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Abstract. In abstract algebra, a structure is said to be Noetherian if it
does not admit infinite strictly ascending chains of congruences. In this
paper, we adapt this notion to first-order logic by defining the class of
Noetherian theories. Examples of theories in this class are Linear Arith-
metics without ordering and the empty theory containing only a unary
function symbol. Interestingly, it is possible to design a non-disjoint com-
bination method for extensions of Noetherian theories. We investigate
sufficient conditions for adding a temporal dimension to such theories
in such a way that the decidability of the satisfiability problem for the
quantifier-free fragment of the resulting temporal logic is guaranteed.
This problem is firstly investigated for the case of Linear time Tempo-
ral Logic and then generalized to arbitrary modal/temporal logics whose
propositional relativized satisfiability problem is decidable.

1 Introduction

Since full first-order temporal logics are known to be highly undecidable, re-
searchers concentrated on finding fragments having good computational prop-
erties, such as the decidable monodic fragments investigated in, e.g., [17,9,12].
Although such fragments may also be used in verification, widely adopted for-
malisms for the specification of reactive or distributed systems (e.g., the one
proposed by Manna and Pnueli [23] or the Temporal Logic of Actions by Lam-
port [19]) are such that the temporal part, used to describe the dynamic behavior
of the systems, is parametric with respect to the underlying language of first-
order logic, used to formalize the data structures manipulated by the systems.
While the expressiveness of these formalisms helps in writing concise and ab-
stract specifications, it is not clear how these can be amenable to automated
analysis. The work presented in this paper contributes towards the solution of
this problem, by analyzing what happens when we “add a temporal dimension”
(in a sense similar to that investigated in [11]) to a decidable fragment of a
first-order theory T with identity. By doing this, the hope is to transfer the de-
cidability of the theory T to its “temporalized” version. This point of view has
been pioneered by Plaisted in [29], where he further refined the semantics of
the “temporalized T ” by partitioning the symbols of the signature of T in rigid
(whose interpretation is time-independent) and flexible (whose interpretation is
time-dependent). This facilitates the expression of properties of both open and
closed systems (see, e.g., [11] for more on this issue).
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In [14], we have presented a uniform framework where the approach in [29]
has been clarified and extended. In particular, we have obtained undecidability
and decidability results for quantifier-free satisfiability and model-checking prob-
lems in a temporal logic obtained by extending a decidable theory T with the
operators of Linear time Temporal Logic (LTL). The key to obtain the results
in [14] is a reduction of satisfiability and model-checking to the combination
of (infinitely many) partially renamed copies of T (the symbols that are not
renamed are those belonging to the rigid sub-signature Σr). The viewpoint of
combination helps clarifying both decidability and undecidability issues. In fact,
it is not always possible to transfer the decidability of the quantifier-free frag-
ment of T to its “temporalized” version as shown by a simple reduction to known
undecidable combination problems [5], even when the rigid subsignature Σr is
empty. Fortunately, it is possible to use combination methods for non-disjoint
theories in first-order logic [13] and find suitable requirements on the theory
T to derive the decidability of both the satisfiability and the model-checking
problem for the quantifier-free formulae of the “temporalized” version of T . The
key ingredients are two. First (for correctness), it is assumed that T has a de-
cidable universal fragment and is Tr-compatible [13], where Tr is the Σr-reduct
of the universal fragment of T . Second (for termination), Tr is assumed to be
locally finite [13]. Under these hypotheses, a (non-deterministic) combination
schema can be obtained by using guessings over the finitely many (because of
local finiteness) literals in the shared theory. This also simplifies the proof of
correctness.

In this paper, we weaken the requirement of local finiteness to that of Noethe-
rianity (cf. Section 3), and we focus our attention to the satisfiability problem,
since model-checking is easily shown to be undecidable when considering Noethe-
rian theories [15]. The first contribution of this paper is to show that our com-
binability requirements related to Noetherianity are met by any extension with
a free unary function symbol of a stably infinite theory (cf. Section 3.2). The
second contribution is to derive an amalgamation lemma (cf. Lemma 3.7) for
combinations of (infinitely many) theories sharing a Noetherian theory (cf. Sec-
tion 3.1). The combination procedure is more complex than in the locally finite
case, since the exhaustive enumeration of guessings can no more be used to
abstract away the exchange of now (possibly) infinitely many literals between
the component theories and the combination results in [13,14] do not apply.
The exchange mechanism is formalized by residue enumerators, i.e. computable
functions returning entailed positive clauses in the shared theory. The third con-
tribution of the paper is the application of the amalgamation lemma to show the
decidability of the satisfiability problem for quantifier-free LTL formulae modulo
a first order theory T , when T is an effectively Noetherian and Tr-compatible
extension of Tr (cf. Section 4). Finally, the decidability result is extended to any
modal/temporal logic whose propositional relativized satisfiability problem is
decidable (cf. Section 5). For lack of space, the proofs of all results are included
in the Appendix.
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2 Formal Preliminaries

We adopt the usual first-order syntactic notions of signature, term, position,
atom, (ground) formula, sentence, and so on. Let Σ be a first-order signature; we
assume the binary equality predicate symbol ‘=’ to be in any signature (so, ifΣ =
∅, then Σ does not contain other symbols than equality). The signature obtained
from Σ by adding it a set a of new constants (i.e., 0-ary function symbols) is
denoted by Σa. A positive clause is a disjunction of atoms. A constraint is a
conjunctions of literals. A Σ-theory T is a set of sentences (called the axioms
of T ) in the signature Σ and it is universal iff it has universal closures of open
formulae as axioms.

We also assume the usual first-order notion of interpretation and truth of a
formula, with the proviso that the equality predicate = is always interpreted as
the identity relation. We let ⊥ denote an arbitrary formula which is true in no
structure. A formula ϕ is satisfiable in M iff its existential closure is true in M.
A Σ-structure M is a model of a Σ-theory T (in symbols M |= T ) iff all the
sentences of T are true in M. If ϕ is a formula, T |= ϕ (‘ϕ is a logical consequence
of T ’) means that the universal closure of ϕ is true in all the models of T . A
Σ-theory T is complete iff for every Σ-sentence ϕ, either ϕ or ¬ϕ is a logical
consequence of T . T admits quantifier elimination iff for every formula ϕ(x)
there is a quantifier-free formula ϕ′(x) such that T |= ϕ(x) ↔ ϕ′(x) (notations
like ϕ(x) mean that ϕ contains free variables only among the tuple x). T is
consistent iff it has a model, i.e., if T 6|= ⊥. A sentence ϕ is T -consistent iff
T ∪ {ϕ} is consistent.

The constraint satisfiability problem for the constraint theory T is the prob-
lem of deciding whether a Σ-constraint is satisfiable in a model of T (or, equiva-
lently, T -satisfiable). In the following, we use free constants instead of variables
in constraint satisfiability problems, so that we (equivalently) redefine a con-
straint satisfiability problem for the theory T as the problem of establishing the
consistency of T∪Γ for a finite set Γ of ground Σa-literals (where a is a finite set
of new constants). For the same reason, we abbreviate ‘ground Σa-constraint’
with ‘Σ-constraint,’ when a is clear from the context.

If Σ0 ⊆ Σ is a subsignature of Σ and if M is a Σ-structure, the Σ0-reduct of
M is the Σ0-structure M|Σ0

obtained from M by forgetting the interpretation
of function and predicate symbols from Σ \ Σ0. A Σ-embedding (or, simply, an
embedding) between two Σ-structures M = (M, I) and N = (N,J ) is any
mapping µ : M −→ N among the corresponding support sets satisfying the
condition

M |= ϕ iff N |= ϕ (1)

for all ΣM -atoms ϕ (here M is regarded as a ΣM -structure, by interpreting each
additional constant a ∈ M into itself and N is regarded as a ΣM -structure by
interpreting each additional constant a ∈ M into µ(a)). If M ⊆ N and if the
embedding µ : M −→ N is just the identity inclusion M ⊆ N , we say that M is
a substructure of N or that N is an extension of M. In case condition (1) holds
for all first order formulae, the embedding µ is said to be elementary.
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3 Noetherian Theories

In abstract algebra, the adjective Noetherian is used to describe structures that
satisfy an ascending chain condition on congruences (see, e.g., [22]): since con-
gruences can have special representations, Noetherianity concerns, e.g., chains
of ideals in the case of rings and chains of submodules in the case of modules.
Although this is somewhat non-standard, we may take a more abstract view
and say that a variety (i.e. an equational class of structures) is Noetherian iff
finitely generated free algebras satisfy the ascending chain condition for congru-
ences or, equivalently, iff finitely generated algebras are finitely presented. Now,
congruences over finitely generated free algebras may be represented as sets of
equations among terms. This allows us to equivalently re-state the Noetherianity
of varieties as “there are no infinite ascending chains of sets of equations modulo
logical consequence”. This observation was the basis for the abstract notion of
Noetherian Fragment introduced in [16], here adapted for an arbitrary first-order
theory.

Definition 3.1 (Noetherian Theory). A Σ0-theory T0 is Noetherian if and
only if for every finite set of free constants a, every infinite ascending chain

Θ1 ⊆ Θ2 ⊆ · · · ⊆ Θn ⊆ · · ·

of sets of ground Σ
a
0 -atoms is eventually constant modulo T0, i.e. there is an n

such that T0 ∪Θn |= A, for every natural number m and atom A ∈ Θm.

Natural examples of Noetherian theories are the first-order axiomatization (in
equational logic) of varieties like K-algebras, K-vector spaces, and R-modules,
whereK is a field and R is a Noetherian ring (see [22] for further details). Abelian
semigroups are also Noetherian (cf. Theorem 3.11 in [8]). Notice that, since any
extension (in the same signature) of a Noetherian theory is also Noetherian,
any theory extending the theory of a single Associative-Commutative symbol
is Noetherian. This shows that the family of Noetherian theories is important
for verification because theories axiomatizing integer addition or multiset union
formalize crucial aspects of a system to be verified (e.g., multisets may be used
to check that the result of some operations like sorting on a collection of objects
yields a permutation of the initial collection). More examples will be considered
below.

Before being able to describe our new combination method, we need to in-
troduce some preliminary notions. In the remaining of this section, we fix two
theories T0 ⊆ T in their respective signatures Σ0 ⊆ Σ.

Definition 3.2 (T0-basis). Given a finite set Θ of ground clauses (built out
of symbols from Σ and possibly further free constants) and a finite set of free
constants a, a T0-basis for Θ w.r.t. a is a set ∆ of positive ground Σ

a
0 -clauses

such that

(i) T ∪Θ |= C, for all C ∈ ∆ and
(ii) if T ∪Θ |= C then T0 ∪∆ |= C, for every positive ground Σ

a
0 -clause C.



210 S. Ghilardi et al.

Notice that only constants in a may occur in a T0-basis for Θ w.r.t. a, although
Θ may contain constants not in a.

Definition 3.3 (Residue Enumerator). Given a finite set a of free constants,
a T -residue enumerator for T0 w.r.t. a is a computable function Res

a
T (Γ ) map-

ping a Σ-constraint Γ to a finite T0-basis of Γ w.r.t. a.

If Γ is T -unsatisfiable, then a residue enumerator can always return the singleton
set containing the empty clause. The concept of (Noetherian) residue enumerator
is inspired by the work on partial theory reasoning (see, e.g., [3]) and generalizes
the notion of deduction complete procedure of [18]. Given a residue enumerator
for constraints (cf. Definition 3.3), it is always possible to build one for clauses
(this will be useful for the combination method, see below).

Lemma 3.4. Given a finite set a of free constants and a T -residue enumerator
for T0 w.r.t. a, there exists a computable function Res

a
T (Θ) mapping a finite set

of ground clauses Θ to a finite T0-basis of Θ w.r.t. a.

If T0 is Noetherian, then it is possible to show that a finite T0-basis for Γ w.r.t.
a always exists, for every Σ-constraint Γ and for every set a of constants, by
using König lemma. Unfortunately, such a basis is not always computable; this
motivates the following notion.

Definition 3.5. The theory T is an effectively Noetherian extension of T0 if
and only if T0 is Noetherian and there exists a T -residue enumerator for T0

w.r.t. every finite set a of free constants.

For example, the theory of commutative K-algebras is an effectively Noetherian
extension of the theory of K-vector spaces, where K is a field (see [16,28] for
details). Locally finite theories and Linear Real Arithmetic are further examples
taken from the literature about automated theorem proving.

A Σ0-theory T0 is locally finite iff Σ0 is finite and, for every finite set of free
constants a, there are finitely many ground Σ

a
0 -terms t1, . . . , tka

such that for ev-
ery ground Σ

a
0 -term u, T0 |= u = ti (for some i ∈ {1, . . . , ka}). If such t1, . . . , tka

are effectively computable from a, then T0 is effectively locally finite and there
are finitely many (representative) Σ

a
0 -atoms ψ1(a), . . . , ψm(a) such that for any

Σ
a
0 -atom ψ(a), there is some i such that T0 |= ψi(a) ↔ ψ(a). Examples of ef-

fectively locally finite theories are Boolean algebras, Linear Integer Arithmetic
modulo a given integer, and any theory over a finite purely relational signature.
Also, theories consisting of sentences which are true in a fixed finite Σ0-structure
M = (M, I) are locally finite. Enumerated datatypes can be formalized by the-
ories in this class. The class of locally finite theories is (strictly) contained in
that of Noetherian theories: to see this, it is sufficient to notice that, once fixed
a finite set of free constants a, there are only finitely many Σ

a
0 -atoms which are

not equivalent to each other modulo the locally finite theory. From this, it is
obvious that any infinite ascending chain of sets of such atoms must be eventu-
ally constant. Under the hypotheses that T0 is effectively locally finite and its
extension T has decidable constraint satisfiability problem, it is straightforward
to build a T -residue enumerator for T0.
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Example. Let us consider the signature Σ = {0,+,−, {fr}r∈R,≤} where 0 is a
constant, − and fr are unary function symbols, + is a binary function symbol,
≤ is a binary predicate symbol, and Σ0 = Σ \{≤}. We consider the theory T≤

R
=

ThΣ(R), i.e. the set of all Σ-sentences true in R, which is seen as an R-vector
space equipped with a linear ordering, where the fr’s represent the external
product so that terms are all equivalent to homogeneous linear polynomials.
Finally, let TR be ThΣ0

(R), i.e. the set of all Σ0-sentences true in R, which is
seen as an R-vector space without the ordering (so TR is the theory of the R-
vector spaces, not reduced to {0}). The Noetherianity of TR follows from general

algebraic properties (see, e.g., [22]). A T
≤
R

-residue enumerator for TR can be
obtained as follows. Let Γ = {C1, . . . , Cm} be a set of inequalities, i.e. Σ-atoms
whose main predicate symbol is ≤. By Definition 3.2, a Σ0-basis for Γ is the set
of all the disjunctions of equalities implied by Γ . Actually, to compute a basis,
it is sufficient to identify the set of implicit equalities in Γ , i.e. the equalities C=

i

such that T≤
R

|= Γ → C=
i (here C=

i is obtained from Ci by substituting ≤ with

=). This is so because (i) T≤
R

is Σ0-convex (i.e. if T≤
R

|= Γ → (e1 ∨ · · · ∨ en),

then there exists i ∈ {1, . . . , n} such that T≤
R

|= Γ → ei, for n ≥ 1 and equalities
e1, . . . , en) and (ii) given a system of inequalities Γ , if ∆ is the collection of all

the implicit equalities of Γ and e is an equality such that T≤
R

|= Γ → e, then
TR |= ∆ → e (see [21] for full details, [28] for the adaptation to our context).
The interest of implicit equalities is that they can be easily identified by using
the Fourier-Motzkin variable elimination method (see [20] for details on how to
do this).

3.1 Combination over Noetherian Theories

Preliminarily, we recall the notion of T0-compatibility [13] which is crucial for
the completeness of our combination technique.

Definition 3.6 (T0-compatibility [13]). Let T be a theory in the signature Σ
and let T0 be a universal theory in a subsignature Σ0 ⊆ Σ. We say that T is
T0-compatible iff T0 ⊆ T and there is a Σ0-theory T

⋆
0 such that (i) T0 ⊆ T ⋆

0 ; (ii)
T ⋆

0 has quantifier elimination; (iii) every model of T0 can be embedded into a
model of T ⋆

0 ; and (iv) every model of T can be embedded into a model of T ∪T ⋆
0 .

The requirements (i)-(iii) guarantee the uniqueness of the theory T ⋆
0 , provided

it exists (T ⋆
0 is the model completion of T0, see e.g. [7]). Notice that if T0 is

the empty theory over the empty signature, then T ∗
0 is the theory axiomatizing

an infinite domain, (i)-(iii) hold trivially, and (iv) can be shown equivalent to
the stably infinite requirement of the Nelson-Oppen schema [27,31]. Examples of
theories satisfying the compatibility condition are the following: (a) the theory
of K-algebras is compatible with the theory of K-vector spaces, where K is a
field (see [16,28]), (b) T≤

R
is compatible with the universal fragment of TR (this is

so for T≤
R

⊇ TR and TR eliminates quantifiers), (c) any equational extension over
a larger signature of the theory BA of Boolean algebras is BA-compatible [13],
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and (d) any extension of T0 whatsoever is T0-compatible whenever T0 eliminates
quantifiers.

The following lemma is our main technical tool allowing us to reduce satis-
fiability in a “temporalized” extension of a (Noetherian) theory to satisfiability
in first-order logic.

Lemma 3.7 (Amalgamation). Let I be a (possibly infinite) set of indexes;
Σ

c,ai

i (for i ∈ I) be signatures (expanded with free constants c, ai), whose pairwise

intersections are all equal to a certain signature Σ
c
r (i.e. Σ

c,ai

i ∩Σ
c,aj

j = Σ
c
r, for

all distinct i, j ∈ I); Ti be Σi-theories (for i ∈ I) which are all Tr-compatible,
where Tr ⊆

⋂
i Ti is a universal Σr-theory; {Γi}i∈I be sets of ground Σ

c,a
i

i -
clauses; and B⋆ be a set of positive ground Σ

c
r-clauses not containing the empty

clause and satisfying the following condition:

if Ti ∪ Γi ∪ B⋆ |= C, then C ∈ B⋆,

for i ∈ I and every positive ground Σ
c
r-clause C. Then, there exists a

⋃
i(Σ

c,ai

i )-
structure M such that M |=

⋃
i(Ti ∪ Γi) or, equivalently, there exist Σ

c,ai

i -
structures Mi (i ∈ I) satisfying Ti ∪ Γi, whose Σ

c
r-reducts coincide.

This lemma can also be used to prove the “first-order version” of the combination
result in [16], where residue enumerators permit the exchange of positive clauses
between theories.

3.2 The Theory of a Free Unary Function Symbol

By collecting the observations above, it is easy to identify pairs of theories (T, T0)
such that T satisfies our relevant requirements to be ‘combined over T0’ (i.e. T
is such that T0 ⊆ T and T is a T0-compatible effectively Noetherian extension
of T0). Here, we consider an entirely new (and somewhat remarkable) class of
examples of such pairs (T, T0) of theories.

Let f be a unary function symbol. If T is a theory, then Tf is the theory
obtained from T by adding f to its signature (as a new free function symbol).
So, e.g., if E the empty theory over the empty signature, Ef denotes the empty
theory over the signature {f}.

Proposition 3.8. Ef is Noetherian.

A theory T is stably infinite (see, e.g., [27,31]) iff it is E-compatible, or, equiva-
lently, iff any T -satisfiable constraint is satisfiable in a model of T whose domain
is infinite.

Proposition 3.9. If T is stably infinite and has decidable constraint satisfiabil-
ity problem, then Tf is an effectively Noetherian extension of Ef .

Proposition 3.10. If T is stably infinite, then Tf is Ef -compatible.

We are now ready to characterize our new class of theories.



Noetherianity and Combination Problems 213

Theorem 3.11. Let T be a theory with decidable constraint satisfiability prob-
lem. If T is stably infinite, then Tf is an effectively Noetherian extension of Ef ,
which is also Ef -compatible.

This result is a first step towards the integration in our framework of some
theories that are useful for verification. For example, the theory of integer offsets
can be seen as an extension of the theory of a loop-free unary function symbol
(see, e.g., [1]). Properties of hardware systems can be expressed in a mixture of
temporal logic – e.g., LTL or Computation Tree Logic (CTL) – and the theory of
integer offsets [6]. Our decidability results on “temporalized” first-order theories
below (see Theorems 4.11 and 5.4) can then be used to augment the degree of
automation of tools attempting to solve this kind of verification problems.

4 Temporalizing a First-Order Theory

We introduce “temporalized” first-order theories, by using LTL to describe the
temporal dimension. We use the formal framework introduced in [14] where
formulae are obtained by applying temporal and Boolean operators (but no
quantifiers) to first-order formulae over a given signature.

Definition 4.1 (LTL(Σa)-Sentences [14]). Given a signature Σ and a (finite
or infinite) set of free constants a, the set of LTL(Σa)-sentences is inductively
defined as follows: (a) if ϕ is a first-order Σa-sentence, then ϕ is an LTL(Σa)-
sentence and (b) if ψ1, ψ2 are LTL(Σa)-sentence, so are ψ1 ∧ψ2, ψ1 ∨ψ2, ¬ψ1,
Xψ1, �ψ1, ♦ψ1, ψ1Uψ2.

The free constants a allowed in LTL(Σa)-sentences will be used to model the
variables and the parameters of (reactive) systems.

Definition 4.2 ([14]). Given a signature Σ and a set a of free constants,
an LTL(Σa)-structure (or simply a structure) is a sequence M = {Mn =
(M, In)}n∈N of Σa-structures. The set M is called the domain (or the universe)
and In is called the n-th level interpretation function of the LTL(Σa)-structure.1

When considering a background Σ-theory T , the structures Mn = (Mn, In) will
be taken to be models of T (further requirements will be analyzed later on).

Definition 4.3 ([14]). Given an LTL(Σa)-sentence ϕ and t ∈ N, the notion
of “ϕ being true in the LTL(Σa)-structure M = {Mn = (M, In)}n∈N at the
instant t” (in symbols M |=t ϕ) is inductively defined as follows:

– if ϕ is an first-order sentence, M |=t ϕ iff Mt |= ϕ;
– M |=t ¬ϕ iff M 6|=t ϕ;
– M |=t ϕ ∧ ψ iff M |=t ϕ and M |=t ψ;
– M |=t ϕ ∨ ψ iff M |=t ϕ or M |=t ψ;
– M |=t Xϕ iff M |=t+1 ϕ;

1 In more detail, In is such that In(P ) ⊆ Mk for every predicate symbols P ∈ Σ of
arity k, and In(f) : Mk −→M for each function symbol f ∈ Σ of arity k.



214 S. Ghilardi et al.

– M |=t �ϕ iff for each t′ ≥ t, M |=t′ ϕ;
– M |=t ♦ϕ iff for some t′ ≥ t, M |=t′ ϕ;
– M |=t ϕUψ iff there exists t′ ≥ t such that M |=t′ ψ and for each t′′,
t ≤ t′′ < t′ ⇒ M |=t′′ ϕ.

Let ϕ be an LTL(Σa)-sentence; we say that ϕ is true in M or, equivalently, that
M satisfies ϕ (in symbols M |= ϕ) iff M |=0 ϕ.

Since we distinguish between rigid (i.e. time-independent) and flexible (i.e.
time-dependent) symbols of the signature, we need to introduce a notion of first-
order theory that fixes a sub-signature and distinguish between two kinds of free
constants.

Definition 4.4. A data-flow theory is a 5-tuple T = 〈Σ, T,Σr, a, c〉 where Σ is
a signature, T is a Σ-theory (called the underlying theory of T ), Σr is the rigid
subsignature of Σ, a is a set of free constants (called system variables), and c

is a set of free constants (called system parameters).

A data-flow theory T = 〈Σ, T,Σr, a, c〉 is totally flexible iff Σr is empty and is
totally rigid iff Σr = Σ. In [14], data-flow theories are called LTL-theories. Here,
we prefer to use the more abstract term of data-flow theory in order to prepare
for the generalization of the decidability result in the next section.

Definition 4.5 ([14]). An LTL(Σa,c)-structure M = {Mn = (M, In)}n∈N is
appropriate for a data-flow theory T = 〈Σ, T,Σr, a, c〉 iff for all m,n ∈ N, for
all function symbol f ∈ Σr, for all relational symbol P ∈ Σr, and for all constant
c ∈ c, we have

Mn |= T, In(f) = Im(f), In(P ) = Im(P ), In(c) = Im(c).

The satisfiability problem for T is the following: given an LTL(Σa,c)-sentence
ϕ, decide whether there is an LTL(Σa,c)-structure M appropriate for T such
that M |= ϕ. The ground satisfiability problem for T is similarly introduced,
but ϕ is assumed to be ground.

Notice that appropriate structures are such that the equality symbol is always
interpreted as the identity relation, since the equality is included in every signa-
ture (hence also in the rigid signature Σr).

In the sequel, we shall concentrate on the ground satisfiability problem for
data-flow theories; for this reason, we shall assume from now on that the under-
lying theory T of any data-flow theory T = 〈Σ, T,Σr, a, c〉 has decidable
constraint satisfiability problem. Unfortunately, this assumption is insuffi-
cient to guarantee decidability.

Theorem 4.6 ([14]). There exists a totally flexible data-flow theory T whose
ground satisfiability problem is undecidable.

Notwithstanding the undecidability of the ground satisfiability problem, the fol-
lowing compatibility requirement can be used to re-gain decidability.
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Definition 4.7. A data-flow theory T = 〈Σ, T,Σr, a, c〉 is said to be Noetherian
compatible iff there is a Σr-universal theory Tr such that T is an effectively
Noetherian and Tr-compatible extension of Tr.

The definition above refers to a Σr-theory Tr such that T is Tr-compatible.
Although not relevant for the results in this paper, we notice that if such a
theory Tr exists, then one can always take Tr to be the theory axiomatized by
the universal Σr-sentences which are logical consequences of T .

4.1 A Decision Procedure for the Noetherian Compatible Case

Preliminarily, we recall that it is possible to define the notion of ground model-
checking problem in our framework [14] and to show its undecidability when
the underlying theory is Noetherian. The argument of the proof is a simple
reduction to the (undecidable) reachability problem of Minsky machines [26,10]
by using the reduct of Presburger Arithmetic obtained by forgetting addition
and ordering, which is capable of encoding counters (see [15] for details). This
is why here we focus on the ground satisfiability problem in the Noetherian
compatible case.

Before developing our decision procedure, some preliminary notions are re-
quired.

Definition 4.8 (PLTL-Abstraction [14]). Given a signature Σa and a set of
propositional letters L of the appropriate cardinality, let [[ · ]] be a bijection from
the set of ground Σa-atoms into L. By translating identically Boolean and tem-
poral connectives, the map is inductively extended to a bijective map (also called
[[ · ]]) from the set of ground LTL(Σa)-sentences onto the set of propositional
L-formulae.

Given a ground LTL(Σa)-sentence ϕ, we call [[ϕ ]] the PLTL-abstraction of ϕ;
moreover, if Θ is a set of ground LTL(Σa)-sentences, the PLTL-abstraction [[Θ ]]
of Θ denotes the set {[[ϕ ]] | ϕ ∈ Θ}.

Definition 4.9 (ϕ-Guessing). Let ϕ be a ground LTL(Σa,c)-sentence. A ϕ-
guessing is a Boolean assignment to literals of ϕ (we view a guessing as the set
{ℓ | ℓ is an atom occurring in ϕ and ℓ is assigned to true} ∪ {¬ℓ | ℓ is an atom
occurring in ϕ and ℓ is assigned to false}).

We say that a (non-empty) set of ϕ-guessings G(ϕ) := {G1, . . . , Gk} is ϕ-compat-

ible if and only if [[ϕ ∧ �
∨k

i=1Gi ]] is PLTL-satisfiable.
Let T = 〈Σ, T,Σr, a, c〉 be a Noetherian compatible data-flow theory. The

procedure NSat (see Algorithm 1) takes a ground LTL(Σa,c)-sentence ϕ as input
and returns “satisfiable” if there is an appropriate LTL(Σa,c)-structure M for T
such that M |= ϕ; otherwise, it returns “unsatisfiable”. The procedure relies on
a decision procedure for the PLTL-satisfiability problem in order to recognize
the ϕ-compatible sets of ϕ-guessings (cf. the outer loop of NSat). Moreover,
Dp-t is a decision procedure for the satisfiability problem of arbitrary Boolean
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Algorithm 1 The satisfiability procedure for the Noetherian compatible case

Require: ϕ ground LTL(Σa,c)-sentence
1: procedure NSat(ϕ)
2: for all ϕ-compatible set of ϕ-guessing G(ϕ) do

3: B ← ∅
4: repeat

5: B′ ← B
6: for all Gi ∈ G(ϕ) do

7: Bi ← Res
c

T (Gi ∪ B)
8: end for

9: B ←
S

i
Bi

10: until Dp-t(B′ ∧ ¬B) = “unsatisfiable”

11: if Dp-t(B) = “satisfiable” then

12: return “satisfiable”

13: end if

14: end for

15: return “unsatisfiable”

16: end procedure

combinations of atoms of the theory T (i.e., it is capable of checking the T -
satisfiability of sets of ground Σa,c-clauses and not only of ground Σa,c-literals).
Notice that Dp-t can be implemented by Satisfiability Modulo Theories solvers
(see, e.g., [30]). Finally, Res

c
T is the T -residue enumerator for Tr w.r.t. c.

In the outer loop of NSat, all possible ϕ-compatible sets of ϕ-guessings
are enumerated. Let G(ϕ) := {G1, . . . , Gn} be the current ϕ-guessing. The local
variable B is initialized to the empty set (line 3) and then updated in the inner
loop (lines 4-10) as follows: the Tr-bases Bi for Gi ∪ B w.r.t. c are computed
(for i = 1, . . . , n), and the new value of B is set to

⋃
i Bi (line 5 saves the old

value of B in B′). The inner loop is iterated until B is logically equivalent to B′

modulo T . At this point, if B is T -consistent, the procedure stops and returns
“satisfiable”; otherwise it tries another ϕ-compatible set of ϕ-guessings. If for
all ϕ-compatible sets of ϕ-guessings the B’s returned after the execution of the
inner loop are T -inconsistent, the procedure returns “unsatisfiable”.

Proposition 4.10 (Correctness of NSat). Let T = 〈Σ, T,Σr, a, c〉 be a
Noetherian compatible data-flow theory and ϕ be a ground LTL(Σa,c)-sentence.
Then, NSat(ϕ) returns “satisfiable” iff there exists an LTL(Σa,c)-structure M
appropriate for T such that M |= ϕ.

Indeed, the termination of NSat is a consequence of the Noetherianity of the
underlying theory of T by using the fact that every infinite ascending chain of
sets of positive ground Σ

c
r-clauses is eventually constant for logical consequence.

The correctness and termination of NSat yield our main decidability result.

Theorem 4.11. The ground satisfiability problem for Noetherian compatible
data-flow theories is decidable.
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The theories considered in the previous section (especially, those in Section 3.2)
satisfy the hypothesis of the theorem above.

5 Extensions to Abstract Temporal Logics

By considering the proof of the correctness of NSat, it becomes evident that
only very few of the characteristic properties of LTL are used. It turns out that
a simple generalization of NSat can be used to decide satisfiability problems
of “temporalized” extensions of Noetherian theories whose flow of time is not
linear, e.g., branching as in CTL.

In order to formalize the observation above, we regard modal/temporal oper-
ators as functions operating on powerset Boolean algebras. In this way, logics for
various flows of time, as well as CTL, Propositional Dynamic Logic (PDL), and
the µ-calculus fall within the scope of our result (see [2] for a similar approach).

Definition 5.1. An abstract temporal signature2 I is a purely functional sig-
nature extending the signature BA of Boolean algebras.3 An abstract temporal
logic L is a class of I-structures, whose Boolean reducts are powerset Boolean
algebras. Given an I-term t, deciding whether t 6= 0 is satisfied in some mem-
ber of L is the satisfiability problem for L. Given I-terms t, u, deciding whether
u = 1 & t 6= 0 is satisfied in some member of L is the relativized satisfiability
problem for L.

In many cases (e.g., LTL, CTL, PDL, and the µ-calculus), it is possible to
reduce the relativized satisfiability problem to that of satisfiability (by using the
so-called “master modality”); however, there are logics for which the latter is
decidable whereas the former is undecidable (see [12]).

Definition 5.2 (I(Σa)-sentence). Given a signature Σ, a (finite or infinite)
set of free constants a, and an abstract temporal signature I, the set of I(Σa)-
sentences is inductively defined as follows: (a) if ϕ is a first-order Σa-sentence,
then ϕ is an I(Σa)-sentence, (b) if ϕ1, ϕ2 are I(Σa)-sentences, so are ϕ1 ∧
ϕ2, ϕ1 ∨ϕ2,¬ϕ1, and (c) if ψ1, . . . , ψn are I(Σa)-sentences and O ∈ I \BA has
arity n, then O(ψ1, . . . , ψn) is a I(Σa)-sentence.

When I is LTL, I(Σa,c)-sentences coincide with LTL(Σa,c)-sentences (cf. Def-
inition 4.1). We defined an abstract temporal logic L (based on I) as a class
of I-structures based on powerset Boolean algebras: such structures (also called
I-frames) will be denoted with F = (℘(F ), {OF}O∈I\BA).

2 From the modal/temporal literature viewpoint, the adjective “intensional” might be
preferable to “abstract temporal”. We have chosen the latter, in order to emphasize
that our results are deemed as significant for a class of logics whose modalities
concern flows of time.

3 This signature contains two binary function symbols for meet and join, a unary
function symbol for complement, and two constants for zero and one (the latter are
denoted with 0 and 1, respectively).
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Definition 5.3. Let a signature Σ, a set a of free constants, and an abstract
temporal signature I be given; an I(Σa)-structure (or simply a structure) is a
pair formed by an I-frame F = (℘(F ), {OF}O∈I\BA) and a collection M =
{Mn = (M, In)}n∈F of Σa-structures (all based on the same domain).

An I(Σa)-sentence ϕ is true in the I(Σa)-structure (F ,M) at t ∈ F (noted
F ,M |=t ϕ) iff the following holds: (a) if ϕ is a first-order sentence, then
F ,M |=t ϕ holds iff Mt |= ϕ and (b) if the main operator of ϕ is a Boolean
connective, truth of ϕ is defined in a truth-table manner; (c) if ϕ is of the kind
O(ψ1, . . . , ψn), then F ,M |=t ϕ holds iff t ∈ OF ({u | F ,M |=u ψ1}, . . . , {u |
F ,M |=u ψn}).

If a data-flow theory T is given, we say that an I(Σa)-structure is appropriate
for T iff it satisfies the requirements of Definition 4.5. The (ground) satisfiability
problem for an abstract temporal logic L (based on I) and for a data-flow theory
T is now the following: given a (ground) I(Σa)-sentence ϕ, decide whether there
is a I(Σa)-structure (F ,M) appropriate for T , such that F ∈ L and such that
F ,M |=t ϕ holds for some t.

Theorem 5.4. The ground satisfiability problem for T and L is decidable if (i)
T is Noetherian compatible and (ii) the relativized satisfiability problem for L is
decidable.

When I is LTL, this result simplifies to Theorem 4.11. To prove Theorem 5.4, it is
possible to re-use NSat (cf. Algorithm 1) almost ‘off-the-shelf’, by preliminarily
adapting the definition of PLTL-abstraction function [[ · ]] (cf. Definition 4.8) to
L in the obvious way. It turns out that only the compatibility of guessings should
be changed: a finite set of ϕ-guessings G(ϕ) := {G1, . . . , Gk} is ϕ-compatible if
and only if the relativized satisfiability problem

[[ϕ ]] 6= 0 & [[

k∨

i=1

Gi ]] = 1

is satisfiable in L (this is the only modification required to the definitions and
proofs from Section 4.1).

While Theorem 4.11 is relevant to augment the degree of mechanization of
deductive approaches for the verification of reactive systems based on LTL (e.g.,
the one put-forward by Manna and Pnueli [23]), one may wonder about the
relevance of its generalization, i.e. Theorem 5.4. To see its usefulness, consider
TLA [19]. For such a specification formalism, it is difficult to reuse techniques and
tools for (classic) temporal/modal logic since TLA features some non-standard
characteristics which are quite useful for practitioners (see [25] for an extensive
discussion on this and related issues). On the other hand, deductive verification
of TLA specifications can be supported by proof assistants (e.g., [24]). While
applying the inference rules of TLA [19], it has been observed [25] that some
of the resulting sub-goals may belong to a fragment of TLA which is equiva-
lent to the modal logic S4.2 [4]. Now, the relativized satisfiability problem for
this logic is decidable (see again [4]) so that NSat can be used to automati-
cally discharge some of the sub-goals, whenever the data-flow theory formalizing
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the data structure manipulated by the system modelled in TLA is Noetherian
compatible.

6 Conclusions

We have investigated the role of Noetherianity for the decidability of the satis-
fiability problem for “temporalized” first-order theories (cf. Sections 4 and 5).
The key technical contribution is Lemma 3.7, which allows us to obtain amal-
gamations of (possibly infinite) sequences of first-order structures corresponding
to temporal structures. This lemma is the basis of a method for combinations
of first-order theories over Noetherian theories. An important class of stably in-
finite theories extending the empty theory over a single unary function symbol
has been shown to satisfy the hypotheses for the decidability of both the com-
bination schema and the satisfiability of “temporalized” first-order theories (cf.
Section 3.2).

The results in this paper extends those of [14] in two ways. First, the re-
quirement of local finiteness of the (rigid) sub-theory is weakened to that of
Noetherianity. Second, decidability is parametric w.r.t. a modal/temporal logic,
provided that relativized satisfiability problem is decidable in the latter.
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A Proofs

The appendix is organized as follows: Section A.1 recalls some basic results
coming from model theory and some theorems about structure amalgamations;
Section A.2 presents the proofs regarding correctness and termination of the
procedure NSat, and finally Section A.3 contains the details about the new
examples presented in Section 3.2.

A.1 Model-Theoretic Background

We first recall some further standard background. Given a Σ-structure M =
(M, I) and a subset C ⊆ M , the substructure of M generated by C is the
substructure obtained from M by restricting I to the subset {tM(c) | c ⊆ C

and t(x) is a Σ-term} (here tM is the function interpreting the term t in M).
In case this substructure coincides with M, we say that C is a set of generators
for M.

If C is a set of generators for M, the diagram ∆(M) of M (w.r.t. Σ,C)
consists of all ground ΣC-literals that hold in M; analogously, the elementary
diagram ∆e(M) of M (w.r.t. Σ,C) consists of all ground ΣC-sentences that
hold in M (often C is not specified at all, in these cases it is assumed to coincide
with the whole carrier set of M).

Diagrams (in combination with the compactness of the logical consequence
relation) will be repeatedly used. A typical standard use is the following: suppose
that we want to embed M into a model of a theory T , then it is sufficient to
check that T ∪ ∆(M) is consistent. This argument is justified by Robinson’s
Diagram Lemma [33], which relates embeddings and diagrams as follows.

Lemma A.1 (Robinson’s Diagram Lemma). Let M be a Σ-structure gen-
erated by a set C, and let N be another Σ-structure; then M can be embedded
(resp. elementarily embedded) into N iff N can be expanded to ΣC-model of the
diagram ∆(M) (resp. of the elementary diagram ∆e(M)) of M w.r.t. Σ,C.

The technique used for proving Lemma A.1 is simple, we sketch it. If we have
an expansion of N to a ΣC -structure (to be called N again for simplicity), then,
since every element of the support of M is of the kind tM(c) for some c ⊆ C, we
can define the embedding µ by putting µ(tM(c)) := tN (cN ): this is well-defined
and it is an embedding precisely because N |= ∆(M). Conversely, if we have
the embedding µ, then we can get the desired expansion by taking cN := µ(c)
for all c ∈ C.

Since a surjective embedding is just an isomorphism, the argument just
sketched shows also the following fact:

Lemma A.2. If two Σ-structures M, N are both generated by a set C and if
one of them, say N , satisfies the other’s diagram (w.r.t. Σ,C), then the two
structures are ΣC-isomorphic.

Ground formulae are invariant under embeddings in the following sense.



Lemma A.3. Let M = (M, I) be a Σ-structure that can be embedded into
another Σ-structure N . For all ground ΣM -sentences ϕ, we have that

M |= ϕ ⇔ N |= ϕ,

where N is extended to a ΣM -structure by interpreting each a ∈M by its image
under the embedding.

Next lemma states the well-known property (called submodel-completeness)
of theories enjoying quantifier-elimination:

Lemma A.4. Suppose that T ⋆ is a Σr-theory enjoying quantifier elimination
and that ∆ is a diagram of a substructure R = (R,J ) of a model M of T ⋆; then
the ΣR-theory T ⋆ ∪∆ is complete.

Proof. By Robinson Diagram Lemma A.1, the models of T ⋆ ∪∆ are the models
of T ⋆ endowed with a Σr-embedding from R. One such model is M; we show
that any other model M′ satisfies the same ΣR-sentences as M (we assume
without loss of generality the Σr-embedding from R into M′ to be an inclusion).
Pick an arbitrary ΣR-sentence ϕ(c) (where the c are parameters from the set of
generators of R used in order to build ∆): this sentence is equivalent, modulo
T ⋆, to a ground ΣR-sentence ϕ⋆(c). Since truth of ground sentences is preserved
by substructures (see Lemma A.3), we have the following chain of equivalences

M′ |= ϕ(c) ⇔ M′ |= ϕ⋆(c) ⇔ R |= ϕ⋆(c) ⇔ M |= ϕ⋆(c) ⇔ M |= ϕ(c),

showing our claim.

Next result is also part of basic classical model theory: a proof of it can be
easily deduced from Craig’s Interpolation Theorem (alternatively, a direct proof
using a double chain argument is possible, see [33], pp. 141-142):

Theorem A.5 (Robinson’s Joint Consistency Theorem). Let H1, H2 be,
respectively, consistent Θ1, Θ2-theories and let Θ0 be the signature Θ1∩Θ2. Sup-
pose that there is a complete Θ0-theory H0 such that H0 ⊆ H1 and H0 ⊆ H2;
then H1 ∪H2 is a consistent Θ1 ∪Θ2-theory.

Structure Amalgamations The statement of next Lemma extends the state-
ment of Lemma 9.3 from [13] (and is proved in the same way):

Lemma A.6. Let Ti be Σi-theories (for i ∈ I) and let Σr be a subsignature of
all the Σi’s. Let

Γ1, . . . , Γi, . . . (i ∈ I)

be sets of ground Σ
ai,c

i -clauses (here ai, c are free constants); a set B⋆ of positive
ground Σ

c
r-clauses is said to be saturated iff for every i ∈ I and for every positive

ground Σ
c
r-clause C it happens that:

Ti ∪ Γi ∪ B⋆ |= C ⇒ C ∈ B⋆.



Suppose now that B⋆ is saturated and does not contain the empty clause. Then
there are Σ

ai,c

i -structures Mi such that Mi |= Ti ∪ Γi ∪ B⋆; moreover, the
Σ

c
r-substructures generated by the elements (denoted by) c coincide for all the

Mi’s.

Proof. A set of ground Σ
c
r-literals is said to be exhaustive iff it contains, for

every ground Σ
c
r-literal A, either A itself or its negation. The statement of the

lemma is proved if we are able to find an exhaustive set ∆ of ground Σ
c
r-literals

which is consistent with Ti ∪ Γi ∪ B⋆ for each i ∈ I. In this case, in fact, given
models Mi |= Ti ∪Γi ∪B⋆ ∪∆, we have that the Σ

c
r-substructures generated by

c in all the Mi’s all have diagram ∆, consequently they are Σ
c
r-isomorphic (and

can be made coincident by suitable renaming).
We shall adapt the notion of productive clause used in nowadays refutational

completeness proofs for e.g. resolution or paramodulation based calculi. Consider
any strict total terminating order on ground Σ

c
r-atoms and extend it to a strict

total terminating order > for positive ground Σ
c
r-clauses by taking standard

multiset extension. We shall define increasing sets ∆+
C (varying C ∈ B⋆) of

ground Σ
c
r-atoms as follows. Recall that, as the empty clause is not in B⋆, all

positive clauses in B⋆ are of the kind A ∨A1 ∨ · · · ∨An (n ≥ 0).
The definition is by transfinite induction on >. Say that the clause C ≡

A ∨ A1 ∨ · · · ∨ An from B⋆ is productive iff (i) {A} > {A1, . . . , An} and (ii)
A1, . . . , An 6∈ ∆+

<C (where ∆+
<C is

⋃
D<C ∆

+
D). Now, if C is productive, we let

∆+
C to be ∆+

<C ∪ {A}, otherwise ∆+
C is simply ∆+

<C .

Let ∆+ be
⋃

C∈B⋆ ∆
+
C and ∆ be ∆+ ∪ {¬A | A is a ground Σ

c
r-atom not

belonging to ∆+}. By construction, ∆ |= B⋆, so we simply need to show that
Ti ∪ Γi ∪∆ is consistent for each i ∈ I. We need a preliminary claim.

Claim: if the clause A ∨ A1 ∨ · · · ∨ An is productive and A is the maximum
atom in it, then A1, . . . , An 6∈ ∆+: this is evident, as the Ai’s could only be
produced by clauses smaller than A ∨A1 ∨ · · · ∨An.

Suppose now that Ti ∪Γi ∪∆ is not consistent. Then there are ground atoms
B1, . . . , Bm 6∈ ∆+ and productive clauses

C1 ≡ A1 ∨A11 ∨ · · · ∨A1k1

· · ·

Cn ≡ An ∨An1 ∨ · · · ∨Ankn

(with maximum atoms A1, . . . , An, respectively), such that

Ti ∪ Γi ∪ {A1, . . . , An} |= B1 ∨ · · · ∨Bm.

By trivial logical manipulations, it follows that

Ti ∪ Γi ∪ {C1, . . . , Cn} |=
∨

i,j

Aij ∨B1 ∨ · · · ∨Bm.

As C1, . . . , Cn are clauses in B⋆ and as B⋆ is saturated, the clause

D ≡
∨

i,j

Aij ∨B1 ∨ · · · ∨Bm



is also in B⋆. By construction (anyway, either D is productive or not) some of
the atoms {A11, . . . , Ankn

, B1, . . . , Bm} are in ∆+. By the claim, A11, . . . , Ankn

cannot be there, so one of the Bj ’s is in ∆+, contradiction.

Next Lemma also extends a fact (namely Lemma 9.4) established in [13]:

Lemma A.7. Let I be a (possibly infinite) set of indexes, Σ
c,ai

i be signatures
expanded with free constants c, ai (for i ∈ I), whose pairwise intersections are all

equal to a certain signature Σ
c
r (i.e., we have Σ

c,ai

i ∩Σ
c,aj

j = Σ
c
r for all distinct

i, j ∈ I). Suppose we are also given Σi-theories Ti which are all Tr-compatible,
where Tr ⊆

⋂
i Ti is a universal Σr-theory; let finally {Mi = (Mi, Ii)}i∈I be

a sequence of Σ
c,ai

i -structures which are models of Ti and satisfy the same Σ
c
r-

atoms. Under these hypotheses, there exist a
⋃

i(Σ
c,a

i

i )-structure M |=
⋃

i Ti

such that for each i, Mi has a Σ
c,ai

i -embedding into M.

Proof. By Robinson Diagram Lemma A.1 and by Lemma A.2 (and up to a partial
renaming of the support sets), the fact that the Mi satisfy the same Σ

c
r-atoms

is another way of saying that they share the same Σ
c
r-substructure generated by

the c (let us call R = (R,J ) this substructure); by Tr-compatibility, we may
also freely assume that Mi |= Ti ∪ T ⋆

r . Notice also that, by Lemma A.4 above,
the theory T ⋆

r ∪∆ is complete, where ∆ is the diagram of R as a Σr-structure.
Again by Robinson Diagram Lemma, we only need to show that the union of

the elementary diagrams ∆e
i (Mi) is consistent:4 here ∆e

i (Mi) is the elementary
diagram of Mi as a Σ

c,a
i

i -structure.
By compactness, we can freely assume that the index set I is finite, let it be

{1, . . . , k} and let us argue by induction on k. For k = 1, there is nothing to
prove and for k > 1, we use Robinson’s Joint Consistency Theorem as follows.

By renaming some elements in the supports if needed, we can freely suppose
that the sets M1\R and (M2∪· · ·∪Mk)\R are disjoint. Given the hypotheses of
the Lemma on the signatures Σ

c,ai

i , we can apply the Joint Consistency Theo-
rem to the theories ∆e(M1) and ∆e(M2)∪· · · ∪∆e(Mk): in fact, they are both
consistent (the latter by induction) and their both contain the complete subthe-
ory T ⋆

r ∪∆ in the shared subsignature. This proves that ∆e(M1)∪· · ·∪∆e(Mk)
is consistent, as desired.

If we put together the two previous lemmas, we get the following fact:

Lemma 3.7. Suppose we are given the following data:

(i) I is a (possibly infinite) set of indexes;
(ii) Σ

c,a
i

i (for i ∈ I) are signatures (expanded with free constants c, ai), whose
pairwise intersections are all equal to a certain signature Σ

c
r (that is, we

have Σ
c,ai

i ∩Σ
c,aj

j = Σ
c
r for all distinct i, j ∈ I);

(iii) Ti are Σi-theories (for i ∈ I) which are all Tr-compatible, where Tr ⊆
⋂

i Ti

is a universal Σr-theory;

4 We need the elementary diagrams here, and not just diagrams, because we want the
model to be built to be a model of

S

i
Ti.



(iv) {Γi}i∈I are sets of ground Σ
a

i
,c

i -clauses;
(v) B⋆ is a set of positive ground Σ

c
r-clauses not containing the empty clause

and satisfying the following condition for every i ∈ I and for every positive
ground Σ

c
r-clause C:

Ti ∪ Γi ∪ B⋆ |= C ⇒ C ∈ B⋆.

If the above data are given, then there exists a
⋃

i(Σ
c,a

i

i )-structure M |=
⋃

i(Ti∪
Γi). Equivalently: there exist Σ

c,ai

i -structures Mi (i ∈ I) satisfying Ti∪Γi, whose
Σ

c
r-reducts coincide.

A.2 Proofs of the Decidability Results

In order to introduce the reader to our decidability result, we need to prove two
technical lemmas. The following generalizes the notion of residue enumerator
from constraints to set of clauses:

Lemma 3.4. Given a finite set a of free constants and a T -residue enumerator
for T0 w.r.t. a, there is a computable function Res

a
T (Θ) mapping a finite set of

ground clauses Θ to a finite T0-basis of Θ w.r.t. a.

Proof. We proceed as follows. First of all, let us convert Θ into its disjunctive
normal form

∨
i Γi. Let∆i := Res

a
T (Γi). We claim that ∆, namely the conversion

into conjunctive normal form of
∨

i ∆i, is a T0-basis for Θ w.r.t. a. Indeed, 3.2-(i)
is verified since, for each i, T ∪ Γi |= ∆i (because ∆i is a T0-basis for Γi), so it
follows T ∪

∨
i Γi |=

∨
i ∆i, hence T ∪Θ |= ∆ (recall that ∆ is logically equivalent

to
∨

i ∆i). Moreover, 3.2-(ii) is verified because T ∪Θ |= C iff T ∪
∨

i Γi |= C if
and only if, for each i, T ∪Γi |= C, hence, for each i, T0∪∆i |= C (again because
∆i is a T0-basis for Γi), and finally T0 ∪∆ |= C.

The next lemma transfers the termination property from sets of atoms to
sets of positive clauses:

Lemma A.8. Every infinite ascending chain of sets of positive ground Σ
c
r-

clauses is eventually constant for logical consequence modulo a Noetherian Σ-
theory Tr.

Proof. By contradiction, suppose not; in this case it is immediate to see that
there are infinitely many positive ground Tr-clauses C1, C2, . . . such that for all
i the clause Ci is not a logical consequence of Tr ∪ {C1, . . . , Ci−1}.

Let us build a chain of trees T0 ⊆ T1 ⊆ T2 ⊆ · · · , whose nodes are labeled by
positive groundΣ

c
r-atoms as follows. T0 consists of the root only, which is labeled

⊤. Suppose Ti−1 is already built and consider the clause Ci ≡ B1 ∨ · · · ∨Bm. To
build Ti, do the following for every leaf K of Ti−1 (let the branch leading to K be
labeled by A1, . . . , Ak): append new sons to K labeled B1, . . . , Bm, respectively,
if Ci is such that Tr ∪ {A1, . . . , Ak} 6|= Ci (if this is not the case, do nothing for
the leaf K).

Consider now the union tree T =
⋃
Ti: since, whenever a node labeled Ak+1

is added, Ak+1 is not a logical consequence w.r.t. Tr of the formulae labeling the



predecessor nodes, by the Noetherianity of Tr all branches are then finite and
by König lemma the whole tree is itself finite. This means that for some index
j, the examination of clauses Ci (for i > j) did not yield any modification of the
already built tree. Now, Cj+1 is not a logical consequence of Tr ∪ {C1, . . . , Cj}:
this means that there is a Σ

c
r-structure M which is a model of Tr and in which

all atoms of Cj+1 are false and the C1, . . . , Cj are all true. By induction on
i = 0, . . . , j, it is easily seen that there is a branch in Ti whose labeling atoms
are true in M: this contradicts the fact that the tree Tj has not been modified
in step j + 1.

The termination of the procedure NSat is stated by the following

Lemma A.9. The procedure NSat always terminates.

Proof. Since the number of literals occurring in ϕ is finite, there is only a finite
number of ϕ-guessings, and thus there is a finite number of sets of ϕ-guessings
G(ϕ). So, it remains to prove that the inner loop of lines 4-10 of Algorithm 1
terminates; to this aim we recall the fact (proved in Lemma A.8) that every
infinite ascending chain of sets of positive ground Σ

c
r-clauses is eventually con-

stant for logical consequence w.r.t. a Noetherian theory Tr. The test on line 10
eventually have to succeed by the following reason: if we let B0,B1,B2, . . . be
the values of the local variable B after each execution of the loop, we have that
Tr ∪ Bi+1 |= Bi, for each i, by Definition 3.2(ii). Thus, if we let Di :=

⋃
j≤i Bj ,

then the succession
D1,D2,D3, . . .

is increasing and hence eventually constant modulo Tr ⊆ T , which means that
also the above mentioned test eventually succeeds.

The following straightforward lemma explains why PLTL-abstractions are
relevant for satisfiability checking of LTL(Σa)-sentences.

Lemma A.10. Let L be a set of propositional letters, Σ be a signature, a
be a set of free constants, and [[ · ]] be a PLTL-abstraction function mapping
ground LTL(Σa)-sentences into propositional L-formulae. Suppose we are given
a ground LTL(Σa)-sentence ϕ, a Kripke model V for L (based on N as a tem-
poral flow) and an LTL(Σa)-structure M = {Mn}n∈N such that for every t ∈ N

and for every Σa-ground atom ℓ occurring in ϕ we have

Mt |= ℓ iff Vt([[ ℓ ]]) = 1.

Then we have also

M |=t ϕ iff V |=t [[ϕ ]],

for every t ∈ N.

Proof. The proof is by an easy induction on the complexity of the subformulae
ψ occurring in ϕ.



The key to define a reduction to the satisfiability problem in PLTL is guess-
ing. The following two lemmas state the correctness of the procedure NSat.

Lemma A.11 (Soundness). Let T = 〈Σ, T,Σr, a, c〉 be a Noetherian com-
patible data-flow theory and ϕ be a ground LTL(Σa,c)-sentence. If NSat(ϕ)
returns “satisfiable”, then there is an LTL(Σa,c)-structure M appropriate for T
such that M |= ϕ.

Proof. If NSat(ϕ) returns “satisfiable”, then there exists a (non-empty) set
of ϕ-guessings G(ϕ) := {G1, . . . Gn} that are ϕ-compatible, i.e. such that [[ϕ ∧
�(

∨
i Gi) ]] is satisfiable (as usual, with a little abuse of notation, we confuse the

set Gi with the conjunction of the literals occurring in it). NSat(ϕ) will produce
the list of sets of positive ground Σ

c
r-clauses

B0
1, . . . ,B

0
n,B

1
1 , . . . ,B

1
n, . . . ,B

h
1 , . . . ,B

h
n,

such that:

– B0, . . . ,Bh,Bh+1 are the values of the local variable B in the iterations of
the inner loop (we have B0 = ∅,B1 =

⋃
i B

0
i , . . . ,B

h+1 =
⋃

i B
h
i );

– for j = 0, . . . , h and for i = 1, . . . , n, the set Bj
i is a Tr-basis for Gi∪Bj w.r.t.

c,
– Bh+1 is T -consistent and logically equivalent to Bh modulo T .

Let B⋆ := {C | T ∪ Bh |= C and C is a positive ground Σ
c
r-clause}; notice that

B⋆ does not contain the empty clause, moreover we claim that for every positive
ground Σ

c
r-clause C and for each i ∈ {1, . . . , n}, we have

T ∪Gi ∪ B⋆ |= C ⇒ C ∈ B⋆. (2)

In fact, if T ∪Gi ∪ B⋆ |= C, then T ∪Gi ∪ Bh |= C and so, by Definition 3.2(ii)
Tr ∪ Bh

i |= C; but then Tr ∪ Bh+1 |= C, meaning that T ∪ Bh |= C (because
Bh+1 is logically equivalent to Bh) and finally C ∈ B⋆ by the definition of the
latter. Let V := V0 → V1 → · · · → Vn → . . . be the infinite succession of Boolean
assignments that is a PLTL model for [[ϕ∧�(

∨
i Gi) ]]. Let us consider the infinite

sequence {G′
n}n∈N of guessings such that G′

n := Gi and V |=n [[Gi ]] (this is well-
set since for every n ≥ 0 there exists only one Gi such that V |=n [[Gi ]]). By
(2) and by Lemma 3.7,5 we obtain an infinite sequence M0, . . . ,Mi, . . . of Σa,c-
structures such that (i) they all have the same support M and Mi|Σ

c
r

= Mj |Σ
c
r

(i, j ∈ N); (ii) Mi |= T ∪ G′
i. These Mi consequently form an LTL(Σa,c)-

structure M := {Mi}i∈N that, by construction, for every atom ℓ occurring in
ϕ satisfies the condition: M |=i ℓ iff V |=i [[ ℓ ]]. Applying Lemma A.10 we have
that M |=0 ϕ, because V |=0 [[ϕ ]], thus M |= ϕ obtains.

5 Lemma 3.7 is used with I := N, and Ti := T , but symbols from Σ \Σr are disjointly
renamed when building the signature Σi for the i-th copy of T (the same observation
applies also to the flexible constants a). In this way, a model of

S

i
Ti is the same

thing as a sequence of models {M′

n}n∈N of T whose Σ
c
r-reducts coincide.



Lemma A.12 (Completeness). Let T = 〈Σ, T,Σr, a, c〉 be a Noetherian com-
patible data-flow theory and ϕ be a ground LTL(Σa,c)-sentence. If there is an
LTL(Σa,c)-structure M appropriate for T such that M |= ϕ, then NSat(ϕ)
returns “satisfiable”.

Proof. Let M = {Mn = (M, In)}n∈N be an LTL(Σa,c)-structure appropriate for
T such that M |= ϕ. Let us consider the set of ϕ-guessings G(ϕ) := {G1, . . .Gk}
defined as follows: Gi ∈ G(ϕ) iff there exists an n such that M |=n Gi. It is easy
to verify that G(ϕ) is ϕ-compatible, i.e. that [[ϕ ∧ �(

∨
iGi) ]] is satisfiable (here

Gi ∈ G(ϕ)). Infact, the PLTL structure V that satisfies the condition V |=n [[ ℓ ]]
iff M |=n ℓ for every atom ℓ occurring in ϕ is a model for [[ϕ ∧ �(

∨
iGi) ]] by

Lemma A.10.
When examining the ϕ-guessing G(ϕ), the procedure Dp-ltl produces a (fi-

nite, by lemma A.9) list of sets of positive ground Σ
c
r-clauses

B0
1 , . . . ,B

0
k,B

1
1 , . . . ,B

1
k, . . . ,B

h
1 , . . . ,B

h
k ,

such that:

– B0, . . . ,Bh,Bh+1 are the values of the local variable B in the iterations of
the inner loop (we have B0 = ∅,B1 =

⋃
i B

0
i , . . . ,B

h+1 =
⋃

i B
h
i );

– for j = 0, . . . , h and for i = 1, . . . , k, the set Bj
i is a Tr-basis for Gi∪Bj w.r.t.

c;
– Bh+1 is logically equivalent to Bh modulo T .

We need to show that Bh is T -consistent. To this aim it is sufficient to observe
(by induction on j ≤ h) that the a Σ

c
r-clause belonging to Bj is true in M0 (in

fact in all the Mn, because the symbols of Σ
c
r are rigidly interpreted): this is

obvious for j = 0 and for j > 0 it is a direct consequence of the fact that every
Gi is true in some Mn, by induction hypothesis and Definition 3.2(i).

The above Lemmas A.11 and A.12 lead to the following

Proposition 4.10. Let T = 〈Σ, T,Σr, a, c〉 be a Noetherian compatible data-flow
theory and ϕ be a ground LTL(Σa,c)-sentence. Then NSat(ϕ) returns “satis-
fiable” iff there exists an LTL(Σa,c)-structure M appropriate for T such that
M |= ϕ.

As an immediate corollary of Proposition 4.10, together with Lemma A.9,
we obtain

Theorem 4.11. The ground satisfiability problem for a Noetherian compatible
data-flow theory is decidable.

A.3 Effectively Noetherian Extensions and Unary Functions
Symbols

This Section is devoted to the proofs of the results from Section 3.2 concerning
free unary function symbols. We recall that if f is a unary function symbol and



T is a theory, we denote by Tf the theory obtained from T by adding it f as
a new free function symbol (thus, if we denote by E the empty theory in the
empty signature, Ef denotes the free theory over the signature {f}).

Proposition 3.8. Ef is Noetherian.

Proof. By contradiction, suppose that there is a chainΘ1 ⊆ Θ2 ⊆ · · · ⊆ Θn ⊆ · · ·
of sets of ground Σa-atoms which is not eventually constant for logical conse-
quence w.r.t. T . Without loss of generality, we can assume that Θ1 ⊆ Θ2 ⊆
· · · ⊆ Θn ⊆ · · · is such that for each i there exists a Σa-atom ℓi ∈ Θi such that
T ∪Θi−1 6|= ℓi.

Notice that, since f is a unary function symbol, each element of the infinite
sequence {ℓi}i∈N of Σa-atoms is a Σai,aj -atom (for some ai, aj ∈ a). Thus, since
a is finite, we can extract an infinite subsequence of ground Σa,b-atoms (for some
fixed elements a, b ∈ a) inducing an infinite ascending chain Θ1|Σa,b ⊆ Θ2|Σa,b ⊆
· · · ⊆ Θn|Σa,b ⊆ · · · which is not eventually constant for logical consequence

w.r.t. T (here Θi|Σa,b is the collection of all the ground Σa,b-atoms occurring in
Θi).

Suppose that a Σa,b-atom of the kind ℓ := fm(a) = fn(a) occurs in such
an infinite subsequence (here m 6= n otherwise T |= ℓ, contrary to our choice
of these atoms). Notice that T ∪ ℓ is such that there are only finitely many
Σa-terms that are not logically equivalent w.r.t. T ∪ ℓ, which implies that every
infinite ascending chain of sets of ground Σa-atoms is eventually constant for
logical consequence w.r.t. T ∪ ℓ (the same argument apply to atoms of the kind
ℓ := fm(b) = fn(b)).

Suppose now that a Σa,b-atom of the kind ℓ := fm(a) = fn(b) belongs to
such an infinite chain of Σa,b-atoms. The only Σa,b-atoms of the form fm′

(a) =
fn′

(b) not implied by T ∪ ℓ are such that either (i) m − n 6= m′ − n′ or (ii)
m′ < m and n′ < n. It is clear that there are only finitely many atoms of
the kind (ii); for (i), notice that fm(a) = fn(b) ∧ fm′

(a) = fn′

(b) implies that
fm+n′

(a) = fn+n′

(b) = fm′+n(a) and that fn+m′

(b) = fm+m′

(a) = fn′+m(b)
(where m+ n′ 6= m′ + n by (i)), so we are reduced to the first case.

The arguments above imply that the chain Θ1|Σa,b ⊆ Θ2|Σa,b ⊆ · · · ⊆
Θn|Σa,b ⊆ · · · is eventually constant for logical consequence w.r.t. T . Contradic-
tion.

We assume the reader is familiar with the fundamentals of Superposition
Calculus SP , as explained for instance in [35]. We shall be especially interested
in the saturation (modulo redundancy) SP(Γ ) of a finite set of ground literals Γ :
we recall that this can be achieved by SP in finitely many steps with respect to
any reduction ordering. In fact, on this kind of inputs, SP behaves like standard
Knuth-Bendix completion (with simplification). We just fix the relevant facts for
future reference:



Lemma A.13. [35] Let Γ be a consistent6 ground constraint; given any reduc-
tion ordering total on ground terms, the saturation SP(Γ ) of a Γ consists of a
finite set R of equations and a finite set I of inequations such that:

(0) Γ is logically equivalent to I ∪R;
(i) the equation in R (once oriented from left to right) form a convergent ground

rewriting system;
(ii) every equation l = r ∈ R is in normal form with respect to R \ {l → r};
(iii) the inequations in I are in R-normal form;
(iv) every positive clause C is a logical consequence of Γ iff there is a disjunct

s = t in C such that s and t have the same R-normal form.

For the last claim, notice that free theories are convex,7 hence we have that
Γ |= C holds iff there is an equation s = t in C such that Γ |= s = t and the
latter holds iff s and t have the same R-normal form.

Proposition 3.9. If T is stably infinite and has decidable constraint satisfiability
problem, then Tf is an effectively Noetherian extension of Ef .

Proof. Let Γ be a Tf -constraint (we write Γ (a, b) to emphasize that the free
constants occurring in Γ are in the tuple a, b): we want to compute an Ef -basis
of Γ w.r.t. a. Notice that Tf = T ∪Ef : since both theories are stably infinite and
their intersection is E, Nelson-Oppen results apply. In particular, the following
is a decision procedure for Tf -consistency of Γ [27,31,13]:

(a) produce a T -constraint H(a, b, c) and an Ef -constraint L(a, b, c) such that
Γ (a, b) is logically equivalent to ∃x(H(a, b, x)∧L(a, b, x)) (this is a standard
purification step);

(b) guess an (a, b, c)-arrangement G(a, b, c) (an (a, b, c)-arrangement is a set of
literals containing for each c1, c2 ∈ a ∪ b ∪ c either c1 = c2 or c1 6= c2);

(c) check H(a, b, c) ∧ G(a, b, c) for T -satisfiability and L(a, b, c) ∧ G(a, b, c) for
Ef -satisfiability;

(d) output satisfiable iff both tests are successful and unsatisfiable iff they fail
for all arrangements.

The correctness of the procedure is obvious, its completeness is due to the fact
that, given a T -model M for H(a, b, c) ∧ G(a, b, c) and an Ef -model N for
L(a, b, c) ∧ G(a, b, c), one can produce out of them a Tf -model G whose reducts
to the signatures of T and of Ef are such that M and N respectively embed
into them.8

6 If Γ is not consistent, SP(Γ ) just consists of the empty clause.
7 A theory T is said to be convex iff whenever for a constraint Γ we have T ∪ Γ |=

A1∨· · ·∨An (here the Ai are atoms and n ≥ 1), then there is i such that T ∪Γ |= Ai.
Among examples of convex theories, we have all Horn theories.

8 The argument is the following: one can suppose thatM, N to be both infinite and of
the same cardinality (by stable infiniteness and Löwenheim-Skolem theorem). Then,
one can simply glue them because (up to renaming) they agree on the interpretation
of the shared constants a, b, c. Notice that stable infiniteness of a theory T can



Notice that the Ef -satisfiability test for L(a, b, c)∧G(a, b, c) can be obtained
through Superposition: when doing that, we use a lexicographic path ordering
[32] induced by a precedence giving the b, c’s higher precedence with respect to
both f and the a’s. As a consequence, Lemma A.13(iv) immediately implies the
following:

Claim: let BG(a) be the set of equations from SP(L(a, b, c) ∧ G(a, b, c)) not
involving the b, c. We have that a positive clause C(a) is a logical consequence
of L(a, b, c) ∧G(a, b, c) iff BG(a) |= C(a).

We now show that
∨

GBG(a) is an Ef -basis for Γ (a, b) with respect to a (the
index G ranges over all arrangements for which the consistency tests in (c) are
both positive).9

That Tf∪{Γ (a, b)} |=
∨

GBG(a) is clear: by (a), Γ (a, b) is logically equivalent
to ∃x(H(a, b, x)∧L(a, b, x)), the latter is equivalent to ∃x(H(a, b, x)∧L(a, b, x)∧∨

GG(a, b, x)) and finally L(a, b, c) ∧
∨

GG(a, b, c) entails
∨

GBG(a).

Conversely, suppose that C(a) is a positive Ef -clause such that Tf ∪
{Γ (a, b)} |= C(a); we need to show that BG(a) |= C(a) for any given arrange-
ment G(a, b, c) (such that both consistency tests in (c) are positive). We first
show that L(a, b, c)∧G(a, b, c) |= C(a): to see this, let N be an arbitrary model
of L(a, b, c)∧G(a, b, c). Since the first consistency test in (c) is positive, there is
a T -model M of H(a, b, c)∧G(a, b, c): by the above Nelson-Oppen combination
argument, there is a model G of Tf whose reducts to the signatures of T and of
Ef are such that M and N respectively embed into them. Since G is a model of
Tf and of Γ (a, b), G |= C(a), hence also N |= C(a) (because N embeds into the
Ef -reduct of G); being N arbitrary, this means that L(a, b, c)∧G(a, b, c) |= C(a).
But now the above Claim shows that BG(a) |= C(a).

The Theory E⋆
f
. To the aim of proving Theorem 3.11, we need to introduce

the theory E⋆
f and to prove that it admits quantifier elimination. The theory E⋆

f

in the signature consisting of a unary function symbol f says the following:

(i) for each positive integer n there exist infinite elements x such that fn(x) =
x and fm(x) 6= x (for all 0 < m < n);

(ii) every element x is of the form f(y) for infinitely many y.

E⋆
f is a consistent theory: this is shown by producing a chain of Ef -models whose

union is a model of E⋆
f (the first model of the chain consists of infinitely many

loops of any finite size, the i+ 1-model is obtained by adding an f -predecessor
to any element of the i-th model).

be formulated either by saying that every constraint is satisfiable in an infinite
model of T or by saying that every model of T embeds into an infinite model of
T (the equivalence of the two statements follows from the diagram theorem and
compactness).

9 Of course, if there are none of them, the index set is empty and
W

G
BG(a) is the

empty disjunction, namely ⊥. Formally, the notion of an Ef -basis requires a set of
clauses, hence

W

G
BG(a) should be brought in conjunctive normal form.



Lemma A.14. The theory E⋆
f admits quantifier elimination; moreover, every

model of Ef embeds into a model of E⋆
f .10

Proof. We first show how to reduce the whole statement of the Lemma to the
following:

Claim. Suppose that Γ (a, b1, . . . , bk) is a constraint satisfying the following
conditions: (i) the free constant a occurs in all literals from Γ ; (ii) Γ is saturated
(i.e. SP(Γ ) = Γ ) with respect to the lexicographic path ordering induced by the
precedence

a > b1 > · · · > bk > f. (3)

Then E⋆
f |= ∀y1 · · · ∀yk∃x Γ (x, y1, . . . , yk).

If the Claim holds, we can eliminate quantifiers from any simply primitive
formula ∃xG(x, y1, . . . , yk) as follows: first, saturate G(a, b1, . . . , bk) and then,
keep only the literals not involving a (or output ⊥ if the saturation produces
the empty clause). The Claim shows also that every model M of Ef embeds
into a model of E⋆

f : in fact, E⋆
f is consistent and hence (by the above argument)

consistent with the diagram of M.
Thus, it only remains to prove the Claim: let Γ (a, b1, . . . , bk) be a constraint

satisfying the two conditions of the Claim. By our choice of the reduction order-
ing, it is straightforward to see that (a) fn(a) > fm(bi) for each bi and n,m ≥ 0
and (b) fn(c) > fm(c) iff n > m for each constant c. Now, since Γ is saturated
and all literals from Γ contains an occurrence of a, we see that Γ is either of the
kind

{fm(a) = u, fm−k1(a) 6= u1, . . . , f
m−kn(a) 6= un}

or of the kind

{fm1(a) 6= u1, . . . , f
mn(a) 6= un}

(here n,m,mi ≥ 0 and 0 < ki ≤ m). Indeed, by contradiction, suppose that
two equalities involving a occur in Γ or that the equality fm(a) = u and an
inequality of the kind fm+k(a) 6= t occur in Γ ; in both cases, by our hypothesis
of the ordering, a occurs in the maximum term of the equations, thus a reduction
rewriting rule would apply, contradicting the fact that Γ is saturated. To simplify
the matter further, notice that we can get rid of the case in which the equation
fm(a) = u does not appear, because we can add it freely, taking as u the constant
bk+1 which is not among the original b1, . . . , bk (proving the claim for this case
would in fact be stronger).

We now distinguish two cases, depending on the form of the term u occurring
in the only equation fm(a) = u of Γ :

(i) a does not occur in u (that is, u is of the form f l(bj)): the constraint Γ is

{fm(a) = u, fm−k1(a) 6= u1, . . . , f
m−kn(a) 6= un}.

10 The reader interested in a purely model-theoretic proof of the model-completability
of the ‘loop-free extension’ of Ef can consult [34].



Pick a model M of E⋆
f and for simplicity let us indicate directly with

b1, . . . , bk a given k-tuple of elements of the support of M: we must show
that we can find a so that M |= Γ (a, b1, . . . , bk). Notice that any term t

not involving a is of the kind f j(bi) and hence gets interpreted as a specific
element of M (that we still call t), because b1, . . . , bk have been assigned an
interpretation. We let X be the set of such terms among the u, u1, . . . , un

(notice that the complement set {u, u1, . . . , un} \X is formed by terms of
the kind f j(a), where j < m).11

By induction, we define elements am, am−1, . . . , a1, a0 in the following way:
we let am to be u and, when defining ai−1 we choose it in such a way that
fM(ai−1) = ai and ai−1 is different from all interpretations of elements
from X and also from am, . . . , ai: this is possible by the second group of
axioms for E⋆

f . If we let a to be a0, it is clear that M |= Γ (a, b1, . . . , bk)
holds (saturation prevents the constraint from containing inconsistent in-
equations like t 6= t).

(ii) a occurs in u (that is, u is of the form fm−l(a), for 0 < l ≤ m): the
constraint Γ is

{fm(a) = fm−l(a), fm−k1(a) 6= u1, . . . , f
m−kn(a) 6= un}.

Again we pick a model M of E⋆
f , a k-tuple b1, . . . , bk of elements from

the support of M, and we still follow the convention of indicating with t

the resulting interpretation of terms t of the kind f j(bi) (we also collect
in a set called X these terms). We have to find a in such a way that
M |= Γ (a, b1, . . . , bk) holds.
By the first group of axioms for E⋆

f , it is possible to pick a loop of length l
formed by elements am−1, . . . , am−l which are pairwise distinct from each
other and also distinct from the interpretations of the terms in X . We then
define, by induction, elements am−l, am−l−1, . . . , a1, a0 as in the previous
case, starting from the already defined element am−l. If we finally take a
to be a0, we can ensure the condition M |= Γ (a, b1, . . . , bk).

Proposition 3.10. If T is stably infinite, then Tf is Ef -compatible.

Proof. We need to show that

(i) Ef ⊆ E⋆
f ;

(ii) E⋆
f has quantifier elimination;

(iii) every model of Ef can be embedded into a model of E⋆
f ;

(iv) every model of Tf can be embedded into a model of Tf ∪ E⋆
f .

We already know that (i)-(ii) and (iii) hold from Lemma A.14.
To show (iv), let M0 = (M0, I0) be a model of Tf = T ∪ Ef . Take models

M1,M2 such that: (1) M1 is an infinite model of T such that the reduct of M0

11 We cannot have j ≥ m, otherwise the constraint would not be saturated (a rewriting
demodulation applies).



to the signature Σ of T embeds into M1 (it exists because T is stably infinite);
(2) M2 is a model of E⋆

f such that the reduct of M0 to the signature {f} of Ef

embeds into M2 (it exists by (iii) above).
We are now in the position of applying Lemma A.7: we take I := {1, 2},

c := M0, Σ1 := Σ, Σ2 := {f}, Σr := ∅, a1 := a2 := ∅, T1 := T , T2 := E⋆
f ,

Tr := E. The hypotheses of Lemma A.7 are satisfied because T1, T2 are both
stably infinite (aliasE-compatible), hence there exists M |= T∪E⋆

f such that M0

has a Σ ∪ {f}-embedding into M: in fact, for i = 1, 2, M0 has a Σi-embedding
into Mi and the latter ΣM0

i -embeds into M.

Theorem 3.11 is immediate: it is just the conjunction of the statements of
Propositions 3.9 and 3.10.
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