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Abstract. The theory of arrays, introduced by McCarthy in his seminal
paper “Towards a mathematical science of computation”, is central to
Computer Science. Unfortunately, the theory alone is not sufficient for
many important verification applications such as program analysis. Mo-
tivated by this observation, we study extensions of the theory of arrays
whose satisfiability problem (i.e. checking the satisfiability of conjunc-
tions of ground literals) is decidable. In particular, we consider extensions
where the indexes of arrays have the algebraic structure of Presburger
Arithmetic and the theory of arrays is augmented with axioms charac-
terizing additional symbols such as dimension, sortedness, or the domain
of definition of arrays.

We provide methods for integrating available decision procedures for the
theory of arrays and Presburger Arithmetic with automatic instantia-
tion strategies which allow us to reduce the satisfiability problem for
the extension of the theory of arrays to that of the theories decided by
the available procedures. Our approach aims to reuse as much as pos-
sible existing techniques so to ease the implementation of the proposed
methods. To this end, we show how to use both model-theoretic and
rewriting-based theorem proving (i.e., superposition) techniques to im-
plement the instantiation strategies of the various extensions.

1 Introduction

Since its introduction by McCarthy in [13], the theory of arrays (A) has played
a very important role in Computer Science. Hence, it is not surprising that
many papers [4,17,20,10,12,19,2,3] have been devoted to its study in the context
of verification and many reasoning techniques, both automatic - e.g., [2] - and
manual [17], have been developed to reason in such a theory.

Unfortunately, as many previous works [20,10,12,3] have already observed,
A alone or even extended with extensional equality between arrays (as in [19,2])
is not sufficient for many applications of verification. For example, the works in
[20,10,12] tried to extend the theory to reason about sorted arrays. More recently,
Bradley et al. [3] have shown the decidability of the satisfiability problem for a
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restricted class of (possibly quantified) first-order formulae that allows one to
express many important properties about arrays.

In this paper, we consider the theory of arrays with extensionality [19,2]
whose indexes have the algebraic structure of Presburger Arithmetic (P), and
extend it with additional (function or predicate) symbols expressing important
features of arrays (e.g., the dimension of an array or an array being sorted). The
main contribution of the paper is a method to integrate two decision procedures,
one for the theory of arrays without extensionality (A) and one for P , with
instantiation strategies that allow us to reduce the satisfiability problem of the
extension of A ∪ P to the satisfiability problems decided by the two available
procedures.

Our approach to integrating decision procedures and instantiation strate-
gies is inspired by model-theoretic considerations and by the rewriting-approach
[2,1,11]. For the rewriting-based method, we follow the lines of [11], where, fac-
ing the satisfiability problem, it is suggested that the (ground) formulae derived
by the superposition calculus [16] between ground literals and the axioms of a
theory T (extending the theory of equality Eq) can be passed to a decision pro-
cedure for Eq. In this paper, we use superposition to generate enough (ground)
instances of an extension of A so to enable the decision procedures for P and A
to decide its satisfiability problem. An immediate by-product of our approach
is the fact that the various extensions of A can be combined together to decide
the satisfiability of the union of the various extensions.

Related work. The work most closely related to ours is [3]. The main difference
is that we have a semantic approach to extending A since we consider only
the satisfiability of ground formulae and we introduce additional functions and
predicates while in [3], a syntactic characterization of a class of full first-order
formulae, which turns out to be expressive enough to specify many properties
of interest about arrays, is considered. Our approach allows us to get a more
refined characterization of some properties of arrays, yielding the decidability
of the extension of A with injective arrays (see Section 5.1), which is left as an
open problem in [3].

Our instantiation strategy based on superposition (see Section 5.2) has a
similar spirit of the work in [7], where equational reasoning is integrated in
instantiation-based theorem proving. The main difference with [7] is that we
solve the state-explosion problem, due to the recombination of formulae caused
by the use of standard superposition rules, by deriving a new termination result
for an extension of A as recommended by the rewriting approach to satisfiability
procedures of [2].

Plan of the paper. Section 2 introduces some formal notions necessary to develop
the results in this paper. Section 3 gives some motivation for the first extension
of A by a dimension function together with its formal definition while Section 4
describe an extensible decision procedure. Section 5 considers two extensions of
the theory defined in Section 3. For lack of space, further extensions of A and
the proofs of the results in this paper are included in a Technical Report [9].



Deciding Extensions of the Theory of Arrays 179

2 Formal Preliminaries

We work in many-sorted first-order logic with equality and we assume the basic
syntactic and semantic concepts as in, e.g., [6].

A signature Σ is a non-empty set of sort symbols together with a set of
function symbols and a set of predicate symbols (both equipped with suitable
lists of sort symbols as arity). The set of predicate symbols contains a symbol =S

for equality for every sort S (we usually omit its subscript). If Σ is a signature,
a simple expansion of Σ is a signature Σ′ obtained from Σ by adding a set
a := {a1, ..., an} of “fresh” constants (each of them again equipped with a sort),
i.e. Σ′ := Σ ∪ a, where a is such that Σ and a are disjoint. Below, we write Σa

as the simple expansion of Σ with a set a of fresh constant symbols.
First-order terms and formulae over a signature Σ are defined in the usual

way, i.e., they must respect the arities of function and predicate symbols and the
variables occurring in them must also be equipped with sorts (well-sortedness).
A Σ-atom is a predicate symbol applied to (well-sorted) terms. A Σ-literal is a
Σ-atom or its negation. A ground literal is a literal not containing variables. A
constraint is a finite conjunction ℓ1 ∧ · · · ∧ ℓn of literals, which can also be seen
as a finite set {ℓ1, . . . , ℓn}. A Σ-sentence is a first-order formula over Σ without
free variables.

A Σ-structure M consists of non-empty and pairwise disjoint domains SM

for every sort S, and interprets each function symbol f and predicate symbol P
as functions fM and relations PM, respectively, according to their arities. If t is
a ground term, we also use tM for the element denoted by t in the structure M.
Validity of a formula φ in a Σ-structure M (in symbols, M |= φ), satisfiability,
and logical consequence are defined in the usual way. The Σ-structure M is
a model of the Σ-theory T iff all axioms of T are valid in M. A Σ-theory T

is a (possibly infinite) set of Σ-sentences. Let T be a theory. We refer to the
signature of T as ΣT . If there exists a set Ax(T ) of sentences in T such that
every formula φ of T is a logical consequence of Ax(T ), then we say that Ax(T )
is a set of axioms of T . A theory T is complete iff, given a sentence φ, we have
that φ is either true or false in all the models of T .

In this paper, we are concerned with the (constraint) satisfiability problem
for a theory T , also called the T -satisfiability problem, which is the problem of
deciding whether a ΣT -constraint is satisfiable in a model of T . Notice that a
constraint may contain variables: since these variables may be equivalently re-
placed by free constants, we can reformulate the constraint satisfiability problem
as the problem of deciding whether a finite conjunction of ground literals in a
simply expanded signature Σ

a

T is true in a Σ
a

T -structure whose ΣT -reduct is a
model of T . We say that a ΣT -constraint is T -satisfiable iff there exists a model
of T satisfying it. Two ΣT -constraints φ and ψ are T -equisatisfiable iff there
exists a structure M1 such that M1 |= T ∧ φ iff the following condition holds:
there exists a structure M2 such that M2 |= T ∧ ψ.

Without loss of generality, when considering a set L of ground literals to
be checked for satisfiability, we may assume that each literal ℓ in L is flat,
i.e. ℓ is required to be either of the form a = f(a1, . . . , an), P (a1, . . . , an), or
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¬P (a1, . . . , an), where a, a1, . . . , an are (sort-conforming) constants, f is a func-
tion symbol, and P is a predicate symbol (possibly also equality).

3 Finite Arrays with Dimension as a Combined Theory

Given a set A, by Arr(A) we denote the set of finite arrays with natural num-
bers as indexes and whose elements are from A. We model such an array a as
a sequence a : N −→ A ∪ {⊥} which is eventually equal to ⊥ (here ⊥ is an
element not in A denoting an “undefined” or “default” value). In this way, for
every array a ∈ Arr(A) there is a smallest index n ≥ 0, called the dimension of
a, such that the value of a at index j is equal to ⊥ for j ≥ n. Contrary to finite
sequences, we do not require that any value of a at k < n be distinct from ⊥:
this is also the reason to use the word ‘dimension’ rather than ‘length’, as for
sequences. There is just one array whose dimension is zero which we indicate
by ε and call it the empty array. Since many applications of verification require
arithmetic expressions on indexes of arrays, we introduce Presburger arithmetic
P over indexes: any other decidable fragment of Arithmetic would be a good
alternative. Thus the relevant operations on our arrays include addition over
indexes, read, write, and dimension. The resulting theory (to be formally intro-
duced later on) ADP can be seen as a combination of well-known theories such
as P and the theory Ae of arrays with extensionality (see, e.g., [2]), extended
with a function for dimension which takes an array and returns a natural num-
ber. Because of the function for dimension, the combination is non-disjoint and
cannot be handled by classical combination schemas such as Nelson-Oppen [15].
Nevertheless, following [8], it is convenient to see ADP as a combination of P
with a theory of array with dimension Adim : Adim extends Ae (both in the sig-
nature and in the axioms), but is contained in ADP , because indexes are only
endowed with a discrete linear poset structure (the next subsection fixes the de-
tails). In this way, we have that ADP = Adim ∪P and the theories Adim and P
share the well-known complete theory T0 of natural numbers endowed with zero
and successor (see e.g., [5]): this theory admits quantifier elimination, so that
the T0-compatibility hypothesis of [8] needed for the non-disjoint Nelson-Oppen
combination is satisfied. Unfortunately, the combination result in [8] cannot be
applied to ADP for mainly two reasons. First, T0 is not locally finite (see, e.g.,
[8] for details). Secondly, Adim is a proper extension of the theory Ae, hence the
decision procedures for the Ae-satisfiability problem (such as, e.g., the one in
[2]) must be extended. In the rest of the paper, we will show that it is sufficient
to use decision procedures for the P- and Ae-satisfiability problem to solve the
ADP-satisfiability problem provided that a suitable pre-processing of the input
set of literals is performed.

Here, we formally introduce the basic theories of interests for this paper.

T0 has just one sort symbol index, the following function and predicate sym-
bols: 0 : index, s : index → index, and <: index× index. It is axiomatized
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by the the following formulae:1

y 6= 0 → ∃z(y = s(z)) (1)

x < s(y) ↔ (x < y ∨ x = y) (2)

¬(x < 0) (3)

x < y ∨ x = y ∨ y < x (4)

x < y → ¬(y < x) (5)

x < y → (y < z → x < z) (6)

where x, y and z are variables of sort index. This theory admits elimination
of quantifiers and it is complete, see [5] for details.

P is the well-known Presburger arithmetic, see, e.g., [5], over indexes. The
signature is that of T0 extended with the function symbol for addition + :
index× index → index, written infix. Since P is not finitely axiomatizable
(see, again [5]), we assume as axioms all valid sentences in the theory. Notice
that T0 ⊂ P .

A is the theory of arrays (see, e.g., [2]) which has the following signature:
– sort symbols: index, elem,array and
– function symbols: select : array × index → elem and store : array ×

index × elem → array

and it is axiomatized by the following formulae:

select(store(a, i, e), i) = e (7)

i 6= j → select(store(a, i, e), j) = select(a, j) (8)

Ae is the theory of arrays with extensionality (see, e.g., [2]) which has the

same signature of A and it is axiomatized by (7), (8), and the axiom of
extensionality:

∀i(select(a, i) = select(b, i)) → a = b (9)

Notice that A ⊂ Ae.
Adim is the simple theory of arrays with dimension whose signature is the union

of the signatures of T0 and Ae extended with the following three symbols:
⊥ : elem, ε : array, and dim : array → index. It is axiomatized by the
axioms in T0, those in Ae, and the following formulae:

dim(a) ≤ i→ select(a, i) = ⊥ (10)

dim(a) = s(i) → select(a, i) 6= ⊥ (11)

dim(ε) = 0 (12)

Notice that T0 ⊂ Adim and Ae ⊂ Adim .
ADP is the theory of arrays with dimension whose signature is the union of

the signatures of Adim and P and is axiomatized by the axioms in Adim and
all valid sentences in P .

1 Here and in the following, we omit the outermost universal quantification for the
sake of readability.
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Flatten

P A

sat/unsat

all sat?

E-inst. G-inst.

Fig. 1. The architecture of the decision procedure for ADP

The constraint satisfiability problem for the theories T0, P , A, and Ae is
decidable (see [5] for the first two and [2] for the last two). This is an impor-
tant observation for the results of this paper, since the decision procedure for
ADP-satisfiability will assume the availability of two decision procedures for the
constraint satisfiability problems of P and A. The theories Ae, Adim , and ADP
admit a particular subclass of models, which we call the standard ones and are
exactly those introduced above in order to motivate the definition of ADP . Such
models are characterized by the fact that the sort index is always interpreted
as the set N of natural numbers, and the sort array is interpreted as the set
of all the sequences of elements from elem that are eventually equal to ⊥; the
dimension of each array is the successor of the index of the last element differ-
ent from ⊥. Of course, when investigating constraint satisfiability we are mainly
interested in satisfiability of constraints in standard models and we shall in fact
prove that a constraint is satisfiable in a model of ADP iff it is satisfiable in a
standard model (see Lemma 4.3, below).

4 A Decision Procedure for Arrays with Dimension

We assume the availability of two decision procedures solving the Ae- and P-
satisfiability problems. The overall schema of the procedure for ADP-satisfiability
problems is depicted in Figure 1. The idea is to reduce the ADP-satisfiability
problem to the constraint satisfiability problems for Ae and P . The module
Flatten pre-processes the literals in the input constraint so to make them flat
and easily recognizable as belonging to one theory among those used to de-
fine ADP , i.e. T0, P , A, or Ae. The module E-instantiation produces suitable
instances of the extensionality axiom of arrays, i.e. (9), so that a simple satisfia-
bility procedure for A is assumed available (rather than one for Ae). The mod-
ule G-instantiation is non-deterministic and guesses sufficiently many instances
of the axioms about dim, i.e. (10) and (11), as well as some facts entailed by
the constraints in P . The modules P and A implement the decision procedures
for Presburger arithmetic and the theory of arrays without extensionality. The
module ‘all sat?’ returns ‘sat’ if both decision procedures for P and A returned
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‘sat’, and, otherwise, returns ‘unsat’. We are now ready to describe the internal
workings of each module.

4.1 Flattening

It is well-known (see, e.g., [2]) that it is possible to transform a constraint φ
into an equisatisfiable constraint φ′ containing only flat literals in linear time
by introducing sufficiently many fresh constant symbols to name sub-terms. In
our case, we assume that the module Flatten in Figure 1 transforms (in linear
time) a set of arbitrary literals over the signature Σ

a

ADP , into an equisatisfiable
set of flat literals on the signature Σ

c

ADP , for some set c ⊇ a of constants (the
constants in c \ a are said to be fresh). Notice that a flattened set of literals L
can be represented as a set-theoretic union L = LAdim

∪LP , where LAdim
collects

all the literals from L whose signature is the signature of Adim and LP collects
all the literals from L whose signature is the signature of P (thus LAdim

∩ LP

contains precisely the literals from L whose signature is the signature of T0).

4.2 E-instantiation Closure

The E-instantiation module in Figure 1 is based on the Skolemization of axiom
(9).

Definition 4.1 (E-instantiation closed set of literals). A set L of ground
flat literals is E-instantiation closed iff for every negative literal of the kind a 6= b

that belongs to L (with a, b : array), we have that {select(a, i) = e1, select(b, i) =
e2, e1 6= e2} ⊆ L, for some constants i : index, e1, e2 : elem;

The correctness of the module is stated below.

Lemma 4.1. There exists a linear time algorithm which takes a set L of flat
literals over the signature Σ

a

ADP and returns a E-instantiation closed set LE of
flat literals over the signature Σ

c

ADP such that (i) L ⊆ LE , (ii) L and LE are
ADP-equisatisfiable, and (iii) a ⊆ c.

4.3 G-instantiation Closure

The module G-instantiation is non-deterministic and it is responsible to produce
suitable instances of the axioms (10) and (11) as well as to guess (hence the
name of G-instantiation) enough facts of P entailed by the input constraint.

Definition 4.2 (G-instantiation closed set of literals).
A set L of ground flat literals is G-instantiation closed iff the following con-

ditions are satisfied:

1. if ε occurs in L, then dim(ε) = 0 ∈ L.
2. if dim(a) = i ∈ L, with a : array and i : index, then {i = 0} ⊆ L or

{e 6= ⊥, select(a, j) = e, s(j) = i} ⊆ L for some constant j : index;
3. if i, j occur in L, with i, j : index, then i = j ∈ L or i 6= j ∈ L;
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T←− {A,P}
function DPADP (L: set of flat literals)

LE ←− E-instantiation(L)
for each LG ←− G-instantiation(LE) do begin

for each T ∈ T do ρT ←− DPT (LG
T
)

if
V

T∈T
(ρT = sat) then return sat

end

return unsat
end

Fig. 2. The (extensible) decision procedure for ADP

4. if i, j occur in L, with i, j : index and i 6= j ∈ L, then i < j ∈ L or
j < i ∈ L;

5. if {dim(a) = i, i ≤ j} ⊆ L, with a : array and i, j : index, then
{select(a, j) = ⊥} ⊆ L (here i ≤ j stands for i < j or i = j).

It is not difficult to see that, given a set of literals, it is always possible to
compute its G-instantiation in (non-deterministic) polynomial time.

Lemma 4.2. There exists a non-deterministic polynomial time algorithm which
takes as input a set L of ground flat literals over a signature Σ

a

ADP and returns
a G-instantiation closed set LG of flat literals over the signature Σ

c

ADP such that
(i) L ⊆ LG, (ii) L and LG are ADP-equisatisfiable, and (iii) a ⊆ c.

For the correctness of our decision procedure, we need sets of literals that are
both E- and G-instantiation closed. To this aim, one can check that the E-
instantiation module has to be invoked first, followed by the G-instantiation
module.

4.4 The Decision Procedure for ADP

Figure 2 gives an algorithmic and non-deterministic description of the decision
procedure to solve the ADP-satisfiability problem. Without loss of generality
(see Section 4.1), we assume that L contains only flat literals. For a theory T

with decidable satisfiability problem, we write DPT for the decision procedure
solving the T -satisfiability problem: DPT takes a set L of ΣT -literals and returns
sat when L is T -satisfiable; unsat , otherwise. If L is a set of flat literals, then

LT := {ℓ | ℓ ∈ L is a ΣT -literal},

where T ∈ {A,P}. So, for example, LG
P is the subset of the ΣP -literals in LG .

The set T in Figure 2 contains the names of the theories for which a decision
procedure is assumed available. It will be used for modularly extending the
procedure in Section 5.

Let L be a set of flat ΣADP -literals to be checked for ADP-satisfiability. The
decision procedure DPADP first computes the E-instantiation LE of L (recall
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from Lemma 4.1 that this can be done in linear time). Then, it enumerates all
possible G-instantiations (cf. the for each loop in Figure 2). If it is capable of
finding a G-instantiation LG such that its ΣP -literals are P-satisfiable and its
ΣA-literals are A-satisfiable, then DPADP returns the ADP-satisfiability of the
input set L of literals. Otherwise, if all possible G-instantiations are enumerated
and the test of the conditional in the body of the loop always fails, then DPADP

returns the ADP-unsatisfiability of the input set L of literals.

4.5 Correctness of the Decision Procedure for ADP

The termination of DPADP is immediate, whereas its soundness and complete-
ness (Theorem 4.1 below) are consequences of the following Combination Lemma.

Lemma 4.3 (Combination). Let L be a E- and G-instantiation closed finite
set of flat literals. Then, the following conditions are equivalent:

(i) L is satisfiable in a standard model of ADP;
(ii) L is ADP-satisfiable;
(iii) LA is A-satisfiable and LP is P-satisfiable.

The soundness and correctness of DPADP is stated in the following

Theorem 4.1. DPADP is a decision procedure for the ADP-satisfiability prob-
lem, i.e. for any set L of flat literals, L is ADP-satisfiable iff DPADP(L) returns
sat. Furthermore, DPADP decides the satisfiability problem in the standard mod-
els of ADP.

5 Extensions of the Theory of Arrays with Dimension

We show the decidability of two interesting extensions of ADP (more extensions
can be found in the Technical Report [9]).

5.1 Injective Arrays

The first extension of ADP is obtained by adding an axiom recognizing injective
arrays which, according to [14], may characterize memory configurations where
pointers satisfy the no-aliasing property. We extend the (empty) set of predicate
symbols ADP by the unary predicate symbol Inj : array which holds for arrays
containing no repeated elements, with the exception of the undefined element
⊥ (the decidability of a similar problem is left open in [3]). To formalize the
intended meaning of Inj, we consider the theory ADP inj obtained by extending
ADP with the following defining axiom:

Inj(a) ↔ ∀i, j(select(a, i) = select(a, j) → i = j ∨ select(a, i) = ⊥) (13)

where a is a variable of sort array. In order to obtain a decision procedure for
ADP inj, it is necessary to find suitable extensions of Definitions 4.1 and 4.2 so
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that enough instances of (13) are considered, and the results of the available
decision procedures for A and P are conclusive about the satisfiability of the
original constraint in the extended theory. We formalize the meaning of “enough
instances” for ADP inj in the following two definitions.

Definition 5.1 (Einj-instantiation closed set of literals). A set L of ground
flat literals is Einj-instantiation closed iff (i) L is E-instantiation closed (cf. Def-
inition 4.1) and moreover for every negative literal ¬Inj(a) ∈ L, there are con-
stants e : elem, i, j : index such that {select(a, i) = e, select(a, j) = e, i < j, e 6=
⊥} ⊆ L.

Definition 5.2 (Ginj-instantiation closed set of literals). A set L of ground
flat literals is Ginj-instantiation closed iff L is G-instantiation closed and the
following conditions are satisfied:

1. if Inj(a) ∈ L then, for each constant i of sort index occurring in L, select(a, i) =
⊥ ∈ L or {select(a, i) = e, e 6= ⊥} ⊆ L for some constant e : elem;

2. if {Inj(a), i < j, select(a, i) = e1, select(a, j) = e2, e1 6= ⊥, e2 6= ⊥} ⊆ L, then
e1 6= e2 ∈ L.

Lemmas 4.1 and 4.2 can easily be adapted to the theory ADP inj. Since the
combination Lemma 4.3 continues to hold with Definitions 5.1 and 5.2, we can
show the correctness of the decision procedure DPADP inj

for ADP inj, which is
obtained from DPADP by replacing the modules for E- and G-instantiation in
Figure 1 with those taking into account Definitions 5.1 and 5.2.

Theorem 5.1. DPADP inj
is a decision procedure for the ADP inj-satisfiability

problem. Furthermore, DPADP inj
decides the satisfiability problem in the standard

models of ADP inj.

5.2 Arrays with Domain

The second extension of ADP we consider is again motivated by applications
in program verification. As already observed in [17], it is quite helpful to regard
arrays as functions equipped with an operator to compute their domains. This is
used, for example, to define the semantics of separating connectives (supporting
local reasoning) of Separation Logic [18]. So, we extend ADP with a set of
axioms characterizing a function which, given an array a, returns the domain
dom(a) of a, i.e. dom(a) is the set of indexes i such that select(a, i) 6= ⊥.

To formalize this extension of Adim , we need to introduce a very simple theory
of sets of indexes, which is a straightforward extension of that used in [2]. Let S∅

be the theory whose sort symbols are bool and set, whose function symbols are
true, false : bool, ∅ : set, mem : index×set → bool, ins : index×set → set,
and whose axioms are the following:

mem(i, ∅) = false (14)

mem(i, ins(i, s)) = true (15)

i1 6= i2 → mem(i1, ins(i2, s)) = mem(i1, s) (16)

true 6= false ∧ (∀x : bool x = true ∨ x = false) (17)
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where i, i1, i2 (s) are variables of sort index (set, respectively). Intuitively, ∅
denotes the empty set, mem is the test for membership of an index to a set, ins
adds an index to a set if it is not already in the set. It is possible to adapt the
decidability result of [2] to S∅ (see [9] for details). Since we want to be able to
compare sets by using the membership predicate mem, we need to consider the
theory S∅

e obtained from S∅ by adding the following axiom of extensionality for
sets (here s1, s2 are variables of sort set):

∀i(mem(i, s1) = mem(i, s2)) → s1 = s2. (18)

Let ADPdom be the theory obtained by extending the (disjoint) union of ADP
with S∅

e by the function symbol dom : array → set together with the following
axiom:

select(a, i) = ⊥ ↔ mem(i, dom(a)) = false (19)

where i and a are variables of sort index and array, respectively.
In order to obtain a decision procedure for ADPdom, it is necessary to find

suitable extensions of Definitions 4.1 and 4.2 so that enough instances of axioms
(18) and (19) are considered and the results of the available decision procedures
for A, P , and S∅ are conclusive about the satisfiability of the original constraint
in the extended theory. We formalize the meaning of “enough instances” for
axiom (18) in the following definition.

Definition 5.3 (Eset-instantiation closed set of literals). A set L of ground
flat literals is Eset-instantiation closed iff L is E-instantiation closed (cf. Def-
inition 4.1) and for every literal of the kind s1 6= s2 ∈ L (with s1, s2 con-
stants of sort set), there are constants b1, b2 : bool, i : index such that
{mem(i, s1) = b1,mem(i, s2) = b2, b1 6= b2} ⊆ L.

Instead of using guessing as for ADP inj in Section 5.2, we adopt the rewriting-
approach to satisfiability procedures of [2]. We use the superposition calculus
(from now on denoted by SP) to build a rewriting-based decision procedure for
the satisfiability problem in the union of the theories Ae and S∅

e extended with
axiom (19). Such a procedure is then combined with a decision procedure for
the satisfiability problem in P to build a decision procedure for ADPdom.

In [2], it is shown how to use SP to build decision procedures for theories
axiomatized by a finite set of first-order clauses. The key observation is that,
in order to show that SP is a decision procedure, it is sufficient to prove that
SP terminates on the set of clauses obtained by the union of the axioms of the
theory and an arbitrary set of ground and flat literals. According to [2], SP
terminates also for some of the theories considered in this paper, e.g., A and
S∅
− := S∅ \ {(17)} (when considered in isolation). Modularity results in [1] allow

us to conclude that SP also terminates for the union A ∪ S∅
−. Unfortunately,

this is not enough here since our goal is to build a decision procedure ADPdom

whose set of axioms also contains (17) and (19).
Below, we develop the termination result for SP necessary to replace guessing

as for ADP inj (cf. Section 5.1) with SP . Notice that SP is used in two ways: to
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check for unsatisfiability in the theory of equality and to find enough instances
of the axioms of A∪S∅

− together with (17) and (19). A similar approach has also
been investigated in [11] (for the theories already considered in [2]) to enable the
efficient combination of rewriting-based satisfiability procedures with a decision
procedure for P .

Let L be a set of ground and flat ΣA∪S∅ -literals; we define IL to be the
following set of (partial) instances of axioms (17) and (19):

select(a, x) 6= ⊥ ∨ mem(x, dom(a)) 6= true,

select(a, x) = ⊥ ∨ mem(x, dom(a)) = true,

true 6= false, and b = true ∨ b = false

for each dom(a) = s in L and for each constant b : bool occurring in L.

Lemma 5.1. SP terminates on A∪S∅
−∪IL∪L for every set L of ΣA∪S∅-literals.

In the following, we denote with DPSP the function taking an Eset-instan-
tiation closed set L of ΣA∪S∅ -literals, computing IL, and then invoking SP on
the clauses A ∪ S∅

− ∪ IL ∪ L. If the empty clause is derived by SP , then DPSP

returns unsat ; sat, otherwise. The decision procedure DPADPdom
for the theory

ADPdom is obtained from DPADP by replacing the module for E-instantiation
in Figure 1 with a module for Eset-instantiation (cf. Definition 5.3) and by calling
DPSP instead of DPA in the loop of Figure 2.

Theorem 5.2. DPADPdom
is a decision procedure for the ADPdom-satisfiability

problem.

6 Conclusion

We have considered extensions of the theory of arrays which are relevant for many
important applications such as program verification. These extensions are such
that the indexes of arrays has the algebraic structure of Presburger Arithmetic
and the theory of arrays is augmented with axioms characterizing additional
symbols such as dimension, injectivity, or the domain of definition of arrays. We
have obtained the decidability of all the considered extensions by a combination
of decision procedures for the theories of arrays and Presburger Arithmetic with
various instantiation strategies based both on model-theoretic and rewriting-
based methods.
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