
Onr,). Given a modal i.a.f. @y, over Oy, and a modal i.a.f. @y, over Oy, (see
Example , let us define their fusion as the modal i.a.f.

QleEBM‘z - <‘CM1€BM27TM1€BM2aSM1 EB‘S’J\4z>

Theorem and the considerations in Example [5.2] show that decidability of
constraint satisfiability transfers from two modal i.a.f.’s @, and @y, (operating
on disjoint modal signatures) to their combination @y, @ Pps,. Since it can
be shown that the latter differs from the fusion @ g, only by trivial Gn-
conversions, the following well-known decidability transfer result obtains:

Theorem 5.4 (Decidability transfer for modal i.a.f.’s). If two modal in-
terpreted algebraic fragments @pr, and Par, have decidable constraint satisfiabil-
ity problems, so does their fusion Dy, anr, -

Fragments of the kind examined in Example |3.6|are not interesting for being
combined with each other, because the absence of the type W — (2 makes such
combinations trivial. On the contrary, full modal fragments from Example
are quite interesting in this respect (we recall that they reproduce both A-Box
and T-Box reasoning from the point of view of description logics). Under the
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obvious definition of fusion for full modal i.a.f.’s, we have the following result
(the proof requires just slight modifications to the considerations of Example

5.2):

Theorem 5.5 (Decidability transfer for full modal i.a.f.’s ). If two full
modal i.a.f.’s have decidable constraint satisfiability problems, so does their fu-
s10M.

Theorem [5.5| (once completed with the straightforward extension to m-ary
non normal modalities) covers the results of [9] on transfer of decidability of
A-Box consistency (wrt T-Boxes axioms) in fusions of local abstract description
systems.

We now try to extend our decidability transfer results to appropriate combi-
nations of guarded or of two-variable fragments. However, to get positive results,
we need to keep shared signatures under control (otherwise undecidability phe-
nomena arise). In addition, we still want to exploit the isomorphism theorem of
Example and for that we need the shared signature to be empty and second
order variables appearing as terms in the fragments to be monadic only. The
kind of combination that arise in this way is a form of fusion, that we shall
call monadic fusion. We begin by identifying a class of fragments to which our
techniques apply.

Let us call g = (Ly, Ty, Sp) the following i.a.f.: (i) Ly is the empty one-sorted
first-order signature (that is, £y does not contain any proper symbol, except for
its unique sort which is called D); (ii) Ty is equal to T’ ﬁ”’ (iii) Sy contains all
Ly-structures.

Definition 5.1. A monadically suitabld™| i.a.f. & = (£,T,S) is an i.a.f. such
that:

(i) L is a relational one-sorted first-order signature;
(i) T C T CTE;
(iii) the ®y-structural operation of taking disjoint I-copies is ®-extensible.

As a first example of a monadically suitable fragment, we can consider the
guarded fragments of Example (see also the considerations in Example .
To get another family of examples, we introduce an alternative construction
for proving extensibility of the operation of taking disjoint I-copies. This con-
struction is nicely behaved only for fragments without identity and is called
I-conglomeration:

Definition 5.2 (I-conglomeration). Consider a first order one-sorted rela-
tional signature L and a (non empty) index set I. The operation 11!, defined

17 See Example for this notation and for other similar notation used below.

18 We remark that, despite the fact that the definition of a monadically suitable frag-
ment needs the present paper settings to be formulated, there is some anticipation
of it in the literature on monodic fragments (see for instance statements like that of
Theorem 11.21 in [I5]).
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on L-structures and called I-conglomeration, associates with an L-structure
M = ([=]m;Trm) the L-structure TIEM such that [ D]y is the disjoint
union of I-copies of [ D am (here D is the unique sort of L). The interpretation
of relational constants is defined in the following way

M = P((dy,ih), ..., (dn,in)) <= MEP(dy,....d,)
for every n-ary relational predicate P different from equality.

Notice that I-conglomerations and disjoint I-copies coincide for relational
first order signatures having only unary predicates.

Example 5.4. Let Loy be a first-order relational one-sorted signature; a two
variables i.a.f. over Loy is a fragment of the kind @oy = (Lay, Tov, Sav ), where:
(i) Toy contains the terms without identity which belongs to the set T2V of
Example for K =1 and N = 2; (ii) Soy is a class of Loy -structures closed
under isomorphisms and I-conglomerations. To show that Definition [5.1] applies
to doy, it is sufficient to check that a first order formula not containing the
equality predicate is satisfiable in M iff it is satisfiable in IT/ M.

For two monadically suitable i.a.f.’s &1 and @5 operating on disjoint signa-
tures, let us call the combined fragment @1 ® @5 the monadic fusion of &, and
®,. For monadic fusions we have the following [17]:

Theorem 5.6 (Decidability transfer for monadically suitable i.a.f.’s).
If two monadically suitable i.a.f.’s &1, Do operating on disjoint signatures have
decidable constraint satisfiability problems, so does their monadic fusion.

Theorem |5.6|offers various combination possibilities, however notice that: (a)
the conditions for a fragment to be monadically suitable are rather strong (for
instance, the two variable fragment with identity is not monadically suitable);
(b) the notion of monadic fusion is a restricted form of combination, because
only unary second order variables are available for replacement when forming
formulae of the combined fragment.

5.4 Applications: Decidability Transfer for Monodic Fragments

Fragments in first-order modal predicate logic become undecidable quite soon:
for instance, classical decidability results for the monadic or the two-variables
cases do not extend to modal languages [20/14/19]. However there still are in-
teresting modal predicate fragments which are decidable: one-variable fragments
are usually decidable [29/T5], as well as many monodic fragments. We recall that
a monodic formula is a modal first order formula in which modal operators are
applied only to subformulae containing at most one free variable. Monodic frag-
ments whose extensional (i.e. non modal) component is decidable seem to be
decidable too [32JTI5]: we shall give this fact a formulation in terms of a decid-
ability transfer result for monodic fragments which are obtained as combinations
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of a suitable extensional fragment and of a one-variable first-order modal frag-
ment. Since we prefer, for simplicity, not to introduce a specific formal notion of
a modal fragment, we shall proceed through standard translations and rely on
our usual notion of an i.a.f..

Constant Domains and Standard Translation. Modal predicate formulae
are built up from atomic formulae of a given first-order one-sorted relational
signature £ and from formulae of the kind X (x) (where X is a unary second order
variable), by using boolean connectives, individual quantifiers and a diamond
operator OH

There are actually different standard translations for first-order modal lan-
guages, we shall concentrate here on the translation corresponding to constant
domain semantics. The latter is defined as follows. The signature £V has, in
addition to the unique sort D of £, a new sort W; relational constants of type
D™ — 2 have corresponding relational constants in £ of type D"W — (2. We
use equal names for corresponding constants: this means for instance that if P
has type D? — 2 in £, the same P has type D*W — §2 in £'V. We shall make
the same conventions for second order variables: hence a second order L-variable
X of type D — {2 has a corresponding second order variable X of type DW — (2
in £V,

Notice that a £"-structure A is nothing but a [W ] 4-indexed class of £-
structures, all having the same domain [ D ]4: we indicate by A, the structure
corresponding to w € [W ] 4 and call it the fiber structure over w. The signature
LW E is obtained from £" by adding it also a binary ‘accessibility’ relation R
of type WW — 2. This is the signature we need for defining the standard
translation.

For a modal predicate £-formula o[z, ... 2P] and for a variable w : W, we
define the (non modal) LW Eformula ST (p,w) as follows:

ST(T,w) = ST(L,w)=1;

ST(P(24y,--- ,xim),w) =P(xiy, .. x,,w); ST(X(z;),w) = X (z;,w);

ST (—p,w) = =ST (¢, w); ST(3zPy,w) = I2P ST (¥, w);
ST (11 0 g, w) = ST (Y1, w) o ST (Y2, w), where o € {V,A};
ST(Oh,w) = W (R(w,v) A ST (), v)).

Monodic Fusions for Fragments Let F7); be a class of Kripke frames closed
under disjoint unions and isomorphisms. We call one-variable modal fragment
induced by Fip the iaf. @1y = (Ling, Tin, Sim), where: (1) Lip = EQV)VR,
where Ly is the empty one-sorted first-order signature;(ii) 77, contains the
terms which are 3n-equivalent to terms of the kind {w", 2P | ST (p,w)}, where
¢ is a modal predicate formula having z as the only (free or bound) variable;

19°All the results in this subsection extend to the case of multimodal languages and to
the case of n-ary modalities like SINCE, UNTIL, etc.
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(iii) S1as is the class of the L4 /-structures A such that [ D] 4 is not empty and
such that the Kripke frame ([W].4,Za(R)) belongs to Fips.

For a monadically suitable i.a.f. . = (L., T, S.) (recall Definition , we
define the i.a.f. YV = (LW TW SW) as follows: (i) T}V contains the terms
of the kind {w",zP | ST(p,w)}, for {zP | ¢} € T.: (ii) SV contains the
LY -structures A whose fibers A, are all in S,.

Fix a one variable modal fragment @1, and a first-order monadically suitable
fragment @.; we call monodic fusion of &, and @1, the combined fragment
@ZV ) (1)1]\4.

Thus one may for instance combine guarded or two-variables fragments{gfl
with one-variables modal fragments to get monodic fusions corresponding to the
relevant cases analyzed in [32JI5]. In fact (modulo taking standard translation),
in combined fragments like @V @ &1, we can begin with formulae ¢[z] of &.,
apply to them a modal operator, then use the formulae so obtained to replace
second order variables in other formulae from @., etc. Fragments of the kind
@V @ &) formalize the intuitive notion of a monodic modal fragment whose
extensional component is @.. Since @1, is also interpreted, constraint satisfia-
bility in @ @ &, is restricted to a desired specific class of modal frames/flows
of time.

Theorem 5.7. If the one variable modal i.a.f. @15 and the monadically suit-
able i.a.f. . have decidable constraint satisfiability problems, then their monodic
fusion @V @© &1, also has decidable constraint satisfiability problems.

The proof of Theorem reduces the statement to be proved to Theorem
after translating our fragments into fragments of a language describing ap-
propriate descent data [17] (disjoint I-copies and fiberwise disjoint I-copies then
provide the suitable isomorphism theorem).

6 Conclusions

In this paper we introduced a type-theoretic machinery in order to deal with the
combination of decision problems of various nature. Higher order type theory
has been essentially used as a unifying specification language; we have also seen
how the types interplay can be used in a rather subtle way to design combined
fragments and consequently appropriate constraints satisfiability problems.

Decision problems are at the heart of logic and of its applications, that’s why
they are so complex and irregularly behaved. Given that it is very difficult (and
presumably impossible) to get satisfying general results in this area, the em-
phasis should concentrate on methodologies which are capable of solving entiere
classes of concrete problems. Among methodologies, we can certainly include
methodologies for combination: these may be very helpful when the solution of
a problem can be modularly decomposed or when the problem itself appears to
be heterogeneous in its nature.

20 We recall that two-variable fragments are monadically suitable only if we take out
identity.
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In this paper, we took into consideration Nelson-Oppen methodology (which
is probably the simplest combination methodology) and tried to push it as far
as possible. Surprisingly, it turned out that it might be quite powerful, when
joined to strong model theoretic results (the isomorphism theorems). Thus, we
tried to give the reader a gallery of different applications that can be solved in
a uniform way by this methodology. Some of these applications are new, some
other summarize recent work by various people. New problems certainly arise
now: they concern both further applications of Nelson-Oppen schema and the
individuation or more sophisticated schemata, for the problems that cannot be
covered by the Nelson-Oppen approach. We hope that the higher order frame-
work and the model theoretic techniques we introduced in this paper may give
further contributions within this research perspective.
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