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Abstract. Manna and Pnueli have extensively shown how a mixture of
first-order logic (FOL) and discrete Linear time Temporal Logic (LTL) is
sufficient to precisely state verification problems for the class of reactive
systems. Theories in FOL model the (possibly infinite) data structures
used by a reactive system while LTL specifies its (dynamic) behavior.
In this paper, we derive undecidability and decidability results for both
the satisfiability of (quantifier-free) formulae and the model-checking of
safety properties by lifting combination methods for (non-disjoint) theo-
ries in FOL. The proofs of our decidability results suggest how decision
procedures for the constraint satisfiability problem of theories in FOL
and algorithms for checking the satisfiability of propositional LTL for-
mulae can be integrated. This paves the way to employ efficient Satis-
fiability Modulo Theories solvers in the model-checking of infinite state
systems. We illustrate our techniques on two examples.

1 Introduction

In [12] and many other writings, Manna and Pnueli have extensively shown how
a mixture of first-order logic (FOL) and discrete Linear time Temporal Logic
(LTL) is sufficient to precisely state verification problems for the class of re-
active systems. Theories in FOL model the (possibly infinite) data structures
used by a reactive system while LTL specifies its (dynamic) behavior. The com-
bination of LTL and FOL allows one to specify infinite state systems and the
subtle ways in which their data flow influences the control flow. Indeed, the ca-
pability of automatically solving satisfiability and model-checking problems is
of paramount importance to support the automation of verification techniques
using this framework. In this paper, our approach is to reduce both problems to
first-order combination problems over non-disjoint theories.

Preliminarily, we describe our framework for integrating LTL operators with
theories in FOL (cf. Section 2.1): we fix a theory T in a first-order signature Σ
and consider as a temporal model a sequence M1,M2, . . . of standard (first-
order) models of T and assume such models to share the same carrier (or,
equivalently, the domain of the temporal model is ‘constant’). Following [15],
we consider symbols from a subsignature Σr of Σ to be rigid, i.e. in a temporal
model M1,M2, . . . , the Σr-restrictions of the Mi’s must coincide. The sym-
bols in Σ \ Σr are called ‘flexible’ and their interpretation is allowed to change
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over time (free variables are similarly divided into ‘rigid’ and ‘flexible’). For
model-checking, the initial states and the transition relation are represented by
first-order formulae, whose role is that of (non-deterministically) restricting the
temporal evolution of the model (cf. Section 4).

The first contribution (cf. Theorem 3.1 in Section 3) of the paper is a re-
duction of the satisfiability problem for quantifier-free LTL formulae modulo the
background theory T to an instance of the Nelson-Oppen combination problem
for first-order theories (the combination being disjoint if the rigid subsignature
is empty). More precisely, we consider a theory T whose constraint satisfiability
problem consists of non-deterministically solving one of the (decidable) con-
straint satisfiability problem of two signature-disjoint theories T1, T2. Although
the satisfiability problem of T is decidable, it is possible to write a quantifier-free
LTL formula which is equisatisfiable to a constraint of T1 ∪ T2, whose satisfia-
bility problem turns out to be undecidable if T1 and T2 are chosen as shown
in [1]. The undecidability of the safety model-checking problem follows (under
mild hypotheses) from a well-known reduction to the reachability problem for
Minsky machines [13].

Since the satisfiability problem for quantifier-free LTL formulae modulo a
background theory T looks very much like a non-disjoint combination problem,
the hope is that the same (or similar) requirements yielding the decidability
of the constraint satisfiability problem in unions of theories [8], will also give
decidability here. The second contribution (cf. Theorem 3.2 in Section 3) of the
paper is to show that this is indeed the case: we derive the decidability of the
satisfiability problem for quantifier-free LTL formulae modulo T , in case T has
decidable universal fragment and is Tr-compatible [8], where Tr is the restriction
of the universal fragment of T to the rigid subsignature. For termination, one
must also assume Tr to be locally finite [8].

The third (and main) contribution (Theorem 4.1 in Section 4) of the pa-
per is that (under the same hypotheses of Tr-compatibility and local finiteness)
the model-checking problem for quantifier-free safety properties is also decidable.
The proof of this result suggests how decision procedures for the constraint satis-
fiability problem of theories in FOL and algorithms for checking the satisfiability
of propositional LTL formulae can be integrated. This paves the way to employ
efficient Satisfiability Modulo Theories (SMT) solvers in the model-checking of
infinite state systems, as previous proposals have suggested their use for bounded
model-checking [4]. Finally, we illustrate our techniques on two examples.

For lack of space, the proofs of our results are omitted: they can be found in
the on-line version of the paper and also in the Technical Report [9].

2 Background

We assume the usual first-order syntactic notions of signature, term, position,
atoms, formula, and so on. Let Σ be a first-order signature; we assume the
equality symbol ‘=’ to be part of the language (‘equality is a logical constant’),
so that it can be used to build formulae, but it is not explicitly displayed in
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a signature. A Σ-constraint is a set of Σ-literals (intended conjunctively). A
positive Σ-clause is a disjunction of Σ-atoms. A Σ-theory T is a set of sen-
tences in the signature Σ; the sentences in T are also called axioms. A theory
is universal iff it has universal closures of open formulas as axioms. We also
assume the usual first-order notions of interpretation, satisfiability, validity, and
logical consequence. The equality symbol ‘=’ is interpreted as the identity. If
Σ0 ⊆ Σ is a subsignature of Σ and if M is a Σ-structure, the Σ0-reduct of M
is the Σ0-structure M|Σ0

obtained from M by forgetting the interpretation of
function and predicate symbols from Σ \ Σ0. A Σ-structure M is a model of a
Σ-theory T (in symbols, M |= T ) iff all the sentences of T are true in M. A
Σ-theory T admits elimination of quantifiers iff for every formula ϕ(x) there is a
quantifier-free formula ϕ′(x) such that T |= ϕ(x) ↔ ϕ′(x). Standard versions of
Linear Arithmetics, Real Arithmetics, acyclic lists, and any theory axiomatizing
enumerated datatypes admit elimination of quantifiers. Let Σ be a finite signa-
ture; an enumerated datatype theory in the signature Σ is the theory consisting
of the set of sentences which are true in a finite given Σ-structure M = (M, I);
we also require that for every m ∈ M there is c ∈ Σ such that cM = m. It
is easy to see that an enumerated datatype theory has a finite set of universal
axioms and admits elimination of quantifiers.

The (constraint) satisfiability problem for the theory T is the problem of
deciding whether a Σ-sentence (Σ-constraint, resp.) is satisfiable in a model
of T . We will use free constants instead of variables in constraint satisfiability
problems, so that we (equivalently) redefine a constraint satisfiability problem
for the theory T as the problem of establishing the satisfiability of T ∪ Γ (or,
equivalently, the T -satisfiability of Γ ) for a finite set Γ of ground Σa-literals
(where Σa := Σ ∪ {a}, for a finite set of new constants a). For the same reason,
from now on, by a ‘Σ-constraint’ we mean a ‘ground Σa-constraint’, where the
free constants a should be clear from the context.

A Σ-embedding (or, simply, an embedding) between two Σ-structures M =
(M, I) and N = (N,J ) is any mapping µ : M −→ N among the corresponding
support sets satisfying the condition

(∗) M |= ϕ iff N |= ϕ,

for all ΣM -atoms ϕ (here M is regarded as a ΣM -structure, by interpreting
each additional constant a ∈M into itself and N is regarded as a ΣM -structure
by interpreting each additional constant a ∈ M into µ(a)). If M ⊆ N and if
the embedding µ : M −→ N is just the identity inclusion M ⊆ N , we say that
M is a substructure of N or that N is an extension of M. In case condition
(*) holds for all first order formulas, the embedding µ is said to be elementary.
Correspondingly, in case µ is also an inclusion, we say that M is an elementary
substructure of N or that N is an elementary extension of M.

The T0-compatibility notion is crucial for the completeness of combination
schemas [8].

Definition 2.1 (T0-compatibility [8]). Let T be a theory in the signature Σ
and T0 be a universal theory in a subsignature Σ0 ⊆ Σ. We say that T is T0-
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compatible iff T0 ⊆ T and there is a Σ0-theory T
⋆
0 such that (1) T0 ⊆ T ⋆0 ; (2) T ⋆0

has quantifier elimination; (3) every model of T0 can be embedded into a model
of T ⋆0 ; and (4) every model of T can be embedded into a model of T ∪ T ⋆0 .

If T0 is the empty theory over the empty signature, then T ⋆0 is the theory axiom-
atizing an infinite domain and (4) above can be shown equivalent to the stably
infinite requirement of the Nelson-Oppen schema [14,19].

Local finiteness yields termination of combination schemas [8].

Definition 2.2 (Local Finiteness [8]). A Σ0-theory T0 is locally finite iff
Σ0 is finite and, for every finite set of free constants a, there are finitely many
ground Σ

a
0 -terms t1, . . . , tka

such that for every further ground Σ
a
0 -term u, we

have that T0 |= u = ti (for some i ∈ {1, . . . , ka}). If such t1, . . . , tka
are effectively

computable from a (and ti is computable from u), then T0 is effectively locally
finite.

If T0 is effectively locally finite, for any finite set of free constants a it is pos-
sible to compute finitely many Σ

a
0 -atoms ψ1(a), . . . , ψm(a) such that for any

Σ
a
0 -atom ψ(a), there is some i such that T0 |= ψi(a) ↔ ψ(a). These atoms

ψ1(a), . . . , ψm(a) are the representatives (modulo T0-equivalence) and they can
replace arbitraryΣ

a
0 -atoms for computational purposes. For example, any theory

in a purely relational signature is locally finite (this will be used in Example 4.1).
The following technical Lemma is the key combination result allowing us to

reduce satisfiability in first-order LTL to satisfiability in first-order logic.

Lemma 2.1. Let Σ
c,ai

i (here i ranges over a given set I of indexes) be signatures
expanded with free constants c∪ ai, whose pairwise intersections are all equal to

a certain signature Σ
c
r (i.e. Σ

c,ai

i ∩Σ
c,aj

j = Σ
c
r , for all distinct i, j ∈ I). Suppose

we are also given Σi-theories Ti which are all Tr-compatible, where Tr ⊆
⋂

i Ti
is a universal Σr-theory; let finally {Ni = (Ni, Ii)}i∈I be a sequence of Σ

c,ai

i -
structures which are models of Ti and satisfy the same Σ

c
r-atoms. Under these

hypotheses, there exists a
⋃

i(Σ
c,ai

i )-structure M |=
⋃

i Ti such that Ni has a
Σ
c,ai

i -embedding into M, for each i ∈ I.

2.1 Temporal Logic

We assume the standard syntactic and semantic notions concerning Proposi-
tional LTL (PLTL), such as PLTL-formula and PLTL-Kripke model. Follow-
ing [12], we fix a first-order signature Σ and we consider formulae obtained
by applying temporal and Boolean operators (but no quantifiers) to first-order
Σ-formulae.

Definition 2.3 (LTL(Σa)-Sentences). Let Σ be a signature and a be a (pos-
sibly infinite) set of free constants. The set of LTL(Σa)-sentences is inductively
defined as follows: (i) if ϕ is a first-order Σa-sentence, then ϕ is an LTL(Σa)-
sentence and (ii) if ψ1, ψ2 are LTL(Σa)-sentences, so are ψ1 ∧ ψ2, ¬ψ1, Xψ1,
ψ1Uψ2.
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We abbreviate ¬(¬ψ1∧¬ψ2),⊤Uψ,¬♦¬ψ,¬(¬ψ1U¬ψ2) as ψ1∨ψ2,♦ψ,�ψ, and
ψ1Rψ2, respectively. Notice that free constants are allowed in the definition of a
LTL(Σa)-sentence.

Definition 2.4. Given a signature Σ and a set a of free constants, an LTL(Σa)-
structure (or simply a structure) is a sequence M = {Mn = (M, In)}n∈N of
Σa-structures. The set M is called the domain (or the universe) and In is called
the n-th level interpretation function of the LTL(Σa)-structure.

So, an LTL(Σa)-structure is a family of Σa-structures indexed over the natu-
rals. When considering a background Σ-theory T , these structures will also be
models of T . What should the various Σa-structures of the family share? Our an-
swer (according to Definition 2.4) is that they should share their domains or,
equivalently, we assume Mn to be constant.

Definition 2.5. Given an LTL(Σa)-sentence ϕ and t ∈ N, the notion of “ϕ
being true in the LTL(Σa)-structure M = {Mn = (M, In)}n∈N at the instant
t” (in symbols M |=t ϕ) is inductively defined as follows:

– if ϕ is a first-order Σa-sentence, M |=t ϕ iff Mt |= ϕ;
– M |=t ¬ϕ iff M 6|=t ϕ;
– M |=t ϕ ∧ ψ iff M |=t ϕ and M |=t ψ;
– M |=t Xϕ iff M |=t+1 ϕ;
– M |=t ϕUψ iff there exists t′ ≥ t such that M |=t′ ψ and for each t′′,
t ≤ t′′ < t′ ⇒ M |=t′′ ϕ.

We say that ϕ is true in M or, equivalently, that M satisfies ϕ (in symbols
M |= ϕ) iff M |=0 ϕ.

Which is the relationship between the interpretations In in an LTL(Σa)-struc-
ture? Following [15], our answer is that certain symbols are declared rigid (i.e.
their interpretation is time independent) while the remaining are considered
flexible (i.e. time dependent). There are various reasons supporting this choice.
The most important is that our framework allows us more flexibility in solving
certain problems: actions from the environment on a reactive systems are some-
what unpredictable and can be better modelled by flexible function symbols, as
demonstrated by the following Example.

Example 2.1. Suppose we want to model a a water level controller. To this aim,
we need two functions symbols in(flow)/out(flow) expressing the water level
variations induced by the environment and by the opening action of the valve,
respectively: these functions depend both on the current water level and on the
time instant, thus the natural choice is to model them by just unary function
symbols, which are then flexible because the time dependency becomes in this
way implicit. On the other hand, the constants expressing the alarm and the
overflow level should not depend on the time instant, hence they are modeled as
rigid constants; for obvious reasons, the arithmetical binary comparison symbol
< is also time-independent, hence rigid too. Having chosen these (flexible and
rigid) symbols, we can express constraints on the behavior of our system by
introducing a suitable theory (see Example 4.1 below for details).
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There is also a more technical (but still crucial) reason underlying our dis-
tinction between rigid and flexible symbols: we can avoid some undecidability
problems by carefully choosing problematic function or predicates to be flexible.
In fact, if we succeed to keep the rigid part relatively simple (e.g., a locally finite
theory), then we usually do not lose decidability.

Definition 2.6. An LTL-theory is a 5-tuple T = 〈Σ, T,Σr, a, c〉 where Σ is a
signature, T is a Σ-theory (called the underlying theory of T ), Σr is a subsig-
nature of Σ, and a, c are sets of free constants.

Σr is the rigid subsignature of the LTL-theory; the constants c will be rigidly
interpreted, whereas the constants a will be interpreted in a time-dependant
way. The constants a are also (improperly) called the system variables of the
LTL-theory, and the constants c are called its system parameters. The equality
symbol will always be considered as rigid. A LTL-theory T = 〈Σ, T,Σr, a, c〉 is
totally flexible iff Σr is empty and is totally rigid iff Σr = Σ.

3 The Satisfiability Problem

We formally state the satisfiability problem for LTL(Σa)-sentences.

Definition 3.1. An LTL(Σa,c)-structure M = {Mn = (M, In)}n∈N is appro-
priate for an LTL-theory T = 〈Σ, T,Σr, a, c〉 iff we have

Mn |= T, In(f) = Im(f), In(P ) = Im(P ), In(c) = Im(c).

for all m,n ∈ N, for each function symbol f ∈ Σr, for each relational symbol
P ∈ Σr, and for all constants c ∈ c. The satisfiability problem for T is the
following: given an LTL(Σa,c)-sentence ϕ, decide whether there is an LTL(Σa,c)-
structure M appropriate for T such that M |= ϕ. When ϕ is ground, we speak
of ground satisfiability problem for T .

In the following, it is useful to distinguish two classes of LTL-theories.

Definition 3.2. An LTL-theory T = 〈Σ, T,Σr, a, c〉 is

1. finite state iff it is totally rigid and T is an enumerated datatype theory;
2. locally finite compatible iff there is a Σr-universal and effectively locally

finite theory Tr such that T is Tr-compatible;

Enumerated datatype theories are locally finite, but not conversely (for instance,
the theory of dense linear orders is locally finite but cannot be the theory of a
single finite structure, because finite linear orders are not dense).

In the hope to derive decidability results for the satisfiability of first-order
LTL formulae, we restrict ourselves to consider only ground formulae and assume
the decidability of the constraint satisfiability problem of the theory underlying
any LTL-theory (cf. Assumption 1 in Figure 1). Unfortunately, this assumption
alone is not sufficient to guarantee the decidability of the ground satisfiability
problem (cf. Definition 3.1).
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Assumptions

1. We assume the underlying theory T of an LTL-theory T = 〈Σ, T, Σr, a, c〉 to have
decidable constraint satisfiability problem.

2. For any LTL-system specification (T , δ, ι), the transition relation δ and the initial
state description ι in a system specification (T , δ, ι) are assumed to be ground
sentences. Furthermore, we assume all our LTL-systems specifications to be serial.

Fig. 1. The main assumptions of the paper

Theorem 3.1. There exists a totally flexible LTL-theory T whose ground sat-
isfiability problem is undecidable.

There are two key observations underlying the proof of our undecidability re-
sult. First, we build a theory T whose constraint satisfiability problem consists
of non-deterministically solving the constraint satisfiability problem among two
signature-disjoint theories T1, T2. It is easy to see that the decidability of the
constraint satisfiability problem transfer from T1, T2 to T . The second observa-
tion is that for every constraint Γ it is possible to write an LTL(Σa)-sentence
whose satisfiability is equivalent to the satisfiability of Γ in T1 ∪ T2. In [1], it is
shown that such a problem is undecidable for suitable T1 and T2.

These arguments suggest that the undecidability of the ground satisfiability
problem for a given LTL-theory T = 〈Σ, T,Σr, a, c〉 arises precisely for the
same reasons leading to the undecidability of combined constraint satisfiability
problems in the first-order framework. It turns out that the requirements yielding
the decidability of the constraint satisfiability problem in unions of theories will
also give the decidability of the ground satisfiability problem for T .

Theorem 3.2. The ground satisfiability problem for a locally finite compatible
LTL-theory is decidable.

Below, we give two constructive proofs of this Theorem (cf. Proposition 3.1 and
Corollary 3.1).

For the rest of this Section, we fix a locally finite compatible LTL-theory
T = 〈Σ, T,Σr, a, c〉. A syntactic relationship between (ground) first-order and
propositional LTL-formulae can be introduced as follows.

Definition 3.3 (PLTL-Abstraction). Given a signature Σa and a set L of
propositional letters (of the same cardinality as the set of ground Σa-atoms),
let [[ · ]] be a bijection from the set of ground Σa-atoms into L. By translating
identically Boolean and temporal connectives, the map is inductively extended to
a bijective map (also denoted with [[ · ]]) from the set of ground LTL(Σa)-sentences
onto the set of propositional L-formulae.

Given a ground LTL(Σa)-sentence ϕ, we call [[ϕ ]] the PLTL-abstraction of ϕ; if
Θ is a set of ground LTL(Σa)-sentences, then [[Θ ]] := {[[ϕ ]] | ϕ ∈ Θ}.
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Eager Reduction to Propositional LTL-Satisfiability. The key of our reduction
to the satisfiability problem in PLTL is guessing.

Definition 3.4 (Guessing). Let Σ be a signature Σ and S be a finite set of
Σ-atoms. A S-guessing G is a Boolean assignment to members of S. We also
view G as the set {ϕ | ϕ ∈ S and G(ϕ) is assigned to true} ∪ {¬ϕ | ϕ ∈ S and
G(ϕ) is assigned to false}.

Indeed, guessing must take into account rigid constants. Since T is locally finite
compatible, there must exist a Σr-theory Tr such that Tr ⊆ T is effectively
locally finite. So, given a finite subset c0 of c, it is possible to compute a finite
set S of ground Σ

c
0

r -atoms which are representative modulo T -equivalence: for
this choice of S, an S-guessing is called a rigid c0-guessing. Now, let S̃ be any
finite set of Σa,c-atoms and let G be a rigid c0-guessing: an S̃-guessing G̃ is
G-compatible iff G ∪ G̃ is T -satisfiable. The set of G-compatible S̃-guessing is
denoted by C(S̃,G). Theorem 3.2 is an immediate consequence of the fact that
PLTL-satisfiability is decidable and the following Proposition.

Proposition 3.1. Let T = 〈Σ, T,Σr, a, c〉 be a locally finite compatible LTL-
theory. Let L be a set of propositional letters and [[ · ]] be a PLTL-abstraction
function mapping ground LTL(Σa,c)-sentences into propositional L-formulae. A
ground LTL(Σa,c)-sentence ϕ is satisfiable in an LTL(Σa,c)-structure M ap-
propriate for T iff there exists a rigid c0-guessing G such that the propositional
formula

[[ϕ ]] ∧ �
∧

ψ∈G

[[ψ ]] ∧ � (
∨

G̃∈C(At(ϕ),G)

∧

ψ∈G̃

[[ψ ]]) (1)

is satisfiable in a PLTL-Kripke model (here c0 ⊆ c is the set of system parameters
occurring in ϕ and At(ϕ) is the set of Σa,c-atoms occurring in ϕ).

To prove this Proposition, we use Lemma 2.1 with I := N, Ti := T (symbols from
Σ \Σr are disjointly renamed when building the signature Σi for the i-th copy
of T ). The Σi-structures Mi required to build a temporal model are obtained by
signature restrictions from the model of

⋃

Ti which is provided by Lemma 2.1.
The main advantage of the eager reduction algorithm suggested by Propo-

sition 3.1 is that decision procedures for the constraint satisfiability problem
of the underlying locally finite theory and PLTL-decision procedures (based on
tableau, automata, or temporal resolution) can be used ‘off-the-shelf’. Its main
drawback is that the resulting PLTL-satisfiability problem may be quite large.

A Lazy Tableau Procedure. Avoiding the up-front generation of possibly very
large PLTL-formulae should allow one to scale up more smoothly. The price to
pay is a finer grain integration between the constraint reasoner for the underlying
locally finite theory and the PLTL satisfiability solver.

A ground LTL(Σa,c)-sentence is in Negation Normal Form (NNF) iff it is
built up from LTL(Σa,c)-literals by using ∨,∧, X,R, U . It can be shown that
every ground LTL(Σa,c)-sentence is logically equivalent to one in NNF. If ϕ is
a ground LTL(Σa,c)-sentence in NNF, then the closure of ϕ is the set cl(ϕ)
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containing: (i) all subformulae of ϕ and all negations of atoms occurring in ϕ;
(ii) the formulae X(ψUχ), where ψUχ is a subformula of ϕ; (iii) the formulae
X(ψRχ), where ψRχ is a subformula of ϕ and, most importantly, (iv) a repre-
sentative set (modulo T -equivalence) of Σ

c
0

r -literals, where c0 is the finite set of
system parameters occurring in ϕ.

Definition 3.5. Given a ground LTL(Σa,c)-sentence ϕ in NNF, a Hintikka set
for ϕ is a subset H ⊆ cl(ϕ) such that: (i) H contains a maximal T -satisfiable set
of literals from cl(ϕ); (ii) if ψ1 ∧ψ2 ∈ H, then ψ1, ψ2 ∈ H; (iii) if ψ1 ∨ψ2 ∈ H,
then ψ1 ∈ H or ψ2 ∈ H; (iv) if ψ1Uψ2 ∈ H, then ψ2 ∈ H or (ψ1 ∈ H and
X(ψ1Uψ2) ∈ H); (v) if ψ1Rψ2 ∈ H, then ψ1, ψ2 ∈ H or ψ2, X(ψ1Rψ2) ∈ H.

To design the lazy reduction procedure, we extend the tableaux-based approach
to PLTL-satisfiability by lifting the definition of Hintikka sets to take into ac-
count ground LTL(Σa,c)-sentences in NNF.

Definition 3.6. The Hintikka graph H(ϕ) of ϕ is the directed graph having
as nodes the Hintikka sets for ϕ and as edges the pairs H → H ′ such that (i)
H ′ ⊇ {ψ | Xψ ∈ H} and (ii) H and H ′ contain the same ground Σ

c
0

r -literals.

A strongly connected subgraph (scs) of H(ϕ) is a set C of nodes of H(ϕ) such
that for every H,H ′ ∈ C there is a (non-empty) H(ϕ)-path from H to H ′ whose
nodes belong to C. An scs C is fulfilling [12] iff for every ψ1Uψ2 ∈ cl(ϕ) there is
H ∈ C such that either ψ1Uψ2 6∈ H or ψ2 ∈ H . A node H in H(ϕ) is initial iff
ϕ ∈ H .

Corollary 3.1. A ground LTL(Σa,c)-formula ϕ in NNF is satisfiable in an
LTL(Σa,c)-structure M appropriate for T iff there is an H(ϕ)-path leading from
an initial node into a fulfilling scs.

This Corollary is a consequence of Proposition 3.1 and basic properties of Ta-
bleaux (see, e.g., Section 5.5 of [12]). When the set of representative Σ

c
0

r -atoms
has polynomial size, the decision procedure derived from Corollary 3.1 is in
PSPACE (provided that the T -constraint satisfiability problem is in PSPACE
too): the key to achieve this is to explore the Hintikka graph ‘on-the-fly’ by using
well-known techniques of the PLTL literature without explicitly constructing it.

4 The Model-Checking Problem

Given two signatures Σr and Σ such that Σr ⊆ Σ, we define the one-step
signature as Σ⊕Σr

Σ := ((Σ \ Σr) ⊎ (Σ \ Σr)) ∪ Σr, where ⊎ denotes disjoint
union. In order to build the one-step signature Σ⊕Σr

Σ, we first consider two
copies of the symbols in Σ \ Σr; the two copies of r ∈ Σ \ Σr are denoted by
r0 and r1, respectively. Notice that the symbols in Σr are not renamed. Also,
arities in the one-step signature Σ⊕Σr

Σ are defined in the obvious way: the
arities of the symbols in Σr are unchanged and if n is the arity of r ∈ Σ \ Σr,
then n is the arity of both r0 and r1. The one-step signature Σ ⊕Σr

Σ will be

also written as
⊕2

Σr
Σ; similarly, we can define the n-step signature

⊕n+1
Σr

Σ for
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n > 1 (our notation for the copies of (Σ \ Σr)-symbols extends in the obvious
way, that is we denote by r0, r1, . . . , rn the n+ 1 copies of r).

Definition 4.1. Given two signatures Σr and Σ such that Σr ⊆ Σ, two Σ-
structures M0 = 〈M, I0〉 and M1 = 〈M, I1〉 whose Σr-reducts are the same,
the one-step (Σ⊕Σr

Σ)-structure M0 ⊕Σr
M1 = 〈M, I0 ⊕Σr

I1〉 is defined as
follows:

– for each function or predicate symbol s ∈ Σ \ Σr, (I0 ⊕Σr
I1)(s

0) := I0(s)
and (I0 ⊕Σr

I1)(s
1) := I1(s);

– for each function or predicate symbol r ∈ Σr, (I0 ⊕Σr
I1)(r) := I0(r).

If ϕ is a Σ-formula, the Σ⊕Σr
Σ formulae ϕ0, ϕ1 are obtained from ϕ by

replacing each symbol r ∈ Σ \Σr by r0 and r1, respectively. The one-step theory
T ⊕Σr

T is taken to be the combination of the theory T with a partially renamed
copy of itself:

Definition 4.2. Given two signatures Σr and Σ such that Σr ⊆ Σ, the
(Σ⊕Σr

Σ)-theory T ⊕Σr
T is defined as {ϕ0 ∧ ϕ1 | ϕ ∈ T }.

We will write
⊕2

Σr
T instead of T ⊕Σr

T ; the n-step theories
⊕n+1

Σr
T (for n > 1)

are similarly defined.
Let now T = 〈Σ, T,Σr, a, c〉 be an LTL-theory with finitely many param-

eters and system variables. A transition relation for the LTL-theory T is a
(Σa,c⊕Σc

r
Σa,c)-sentence δ: we write such formula as δ(a0, a1) to emphasize that

it contains the two copies of the system variables a (on the other hand, the sys-
tem parameters c are not duplicated and will never be displayed). An initial state
description for the LTL-theory T = 〈Σ, T,Σr, a, c〉 is simply a Σa,c-sentence ι(a)
(again, the system parameters c will not be displayed).

Definition 4.3 (LTL-System Specification and Model-Checking). An
LTL-system specification is a LTL-theory T = 〈Σ, T,Σr, a, c〉 (with finitely many
system variables and parameters) endowed with a transition relation δ(a0, a1)
and with an initial state description ι(a). An LTL(Σa,c)-structure M = {Mn =
(M, In)}n∈N is a run for such an LTL-system specification iff it is appropriate
for T and moreover it obeys the initial state description ι and the transition δ,
i.e. (1) M0 |= ι(a), and (2) Mn⊕Σc

r
Mn+1 |= δ(a0, a1), for every n ≥ 0. The

model-checking problem for the system specification (T , δ, ι) is the following:
given an LTL(Σa,c)-sentence ϕ, decide whether there is a run M for (T , δ, ι)
such that M |= ϕ.1 The ground model-checking problem for (T , δ, ι) is similarly
defined for a ground ϕ.

The (syntactic) safety model-checking problem is the model-checking problem
for formulae of the form ♦υ, where υ is a Σa,c-sentence. Since υ is intended to
describe the set of unsafe states, we say that the system specification (T , δ, ι) is
safe for υ iff the model-checking problem for ♦υ has a negative solution. This
implies that �¬υ is true for all runs of (T , δ, ι).

1 In the literature, the model-checking problem is the complement of ours, i.e. it is the
problem of deciding whether a given sentence is true in all runs.
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In the literature about model-checking (especially, for finite-state systems),
it is usually assumed the seriality of the transition relation: every state of the
system must have at least one successor state (see, e.g., [3] for more details).

Definition 4.4. An LTL-system specification (T , δ, ι), based on the LTL-theory
T = 〈Σ, T,Σr, a, c〉, is said to be serial iff for every Σa,c-structure M0 = (M, I0)
which is a model of T , there is another Σa,c-structure M1 = (M, I1) (still a
model of T ) such that (M0)|Σr

= (M1)|Σr
and M0 ⊕Σc

r
M1 |= δ(a0, a1).

Although the notion of seriality defined above is non-effective, there exist sim-
ple and effective conditions ensuring it. For example, if the transition relation
δ consists of the conjunction of (possibly guarded) assignments of the form
P (a0) → a1 = t0(a0) where P is the condition under which the assignment
is executed, then δ is serial (see, e.g., Example 4.1). The standard trick [3] of
ensuring seriality by a 0-ary predicate describing error states works in our frame-
work too.

Definition 4.5. An LTL-system specification (T , δ, ι), based on the LTL-theory
T = 〈Σ, T,Σr, a, c〉, is finite state or locally finite compatible iff so is T .

Finite state system specifications are investigated by traditional symbolic model-
checking methods [3]. Since we are interested in ground safety model-checking
problems we assume Assumption 2 in Figure 1, besides Assumption 1. Unfor-
tunately, these two hypotheses are not sufficient to guarantee the decidability,
even in the case the underlying LTL-theory is totally rigid. In fact, it is possi-
ble to reduce the ground safety model-checking problem to the the reachability
problem of Minsky machines, which is known to be undecidable (see, e.g., [9]).

Fortunately, the safety model-checking problem is decidable for locally fi-
nite compatible LTL-system specifications. In the rest of this Section, let T =
〈Σ, T,Σr, a, c〉 be a locally finite compatible LTL-theory, (T , δ, ι) be an LTL-
system specification based on T , and υ(a) be a ground Σa,c-sentence. The re-
lated safety model-checking problem amounts to checking whether there exists
a run M = {Mn}n∈N for (T , δ, ι) such that M |=n υ(a) for some n ≥ 0: if this
is the case, we say that the system is unsafe since there is a bad run of length n.

We can ignore bad runs of length n = 0, because the existence of such runs
can be preliminarily decided by checking the ground sentence ι(a) ∧ υ(a) for
T -satisfiability. So, for n ≥ 1, taking into account the seriality of the transition,
a bad run of length n+ 1 exists iff the ground (

⊕n+2
Σ

c
r
Σa,c)-sentence

ι0(a0) ∧ δ0,1(a0, a1) ∧ δ1,2(a1, a2) ∧ · · · ∧ δn,n+1(an, an+1) ∧ υn+1(an+1) (2)

is
⊕n+2

Σ
c
r
T -satisfiable, where ι0(a0) is obtained by replacing each flexible symbol

r ∈ Σ \Σr with r0 in ι(a) (the system variables a are similarly renamed as a0);
δi,i+1(ai, ai+1) is obtained by replacing in δ(a0, a1) the copy r0 and r1 of each
flexible symbol r ∈ Σ \ Σr with ri and ri+1 respectively (the two copies a0, a1

of the system variables a are similarly renamed as ai, ai+1); and υn+1(an+1) is
obtained by replacing each flexible symbol r ∈ Σ \ Σr with rn+1 in υ(a) (the
system variables a are similarly renamed as an+1). For the sake of simplicity,
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we will write formula (2) by omitting the superscripts of ι, δ, and υ (but we
maintain those of the system variables a).

Now, for a given n+1, an iterated application of the main combination result
in [8] and the fact that T0-compatibility is a modular property (see again [8])
yield the decidability of the satisfiability of formula (2). Unfortunately, this is
not sufficient to solve the model-checking problem for LTL-system specifications
since the length of a bad run is not known apriori. To solve this problem, we
reduce the existence of a satisfiable formula of the form (2) to a reachability
problem in a safety graph (see Definition 4.7 below).

Definition 4.6. A ground (Σa,c⊕Σc
r
Σa,c)-sentence δ is said to be purely left

(purely right) iff for each symbol r ∈ Σ \ Σr, we have that r1 (r0, resp.) does
not occur in δ. We say that δ is pure iff it is a Boolean combination of purely
left or purely right atoms.

Given a formula δ(a0, a1), it is always possible (see, e.g., [8]) to obtain an eq-
uisatisfiable formula δ̃(a0, a1, d0) which is pure by introducing “fresh” constants
that we call d0 (i.e., d0 ∩ (a0 ∪ a1) = ∅) to name “impure” subterms. Usu-
ally, δ̃ is called the purification of δ. Let A1, . . . , Ak be the atoms occurring
in δ̃(a0, a1, d0). A δ̃-assignment is a conjunction B1 ∧ · · · ∧ Bk (where Bi is
either Ai or ¬Ai, for 1 ≤ i ≤ k), such that B1 ∧ · · · ∧ Bk → δ̃ is a proposi-
tional tautology. Since δ̃ is pure, we can represent a δ̃-assignment V in the form
V l(a0, a1, d0) ∧ V r(a0, a1, d0), where V l is a purely left conjunction of literals
and V r is a purely right conjunction of literals. As a consequence, a bad run of
length n+ 1 exists iff the ground sentence

ι(a0) ∧
n
∧

i=0

(V li+1(a
i, ai+1, di) ∧ V ri+1(a

i, ai+1, di)) ∧ υ(an+1) (3)

is
⊕n+2

Σr
T -satisfiable, where d0, d1, . . . , dn are n+1 copies of the fresh constants

d0 and V1, . . . , Vn+1 range over the set of δ̃-assignments. Since Tr is locally

finite, there are finitely many ground Σ
c,a0,a1,d0

r -literals which are representative

(modulo Tr-equivalence) of all Σ
c,a0,a1,d0

r -literals. A guessing G(a0, a1, d0) (cf.
Definition 3.4) over such literals will be called a transition Σr-guessing.

Definition 4.7. The safety graph associated to the LTL-system specification
(T , δ, ι) based on the locally finite compatible LTL-theory T is the directed graph
defined as follows:

– the nodes are the pairs (V,G) where V is a δ̃-assignment and G is a transition
Σr-guessing;

– there is an edge (V,G) → (W,H) iff the ground sentence

G(a0, a1, d0) ∧ V r(a0, a1, d0) ∧W l(a1, a2, d1) ∧H(a1, a2, d1) (4)

is T -satisfiable.
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The initial nodes of the safety graph are the nodes (V,G) such that ι(a0) ∧
V l(a0, a1, d0) ∧ G(a0, a1, d0) is T -satisfiable; the terminal nodes of the safety
graph are the nodes (V,G) such that V r(a0, a1, d0) ∧ υ(a1) ∧ G(a0, a1, d0) is T -
satisfiable.

The decision procedure for safety model-checking relies on the following fact.

Proposition 4.1. The system is unsafe iff either ι(a) ∧ υ(a) is T -satisfiable or
there is a path in the safety graph from an initial to a terminal node.

The idea behind the proof is the following: by contradiction, assume there is
a path from an initial to a terminal node and the system is safe. Repeatedly,
compute Σr-ground interpolants of (3) between T and

⊕j
Σr
T , for j = n +

1, . . . , 1 (an argument based on Lemma 2.1 guarantees they exist). This yields
the T -unsatisfiability of the final node (formula) in the graph; a contradiction.

Theorem 4.1. The ground safety model-checking problem for a locally finite
compatible LTL-system specification is decidable.

For complexity, the same remarks after Corollary 3.1 apply here too.

Example 4.1 ([18]). Consider a water level controller such that (i) changes in
the water level by in(flow)/out(flow) depend on the water level l and on the
time instant; (ii) if l ≥ lalarm at a given state (where lalarm is a fixed value), then
a valve is opened and, at the next observable instant, l′ = in(out(l)); and (iii) if
l < lalarm then the valve is closed and, at the next observable instant, l′ = in(l).

Let us now consider the LTL-theory T = 〈Σ, T,Σr, a, c〉 where l is the only
system variable (a := {l}) and there are no system parameters (c := ∅); Σr =
{lalarm, loverflow, <}, lalarm, loverflow are two constant symbols and < is a binary
predicate symbol; Σ := Σr ∪ {in, out}; Tr is the theory of dense linear orders
without endpoints endowed with the additional axiom lalarm < loverflow; and

T := Tr ∪

{

∀x (x < lalarm → in(x) < loverflow),
∀x (x < loverflow → out(x) < lalarm)

}

It can be shown that the constraint satisfiability problem for T is decidable, Tr
admits quantifier elimination, and Tr is effectively locally finite. From these, it
follows that T is a locally finitely compatible LTL-theory. We consider now the
LTL-system specification (T , δ, ι) where ι := l < lalarm and

δ :=
(

lalarm ≤ l0 → l1 = in0(out0(l0))
)

∧
(

l0 < lalarm → l1 = in0(l0)
)

.

Notice that δ is a purely left (Σa⊕Σr
Σa)-formula.

We consider the safety model-checking problem specified by the LTL-system
above and whose unsafe states are described by υ := loverflow < l. Using the
procedure suggested by Theorem 4.1 we can prove that the system is safe, i.e.
that there is no run M for (T , δ, ι) such that M |= ♦υ. We can observe that
the task in practice is not extremely hard computationally. It is sufficient to
consider just 50 nodes (modulo T -equivalence) of the safety graph that are T -
satisfiable (i.e. the nodes (V,G) such that V ∧G is T -satisfiable). Also, instead
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of considering all the edges of the safety graph, it is sufficient to build just the
paths starting from the initial nodes or ending in a terminal node (namely to
apply a forward/backward search strategy). In the first case, only 26 nodes of
the safety graph are reachable from an initial node. In the latter, just 12 nodes
are backward reachable from a terminal node. Hence the the problem is clearly
amenable to automatic analysis by combining a decision procedure for T with a
SAT-solver which is able to enumerate the δ̃-assignments needed to traverse the
safety graph.

Example 4.2. The aim of this example is to use our techniques to analyze the
safety of the well-known Lamport’s mutual exclusion “Bakery” algorithm. If
the number of involved processes is unknown, we can build for the problem
an appropriate LTL-system specification T which violates our assumptions in
Figure 1 because it has universal (instead of ground) transition relation and
initial state description. More in detail, we use a language with two sorts, one for
the individuals (i.e the involved processes), the other for the tickets. The tickets
are ruled by the theory of dense total order with named distinct (rigid) endpoints
0 and 1; moreover, a (flexible) function for the ticket assignment is constrained by
an “almost-injectivity” axiom (i.e., people cannot have the same ticket with the
exception of the ticket 1 that means being out of the queue). Finally, a flexible
constant models the current ticket bound and a flexible predicate captures the
served individuals. The transition says the following: (i) the values of the current
ticket bound are strictly increasing; (ii) every individual is removed from the
queue immediately after being served; (iii) if an individual is in the queue and is
not served, then its ticket is preserved; (iv) if an individual is not the first in the
queue, it cannot be served; (v) if an individual is not in the queue, either remains
out of the queue or takes a ticket lying in the interval between two consecutive
values of the current ticket bound (without being immediately served). The
initial state description says that no one is in the queue and the current ticket
bound is set to 0, whereas the unsafe states are the ones in which at least two
people are served at the same time.

By Skolemization and instantiation, we produce out of T a locally finite
compatible LTL-system specification T ′ which is safe iff T is safe. Safety of T ′

can then be easily checked through our techniques (see [9] for details). We point
out that the features of T that make the whole construction to work are purely
syntactic in nature: they basically consist of the finiteness of the set of terms of
certain sorts in the skolemized Herbrand universe.

5 Discussion

The undecidability of quantified modal logics over a discrete flow was discovered
by D. Scott already in the sixties. Recent works isolated quite interesting frag-
ments of quantified LTL which are computationally better behaved (see [7] for
a survey). However such fragments are often insufficient for verification; in this
respect, a more promising restriction is to prohibit the interplay between quanti-
fiers and temporal operators [12]. In this paper, we have taken a similar approach
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by enriching the extensional part of the language so to be able to model infinite
data structures manipulated by systems. This lead us to consider satisfiability of
quantifier-free LTL formulae built up from a first-order signature Σ and models
with constant domain consisting of a sequence {Mi}i of first-order models of
a Σ-theory T . Furthermore, symbols in Σ and free variables were divided into
two groups. The former are interpreted rigidly whereas the latter flexibly in the
Mi’s. This approach was already taken in the seminal paper [15] by Plaisted,
who established a decidability result when the quantifier-free fragment of T is
decidable and the flexible symbols are considered as free symbols by the theory
T . By using recent techniques and results from the combination literature, we
were able to attack the problem in its full generality and derive both the unde-
cidability in the unrestricted case and the decidability under the ‘combinability’
hypotheses for T of [8]. Such hypotheses, besides decidability of the universal
first-order fragment, were compatibility over a locally finite subtheory in the
rigid subsignature (local finiteness may be replaced by the weaker requirement
of Noetherianity, but this result has been omitted in the paper for lack of space
and can be found in [9]).

In the second part of the paper we considered model-checking problems un-
der the same ‘combinability’ hypotheses on T . We were able to derive positive
decidability results for the safety properties and we plan to extend our results
to different kinds of properties (such as liveness) as well as to full LTL model-
checking. Our framework generalizes finite state model-checking in two respects.
First, the rigid symbols are constrained by a locally finite theory, not just by
an enumerated datatype theory. Second, we do not impose limitations on the
flexible symbols, whose interpretation is only constrained by the axioms of T .

The literature on infinite state model-checking is extremely vast (see [20,16,2]
to name but a few approaches). For lack of space, we consider works which are
closely related to ours. The paper [5] extensively reviews constrained LTL, which
can be the basis for model checking of infinite state systems but it does not allow
for flexible symbols (apart from system variables). Furthermore, fixed purely
relational structures play there the same role of the models of the theory T in
our approach. However, [5] is not limited to safety properties. If our results can
be extended beyond safety (as it seems likely), some of the results in [5] could be
seen as specializations of our work to totally rigid system specifications. Other
results and techniques from [5] (and also from the recent [6]) should be taken
into account for integration in our framework so to be able to handle richer
underlying theories such as Linear Arithmetic.

An integration of classic tableaux and automated deduction techniques is
presented in [17,11]. While using a similar approach, [17] only provides a uni-
form framework for such an integration with no guarantee of full automation,
whereas [11] focuses on the decidability of the model-checking problem of partic-
ular classes of parametrized systems. Both works do not use combination tech-
niques. The approach in [4] proposes the reduction of bounded model-checking
problems to SMT problems. Theorem 4.1 identifies precise conditions under
which our reduction yields a decision procedure: our safety graph is not just



Combination Methods for Satisfiability and Model-Checking 377

an approximation of the set of reachable states. With [4], we share the focus on
using SMT solvers, which is also a common feature of the “abstract-check-refine”
approach to infinite-state model-checking (see the seminal work in [10]). How-
ever, our work is foundational whereas abstract-check-refine techniques focus
more on practical usability.
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Fig. 2. Some of the conceptual dependencies among theorems and lemmas

A Proofs

Here we include the proofs of the main results (cf. Appendix A.3). For formally
stating them, we recall some basic facts in model theory (cf. Appendix A.1), we
state some properties culminating into the proof of our key technical Lemma 2.1,
and finally we introduce two more results (ground Σr-interpolation and modu-
larity of Tr-compatibility) needed for the decidability of safety model-checking
(cf. Appendix A.2).

Figure 2 gives a rough idea of the dependencies among selected statements
of the paper.

A.1 Basic Facts in Model Theory

We first recall some more background notions. Given a Σ-structure M = (M, I)
and a subset C ⊆M , the substructure of M generated by C is the substructure
obtained from M by restricting I to the subset {tM(c) | c ⊆ C and t(x) is a
Σ-term} (here tM is the function interpreting the term t in M). In case this
substructure coincides with M, we say that C is a set of generators for M.

If C is a set of generators for M, the diagram ∆(M) of M (w.r.t. Σ,C)
consists of all ground ΣC-literals that hold in M; analogously, the elementary
diagram ∆e(M) of M (w.r.t. Σ,C) consists of all ground ΣC-sentences that
hold in M (often C is not specified at all, in these cases it is assumed to coincide
with the whole carrier set of M).



Diagrams (in combination with the compactness of the logical consequence
relation) will be repeatedly used. A typical use is the following. Suppose that
we want to embed M into a model of a theory T , then it is sufficient to check
that T ∪∆(M) is consistent. This argument is justified by Robinson’s Diagram
Lemma A.1 relating embeddings and diagrams.

Lemma A.1 (Robinson’s Diagram Lemma). Let M be a Σ-structure gen-
erated by a set C, and let N be another Σ-structure; then M can be embedded
(resp. elementarily embedded) into N iff N can be expanded to a ΣC-model of
the diagram ∆(M) (resp. of the elementary diagram ∆e(M)) of M w.r.t. Σ,C.

The technique used for proving Lemma A.1 is simple, we sketch it. If we have an
expansion of N to a ΣC-structure (to be called N again for simplicity), then,
since every element of the support of M is of the form tM(c) for some c ⊆ C, we
can define the embedding µ by putting µ(tM(c)) := tN (cN ): this is well-defined
and it is an embedding precisely because N |= ∆(M). Conversely, if we have
the embedding µ, then we can get the desired expansion by taking cN := µ(c)
for all c ∈ C.

Since a surjective embedding is just an isomorphism, the argument just
sketched proves also the following fact.

Lemma A.2. If two Σ-structures M, N are both generated by a set C and if
one of them, say N , satisfies the diagram of the other (w.r.t. Σ,C), then the
two structures are ΣC-isomorphic.

The next result is also part of basic classical model theory: a proof of it can be
easily deduced from Craig’s Interpolation Theorem (alternatively, a direct proof
using a double chain argument is possible, see [22], pp. 141-142). To formally
state the Lemma, we need to introduce a particular class of theories. A Σ-theory
T is complete iff for every Σ-sentence ϕ, either ϕ or ¬ϕ is a logical consequence
of T

Theorem A.1 (Robinson’s Joint Consistency Theorem). Let H1, H2 be,
respectively, consistent Θ1, Θ2-theories and let Θ0 be the signature Θ1∩Θ2. Sup-
pose that there is a complete Θ0-theory H0 such that H0 ⊆ H1 and H0 ⊆ H2;
then H1 ∪H2 is a consistent Θ1 ∪Θ2-theory.

Ground formulae are invariant under embeddings in the following sense.

Lemma A.3. Let M = (M, I) be a Σ-structure that can be embedded into
another Σ-structure N . For all ground ΣM -sentences ϕ, we have that

M |= ϕ ⇔ N |= ϕ,

where N is extended to a ΣM -structure by interpreting every a ∈M by its image
under the embedding.

The next Lemma states the well-known property (called submodel-completeness)
of theories enjoying quantifier-elimination.



Lemma A.4. Suppose that T ⋆ is a Σr-theory enjoying quantifier elimination
and that ∆ is a diagram of a substructure R = (R,J ) of a model M of T ⋆; then
the ΣR-theory T ⋆ ∪∆ is complete.

Proof. By Robinson’s Diagram Lemma A.1, the models of T ⋆∪∆ are the models
of T ⋆ endowed with a Σr-embedding from R. One such model is M; we show
that any other model M′ satisfies the same ΣR-sentences as M (we assume
without loss of generality the Σr-embedding from R into M′ to be an inclusion).
Pick an arbitrary ΣR-sentence ϕ(c) (where the c are parameters from the set of
generators of R used in order to build ∆): this sentence is equivalent, modulo
T ⋆, to a ground ΣR-sentence ϕ⋆(c). Since truth of ground sentences is preserved
by substructures (see Lemma A.3), the following chain of equivalences

M′ |= ϕ(c) ⇔ M′ |= ϕ⋆(c) ⇔ R |= ϕ⋆(c) ⇔ M |= ϕ⋆(c) ⇔ M |= ϕ(c),

proves our claim.

A.2 Structure amalgamations, Interpolation, Modularity

We prove now an important technical ingredient for our results, namely Lemma
2.1 (it is an extension of Lemma 9.4 in [8]).

Lemma 2.1. Let Σ
c,ai

i (for i ∈ I) be signatures (expanded with free constants
c, ai), whose pairwise intersections are all equal to a certain signature Σ

c
r (that

is, we have Σ
c,a

i

i ∩Σ
c,a

j

j = Σ
c
r for all distinct i, j ∈ I). Suppose we are also given

Σi-theories Ti which are all Tr-compatible, where Tr ⊆
⋂

i Ti is a universal Σr-
theory; let finally {Ni = (Ni, Ii)}i∈I be a sequence of Σ

c,ai

i -structures which are
models of Ti and satisfy the same Σ

c
r-atoms. Under these hypotheses, there exist

a
⋃

i(Σ
c,ai

i )-structure M |=
⋃

i Ti such that for each i, Ni has a Σ
c,ai

i -embedding
into M.

Proof. By Robinson’s Diagram Lemma A.1 and Lemma A.2 (and up to a partial
renaming of the support sets), the fact that the Ni satisfy the same Σ

c
r-atoms

is another way of saying that they share the same Σ
c
r-substructure generated by

the c (let us call R = (R,J ) this substructure); by Tr-compatibility, we may
also freely assume that Ni |= Ti ∪ T ⋆r . Notice also that, by Lemma A.4 above,
the theory T ⋆r ∪∆ is complete, where ∆ is the diagram of R as a Σr-structure.

Again by Robinson’s Diagram Lemma, we only need to show that the union
of the elementary diagrams ∆e

i (Ni) is consistent:2 here ∆e
i (Ni) is the elementary

diagram of Ni as a Σ
c,ai

i -structure.
By compactness, we can freely assume that the index set I is finite, let it

be {1, . . . , k} and let us argue by induction on k. The case k = 1 is trivial. For
k > 1, we use Robinson’s Joint Consistency Theorem as follows.

By renaming some elements in the supports if needed, we can freely suppose
that the setsN1\R and (N2∪· · ·∪Nk)\R are disjoint. Given the hypotheses of the

2 We need the elementary diagrams here, and not just diagrams, because we want the
model being defined to be a model of

S

i
Ti.



Lemma on the signatures Σ
c,a

i

i , we can apply the Joint Consistency Theorem to
the theories ∆e(N1) and ∆e(N2)∪· · ·∪∆e(Nk): in fact, they are both consistent
(the latter by induction) and they both contain the complete subtheory T ⋆r ∪∆
in the shared subsignature. This proves that ∆e(N1)∪· · ·∪∆e(Nk) is consistent,
as desired.

The following Lemma is a variant of Theorem 5.2 from [8] (but the proof below
is different).

Lemma A.5. Suppose that T0, T1, T2 are Σ0, Σ1, Σ2-theories (respectively) such
that Σ0 = Σ1 ∩ Σ2, T1 is T0-compatible, and T2 is T0-compatible; if the ground
Σ
a,b
1 -sentence ψ1(a, b) and the ground Σ

b,c
2 -sentence ψ2(b, c) (here the tuples of

free constants a, b, c are pairwise disjoint) are such that ψ1(a, b) ∧ ψ2(b, c) is

T1 ∪ T2-inconsistent, then there is a ground Σ
b
0-sentence ψ0(b) such that T1 |=

ψ1(a, b) → ψ0(b) and T2 |= ψ0(b) → ¬ψ2(b, c).

Proof. By compactness, it is sufficient to show that the set Ψ of ground Σ
b
0-

sentences ψ0(b) such that T1 |= ψ1(a, b) → ψ0(b) is not T2-consistent with
ψ2(b, c). Suppose it is, hence there is a T2-model M2 of Ψ ∪ {ψ2(b, c)}. Let R
be the Σ0-substructure of M generated by the b’s and let ∆ be its diagram. We
claim that ∆ is T1-consistent with ψ1(a, b): this is because, if ψ0(b) is a ground

Σ
b
0-sentence true in R and not consistent with ψ1(a, b), then ¬ψ0(b) would be

in Ψ and hence would be true in R, contradiction. Since ∆ is T1-consistent with
ψ1(a, b), there is a model M1 of T1 (having R as a substructure) in which ψ1(a, b)
is true. By Lemma 2.1 (take I = {1, 2}), the models M1,M2 embed, over R,
into a model M of T1 ∪ T2; but then M is also a model of ψ1(a, b) ∧ ψ2(b, c)
(because ψ1(a, b) and ψ2(b, c) are ground, see Lemma A.3), a contradiction.

We now prove the modularity of T0-compatibility.

Lemma A.6. If T0, T1, T2 are Σ0, Σ1, Σ2-theories (respectively) such that Σ0 =
Σ1 ∩ Σ2, T1 is T0-compatible, and T2 is T0-compatible, then T1 ∪ T2 is T0-
compatible too.

Proof. This is Proposition 4.4 from [8]: we report the proof here. Take a model
M = (M, I) of T1 ∪ T2 and embeds its Σi-reducts into models Mi = (Mi, Ii) of
Ti∪T ⋆0 (i = 1, 2). We can freely suppose that the embeddings are inclusions and
that we have M = M1 ∩M2 for supports. Now T ⋆0 ∪∆(M) is a complete theory
by Lemma A.4 (here ∆(M) is the diagram of M as a Σ0-structure), hence by
Robinson’s Joint Consistency Theorem A.1 there is a model N = (N,J ) of
∆e(M1)∪∆e(M2). It follows that N is a (Σ1∪Σ2)

M1∪M2-model of T1∪T2∪T ⋆0
and that there are ΣM

i -embeddings µi : Mi −→ N . In particular, for b ∈ M ,
we have µ1(b) = bN = µ2(b); let us call µ the common restriction of µ1 and µ2

to M . We show that µ is a (Σ1 ∪Σ2)-embedding of M into N . Observe in fact
that for every n-ary Σi-function symbol f and for every n-tuple b of elements
from the support of M, we have3

µ(fM(b)) = µi(f
Mi(b)) = fN (µi(b)) = fN (µ(b));

3 Here, if b = (b1, . . . , bn), we write e.g. µ(b) for the tuple (µ(b1), . . . , µ(bn)).



analogously, for every n-ary Σi-predicate symbol P , we have

M |= P (b) iff Mi |= P (b) iff N |= P (µi(b)) iff N |= P (µ(b)).

This proves that µ : M −→ N is a (Σ1 ∪Σ2)-embedding.

A.3 Main results

We first prove our undecidability result.

Theorem 3.1. There exists a totally flexible LTL-theory T whose ground satis-
fiability problem is undecidable.

Proof. We must define a LTL-theory T = 〈Σ, T,Σr, a, c〉 such that Σr = ∅, i.e.
T is totally flexible, and the constraint satisfiability problem of T is decidable,
according to Assumption 1.

To define a suitable T , the following two facts about combinations of theories
are crucial.

(i) There exist theories T1, T2 whose constraint satisfiability problem is de-
cidable, whose signatures Σ1, Σ2 are disjoint and such that the constraint
satisfiability problem of T1 ∪ T2 is undecidable (this is shown in [1]).

(ii) Let T be a Σ-theory whose constraint satisfiability problem is decidable
and Σ′ be a signature such that Σ′ ⊇ Σ. If we consider T as a Σ′-theory,
then the constraint satisfiability problems of T is still decidable (this is
proved in, e.g., [23,24]).

Consider now theories T1, T2 as in (i) above and let us define a new Σ-theory T
as follows:

Σ := Σ1 ∪Σ2 ∪ {P} and T := {P → ψ | ψ ∈ T1} ∪ {¬P → ψ | ψ ∈ T2},

where P is a fresh 0-ary predicate symbol (or, otherwise said, a fresh proposi-
tional letter). We claim that the constraint satisfiability problem for theΣ-theory
T is decidable. In fact, given a Σ1 ∪ Σ2 ∪ {P} constraint Γ , we first guess the
truth value of P and add either P or ¬P to Γ , accordingly. At this point, we
are left with the problem of solving a constraint satisfiability problem of the
(Σ1 ∪Σ2 ∪ {P})-theory Ti for either i = 1 or i = 2. This is decidable by fact (ii)
above: the constraint satisfiability problem of the Σi-theory Ti is decidable by
assumption and the symbols from Σj ∪ {P} (j 6= i) are free for Ti.

We now show that the ground satisfiability problem for T is undecidable by
identifying a particular class of ground LTL(Σa,c)-sentences whose satisfiability
cannot be decided. We assume that there are infinitely many system parameters
(whereas the cardinality of the set of system variables is irrelevant). We claim
that it is not possible to decide the T -satisfiability of the following type of ground
LTL(Σc)-sentences:

P ∧ Γ1 ∧X(¬P ∧ Γ2), (5)



where Γi is a finite conjunction of Σ
c
i -literals (for i = 1, 2) and the c are the free

constants of the LTL-theory T (i.e. the rigid system parameters). In fact, if (5) is
satisfiable (in the sense of Definition 3.1) then it is easy to build a model (in first-
order semantics) for T1∪T2 satisfying Γ1∪Γ2, and also the converse holds. Thus
the satisfiability of the sentences of the kind described in (5) is reduced to the
satisfiability w.r.t. T1∪T2 of the arbitrary constraint Γ1∪Γ2: this is undecidable
by fact (i) above (notice that the satisfiability of pure constraints, like Γ1 ∪ Γ2

is equivalent to satisfiability of arbitrary (Σ1 ∪ Σ2)-constraints, because every
constraint is equisatisfiable with an effectively built pure constraint, see e.g.
[21],[8]).

The following straightforward Lemma explains why PLTL-abstractions (cf.
Definition 3.3) are relevant for satisfiability checking of LTL(Σa)-sentences.

Lemma A.7. Let L be a set of propositional letters, Σ be a signature, a be a
set of free constants, and [[ · ]] be a PLTL-abstraction function mapping ground
LTL(Σa)-sentences into propositional L-formulae. Suppose we are given a ground
LTL(Σa)-sentence ϕ, a Kripke model V for L and an LTL(Σa)-structure M =
{Mn}n∈N such that for every t ∈ N and for every Σa-ground atom ψ occurring
in ϕ we have

Mt |= ψ iff V |=t [[ψ ]].

Then we have also

M |=t ϕ iff V |=t [[ϕ ]],

for every t ∈ N.

The next Proposition immediately yields the decidability of ground satisfia-
bility for locally finite compatible LTL-theories (by an eager reduction to PLTL).

Proposition 3.1. Let T = 〈Σ, T,Σr, a, c〉 be a locally finite and compatible
LTL-theory. Let L be a set of propositional letters and [[ · ]] be a PLTL-abstraction
function mapping ground LTL(Σa,c)-sentences into propositional L-formulae. A
ground LTL(Σa,c)-sentence ϕ is satisfiable in an LTL(Σa,c)-structure M ap-
propriate for T iff there exists a rigid c0-guessing G such that the propositional
formula

[[ϕ ]] ∧ �
∧

ψ∈G

[[ψ ]] ∧ � (
∨

G̃∈C(At(ϕ),G)

∧

ψ∈G̃

[[ψ ]]) (1)

is satisfiable in a PLTL-Kripke model (here c0 ⊆ c is the set of system param-
eters occurring in ϕ and At(ϕ) is the set of Σa,c-atoms occurring in ϕ).

Proof. The ‘only if’ is immediate from Lemma A.7. The converse can be derived
from Lemma 2.1. Suppose that the PLTL-formula (1) is satisfiable in a Kripke
model V for a certain rigid c0-guessing G. This means that for every n there
is G̃n ∈ C(At(ϕ),G) such that V |=n

∧

ψ∈G [[ψ ]] ∧
∧

ψ∈G̃n
[[ψ ]]. Since G̃n is G-

compatible, there is a Σa,c
0 -structure Nn which is a model of T ∪ G̃n ∪ G; by



Lemma 2.1, the Nn can be Σa,c
0 -embedded into Σa,c

0 -structures Mn such that
M := {Mn}n∈N is appropriate for T .4 The Mn can be seen as Σa,c-structures
by interpreting rigid parameters c \ c0 arbitrarily (but in the same way in all
Mn). Since truth of ground literals is preserved through embeddings, Mn is
again a model of G̃n for every n. But then Lemma A.7 ensures that M |=0 ϕ,
given that V |=0 [[ϕ ]].

Below, we make essential use of notation explained in Section 4. In particular,
we fix an LTL-system specification (T , δ, ι) based on the locally finite compatible
LTL-theory T (let υ(a) be the unsafety formula we want to test); we work on the
safety graph of the system. Recall that the latter is the directed graph defined
as follows:

– the nodes are the pairs (V,G) where V is a δ̃-assignment and G is a transition
Σr-guessing;

– there is an edge (V,G) → (W,H) iff the ground sentence

G(a0, a1, d0) ∧ V r(a0, a1, d0) ∧W l(a1, a2, d1) ∧H(a1, a2, d1) (4)

is T -satisfiable.5

We also recall that the initial nodes of the safety graph are the nodes (V,G) such
that ι(a0)∧V l(a0, a1, d0)∧G(a0, a1, d0) is T -satisfiable; the terminal nodes of the
safety graph are the nodes (V,G) such that V r(a0, a1, d0)∧ υ(a1)∧G(a0, a1, d0)
is T -satisfiable.

The next proposition immediately yields decidability of ground safety model-
checking for locally finite compatible LTL-system specifications.

Proposition 4.1. The system is unsafe iff either ι(a) ∧ υ(a) is T -satisfiable or
there is a path in the safety graph from an initial to a terminal node.

Proof. Recall from Section 4 that a bad run of length n+ 1 exists iff the ground
sentence

ι(a0) ∧
n
∧

i=0

(V li+1(a
i, ai+1, di) ∧ V ri+1(a

i, ai+1, di)) ∧ υ(an+1) (3)

4 Lemma 2.1 is used with I := N, and Ti := T , but symbols from Σ \Σr are disjointly
renamed when building the signature Σi for the i-th copy of T (the same observation
applies also to the flexible constants a). In this way, a model of

S

i
Ti is the same

thing as a sequence of models {Mn}n∈N of T whose Σr-reducts coincide.
5 Here we still follow our convention of writing only the system variable renamings

(flexible symbols being renamed accordingly). In more detail: we make three copies
r0, r1, r2 of every flexible symbol r ∈ Σ \ Σr. Both V r and W l might contain in
principle two copies r0, r1 of r: the two copies in V r keep their original names,
whereas the two copies in W l are renamed as r1, r2, respectively. However, V r is
a right formula (hence it does not contain r0) and W l is a left formula (hence it
does not contain r1): the moral of all this is that only the copy r1 of r occurs after

renaming, which means that (4) is after all just a plain Σa0,a1,a2,d0,d1

-sentence (thus,
it makes sense to test it for T -satisfiability). Notice that the Skolem constants d0 of
V r are renamed as d1 in W l.



is
⊕n+2

Σr
T -satisfiable, where the Vi+1 range over the set of δ̃-assignments.

Preliminary to the main argument of the proof, which is based on inter-
polations, let us better analyze the shape of the formula (3) with particular
attention to symbols occurring in the various literals. In formula (3), each sym-
bol r ∈ Σ \ Σr can occur in n + 2-copies r0, r1, . . . , rn+1 and the locations of
these copies are the following:

(i) r0 can only occur in ι(a0) ∧ V l1 (a0, a1, d0);

(ii) ri can only occur in V ri (ai−1, ai, di−1) ∧ V li+1(a
i, ai+1, di), for i = 1, . . . , n;

(iii) rn+1 can only occur in V rn+1(a
n, an+1, dn) ∧ υ(an+1).

Now, we are ready to develop the main argument of the proof. Suppose that
the system is unsafe. Then, either there is a bad run of length 0 or the formula
(3) is satisfiable in a model N of

⊕n+2
Σr

T for some n > 0. For i = 0, . . . , n, let

Gi+1(a
0, a1, d0) be the Σr-transition guessing realized by (ai, ai+1, di) in N (by

this, we mean the set of representative Σ
c,a0,a1,d0

r -literals ψ(a0, a1, d0) such that
N |= ψ(ai, ai+1, di)). With this choice for the Gi’s, the satisfiability of (3) in N
guarantees the existence of the path

(V1, G1) → (V2, G2) → · · · → (Vn+1, Gn+1) (6)

from the initial node (V1, G1) to the terminal node (Vn+1, Gn+1) within the
safety graph.

Vice versa, suppose that there is a path like (6) and that, by contradiction,
the system is safe. In particular, this means that the formula

ι(a0) ∧ V l1 (a0, a1, d0) ∧ V r1 (a0, a1, d0) ∧ · · ·

· · · ∧ V ln+1(a
n, an+1, dn) ∧ V rn+1(a

n, an+1, dn) ∧ υ(an+1)

is not
⊕n+2

Σr
T -satisfiable. If we apply the interpolation Lemma A.5 to the T0-

compatible theories T and
⊕n+1

Σr
T (the hypotheses of Lemma A.5 hold by the

modularity Lemma A.6), we get a ground Σ
c,a0,a1,d0

r -sentence ψ1(a
0, a1, d0) such

that

T |= ι(a0) ∧ V l1 (a0, a1, d0) → ψ1(a
0, a1, d0) (7)

and such that

ψ1(a
0, a1, d0) ∧ V r1 (a0, a1, d0) ∧ · · · ∧ V ln+1(a

n, an+1, dn) ∧ V rn+1(a
n, an+1, dn)∧

∧υ(an+1)

(8)

is not
⊕n+1

Σr
T -satisfiable. Since G1(a

0, a1, d0) is a transition Σr-guessing, G1

represents a maximal choice of representative Σ
a0,a1,d0

r -literals, hence we must
have either T |= G1 → ψ1 or T |= G1 → ¬ψ1 (that is, T |= ψ1 → ¬G). The



latter contradicts (7) and the fact that the node (V1, G1) is initial in the safety
graph. The former, together with (8) implies that the formula

G1(a
0, a1, d0) ∧ V r1 (a0, a1, d0) ∧ · · · ∧ V ln+1(a

n, an+1, dn) ∧ V rn+1(a
n, an+1, dn)∧

∧υ(an+1)

(9)

is not
⊕n+1

Σr
T -satisfiable. We now repeat the argument: we apply the interpo-

lation Lemma A.5 to the T0-compatible theories T and
⊕n

Σr
T and we get a

ground Σ
c,a1,a2,d1

r -sentence ψ2(a
1, a2, d1) such that

T |= G1(a
0, a1, d0) ∧ V r1 (a0, a1, d0) ∧ V l2 (a1, a2, d1) → ψ2(a

1, a2, d1) (10)

and such that

ψ2(a
1, a2, d1) ∧ V r2 (a1, a2, d1) ∧ · · · ∧ V ln+1(a

n, an+1, dn) ∧ V rn+1(a
n, an+1, dn)∧

∧υ(an+1)

(11)

is not
⊕n

Σr
T -satisfiable. Since G2(a

1, a2, d1) is a transitionΣr-guessing, we must
have that either T |= G2 → ψ2 or T |= G2 → ¬ψ2. The latter contradicts (10)
and the existence of an edge (V1, G1) → (V2, G2). The former, together with (11)
implies that the formula

G2(a
1, a2, d1) ∧ V r2 (a1, a2, d1) ∧ · · · ∧ V ln+1(a

n, an+1, dn) ∧ V rn+1(a
n, an+1, dn)∧

∧υ(an+1)

(12)

is not
⊕n

Σr
T -satisfiable. Continuing in this way, we obtain the T -unsatisfiability

of the formula

Gn+1(a
n, an+1, dn) ∧ V rn+1(a

n, an+1, dn) ∧ υ(an+1) (13)

thus contradicting the fact that the node (Vn+1, Gn+1) is final in the safety
graph.
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