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Abstract. We define a general notion of a fragment within higher order
type theory; a procedure for constraint satisfiability in combined frag-
ments is outlined, following Nelson-Oppen schema. The procedure is in
general only sound, but it becomes terminating and complete when the
shared fragment enjoys suitable noetherianity conditions and allows an
abstract version of a ‘Keisler-Shelah like’ isomorphism theorem. We show
that this general decidability transfer result covers as special cases, be-
sides applications which seem to be new, the recent extension of Nelson-
Oppen procedure to non-disjoint signatures [16] and the fusion transfer
of decidability of consistency of A-Boxes with respect to T-Boxes axioms
in local abstract description systems [9]; in addition, it reduces decidabil-
ity of modal and temporal monodic fragments [32] to their extensional
and one-variable components.

1 Introduction

Decision procedures for fragments of various logics and theories play a central
role in many applications of logic in computer science, for instance in formal
methods and in knowledge representation. Within these application domains,
relevant data appears to be heterogeneously structured, so that modularity in
combining and re-using both algorithms and concrete implementations becomes
crucial. This is why the development of meta-level frameworks, accepting as in-
put specialized devices, turns out to be strategic for future advances in building
powerful, fully or partially automatized systems. In this paper, we shall consider
one of the most popular and simple schemata (due to Nelson-Oppen) for de-
signing a cooperation protocol among separate reasoners; we shall plug it into a
higher order framework and show how it can be used to deal with various classes
of combination problems, often quite far from the originally intended application
domain.
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The basic feature of Nelson-Oppen method is simple: constraints involving
mixed signatures are transformed into equi-satisfiable pure constraints and then
the specialized reasoners try to share all the information they can acquire con-
cerning constraints in the common subsignature, till an inconsistency is detected
or till a saturation state is reached.

Nelson-Oppen method was guaranteed to be complete only for disjoint sig-
natures and stably infinite theories, till quite recently, when it was realized [16]
that stable infiniteness is just a special case of a compatibility notion, which
is related to model completions of shared sub-theories. The above extension of
Nelson-Oppen method to combination of theories operating over non disjoint sig-
natures lead to various applications to decision problems in modal logics: such
applications (sometimes involving non trivial extensions of the method as well
as integration with other work) concerned transfer of decidability of global con-
sequence relation to fusions [16] and to E-connections [4,5], as well as transfer of
decidability of local consequence relation to fusions [8].

Thus, most of previously existing decidability results on fusions of modal
logics (for instance those in [33]) were recaptured and sometimes also improved
by general automated reasoning methods based on Nelson-Oppen ideas. How-
ever, this is far from exhausting all the potentialities of such ideas and further
extensions are possible. In fact, the standard approach to decision problems in
modal/temporal/description logics is directly based on Kripke models (see for
instance [9,15]), without the intermediation of an algebraic formalism, whereas
the intermediation of the formalism of Boolean algebras with operators is es-
sential in the approach of papers like [16,8,4,5]. The appeal to the algebraic
formulation of decision problems on one side produces proofs which are much
smoother and which apply also to semantically incomplete propositional logics,
but on the other side it limits the method to the cases in which such a purely
algebraic counterpart of semantic decision problems can be identified.

One of the main reasons for avoiding first-order formalisms in favor of propo-
sitional modal logic-style languages lies in the better computational perfor-
mances of the latter. However, from a purely declarative point of view, first-order
formalisms are essential in order to specify in a semantically meaningful language
the relevant decision problems. This goal is mainly achieved in the case of modal
logic through first-order translations, the role of such translations being simply
that of codifying the intended semantics (and not necessarily that of providing
computational tools).

If a semantic class S of Kripke frames is given, relevant decision problems are
formulated as satisfiability problems (within members of S) for standard trans-
lations of propositional modal formulae. In these formulations, unary predicates
occurring in standard translations are considered in practice as second order
variables: in fact, satisfiability requires the existence of suitable Kripke mod-
els and the latter differ from mere Kripke frames precisely by the specification
of a second order assignment. The role played by second order variables be-
comes even more evident if we analyze the way in which standard translations of
modal formulae in fusions are obtained from standard translations of formulae in
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the component languages. For instance, ST (♦1♦2x, w) is obtained by substitut-
ing into ST (♦1y, w) := ∃v(R1(w, v) ∧ Y (v)) the ‘abstracted’ second order term
{v | ST (♦2x, v)} := {v | ∃z(R2(v, z)∧X(z))} for Y (a β-conversion should follow
the replacement in order to get as normal form precisely ST (♦1♦2x, w)). Thus,
even if we do not ‘computationally’ trust first-order logic (and consequently not
even higher order logic, for much stronger reasons), it makes nevertheless sense
to analyze combination problems in the framework where they arise, that is in
the framework which is the most natural for them.

We shall work within Church’s type theory: thus our syntax deals with types
and terms, terms being endowed with a (codomain) type. In this higher order
context, we shall provide a general definition of a fragment (more specifically of
an interpreted algebraic fragment, see Definitions 3.2, 3.3) and of a constraint
satisfiability problem, in such a way that fragments can be combined into each
other and a Nelson-Oppen procedure for constraint satisfiability in combined
fragments can be formally introduced.

The general procedure is only sound and specific conditions for guarantee-
ing termination and completeness are needed. For termination, we rely on local
finiteness (better, on noetherianity) of the shared fragment, whereas for com-
pleteness we use heavy model-theoretic tools. These tools (called isomorphism
theorems) transform equivalence with respect to satisfiability of shared atoms
into isomorphism with respect to the shared signature, in such a way that sat-
isfiability of pure constraints is not compromised. The results of this analysis is
summarized in our general decidability transfer result (Theorem 5.1).

Of course, isomorphisms theorems are quite peculiar and rare. However, the
classical Keisler-Shelah isomorphism theorem based on ultrapowers [11] is suf-
ficient to justify through Theorem 5.1 the recent extension [16] of the Nelson-
Oppen results to non disjoint first-order signatures and another isomorphism
theorem, based on disjoint unions (better, on disjoint copies), is sufficient to
justify in a similar way the decidability transfer result of [9] concerning A-Box
consistency with respect to T-Boxes.1 Having identified the conceptual core of
the method, we are now able to apply it to various situations, thus getting
further decidability transfer results: these results cover the combination of A-
Boxes with a stably infinite first-order theory (Theorem 5.3), the combination of
two so-called monadically suitable fragments (Theorem 5.6) and the combination
(leading to monodic modal fragments in the sense of [32]) of a one-variable modal
fragment with a monadically suitable extensional fragment (Theorem 5.7).

For space reasons, we can only explain here our settings, give examples and
state the main results (for proofs and for more information, the reader is referred
to the full technical report [17]).

1 Thus, the difference between the semantically oriented proofs of [9] and the al-
gebraically oriented proofs of papers like [16,8] seem to be mainly a question of
choosing a different isomorphism theorem to justify the combined procedure.
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2 Higher-Order Signatures

We adopt a type theory in Church’s style (see [2,3,21] for introductions to the
subject). We use letters S1, S2, . . . to indicate sorts (also called primitive types)
of a signature. Formally, sorts are a set S and types over S are built inductively
as follows: (i) every sort S ∈ S is also a type; (ii) Ω is a type (this is called the
truth-values type); (iii) if τ1, τ2 are types, so is (τ1 → τ2).

As usual external brackets are omitted; moreover, we shorten the expression
τ1 → (τ2 → . . . (τn → τ)) into τ1 . . . τn → τ (in this way, every type τ has the
form τ1 . . . τn → τ , where n ≥ 0 and τ is a sort or it is Ω). In the following,
we use the notation T (S) or simply T to indicate a types set, i.e. the totality of
types that can be built up from the set of sorts S. We always reserve to sorts the
letters S1, S2, . . . (as opposed to the letters τ, υ, etc. which are used for arbitrary
types).

A signature (or a language) is a triple L = 〈T , Σ, a〉, where T is a types set,
Σ is a set of constants and a is an arity map, namely a map a : Σ −→ T . We
write f : τ1 . . . τn → τ to express that f is a constant of type τ1 . . . τn → τ , i.e.
that a(f) = τ1 . . . τn → τ . According to the above observation, we can assume
that τ is a sort or that τ = Ω; in the latter case, we say that f is a predicate or
a relational symbol (predicate symbols are preferably indicated with the letters
P,Q, . . . ).

We require the following special constants to be always present in a signature:
> and ⊥ of type Ω; ¬ of type Ω → Ω; ∨ and ∧ of type ΩΩ → Ω; =τ of type
τ τ → Ω for each type τ ∈ T (we usually write it as ‘=’ without specifying the
subscript τ). The proper symbols of a signature are its sorts and its non special
constants.

A signature is one-sorted iff its set of sorts is a singleton. A signature L is
first-order if for any proper f ∈ Σ, we have that a(f) = S1 . . . Sn → τ , where
τ is a sort or it is Ω. A first-order signature is called relational iff any proper
f ∈ Σ is a relational constant, that is a(f) = S1 . . . Sn → Ω. By contrast, a first
order signature is called functional iff any proper f ∈ Σ has arity S1 . . . Sn → S.

Given a signature L = 〈T , Σ, a〉 and a type τ ∈ T , we define the notion of
an L-term (or just term) of type τ , written t : τ , as follows (for the definition
we need, for every type τ ∈ T , a countable supply Vτ of variables of type τ):

– x : τ (for x ∈ Vτ ) is an L-term of type τ ;
– c : τ (for c ∈ Σ and a(c) = τ) is an L-term of type τ ;
– if t : υ → τ and u : υ are L-terms of types υ → τ and υ, respectively, then
valτ (t, u) : τ (also written as t(u) : τ) is an L-term of type τ ;

– if t : τ is an L-term of type τ and x ∈ Vυ is an L-variable of type υ,
λxυ t : υ → τ is an L-term of type υ → τ .

In the following, we consider the notation xτ (cτ ) equivalent to x : τ (c :
τ), where x (resp. c) is a variable (resp. a constant); if it can be deduced
from the context, the specification of the type of a term may be omitted. More-
over, a term of type τ is also called a τ -term and terms of type Ω are also
called formulae. Given a formula ϕ, we write {x | ϕ} for λxϕ. Moreover,
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we shorten valτ (· · · (valτn−1(t, u1), · · · ), un) to t(u1, . . . , un). Free and bound
variables are defined in the usual way; we use the notation t[x1, . . . , xn] (or
fvar(t) ⊆ {x1, . . . , xn}) to mean that the variables occurring freely in t are in-
cluded in the finite set x = {x1, . . . , xn}. We often indicate finite sets or finite
tuples of variables by the letters x, y, . . . .

Substitutions are defined in the usual way, but α-conversion (that is, bound
variables renaming) might be necessary to avoid clashes. We also follow standard
practice of considering terms as equivalence classes of terms under α-conversion.
β- and η-conversions are defined in the standard way and we shall make use of
them whenever needed (for a very brief account on the related definitions and
results, the reader is referred to [12]).

For each formula ϕ, we define the formulae ∀xυ ϕ and ∃xυ ϕ as {xυ | ϕ} =
{xυ | >} and as ¬∀xυ ¬ϕ, respectively (the latter can also be defined differently,
in an intuitionistically acceptable way, see [21]). For terms ϕ1, ϕ2 of type Ω, the
terms ϕ1 → ϕ2 and ϕ1 ↔ ϕ2 of type Ω are defined in the usual way.

By the above definitions, first-order formulae can be considered as a subset
of the higher order formulae defined in this section. More specifically, when we
speak of first-order terms, we mean variables x : S, constants c : S and terms
of the kind f(t1, . . . , tn) : S, where t1, . . . , tn are (inductively given) first-order
terms and a(f) = S1 · · ·Sn → S. Now first-order formulae are obtained from
formulae of the kind > : Ω,⊥ : Ω,P (t1, . . . , tn) : Ω (where t1, . . . , tn are first-
order terms and a(P ) = S1 · · ·Sn → Ω) by applying ∃xS ,∀xS ,∧,∨,¬,→,↔.

In order to introduce our computational problems, we need to recall the
notion of an interpretation of a type-theoretic language. Formulae of higher
order type theory which are valid in ordinary set-theoretic models do not form
an axiomatizable class, as it is well-known from classical limitative results. We
shall nevertheless confine ourselves to standard set-theoretic models, because
we are not interested in the whole type theoretic language, but only in more
tractable fragments of it.

If we are given a map that assigns to every sort S ∈ S a set [[S ]], we can
inductively extend it to all types over S, by taking [[ τ → υ ]] to be the set
of functions from [[ τ ]] to [[ υ ]] (we shall freely refer to such an extension below,
without explicitly mentioning it). Given a language L = 〈T , Σ, a〉, an L-structure
(or just a structure) A is a pair 〈[[− ]]A, IA〉, where:

(i) [[− ]]A is a function assigning to a sort S ∈ T , a (non empty, if you like)
set [[S ]]A;

(ii) IA is a function assigning to a constant c ∈ Σ of type τ , an element
IA(cτ ) ∈ [[ τ ]]A.

In every structure A, we require that [[Ω ]]A = {0, 1} and that >,⊥,¬,∧,∨
are given their standard ‘truth-table’ meaning.

Given an L-structure A = 〈[[− ]]A, IA〉 and a type-conformal assignment α to
the variables of L, it is possible to define (in the expected way) the interpretation
Iα
A(t) of the term t under the assignment α: notice that, if t has type τ , then we

have Iα
A(t) ∈ [[ τ ]]A. An L-formula ϕ is satisfied in A under the assignment α iff

Iα
A(ϕ) = 1 (we usually write A |=α ϕ for Iα

A(ϕ) = 1). A formula is satisfiable iff
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it is satisfied in some structure under some assignment and a set of formulae Γ
is satisfiable iff all formulas in Γ are simultaneously satisfied.

For signature inclusions L0 ⊆ L, there is an obvious taking reduct operation
mapping a L-structure A to a L0-structure A|L0 ; we can similarly take the L0-
reduct of an assignment, by ignoring the values assigned to variables whose types
are not in L0 (we leave the reader to define these notions properly).

3 Fragments

General type theory is very hard to attack from a computational point of view,
this is why we are basically interested only in more tractable fragments and in
combinations of them. Fragments are defined as follows:

Definition 3.1. A fragment is a pair 〈L, T 〉 where L = 〈T , Σ, a〉 is a signature
and T is a recursive set of L-terms.

3.1 Algebraic Fragments

We want to use fragments as ingredients of larger and larger combined fragments:
a crucial notion in this sense is that of an algebraic fragment.

Definition 3.2. A fragment 〈L, T 〉 is said to be an algebraic fragment iff T
satisfies the following conditions:

(i) T is closed under composition (that is, it is closed under substitution): if
u[x1, . . . , xn] ∈ T and ti ∈ T for all i = 1, . . . , n, then u[t1, . . . , tn] ∈ T ;

(ii) T contains domain variables: if τ is a type such that some variable of type
τ occurs free in a term t ∈ T , then every variable of type τ belongs to T ;

(iii) T contains codomain variables: if t : τ belongs to T , then every variable of
type τ belongs to T .

Observe that from the above definition it follows that T is closed under
renaming of terms. Quite often, one is interested in interpreting the terms of
a fragment not in the class of all possible structures for the language of the
fragment, but only in some selected ones (e.g. when checking satisfiability of
some temporal formulae, one might be interested only in checking satisfiability
in particular flows of time, those which are for instance discrete or continuous).
This is the reason for ‘interpreting’ fragments:

Definition 3.3. An interpreted algebraic fragment (to be shortened as i.a.f.) is
a triple Φ=〈L, T,S〉, where 〈L, T 〉 is an algebraic fragment and S is a class of
L-structures closed under isomorphisms.

The set of terms T in an i.a.f. Φ=〈L, T,S〉 is called the set of Φ-terms and
the set of types τ such that t : τ is a Φ-term for some t is called the set of
Φ-types. A Φ-variable is a variable xτ such that τ is a Φ-type (or equivalently,
a variable which is a Φ-term). It is also useful to identify a (non-interpreted)
algebraic fragment 〈L, T 〉 with the interpreted algebraic fragment Φ=〈L, T,S〉,
where S is taken to be the class of all L-structures.
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Definition 3.4. Given an i.a.f. fragment Φ, a Φ-atom is an equation t1 = t2
between Φ-terms t1, t2 of the same type; a Φ-literal is a Φ-atom or a negation
of a Φ-atom, a Φ-constraint is a finite conjunction of Φ-literals, a Φ-clause is
a finite disjunction of Φ-literals. Infinite sets of Φ-literals (representing an in-
finite conjunction) are called generalized Φ-constraints (provided they contain
altogether only finitely many free variables).

Some Conventions. Without loss of generality, we may assume that > is a
Φ-atom in every i.a.f. Φ (in fact, to be of any interest, a fragment should at least
contain a term t and we can let > to be t = t). As a consequence, ⊥ will always
be a Φ-literal; by convention, however, we shall include ⊥ among Φ-atoms (hence
a Φ-atom is either an equation among Φ-terms - > included - or it is ⊥). Since
we have ⊥ as an atom, there is no need to consider the empty clause as a clause,
so clauses will be disjunctions of at least one literal. The reader should keep in
mind these slightly non standard conventions for the whole paper.

A Φ-clause is said positive if only Φ-atoms occur in. A Φ-atom t1 = t2 is
closed if and only if ti is closed (i ∈ {1, 2}); the definition of closed Φ-literals,
-constraints and -clauses is analogous. For a finite set x of variables and an i.a.f.
Φ, a Φ(x)-atom (-term, -literal, -clause, -constraint) is a Φ-atom (-term, -literal,
-clause, -constraint) A such that fvar(A) ⊆ x.

We deal in this paper mainly with the constraint satisfiability problem for
an i.a.f. Φ=〈L, T,S〉: this is the problem of deciding whether a Φ-constraint is
satisfiable in some structure A ∈ S. On the other hand, the word problem for Φ
is the problem of deciding if the universal closure of a given Φ-atom is true in
every structure A ∈ S.

3.2 Examples

Although there are genuinely intended higher order interpreted algebraic frag-
ments whose word problem is decidable (see for instance Friedman theorem
for simply typed λ-calculus) and also whose constraint satisfiability problem is
decidable (see Rabin results on monadic second order logic), we shall mainly
concentrate on examples providing applications at first-order level. The reader
should however notice that we need to use higher order variables and to pay
special attention to the types of a fragment in order for fragment combination
defined in Subsection 4.1 to cover the desired applications.

Example 3.1 (First-order equational fragments). Let us consider a first-order
language L = 〈T , Σ, a〉 (for simplicity, we also assume that L is one-sorted). Let
T be the set of the first-order L-terms and let S be an elementary class, i.e. the
class of the L-structures which happen to be the models of a certain first-order
theory in the signature L. Obviously, the triple Φ = 〈L, T,S〉 is an i.a.f.. The Φ-
atoms will be equalities between Φ-terms, i.e. first-order atomic formulae of the
kind t1 = t2. Word problem in Φ=〈L, T,S〉 is standard uniform word problem (as
defined for the case of equational theories for instance in [6]), whereas constraint
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satisfiability problem is the problem of deciding satisfiability of a finite set of
equations and inequations.

Example 3.2 (Universal first-order fragments). The previous example disregards
the relational symbols of the first-order signature L. To take also them into
consideration, it is sufficient to make some slight adjustment: besides first-order
terms, also atomic formulae and >, as well as propositional variables (namely
variables having type Ω) will be terms of the fragment.2 The semantic class
S where the fragment is to be interpreted is again taken to be an elementary
class. For Φ=〈L, T,S〉 so defined, the constraint satisfiability problem becomes
essentially the problem of deciding the satisfiability of an arbitrary finite set of
literals in the models belonging to S.3

We now define different kinds of i.a.f.’s starting from the set F of first-order
formulae of a first-order signature L; for simplicity, let’s suppose also that L is
relational and one-sorted (call W this unique sort).

Example 3.3 (Full First-Order Language, plain version). We take T to be the
union of F with the sets of the individual variables and of the propositional
variables. Of course, Φ=〈L, T 〉 so defined is an algebraic fragment, whose types
are W and Ω. By Church theorem, both word and constraint satisfiability prob-
lem are undecidable here (the two problems both reduce to satisfiability of a
first-order formula with equality); they may be decidable in case the fragment
is interpreted into some specific semantic class S.

In the next example, we build formulae (out of the symbols of our fixed first
order relational one-sorted signature L) by using at most N (free or bound)
individual variables; however we are allowed to use also second order variables
of arity at most K:

Example 3.4 (Full First-Order Language, NK-version). Fix cardinals K ≤ N ≤
ω and consider, instead of F , the set FNK of formulae ϕ that contains at most N
(free or bound) individual variables and that are built up by applying boolean
connectives and individual quantifiers to atomic formulae of the following two
kinds:

– P (xi1 , . . . , xin), where P is a relational constant and xi1 , . . . , xin are in-
dividual variables (since at most x1, . . . , xN can be used, we require that
i1, . . . , in ≤ N);

– X(xi1 , . . . , xin
), where i1, . . . , in ≤ N , and X is a variable of type Wn → Ω

with n ≤ K (here Wn abbreviates W · · ·W , n-times).

The terms in the algebraic fragment ΦLNK = 〈LNK , T
L
NK〉 are now the terms

t such that t ∼βη {x1, . . . , xn | ϕ}, for some n ≤ K and for some ϕ ∈ FNK ,

2 Propositional variables are added here in order to fulfill Definition 3.2(iii).
3 Notice that, by case splitting, equations A = B among terms of type Ω can be

replaced by A ∧B or by ¬A ∧ ¬B (and similarly for inequations).
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with fvar(ϕ) ⊆ {x1, . . . , xn}.4 Types in such ΦLNK are now Wn → Ω (n ≤ K)
and this fact makes a big difference with the previous example (the difference
will be sensible when combined fragments enter into the picture). Constraint
satisfiability problems still reduce to satisfiability problems for sentences: in fact,
once second order variables are replaced by the names of the subsets assigned to
them by some assignment in an L-structure, ΦLNK-atoms like {x | ϕ} = {x | ψ}
are equivalent to the first-order sentences ∀x(ϕ ↔ ψ) and conversely any first-
order sentence θ (with at most N bound individual variables) is equivalent to
the ΦLNK-atom θ = >.

The cases N = 1, 2 are particularly important, because in these cases the sat-
isfiability problem for sentences (and hence also constraint satisfiability problems
in our fragments) becomes decidable [22,27,24,28].

Further examples can be built by using the large information contained in
the textbook [10] (see also [13]). We shall continue here by investigating frag-
ments that arise from research in knowledge representation area, especially in
connection to modal and description logics. Before, we introduce a construction
that will play a central role in some applications of our results:

Definition 3.5 (Disjoint I-copy). Consider a first order one-sorted relational
signature L and a (non empty) index set I. The operation qI , defined on L-
structures and called disjoint I-copy, associates with an L-structureM = 〈[[− ]]M, IM〉
the L-structure qIM such that [[W ]]qIM is the disjoint union of I-copies of
[[W ]]M (here W is the unique sort of L). The interpretation of relational predi-
cates is defined as follows5

qI M |= P (〈d1, i1〉, . . . , 〈dn, in〉) ⇐⇒ i1 = · · · = in and M |= P (d1, . . . , dn)
(1)

for every n-ary predicate P .

Disjoint I-copy is a special case of a more general disjoint union operation:
the latter is defined again by (1) and applies to any I-indexed family of structures
(which may not coincide with each other).

Example 3.5 (Modal/Description Logic Fragments, global version). A modal sig-
nature is a set OM , whose elements are called unary ’Diamond’ modal operators.6
OM -modal formulae are built up from a countable set of propositional variables
x, y, z, . . . by applying >,⊥,¬,∧,∨ as well as the operators ♦k ∈ OM .

With every modal signature OM we associate the first-order signature LM ,
containing a unique sort W and, for every ♦k ∈ OM , a relational constant Rk

4 We need to use equivalence up to βη-conversion here to fulfil the properties of Defini-
tion 3.2. We recall that βη-equivalence (noted as∼βη) is decided by the normalization
procedure of simply typed lambda calculus.

5 Elements of the disjoint union of I-copies of a set S are represented as pairs 〈s, i〉
(meaning that 〈s, i〉 is the i-th copy of s ∈ S).

6 The case of n-ary (also non-normal) modal operators does not create special diffi-
culties and it is left to the reader.
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of type WW → Ω. Suppose we are given a bijective correspondence x 7−→
X between propositional variables and second order variables of type W →
Ω. Given an OM -modal formula ϕ and a variable w of type W , the standard
translation ST (ϕ,w) is the LM -term of type Ω inductively defined as follows:

ST (>, w) = >; ST (⊥, w) = ⊥;
ST (x, w) = X(w); ST (¬ψ,w) = ¬ST (ψ,w);
ST (ψ1 ◦ ψ2, w) = ST (ψ1, w) ◦ ST (ψ2, w), where ◦ ∈ {∨,∧};
ST (♦ψ,w) = ∃v(R(w, v) ∧ ST (ψ, v)),

where v is a variable of type W (different from w). Let TM be the set of those
LM -terms t for which there exists a modal formula ϕ s.t. t ∼βη {w | ST (ϕ,w)}.
A modal fragment is an i.a.f. of the kind ΦM = 〈LM , TM ,SM 〉, where LM , TM

are as above and SM is a class of LM -structures closed under isomorphisms
and disjoint I-copies (notice that LM -structures, usually called Kripke frames in
modal logic, are just sets endowed with a binary relation Rk for every ♦k ∈ OM ).

ΦM -constraints are (equivalent to) finite conjunctions of equations of the form
{w | ST (ψi, w)} = {w | >} and of inequations of the form {w | ST (ϕj , w)} 6=
{w | ⊥}; such constraints are satisfied iff there exists a Kripke model7 based
on a frame in SM in which the ψi hold globally (namely in any state), whereas
the ϕj hold locally (namely in some states sj). Thus constraint satisfiability
problem becomes, in the description logics terminology, just the (simultaneous)
relativized satisfiability problem for concept descriptions ϕj wrt to a given T-Box
(we call T-Box a conjunction of ΦM -atoms like {w | ST (ψi, w)} = {w | >}).

Example 3.6 (Modal/Description Logic Fragments, local version). If we want to
capture A-Box reasoning too, we need to build a slightly different fragment. The
type-theoretic signature LML of our fragment is again LM , but TML now con-
tains: a) the set of terms which are βη-equivalent to terms of the kind ST (ϕ,w)
(these terms are called ‘concept assertions’); b) the terms of the kind Rk(v, w)
(these terms are called ‘role assertions’); c) the variables of type W,Ω and
W → Ω.

The i.a.f. ΦML = 〈LML, TML,SML〉 (where SML is again a class of LML-
structures closed under isomorphisms and disjoint I-copies) is called an A-Box
fragment. By a thorough case analysis [17], it is possible to show that, without
loss of generality, constraints in this fragments can be represented as conjunc-
tions of concept assertions and role assertions, plus in addition negations of
role assertions and of identities among individual names. We shall call A-Boxes
these constraints8 and we reserve the name of positive A-Boxes to conjunctions
of concept assertions and role assertions.

7 A Kripke model is a Kripke frame together with an assignment of subsets for second
order variables of type W → Ω.

8 Standard description logics A-Boxes are just slightly more restricted, because they
include only concept assertions, role assertions and also all negations of identities
among distinct individual variables (by the so-called ‘unique name assumption’).
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Example 3.7 (Modal/Description Logic Fragments, full version). If we want to
deal with satisfiability of an A-Box wrt a T-Box, it is sufficient to join the two
previous fragments. More precisely, we can build full modal fragments over a
modal signature OM , which are i.a.f.’s of the kind ΦMF = 〈LMF , TMF ,SMF 〉,
where LMF = LM , SMF is a class of LML-structures closed under isomorphisms
and disjoint I-copies, and TMF = TM ∪TML. Types in these fragments are W,Ω
and W → Ω; constraints are conjunctions of a T-Box and an A-Box.

Guarded and packed guarded fragments were introduced as generalizations
of modal fragments [1,18,23]: in fact, they form classes of formulae which are
remarkably large but still inherit relevant syntactic and semantic features of the
more restricted modal formulae. In particular, guarded and packed guarded for-
mulae are decidable for satisfiability. For simplicity, we give here the instructions
on how to build only one kind of guarded fragments with equality (other similar
fragments can be built by following the methods we used above).

Example 3.8 (Guarded Fragments). Let us consider a first-order one-sorted re-
lational signature LG. We define the guarded formulae as follows:

– if X : W → Ω and x : W are variables, X(x) is a guarded formula;
– if P : Wn → Ω is a relational constant and t1 : W, . . . , tn : W are variables,
P (t1, . . . , tn) is a guarded formula;

– if ϕ is a guarded formula, ¬ϕ is a guarded formula;
– if ϕ1 and ϕ2 are guarded formulae, ϕ1∧ϕ2 and ϕ1∨ϕ2 are guarded formulae;
– if ϕ is a guarded formula and π is an atomic formula such that fvarW (ϕ) ⊆
fvar(π) (fvarW (ϕ) are the variables of type W which occurs free in ϕ),
then ∀y(π[x, y] → ϕ[x, y]) and ∃y(π[x, y] ∧ ϕ[x, y]) are guarded formulae.

Notice that we used second order variables of type W → Ω only (and not
of type Wn → Ω for n > 1): the reason, besides the applications to combined
decision problems we have in mind, is that we want constraint problems to be
equivalent to sentences which are still guarded, see below. Guarded formulae
not containing variables of type W → Ω are called elementary (or first-order)
guarded formulae.

Let TG be the set of LG-terms t such that t is βη-equivalent to a term of the
kind {w | ϕ(w)} (where ϕ is a guarded formula such that fvarW (ϕ(w)) ⊆ {w})
and let SG be a class of LG-structures closed under isomorphisms and disjoint
I-copies: we call the i.a.f. ΦG = 〈LG, TG,SG〉 a guarded fragment. The only
type in this fragment is W → Ω and constraint satisfiability problem in this
fragment is equivalent to satisfiability of guarded sentences: this is because, in
case ϕ1, ϕ2 are guarded formulae with fvarW (ϕi) ⊆ {w} (for i = 1, 2), then
{w | ϕ1} = {w | ϕ2} is equivalent to ∀w(ϕ1 ↔ ϕ2) which is guarded (just use
w = w as a guard).

3.3 Reduced Fragments and Residues

If Φ=〈L, T,S〉 is an i.a.f. and x is a finite set of Φ-variables, we let Φ(x) denote
the Φ-clauses whose free variables are among the x. If Γ is a set of such Φ(x)-
clauses and C ≡ L1 ∨ · · · ∨Lk is a Φ(x)-clause, we say that C is a Φ-consequence
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of Γ (written Γ |=Φ C), iff the (generalized, in case Γ is infinite) constraint
Γ ∪ {¬L1, . . . ,¬Lk} is not Φ-satisfiable.

The notion of consequence is too strong for certain applications; for instance,
when we simply need to delete certain deductively useless data, a weaker notion
of redundancy (based e.g. on subsumption) is preferable. Our abstract axioma-
tization of a notion of redundancy is the following (recall that we conventionally
included > and ⊥ among Φ-atoms in any i.a.f. Φ):

Definition 3.6. A redundancy notion for a fragment Φ is a recursive binary
relation RedΦ between a finite set of Φ-clauses Γ and a Φ-clause C satisfying
the following properties:

(i) RedΦ(Γ,C) implies Γ |=Φ C (soundness);
(ii) RedΦ(∅,>) and RedΦ({⊥}, C) both hold;
(iii) RedΦ(Γ,C) and Γ ⊆ Γ ′ imply RedΦ(Γ ′, C) (monotonicity);
(iv) RedΦ(Γ,C) and RedΦ(Γ ∪ {C}, D) imply RedΦ(Γ,D) (transitivity);
(v) if C is subsumed by some C ′ ∈ Γ ,9 then RedΦ(Γ,C) holds.

Whenever a redundancy notion RedΦ is fixed, we say that C is Φ-redundant wrt
Γ when RedΦ(Γ,C) holds.

For example, the minimum redundancy notion is obtained by stipulating
that RedΦ(Γ,C) holds precisely when (⊥ ∈ Γ or C ≡ > or C ≡ > ∨ D or
C is subsumed by some C ′ ∈ Γ ). On the contrary, if the constraint solving
problem for Φ is decidable, there is a maximum redundancy notion (called the
full redundancy notion) given by the Φ-consequence relation.

Let Φ=〈L, T,S〉 be an i.a.f. on the signature L=〈T , Σ, a〉 and let L0 =
〈T0, Σ0, a0〉 be a subsignature of L. The i.a.f. restricted to L0 is the i.a.f. Φ|L0 =
〈L0, T|L0 ,S|L0〉 that is so defined:

– T|L0 is the set of terms obtained by intersecting T with the set of L0-terms;
– S|L0 consists of the structures of the kind A|L0 , varying A ∈ S.

An i.a.f. Φ0 = 〈L0, T0,S0〉 is said to be a L0-subfragment (or simply a sub-
fragment, leaving the subsignature L0 ⊆ L as understood) of Φ=〈L, T,S〉 iff
T0 ⊆ T|L0 and S0 ⊇ S|L0 . In this case, we may also say that Φ is an expansion
of Φ0.

Given a set Γ of Φ(x)-clauses and a redundancy notion RedΦ0 on a subfrag-
ment Φ0 of Φ, we call Φ0-basis for Γ a set ∆ of Φ0(x0)-clauses such that (here
x0 collects those variables among the x which happen to be Φ0-variables):

(i) all clauses D ∈ ∆ are positive and are such that Γ |=Φ D;
(ii) for every positive Φ0(x0)-clause C, if Γ |=Φ C, then C is Φ0-redundant

with respect to ∆.

Since we will be interested in exchange information concerning consequences
over shared signatures, we need a notion of a residue, like in partial theory
reasoning. Again, we prefer an abstract approach and treat residues as clauses
which are recursively enumerated by a suitable device:
9 As usual, this means that every literal of C′ is also in C.
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Definition 3.7. Suppose we are given a subfragment Φ0 of a fragment Φ. A
positive residue Φ-enumerator for Φ0 (often shortened as Φ-p.r.e.) is a recursive
function mapping a finite set x of Φ-variables, a finite set Γ of Φ(x)-clauses and
a natural number i to a Φ0-clause Resx

Φ(Γ, i) (to be written simply as ResΦ(Γ, i))
in such a way that:

– ResΦ(Γ, i) is a positive clause;
– fvar(ResΦ(Γ, i)) ⊆ x;
– Γ |=Φ ResΦ(Γ, i) (soundness).

Any Φ0-clause of the kind ResΦ(Γ, i) (for some i ≥ 0) will be called a Φ0-residue
of Γ .

Having also a redundancy notion for Φ0 at our disposal, we can axiomatize
the notion of an ‘optimized’ (i.e. of a non-redundant) Φ-p.r.e. for Φ0. The Nelson-
Oppen combination procedure we give in Subsection 4.2 has non-redundant
p.r.e.’s as main ingredients and it is designed to be ‘self-adaptive’ for termi-
nation in the relevant cases when termination follows from our results. These
are basically the noetherian and the locally finite cases mentioned in Subsection
3.4, where p.r.e.’s which are non redundant with respect to the full redundancy
notion usually exist and enjoy the termination property below.

Definition 3.8. A Φ-p.r.e. ResΦ for Φ0 is said to be non-redundant (wrt a
redundancy notion RedΦ0) iff it satisfies also the following properties for every
x, for every finite set Γ of Φ(x)-clauses and for every i ≥ 0 (we write Γ|Φ0 for
the set of clauses in Γ which are Φ0-clauses):

(i) if ResΦ(Γ, i) is Φ0-redundant with respect to Γ|Φ0 ∪ {ResΦ(Γ, j) | j < i},
then ResΦ(Γ, i) is either ⊥ or >;

(ii) if ⊥ is Φ0-redundant with respect to Γ|Φ0 ∪ {ResΦ(Γ, j) | j < i}, then
ResΦ(Γ, i) is equal to ⊥;

(iii) if ResΦ(Γ, i) is equal to >, then Γ|Φ0 ∪ {ResΦ(Γ, j) | j < i} is a Φ0-basis
for Γ .

Definition 3.9. A non-redundant Φ-p.r.e. for Φ0 is said to be complete iff for
every x, for every finite set Γ of Φ(x)-clauses and for every positive Φ0(x)-
clause C, we have that Γ |=Φ C implies that C is Φ0-redundant wrt Γ|Φ0 ∪
{ResΦ(Γ, j) | j ≤ i} for some i.

A non-redundant Φ-p.r.e. ResΦ is said to be terminating iff for for every x,
for every finite set Γ of Φ(x)-clauses there is an i such that ResΦ(Γ, i) is equal
to ⊥ or to >.

Let us make a few comments on Definition 3.8: first, only non redundant
residues can be produced at each step (condition (i)), if possible. If this is not
possible, this means that all the relevant information has been accumulated (a
Φ0-basis has been reached). In this case, if the inconsistency ⊥ is discovered
(in the sense that it is perceived as redundant), then the residue enumeration
in practice stops, because it becomes constantly equal to ⊥ (condition (ii)).
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The tautology > has the special role of marking the opposite outcome: it is
the residue that is returned precisely when Γ is consistent and a Φ0-basis has
been produced, meaning that all relevant semantic consequences of Γ have been
discovered (conditions (ii)-(iii)).

If the redundancy notion we use is trivial (i.e. it is the minimum one), then
it is possible to show that only very mild corrections are needed for any Φ-p.r.e.
for Φ0 to become non-redundant. This observation shows that, in practice, any
Φ-p.r.e. for Φ0 can be used as input of our combined decision procedure.

3.4 Noetherian, Locally Finite and Convex Fragments

Noetherianity conditions known from Algebra say that there are no infinite as-
cending chains of congruences. In finitely presented algebras, congruences are
represented as sets of equations among terms, hence noetherianity can be ex-
pressed there by saying that there are no infinite ascending chains of sets of
atoms, modulo logical consequence. If we translate this into our general setting,
we get the following notion.

An i.a.f. Φ0 is called noetherian if and only if for every finite set of variables
x, every infinite ascending chain

Θ1 ⊆ Θ2 ⊆ · · · ⊆ Θn ⊆ · · ·

of sets of Φ0(x)-atoms is eventually constant for Φ0-consequence (meaning that
there is an n such that for all m and A ∈ Θm, we have Θn |=Φ0 A).

An i.a.f. Φ0 is said to be effectively locally finite iff

(i) the set of Φ0-types is recursive and constraint satisfiability problem for Φ0

is decidable;
(ii) for every finite set of Φ0-variables x, there are finitely many computable

Φ0(x)-terms t1, . . . , tn such that for every further Φ0(x)-term u one of the
literals t1 6= u, . . . , tn 6= u is not Φ0-satisfiable (that is, in the class of
the structures in which Φ0 is interpreted, every Φ0(x)-term is equal, as an
interpreted function, to one of the ti).

The terms t1, . . . , tn in (ii) are called the x-representative terms of Φ0.
Effective local finiteness is often used in order to make Nelson-Oppen proce-

dures terminating [16,8,4]:10 we shall see however that noetherianity (which is
clearly a weaker condition) is already sufficient for that, once it is accompanied
by a suitable effectiveness condition.

If Φ0 is noetherian and Φ is an expansion of it, one can prove [17] that every
finite set Γ of Φ(x)-clauses has a finite full Φ0-basis (i.e. there is a finite Φ0-basis
for Γ with respect to the full redundancy notion). The following noetherianity
requirement for a p.r.e. is intended to be nothing but an effectiveness requirement
for the computation of finite full Φ0-bases.
10 Notice that the above definition of local finiteness becomes slightly redundant in the

first order universal case considered in these papers.
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A Φ-p.r.e. ResΦ for a noetherian fragment Φ0 is said to be noetherian iff it
is non redundant with respect to the full redundancy notion for Φ0.

It is possible to prove that a noetherian Φ-p.r.e. ResΦ for Φ0 is terminating
and also complete. Moreover, if Φ0 is effectively locally finite and Φ is any exten-
sion of it having decidable constraint satisfiability problems, then there always
exists a noetherian Φ-p.r.e. for Φ0 [17].

Noetherianity is the essential ingredients for the termination of Nelson-Oppen
combination procedures; on the other hand, for efficiency, convexity is the crucial
property, as it makes the combination procedure deterministic [26]. Following an
analogous notion introduced in [30], we say that an i.a.f. Φ is Φ0-convex (here
Φ0 is a subfragment of Φ) iff every finite set Γ of Φ-literals having as a Φ-
consequence the disjunction of n > 1 Φ0-atoms, actually has as a Φ-consequence
one of them.11 Similarly, a Φ-p.r.e. for Φ0 is Φ0-convex iff ResΦ(Γ, i) is always
an atom (recall that by our conventions, this includes the case in which it is
> or ⊥). Any complete non-redundant Φ-p.r.e. for Φ0 can be turned into a Φ0-
convex complete non-redundant Φ-p.r.e. for Φ0, in case Φ is Φ0-convex. Thus
the combination procedure of Subsection 4.2 is designed in such a way that
it becomes automatically deterministic if the component fragments are both
convex with respect to the shared fragment.

An example from Algebra may help in clarifying the notions introduced in
this section.

Example 3.9 (K-algebras). Given a field K, let us consider the one-sorted lan-
guage LKalg, whose signature contains the constants 0, 1 of type V (V is the
unique sort of LKalg), the two binary function symbols +, ◦ of type V V → V ,
the unary function symbol − of type V → V and a K-indexed family of
unary function symbols gk of type V → V . We consider the i.a.f. ΦKalg =
〈LKalg, TKalg,SKalg〉 where TKalg is the set of first order terms in the above sig-
nature (we shall use infix notation for + and write kv, v1v2 for gk(v), ◦(v1, v2), re-
spectively). Furthermore, the class SKalg consists of the structures which happen
to be models for the theory of (commutative, for simplicity) K-algebras: these
are structures having both a commutative ring with unit and a K-vector space
structure (the two structures are related by the equations k(v1v2) = (kv1)v2 =
v1(kv2)). It is clear that ΦKalg is an interpreted algebraic fragment, which is
also convex and noetherian. Constraint satisfiability problem in this fragment is
equivalent to the ideal membership problem and hence it is solved by Buchberger
algorithm computing Gröbner bases.

As a subfragment of ΦKalg we can consider the interpreted algebraic frag-
ment corresponding to the theory of K-vector spaces (this is also convex and
noetherian, although still not locally finite). In order to obtain a noetherian
ΦKalg-p.r.e. for ΦK , we need a condition that is satisfied by common admissi-
ble term orderings, namely that membership of a linear polynomial to a finitely
generated ideal to be decided only by linear reduction rules. If this happens, we
11 When we say that a fragment Φ is convex tout court, we mean that it is Φ-convex.

The fragments Φ = 〈L, T,S〉 analyzed in Example 3.1 are convex in case S is the
class of the models of a first-order Horn theory.
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get a noetherian ΦKalg-p.r.e. for ΦK simply by listing the linear polynomials of
a Gröbner basis.

4 Combined Fragments

We give now the formal definition for the operation of combining fragments.

Definition 4.1. Let Φ1 = 〈L1, T1,S1〉 and Φ2 = 〈L2, T2,S2〉 be i.a.f.’s on the
languages L1 and L2 respectively; we define the shared fragment of Φ1, Φ2 as the
i.a.f. Φ0 = 〈L0, T0,S0〉, where

– L0 := L1 ∩ L2;
– T0 := T1|L0 ∩ T2|L0 ;
– S0 := S1|L0 ∪ S2|L0 .

Thus the Φ0-terms are the L0-terms that are both Φ1-terms and Φ2-terms,
whereas the Φ0-structures are the L0-structures which are reducts either of a
Φ1- or of a Φ2-structure. According to the above definition, Φ0 is a subfragment
of both Φ1 and Φ2.

Definition 4.2. The combined fragment of the i.a.f.’s Φ1 and Φ2 is the i.a.f.

Φ1 ⊕ Φ2 = 〈L1 ∪ L2, T1 ⊕ T2,S1 ⊕ S2〉

on the language L1 ∪ L2 such that:

– T1⊕T2 is the smallest set of L1 ∪L2-terms which includes T1 ∪T2, is closed
under composition and contains domain and codomain variables;

– S1 ⊕ S2 = {A | A is a L1 ∪ L2-structure s.t. A|L1 ∈ S1 and A|L2 ∈ S2}.

T1 ⊕ T2 is defined in such a way that conditions (i)-(ii)-(iii) from Definition
3.2 are matched; of course, since Φ1 ⊕ Φ2-types turn out to be just the types
which are either Φ1- or Φ2-types, closure under domain and codomain variables
comes for free.

4.1 The Purification Steps

We say that a Φ1 ⊕ Φ2-term is pure iff it is a Φi-term (i = 1 or i = 2) and that
a Φ1 ⊕Φ2-constraint Γ is pure iff it for each literal L ∈ Γ there is i = 1 or i = 2
such that L is a Φi-literal. Constraints in combined fragments can be purified,
as we shall see.

One can effectively determine whether a given term t ∈ L1 ∪ L2 belongs or
not to the combined fragment: it can be shown [17] that it is sufficient to this
aim to check whether it is a pure Φi-term and, in the negative case, to split
it as t ≡ u[t1, . . . , tk] and to recursively check whether u, t1, . . . , tk are in the
combined fragment.12 The problem however might be computationally hard:
12 This is well defined (by an induction on the size of t), because we do not require

our terms to be in βη-normal form (that is, we do not require in Definition 3.2 (i)
substitution to be followed by normalization).
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since we basically have to guess a subtree of the position tree of the term t,
the procedure we sketched is in NP. Notice that these complexity complications
(absent in the standard Nelson-Oppen case) are due to our level of generality and
that they disappear in customary situations where don’t know non-determinism
can be avoided by looking for ‘alien’ subterms, see [7] for a thorough discussion
of the problem.

Let Γ be any Φ1⊕Φ2-constraint: we shall provide finite sets Γ1, Γ2 of Φ1- and
Φ2-literals, respectively, such that Γ is Φ1 ⊕Φ2-satisfiable iff Γ1 ∪Γ2 is Φ1 ⊕Φ2-
satisfiable. This purification process is obtained by iterated applications of the
following:?

Purification Rule

Γ ′, A

Γ ′, A([x]P ), x = A|P
(2)

where (we use notations like Γ ′, A for the constraint Γ ′ ∪ {A})

– P is a set of positions of A;
– A|P is a non-variable subterm of A occurring in all the positions in P (let τ

be its type);
– no free variable in A|P is bound in A;
– x is a fresh variable of type τ ;
– the literal A([x]P ) (obtained by replacing in A in all the positions in P the

subterm A|P by the variable x) is not an equation between variables;
– Γ ′, A([x]P ), x = A|P is a Φ1⊕Φ2-constraint (this means that it still consists

of equations and inequations among Φ1 ⊕ Φ2-terms).

The purification process applies the Purification Rule as far as possible; the
rule can be applied in a don’t care non deterministic way (however recall that
one must take care of the fact that the constraint produced by the rule still
consists of Φ1 ⊕ Φ2-literals, hence don’t know non-determinism may arise inside
a single application of the rule).

Proposition 4.1. The purification process terminates and returns an equi-sa-
tisfiable constraint Γ1 ∪ Γ2, where Γi is a set of Φi-literals.

4.2 The Combination Procedure

In this subsection, we develop a procedure which is designed to solve constraint
satisfiability problems in combined fragments: the procedure is sound and we
shall investigate afterwards sufficient conditions for it to be terminating and
complete. Let us fix relevant notation for the involved data.

? Added on July 20, (2005): The formulation of the Purification Rule has been modified
according to the remarks of [17], concerning the need of the simultaneous abstraction
of many occurrences of the same subterm.



18 Silvio Ghilardi, Enrica Nicolini, and Daniele Zucchelli

Assumptions/Notational Conventions. We suppose that we are given two
i.a.f.’s Φ1 = 〈L1, T1,S1〉 and Φ2 = 〈L2, T2,S2〉, with shared fragment Φ0 =
〈L0, T0,S0〉. We suppose also that a redundancy notion RedΦ0 for Φ0 and two
non-redundant Φi-p.r.e.’s for Φ0 (call them ResΦ1 , ResΦ2) are available.13 We
also fix a purified Φ1⊕Φ2-constraint Γ1∪Γ2 to be tested for Φ1⊕Φ2-consistency;
we can freely suppose that Γ1 and Γ2 contain the same subset Γ0 of Φ0-literals
(i.e. that Γ0 := Γ1|Φ0 = Γ2|Φ0). We indicate by xi the free variables occurring
in Γi (i = 1, 2); x0 are those variables among x1 ∪ x2 which happen to be Φ0-
variables (again we can freely suppose that x0 = x1 ∩ x2).

In order to describe the procedure we also need a selection function in the
sense of the following definition:

Definition 4.3. A selection function Choose(Λ) is a recursive function accept-
ing as input a set Λ of Φ0(x0)-atoms and returning a positive Φ0(x0)-clause C
such that:

(i) C is a Φi-consequence of Γi ∪ Λ, for i = 1 or i = 2;
(ii) if ⊥ is Φ0-redundant wrt Γ0 ∪ Λ, then C is ⊥;
(iii) if C is Φ0-redundant wrt Γ0 ∪ Λ, then C is > or ⊥.

The recursive function Choose(Λ) will be subject also to a fairness require-
ment that will be explained below.

The Procedure FComb. Our combined procedure generates a tree whose in-
ternal nodes are labeled by sets of Φ0(x0)-atoms; leaves are labeled by “unsatisfi-
able” or by “saturated”. The root of the tree is labeled by the empty set and if a
node is labeled by the set Λ, then the successors are:

– a single leaf labeled “unsatisfiable”, if Choose(Λ) is equal to ⊥;
– or a single leaf labeled “saturated”, if Choose(Λ) is equal to >;
– or nodes labeled by Λ ∪ {A1}, . . . , Λ ∪ {Ak}, if Choose(Λ) is A1 ∨ · · · ∨Ak.

The branches which are infinite or end with the “saturated” message are
called open, whereas the branches ending with the “unsatisfiable” message are
called closed. The procedures stops (and the generation of the above tree is
interrupted) iff all branches are closed or if there is an open finite branch (of
course termination is not guaranteed in the general case).

Fair Selection Functions. The function Choose(Λ) is fair iff the following
happens for every open branch Λ0 ⊆ Λ1 ⊆ · · · : if C is equal to ResΦi

(Γi ∪Λk, l)
for some i = 1, 2 and for some k, l ≥ 0, then C is Φ0-redundant with respect to
Γ0∪Λn for some n (roughly, residues wrt Φi of an open branch are redundant with
respect to the atoms in the branch). Under the current assumptions/notational
conventions, it can be shown that
13 Of course, ResΦ1 and ResΦ2 are assumed to be both non-redundant with respect to

RedΦ0 .
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Algorithm 1 The combination procedure
1: procedure FComb(Λ)
2: C ← Choose(Λ)
3: if C = ⊥ then
4: return “unsatisfiable”
5: else if C = > then
6: return “saturated”
7: end if
8: for all A ∈ C do
9: if FComb(Λ ∪ {A}) = “saturated” then

10: return “saturated”
11: end if
12: end for
13: return “unsatisfiable”
14: end procedure

Proposition 4.2. There always exists a fair selection function.

Next Proposition says that our procedure is always sound and that it termi-
nates under noetherianity assumptions:

Proposition 4.3. (i) If the procedure FComb returns “unsatisfiable”, then
the purified constraint Γ1 ∪ Γ2 is Φ1 ⊕ Φ2-unsatisfiable.

(ii) If Φ0 is noetherian and RedΦ0 is the full redundancy notion, then the pro-
cedure FComb terminates on the purified constraint Γ1 ∪ Γ2.

Completeness of the procedure FComb cannot be achieved easily, heavy con-
ditions are needed. Since our investigations are taking a completeness-oriented
route, it is quite obvious that we must consider from now on only the case in
which the input Φi-p.r.e.’s are complete (see Definition 3.9). In addition we need
a compactness-like assumption. We say that an i.a.f. Φ is Φ0-compact (where Φ0

is a subfragment of Φ) iff, given a Φ-constraint Γ and a generalized Φ0-constraint
Γ0, we have that Γ ∪ Γ0 is Φ-satisfiable if and only if for all finite ∆0 ⊆ Γ0, we
have that Γ ∪∆0 is Φ-satisfiable.

Since it can be shown that any extension Φ of a locally finite fragment Φ0

is Φ0-compact [17], if we assume effective local finiteness in order to guarantee
termination, Φ0-compactness is guaranteed too.14

The following Proposition gives relevant information on the semantic mean-
ing of a run of the procedure that either does not terminate or terminates with
a saturation message:
14 Notice that only special kinds of generalized Φ-constraints are involved in the defi-

nition of Φ0-compactness, namely those that contain finitely many proper Φ-literals;
thus, Φ0-compactness is a rather weak condition (that’s why it may hold for any
extension whatsoever of a given fragment, as shown by the locally finite case). Fi-
nally, it goes without saying that, by the compactness theorem for first order logic,
Φ0-compactness is guaranteed whenever Φ is a first-order fragment.
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Proposition 4.4. Suppose that Φ1, Φ2 are both Φ0-compact, that the function
Choose(Λ) is fair wrt two complete Φi-p.r.e.’s and that the procedure FComb
does not return “unsatisfiable” on the purified constraint Γ1 ∪Γ2. Then there are
Li-structures Mi ∈ Si and Li-assignments αi (i = 1, 2) such that:

(i) M1 |=α1 Γ1 and M2 |=α2 Γ2;
(ii) for every Φ0(x0)-atom A, we have that M1 |=α1 A iff M2 |=α2 A.

5 Isomorphism Theorems and Completeness

Proposition 4.4 explain what is the main problem for completeness: we would
like an open branch to produce Φi-structures (i = 1, 2) whose L0-reducts are
isomorphic and we are only given Φi-structures whose L0-reducts are Φ0(x0)-
equivalent (in the sense that they satisfy the same Φ0(x0)-atoms). Hence we
need a powerful semantic device that is able to transform Φ0(x0)-equivalence
into L0-isomorphism: this device will be called an isomorphism theorem. The
precise formulation of what we mean by an isomorphism theorem needs some
preparation. First of all, for the notion of an isomorphism theorem to be useful
for us, it should apply to fragments extended with free constants.

Given an i.a.f. Φ=〈L, T,S〉, we denote by Φ(c) = 〈L(c), T (c),S(c)〉 the fol-
lowing i.a.f.: (i) L(c) := L ∪ {c} is obtained by adding to L finitely many new
constants c (the types of these new constants must be types of Φ); (ii) T (c) con-
tains the terms of the kind t[c/x, y] for t[x, y] ∈ T ; (iii) S(c) contains precisely
the L(c)-structures whose L-reduct is in S. Fragments of the kind Φ(c) are called
finite expansions of Φ.

Let Φ(c) be a finite expansion of Φ = 〈L, T,S〉 and letA,B be L(c)-structures.
We say that A is Φ(c)-equivalent to B (written A ≡Φ(c) B) iff for every closed
L(c)-atom A we have that A |= A iff B |= A. By contrast, we say that A is
Φ(c)-isomorphic to B (written A 'Φ(c) B) iff there is an L(c)-isomorphism from
A onto B.

We can now specify what we mean by a structural operation on an i.a.f.
Φ0 = 〈L0, T0,S0〉. We will be very liberal here and define structural operation
on Φ0 any family of correspondences O = {Oc0} associating with any finite set
of free constants c0 and with any A ∈ S0(c0) some Oc0(A) ∈ S0(c0) such that
A ≡Φ0(c0)

Oc0(A). If no confusion arises, we omit the indication of c0 in the
notation Oc0(A) and write it simply as O(A).

A collection O of structural operations on Φ0 allows a Φ0-isomorphism the-
orem if and only if, for every c0, for every A,B ∈ S0(c0), if A ≡Φ0(c0)

B then
there exist O1, O2 ∈ O such that O1(A) 'Φ0(c0)

O2(B).
We shall mainly be interested into operations that can be extended to a

preassigned expanded fragment. Here is the related definition. Let an i.a.f. Φ =
〈L, T,S〉 extending Φ0 = 〈L0, T0,S0〉 be given; a structural operation O on Φ0

is Φ-extensible if and only if for every c and every A ∈ S(c) there exist B ∈ S(c)
such that

B|L0(c0)
'Φ0(c0)

O(A|L0(c0)
) and B ≡Φ(c) A,

(where c0 denotes the set of those constants in c whose type is a Φ0-type).
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Example 5.1 (Ultrapowers). Ultrapowers [11] are basic constructions in the mod-
el theory of first-order logic. An ultrapower

∏
U (technically, an ultrafilter U

over a set of indices is needed to describe the operation) transforms a first-order
structure A into a first-order structure

∏
U A which is elementarily equivalent

to it (meaning that A and
∏
U A satisfy the same first-order sentences). Hence

if we take a fragment Φ0 = 〈L0, T0,S0〉, where S0 is an elementary class and
〈L0, T0〉 is an algebraic fragment of the kind analyzed in Example 3.3, then

∏
U

is a structural operation on Φ0. A deep result in classical model theory (known
as the Keisler-Shelah isomorphism theorem [11]) says that two L0-structures
A and B are elementarily equivalent iff there is an ultrafilter U such that the
ultrapowers

∏
U A and

∏
U B are L0-isomorphic. Thus, if Φ0 is as above, Keisler-

Shelah theorem is a Φ0-isomorphism theorem in our sense.15 Notice also that
taking the reduct of a first-order structure to a smaller signature commutes with
ultrapowers, hence if Φ = 〈L, T,S〉 is an extension of Φ0 and S is elementary and
〈L, T 〉 is again a fragment of the kind analyzed in Example 3.3, then we have
that the Φ0-structural operation

∏
U is Φ-extensible (the structure B required

in the definition of Φ-extensibility is again
∏
U A, where the ultrapower is now

taken at the level of L-structures).

Example 5.2 (Disjoint Copies). Consider a modal fragment ΦM0 based on the
empty modal signatureOM0 (see Example 3.5); given any non empty set I, taking
disjoint I-copy qI is easily seen to be a structural operation on ΦM0 . Moreover,
the totality of such operations (varying I) allows a ΦM0-isomorphism theorem: to
show this, it is sufficient to observe that ΦM0(c0)-equivalent structures becomes
isomorphic if a sufficiently large disjoint union is applied to them, because the
cardinality of subsets definable through boolean combinations of the c0’s are
complete invariants for LM0(c0)-isomorphism (see [17] for details).

Now notice that a guarded elementary sentence is true in M iff it is true in
qIM. Hence, taking disjoint I-copies is a Φ-extensible operation, provided Φ is
a modal or a guarded fragment (in the sense of Examples 3.5 and 3.8): notice
in fact that Φ(c)-atoms are equivalent to elementary guarded sentences, because
the second order variables of type W → Ω have been replaced in them by the
corresponding free constants c (which are constants of type W → Ω, that is they
are unary first-order predicate letters).

Sometimes an isomorphism theorem does not hold precisely for a fragment
Φ0 = 〈L0, T0,S0〉, but for an inessential variation (called specialization) of it. A
specialization of Φ0 is an i.a.f. Φ?

0 which has the same language and the same
terms as Φ0, but whose class of L0-structures is a smaller class S?

0 ⊆ S0 satisfying
the following condition: for every c0 and for every A ∈ S0(c0), there exists
A? ∈ S?

0 (c0) such that A ≡Φ0(c0)
A?.

15 If Φ0 = 〈L0, T0,S0〉 is from Example 3.1-3.2 and quantifier elimination holds in
S0, then the

∏
U ’s are also structural operations on Φ0 allowing a Φ0-isomorphism

theorem (this observation is a key point for the proof of Theorem 5.2 below.)
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Given an i.a.f. Φ = 〈L, T,S〉 extending Φ0, we say that Φ is compatible with
respect to a specialization Φ?

0 of Φ0 if and only if for every c and A ∈ S(c), there
exists a A′ ∈ S(c) such that A ≡Φ(c) A′ and A′|L0

∈ S?
0 .

Example 5.3 (Stably Infinite First-Order Theories). The Φ0-compatibility no-
tion is intended to recapture, in our general setting, T0-compatibility as intro-
duced in [16]. The latter generalizes, in its turn, the standard stable infiniteness
requirement of Nelson-Oppen procedure. Let Φ = 〈L, T,S〉 be an i.a.f. of the
kinds considered in Example 3.1 or in Example 3.2: we say that Φ is stably in-
finite iff every satisfiable Φ-constraint is satisfiable in some infinite L-structure
A ∈ S.

Let now Φ0 = 〈L0, T0,S0〉 be the i.a.f. so specified: (i) L0 is the empty one-
sorted signature; (ii) T0 contains only the individual variables; (iii) S0 is the
totality of L0-structures (i.e. the totality of sets). A specialization Φ?

0 of Φ0 is
obtained by considering the class S?

0 formed by the infinite sets.
By an easy compactness argument (compactness holds because Φ is a first-

order fragment and S is an elementary class), it is easily seen that Φ is stably
infinite iff it is compatible with respect to the specialization Φ?

0 of Φ0.

5.1 The Main Combination Result

By assuming the existence of Φi-extensible structural operations allowing a Φ0-
isomorphism theorem, it is possible to formulate a sufficient condition for our
combined procedure to be complete; if we put together this condition, the termi-
nation condition of Proposition 4.3 and various remarks we made in the previous
sections, we obtain the following decidability transfer result (see [17] for proof
details):

Theorem 5.1. Suppose that:

(1) the interpreted algebraic fragments Φ1, Φ2 have decidable constraint satisfia-
bility problems;

(2) the shared fragment Φ0 is effectively locally finite (or more generally, Φ1, Φ2

are both Φ0-compact, Φ0 is noetherian and there exist noetherian positive
residue Φ1- and Φ2-enumerators for Φ0);

(3) Φ1 and Φ2 are both compatible with respect to a specialization Φ?
0 of Φ0;

(4) there is a collection O of structural operations on Φ?
0 which are all Φ1- and

Φ2-extensible and allow a Φ?
0-isomorphism theorem.

Then the procedure FComb (together with the preprocessing Purification Rule)
decides constraint satisfiability in the combined fragment Φ1 ⊕ Φ2.

Remark. In case the shared fragment Φ0 is locally finite, a combination procedure
can be also obtained simply by guessing a maximal set Θ0 of Φ0(x0)-literals and
by testing the Φi-satisfiability of Θ0 ∪ Γi. This non-deterministic version of the
procedure does not require the machinery developed in Section 3.3 (but it does
not apply to noetherian cases and does not yield automatic optimizations in
Φ0-convexity cases).
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Remark. Theorem 5.1 cannot be used to transfer decidability of word problems
to our combined fragments: the reason is that, in case the procedure FComb is
initialized with only a single negative literal, constraints containing positive liter-
als are nevertheless generated during the execution (and also by the Purification
Rule). However, since negative literals are never run-time generated, Theorem
5.1 can be used to transfer decidability of conditional word problems, namely of
satisfiability problems for constraints containing just one negative literal.

5.2 Applications: Decidability Transfer through Ultrapowers

We shall use the Keisler-Shelah isomorphism Theorem of Example 5.1 to get the
transfer decidability result of [16] as a special case of Theorem 5.1.

Let Φ1 = 〈L1, T1,S1〉 and Φ2 = 〈L2, T2,S2〉 be i.a.f.’s of the kinds consid-
ered in the Example 3.1 or in Example 3.2 and let Φ0 = 〈L0, T0,S0〉 be their
shared fragment. The hypothesis for the decidability transfer result of [16] are
the following:

(C1) there is a universal theory T0 in the shared signature L0 such that every
A ∈ S0 is a model of T0;

(C2) T0 admits a model-completion T ?
0 ;16

(C3) for i = 1, 2, every A ∈ Si embeds into some A′ ∈ Si which is a model of
T ?

0 ;
(C4) Φ0 is effectively locally finite.

Theorem 5.2 ([16]). Suppose that Φ1 and Φ2 are i.a.f.’s of the kinds consid-
ered in Examples 3.1-3.2, which moreover satisfy conditions (C1)-(C4) above.
If constraint satisfiability problems are decidable in Φ1 and Φ2, then they are
decidable in Φ1 ⊕ Φ2 too.

If we take as T0 the empty theory (in the one-sorted first-order empty lan-
guage with equality), then T ?

0 is the theory of an infinite set and condition (C3)
is equivalent to stable infiniteness (by a simple argument based on compactness);
thus, Theorem 5.2 reduces to the standard Nelson-Oppen result [25,26,31] con-
cerning stably infinite theories over disjoint signatures. We recall from [16] that
among relevant examples of theories to which Theorem 5.2 is easily seen to ap-
ply, we have Boolean algebras with operators (namely the theories axiomatizing
algebraic semantics of modal logic): thus, decidability of conditional word prob-
lem transfers from two theories axiomatizing varieties of modal algebras with
operators to their union (provided only Boolean operators are shared). This re-
sult, proved in [33] by specific techniques, is the algebraic version of the fusion
transfer of decidability of global consequence relation in modal logic.

We remark that condition (C4) can be weakened to

(C4′) Φ0 is noetherian and there exist noetherian positive residue Φ1- and Φ2-
enumerators for Φ0,

16 We refer the reader to [16] for the definition and to any textbook on model theory
like [11] for more information.
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as suggested by Theorem 5.1 (2). As an example of an application of Theorem 5.2
under this weaker condition one can consider the theory of K-algebras endowed
with a linear endomorphism: this theory is the combination of the theory of K-
algebras and of the theory of K-vector spaces endowed with an endomorphism
(positive residue enumerators for the noetherian shared fragment can be obtained
in both cases by the method outlined in Example 3.9).

As another application of Theorem 5.1 based on Keisler-Shelah isomorphism
theorem, we show how to include a first order equational theory within descrip-
tion logic A-Boxes. To get a decidability transfer result for the combination of
an equational i.a.f. Φ = 〈L, T,S〉 from Example 3.1 and of an A-Box fragment
ΦML = 〈LML, TML,SML〉 from Example 3.6, we only need mild additional hy-
potheses. These are explained in the statement of the following Theorem:

Theorem 5.3. Suppose that we are given an equational i.a.f. Φ = 〈L, T,S〉 from
Example 3.1 and an A-Box fragment ΦML = 〈LML, TML,SML〉 from Example
3.6; suppose also that the signatures L and LML are disjoint, that Φ is stably
infinite and that SML is an elementary class. Then decidability of constraint
satisfiability problems transfers from Φ and ΦML to Φ⊕ ΦML.

Notice that the fragment Φ⊕ΦML of Theorem 5.3 is quite peculiar (combined
terms all arise from a single composition step).

5.3 Applications: Decidability Transfer through Disjoint Copies

Disjoint copies are the key tool for transfer decidability results in modal frag-
ments. If OM1 and OM2 are modal signatures, we let OM1⊕M2 indicate their
disjoint union (OM1⊕M2 is called the fusion of the modal signatures OM1 and
OM2). Given a modal i.a.f. ΦM1 over OM1 and a modal i.a.f. ΦM2 over OM2 (see
Example 3.5), let us define their fusion as the modal i.a.f.

ΦM1⊕M2 = 〈LM1⊕M2 , TM1⊕M2 ,SM1 ⊕ SM2〉 .

Theorem 5.1 and the considerations in Example 5.2 show that decidability of
constraint satisfiability transfers from two modal i.a.f.’s ΦM1 and ΦM2 (operating
on disjoint modal signatures) to their combination ΦM1 ⊕ ΦM2 . Since it can
be shown that the latter differs from the fusion ΦM1⊕M2 only by trivial βη-
conversions, the following well-known decidability transfer result obtains:

Theorem 5.4 (Decidability transfer for modal i.a.f.’s). If two modal in-
terpreted algebraic fragments ΦM1 and ΦM2 have decidable constraint satisfiabil-
ity problems, so does their fusion ΦM1⊕M2 .

Fragments of the kind examined in Example 3.6 are not interesting for being
combined with each other, because the absence of the type W → Ω makes such
combinations trivial. On the contrary, full modal fragments from Example 3.7
are quite interesting in this respect (we recall that they reproduce both A-Box
and T-Box reasoning from the point of view of description logics). Under the
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obvious definition of fusion for full modal i.a.f.’s, we have the following result
(the proof requires just slight modifications to the considerations of Example
5.2):

Theorem 5.5 (Decidability transfer for full modal i.a.f.’s ). If two full
modal i.a.f.’s have decidable constraint satisfiability problems, so does their fu-
sion.

Theorem 5.5 (once completed with the straightforward extension to n-ary
non normal modalities) covers the results of [9] on transfer of decidability of
A-Box consistency (wrt T-Boxes axioms) in fusions of local abstract description
systems.

We now try to extend our decidability transfer results to appropriate combi-
nations of guarded or of two-variable fragments. However, to get positive results,
we need to keep shared signatures under control (otherwise undecidability phe-
nomena arise). In addition, we still want to exploit the isomorphism theorem of
Example 5.2 and for that we need the shared signature to be empty and second
order variables appearing as terms in the fragments to be monadic only. The
kind of combination that arise in this way is a form of fusion, that we shall
call monadic fusion. We begin by identifying a class of fragments to which our
techniques apply.

Let us call Φ∅ = 〈L∅, T∅,S∅〉 the following i.a.f.: (i) L∅ is the empty one-sorted
first-order signature (that is, L∅ does not contain any proper symbol, except for
its unique sort which is called D); (ii) T∅ is equal to TL∅11 ;17 (iii) S∅ contains all
L∅-structures.

Definition 5.1. A monadically suitable18 i.a.f. Φ = 〈L, T,S〉 is an i.a.f. such
that:

(i) L is a relational one-sorted first-order signature;
(ii) T

L∅
11 ⊆ T ⊆ TLω1;

(iii) the Φ∅-structural operation of taking disjoint I-copies is Φ-extensible.

As a first example of a monadically suitable fragment, we can consider the
guarded fragments of Example 3.8 (see also the considerations in Example 5.2).
To get another family of examples, we introduce an alternative construction
for proving extensibility of the operation of taking disjoint I-copies. This con-
struction is nicely behaved only for fragments without identity and is called
I-conglomeration:

Definition 5.2 (I-conglomeration). Consider a first order one-sorted rela-
tional signature L and a (non empty) index set I. The operation qI , defined
17 See Example 3.4 for this notation and for other similar notation used below.
18 We remark that, despite the fact that the definition of a monadically suitable frag-

ment needs the present paper settings to be formulated, there is some anticipation
of it in the literature on monodic fragments (see for instance statements like that of
Theorem 11.21 in [15]).
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on L-structures and called I-conglomeration, associates with an L-structure
M = 〈[[− ]]M, IM〉 the L-structure qIM such that [[D ]]qIM is the disjoint
union of I-copies of [[D ]]M (here D is the unique sort of L). The interpretation
of relational constants is defined in the following way

qIM |= P (〈d1, i1〉, . . . , 〈dn, in〉) ⇐⇒ M |= P (d1, . . . , dn)

for every n-ary relational predicate P different from equality.

Notice that I-conglomerations and disjoint I-copies coincide for relational
first order signatures having only unary predicates.

Example 5.4. Let L2V be a first-order relational one-sorted signature; a two
variables i.a.f. over L2V is a fragment of the kind Φ2V = 〈L2V , T2V ,S2V 〉, where:
(i) T2V contains the terms without identity which belongs to the set TL2V

NK of
Example 3.4 for K = 1 and N = 2; (ii) S2V is a class of L2V -structures closed
under isomorphisms and I-conglomerations. To show that Definition 5.1 applies
to Φ2V , it is sufficient to check that a first order formula not containing the
equality predicate is satisfiable in M iff it is satisfiable in qIM.

For two monadically suitable i.a.f.’s Φ1 and Φ2 operating on disjoint signa-
tures, let us call the combined fragment Φ1 ⊕ Φ2 the monadic fusion of Φ1 and
Φ2. For monadic fusions we have the following [17]:

Theorem 5.6 (Decidability transfer for monadically suitable i.a.f.’s).
If two monadically suitable i.a.f.’s Φ1, Φ2 operating on disjoint signatures have
decidable constraint satisfiability problems, so does their monadic fusion.

Theorem 5.6 offers various combination possibilities, however notice that: (a)
the conditions for a fragment to be monadically suitable are rather strong (for
instance, the two variable fragment with identity is not monadically suitable);
(b) the notion of monadic fusion is a restricted form of combination, because
only unary second order variables are available for replacement when forming
formulae of the combined fragment.

5.4 Applications: Decidability Transfer for Monodic Fragments

Fragments in first-order modal predicate logic become undecidable quite soon:
for instance, classical decidability results for the monadic or the two-variables
cases do not extend to modal languages [20,14,19]. However there still are in-
teresting modal predicate fragments which are decidable: one-variable fragments
are usually decidable [29,15], as well as many monodic fragments. We recall that
a monodic formula is a modal first order formula in which modal operators are
applied only to subformulae containing at most one free variable. Monodic frag-
ments whose extensional (i.e. non modal) component is decidable seem to be
decidable too [32,15]: we shall give this fact a formulation in terms of a decid-
ability transfer result for monodic fragments which are obtained as combinations
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of a suitable extensional fragment and of a one-variable first-order modal frag-
ment. Since we prefer, for simplicity, not to introduce a specific formal notion of
a modal fragment, we shall proceed through standard translations and rely on
our usual notion of an i.a.f..

Constant Domains and Standard Translation. Modal predicate formulae
are built up from atomic formulae of a given first-order one-sorted relational
signature L and from formulae of the kindX(x) (whereX is a unary second order
variable), by using boolean connectives, individual quantifiers and a diamond
operator ♦.19

There are actually different standard translations for first-order modal lan-
guages, we shall concentrate here on the translation corresponding to constant
domain semantics. The latter is defined as follows. The signature LW has, in
addition to the unique sort D of L, a new sort W ; relational constants of type
Dn → Ω have corresponding relational constants in LW of type DnW → Ω. We
use equal names for corresponding constants: this means for instance that if P
has type D2 → Ω in L, the same P has type D2W → Ω in LW . We shall make
the same conventions for second order variables: hence a second order L-variable
X of type D → Ω has a corresponding second order variable X of type DW → Ω
in LW .

Notice that a LW -structure A is nothing but a [[W ]]A-indexed class of L-
structures, all having the same domain [[D ]]A: we indicate by Aw the structure
corresponding to w ∈ [[W ]]A and call it the fiber structure over w. The signature
LWR is obtained from LW by adding it also a binary ‘accessibility’ relation R
of type WW → Ω. This is the signature we need for defining the standard
translation.

For a modal predicate L-formula ϕ[xD
1 , . . . , x

D
n ] and for a variable w : W , we

define the (non modal) LWR-formula ST (ϕ,w) as follows:

ST (>, w) = >; ST (⊥, w) = ⊥;
ST (P (xi1 , . . . , xim), w) = P (xi1 , . . . , xim , w); ST (X(xi), w) = X(xi, w);

ST (¬ψ,w) = ¬ST (ψ,w); ST (∃xDψ,w) = ∃xDST (ψ,w);
ST (ψ1 ◦ ψ2, w) = ST (ψ1, w) ◦ ST (ψ2, w), where ◦ ∈ {∨,∧};
ST (♦ψ,w) = ∃vW (R(w, v) ∧ ST (ψ, v)).

Monodic Fusions for Fragments Let F1M be a class of Kripke frames closed
under disjoint unions and isomorphisms. We call one-variable modal fragment
induced by F1M the i.a.f. Φ1M = 〈L1M , T1M ,S1M 〉, where: (i) L1M := LWR

∅ ,
where L∅ is the empty one-sorted first-order signature;(ii) T1M contains the
terms which are βη-equivalent to terms of the kind {wW , xD | ST (ϕ,w)}, where
ϕ is a modal predicate formula having x as the only (free or bound) variable;

19 All the results in this subsection extend to the case of multimodal languages and to
the case of n-ary modalities like Since, Until, etc.
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(iii) S1M is the class of the L1M -structures A such that [[D ]]A is not empty and
such that the Kripke frame ([[W ]]A, IA(R)) belongs to F1M .

For a monadically suitable i.a.f. Φe = 〈Le, Te,Se〉 (recall Definition 5.1), we
define the i.a.f. ΦW

e = 〈LW
e , TW

e ,SW
e 〉, as follows: (i) TW

e contains the terms
of the kind {wW , xD | ST (ϕ,w)}, for {xD | ϕ} ∈ Te: (ii) SW

e contains the
LW

e -structures A whose fibers Aw are all in Se.
Fix a one variable modal fragment Φ1M and a first-order monadically suitable

fragment Φe; we call monodic fusion of Φe and Φ1M the combined fragment
ΦW

e ⊕ Φ1M .
Thus one may for instance combine guarded or two-variables fragments20

with one-variables modal fragments to get monodic fusions corresponding to the
relevant cases analyzed in [32,15]. In fact (modulo taking standard translation),
in combined fragments like ΦW

e ⊕ Φ1M we can begin with formulae ϕ[x] of Φe,
apply to them a modal operator, then use the formulae so obtained to replace
second order variables in other formulae from Φe, etc. Fragments of the kind
ΦW

e ⊕ Φ1M formalize the intuitive notion of a monodic modal fragment whose
extensional component is Φe. Since Φ1M is also interpreted, constraint satisfia-
bility in ΦW

e ⊕Φ1M is restricted to a desired specific class of modal frames/flows
of time.

Theorem 5.7. If the one variable modal i.a.f. Φ1M and the monadically suit-
able i.a.f. Φe have decidable constraint satisfiability problems, then their monodic
fusion ΦW

e ⊕ Φ1M also has decidable constraint satisfiability problems.

The proof of Theorem 5.7 reduces the statement to be proved to Theorem
5.1, after translating our fragments into fragments of a language describing ap-
propriate descent data [17] (disjoint I-copies and fiberwise disjoint I-copies then
provide the suitable isomorphism theorem).

6 Conclusions

In this paper we introduced a type-theoretic machinery in order to deal with the
combination of decision problems of various nature. Higher order type theory
has been essentially used as a unifying specification language; we have also seen
how the types interplay can be used in a rather subtle way to design combined
fragments and consequently appropriate constraints satisfiability problems.

Decision problems are at the heart of logic and of its applications, that’s why
they are so complex and irregularly behaved. Given that it is very difficult (and
presumably impossible) to get satisfying general results in this area, the em-
phasis should concentrate on methodologies which are capable of solving entiere
classes of concrete problems. Among methodologies, we can certainly include
methodologies for combination: these may be very helpful when the solution of
a problem can be modularly decomposed or when the problem itself appears to
be heterogeneous in its nature.
20 We recall that two-variable fragments are monadically suitable only if we take out

identity.
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In this paper, we took into consideration Nelson-Oppen methodology (which
is probably the simplest combination methodology) and tried to push it as far
as possible. Surprisingly, it turned out that it might be quite powerful, when
joined to strong model theoretic results (the isomorphism theorems). Thus, we
tried to give the reader a gallery of different applications that can be solved in
a uniform way by this methodology. Some of these applications are new, some
other summarize recent work by various people. New problems certainly arise
now: they concern both further applications of Nelson-Oppen schema and the
individuation or more sophisticated schemata, for the problems that cannot be
covered by the Nelson-Oppen approach. We hope that the higher order frame-
work and the model theoretic techniques we introduced in this paper may give
further contributions within this research perspective.
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