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Abstract

Questo articolo vuol essere un’esposizione aggiornata, benché necessaria-
mente parziale, dello stato dell’arte della ricerca relativa all’integrazione
modulare di procedure di decisione nella logica elementare. Nello specifico,
date due teorie T1 e T2 il cui frammento universale è decidibile, si è inte-
ressati ad individuare quali siano le condizioni che permettono di trasferire
tale decidibilità alla teoria ottenuta dall’unione di T1 e T2. Allo scopo di
dare un quadro il più possibile completo ed approfondito delle ricerche in
questo campo, vengono presentati anche risultati sulla possibilità di tra-
sferire alla teoria unione la decidibilità del problema della parola e viene
descritto un ambiente di ordine superiore in cui esprimere svariati problemi
di combinazione. Infine, viene fornita la descrizione ad alto livello di alcune
delle tecniche più comunemente utilizzate nell’implementazione di efficienti
sistemi per la combinazione.

Many areas of computer science (like software and hardware verification, artifi-
cial intelligence, knowledge representation and even computational algebra) are
interested in the study and in the development of combination and integration
techniques for existing decision procedures: this is so because there is a need to
reason in heterogeneous domains, so that modularity in combining and re-using
algorithms and concrete implementations becomes crucial.

In this paper we consider two decision problems: first, given a first-order
theory T in a signature Σ,1 the word problem for T is that of deciding whether

T |= t = u

holds for the Σ-terms t and u. Second, the constraint satisfiability problem for T
is the problem of deciding whether the conjunction of a finite set of Σ-literals is
satisfiable in a model of T .

1All the signatures we consider are finite, and the equality symbol is considered as a logical
symbol like boolean connectives and quantifiers.
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An important remark is that constraint satisfiability is not the same as
satisfiability of arbitrary first-order sentences: there is at least a great difference
in complexity, even whenever both problems are decidable. One may observe that
an equivalent formulation of the constraint satisfiability problem is the problem
of deciding the consistency modulo the theory T of a conjunction of ground literals
in the signature Σ ∪A, where A is a finite set of new constants.

Moreover, deciding the constraint satisfiability problem for a theory T means
to be able to decide all the universal consequences of T : in fact, the complemen-
tary constraint unsatisfiability problem (i.e., the problem of deciding whether a
finite set of Σ-literals is unsatisfiable in all the models of T ) can be easily reduced
to the clausal word problem for T (i.e. to the problem of deciding whether T |= C
holds for a Σ-clause C). This is because: a) the T -unsatisfiability of A1∧ · · ·∧An

is the same as the relation T |= ¬∃x(A1∧· · ·∧An) (for an appropriate existential
closure prefix ∃x), that is as the relation T |= ∀x(¬A1∨· · ·∨¬An); b) conversely,
T |= C (where C is the clause B1∨· · ·∨Bm) is equivalent to T |= ∀xC and hence
to the T -unsatisfiability of ¬B1∧· · ·∧¬Bm. From these considerations, it follows
in particular that deciding constraint satisfiability problems means to be able to
decide conditional equations and, therefore, solving the word problem.

In concrete applications, instead of a simple conjunction of literals, one is
given a boolean combination of ground literals in an expanded signature Σ ∪ A
to be tested for T -consistency. This is the reason why a solver for the constraint
satisfiability problem has to be combined with a SAT-solver. The most commonly
used SAT-solvers are those based on the calculus designed in the Davis, Putnam,
Logemann and Loveland’s famous work (see [16] and [31]).

In any involved area, the combination and integration of existing decision
procedures are non trivial tasks mainly because of the heterogeneity of the tech-
niques used by the component decision procedures. If we consider the theories
which are suitable for software verification, decision procedures for the constraint
satisfiability problems are obtained in many different ways: sometimes (for ex-
ample when T is the empty theory, the theory of lists or the theory of arrays)
the standard superposition calculus decides constraint satisfiability (see [2]), but
in many other cases (for example whenever arithmetic constraints are involved)
ad hoc procedures are needed.

If we move to the fields of artificial intelligence and knowledge represen-
tation, local and global satisfiability problems are decidable for various modal,
temporal, dynamic and description logics. The local satisfiability problem is that
of deciding whether

M |=w ϕ

holds for a propositional formula ϕ in a world w of a suitable (Kripke-like) model
M. By contrast, the relativized satisfiability problem is that of deciding whether
M |=w ϕ holds in a model M where another formula ψ is supposed to be true in
all possible worlds. If the logic L we are concerned with is ‘algebraizable’ (i.e. it
corresponds to a variety V of boolean algebras with operators) and is (strongly)
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Kripke complete for the intended class of models, then the local satisfiability
problem is the complement of the word problem in a theory TV axiomatizing the
variety V ; on the other hand, the relativized satisfiability problem is precisely
the constraint satisfiability problem in the theory TV .

As in the case of software verification, there are many different methods
to get decidability for our local and global satisfiability problems: among such
methods there are tableaux-based methods (more precisely, extensions of the
DPLL algorithm which perform considerably well from a computational point
of view), automata techniques, filtrations, mosaics, reductions to Rabin’s tree
theorem, translation to first-order fragments and so on. Again, the problem of
combining such different techniques naturally arises.

1 Combining First-Order Constraints

Suppose we are given two first-order theories T1 and T2 over the signatures Σ1

and Σ2 respectively (notice that it may happen that the signatures Σ1 and Σ2 are
non-disjoint). If we are able to solve the word problem (respectively the constraint
satisfiability problem) in both T1 and T2, we wonder whether it is possible to solve
the same problem in T1 ∪ T2.

In order to be able to re-use any existing decision procedure, it is useful
to adopt a so-called black-box approach. This means the following: we assume
that a decision procedure P1 solves the problem for the theory T1 and a decision
procedure P2 solves the problem for the theory T2. The provers P1 and P2 can
exchange information only externally, according to a protocol to be specified: in
any case, P1 and P2 cannot be internally modified.

The Nelson-Oppen Procedure

One of the simplest methodologies for the combination of decision procedures
following the black-box approach is represented by the Nelson-Oppen procedure
(see [25]), which was originally designed only for the disjoint signatures case. The
Nelson-Oppen procedure can be summarized essentially in two steps, namely the
purification preprocessing and the exchange loop.

Purification The preprocessing step consists in the transformation of the initial
finite set Γ of (Σ1 ∪ Σ2 ∪A)-ground literals into a set

Γ1 ∪ Γ2

where (for some A′) Γ1 is a set of (Σ1∪A∪A′)-ground literals and Γ2 is a set
of (Σ2∪A∪A′)-ground literals. This transformation preserves satisfiability;
in standard implementations, purification is linear (equations c = t, for new
constants c and alien subterms t, are successively added).
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Exchange Loop Whenever the decision procedure Pi (i ∈ {1, 2}) finds a dis-
junction C of ground (Σ0 ∪ A ∪ A′)-atoms (here Σ0 := Σ1 ∩ Σ2) such that
Γi ∪ {¬C} is unsatisfiable modulo Ti, C is added to Γj (j ∈ {1, 2}, j 6= i) if
it is not already present.

Alternatively, one can limit the exchange to atoms instead of clauses: obvi-
ously case splitting and backtracking mechanisms are required. However, if the
theories Ti are Σ0-convex, the exchange of atoms becomes deterministic.2

The exchange loop returns unsatisfiabile if Γ1 (or Γ2) eventually becomes
unsatisfiable modulo T1 (modulo T2, respectively). It returns satisfiable if it ter-
minates without finding any inconsistency.

The deterministic Nelson-Oppen procedure is guaranteed to be terminating
and complete under the following assumptions: (i) Σ1 and Σ2 are disjoint; (ii)
the theories T1 and T2 are Σ0-convex and (iii) they admit only non trivial models
(i.e. only models having cardinality bigger than 1).3 In the non deterministic
case, we can eliminate assumption (iii) and weaken the convexity assumption
(ii) to: (ii’) the theories T1 and T2 are stably infinite. Here a theory T over the
signature Σ is said to be stably infinite iff any quantifier-free Σ-formula ϕ which is
satisfiable in a model of T is satisfiable in a model of T whose domain is infinite.
It is interesting to notice that theories which are both convex and do not admit
trivial models are also stably infinite (see [12]).

The above formulation of Nelson-Oppen procedure applies also to the case
of non disjoint signatures, but some extra conditions are needed to guarantee
termination and completeness (in general, completeness cannot be ensured by
the mere exchange of information concerning (Σ0 ∪ A)-atoms, because Craig’s
interpolants may not have this form).

A first attempt to drop the assumption of disjointness of the signatures
that is able to capture some relevant theories can be found in [20]. Let T0 be
a universal theory in the signature Σ0 such that T0 ⊆ T1 and T0 ⊆ T2 (we
can freely consider that T0 is always given: in fact, in applications T0 will be the
universal Σ0-reduct of T1 and T2). To guarantee the termination of the procedure,
it is sufficient to assume T0 to be locally finite: a universal theory T0 over the
signature Σ0 is locally finite iff Σ0 is finite and for every finite set A of new free
constants, one can compute finitely many (Σ0∪A)-ground terms t1, . . . , tnA

such
that for every further (Σ0 ∪ A)-ground term u, we have T0 |= u = ti (for some
i ∈ {1, . . . , nA}). Local finiteness trivially holds when Σ1 and Σ2 are disjoint, but
it holds in many other interesting situations, for instance when T0 is the theory of
Boolean algebras (this is the relevant case for applications to fusion decidability
transfer in modal logic, see below).

2Following [30], a theory T on the signature Σ is said to be Σ0-convex (Σ0 ⊆ Σ) iff whenever
T ∪Γ |= A1∨· · ·∨An (for a finite set of Σ∪A-literals Γ, for n ≥ 1 and for ground Σ0∪A-atoms
A1, . . . , An), there is k ∈ {1, . . . , n} such that T ∪ Γ |= Ak.

3The latter is not a real limitation: it is easy to adjust our deterministic procedure in order
to drop it.
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On the other hand, a sufficient hypothesis for completeness is T0-compati-
bility: we say that Ti is T0-compatible iff T0 has a model completion T ?

0 (see [15])
and every model of Ti embeds into a model of Ti ∪ T ?

0 .

Theorem ([20]). Under the assumption of local finiteness of T0 and of T0-
compatibility of T1 and T2, the Nelson-Oppen procedure decides the constraint
satisfiability for T1 ∪ T2.

In the case of disjoint signatures, T0-compatibility of Ti means that models
of Ti embeds into infinite models of Ti, thus recovering the stable infiniteness
hypothesis of the original non-deterministic Nelson-Oppen procedure. Moreover,
every variety of Boolean algebras with operators is BA-compatible (where BA
is the theory of Boolean algebras): this observation is sufficient to prove alge-
braically the well-known fusion transfer result for decidability of global conse-
quence relation in modal logic (see [33]). Refined version of the above theorem
may be integrated in standard superposition calculus, with the aim of blocking
inferences involving mixed signature clauses (see [20] again).

The Shostak Procedure

Shostak defined a class of theories that are “solvable” and “canonizable”, i.e. theo-
ries that admit procedures for reducing terms to canonical forms and algorithms
for solving equations (see [29]). The interest in that class relies in the fact that
canonizers and solvers represent efficient ways to derive entailed equalities.

However, there are two main drawbacks in Shostak theories: first, under
some reasonable assumptions, if the union T1 ∪ T2 of the stably infinite theories
T1 and T2 admits canonizer, then T1∪T2 does not have a solver (see [24]). Second,
the theory of equality (ubiquitous in virtually any application where combination
of procedures are needed) does not admit a solver.

In [29] a procedure to decide the universal fragment of the theory of equal-
ity that can be combined with decision procedures for solvable and canonizable
theories is introduced. Although being implemented in several theorem provers,
only recently the theory underlying Shostak’s method has been enlightened by
presenting it in a more abstract and transparent way, thus exploiting the rela-
tionships between the Nelson-Oppen and the Shostak schemata: in many works
the latter is seen as a refinement of the former. For example, the relation be-
tween Nelson-Oppen and Shostak schemata already hinted in [18] seems to be
fully exploited in [19]; on the other hand, a method for the composition of the
two procedures has been suggested in [27].

It is interesting to note that in [18] the following general result is presented:

Theorem ([18]). Let T be a Σ-theory such that the constraint satisfiability prob-
lem for T is decidable. Then, for every signature Ω ⊇ Σ, the constraint satisfia-
bility problem for T with respect to Ω-literals is decidable.
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Moreover, in [19] is presented a general schema (which includes the Nelson-
Oppen procedure as an instance) for combination of decision procedures for first-
order theories in which every decision procedure is formalized as an inference
system, and their combination is formalized through the so-called inference mod-
ules.

More in detail, an inference system for a theory T is given in terms of logical
state and inference rules; usually a logical state is interpreted as a disjunction
of conjunctions of formulas, and the requirements on the inference rules are that
they keep equi-satisfiability, induce a well founded order on the set of logical
states and, if no inference rules can be applied to a logical state, then that state
is either T -satisfiable or is equal to ⊥.

An inference module is the formal description of an inference system in
which every state is made up by the pair local state/shared state. The shared
state is interpreted as an interface for inputs and outputs that guarantees different
modules to exchange formulas on a shared signature. The method for combining
decision procedures is formalized by defining the composition operator which
allows two modules to communicate each other through the shared state. The
original Nelson-Oppen procedure and the combination method arising from the
results in [20] can be seen as instances of the combination of inference modules.

Moreover, the notion of modular refinement is used to compare two inference
modules I, J : the exact definition is quite technical, but it can be summarized
saying that I refines J if every inference step in I can be ‘simulated’ by inference
steps in J . As a relevant example, the Shostak procedure is shown to be a modular
refinement of the Nelson-Oppen one.

Further Extensions

As already said, the standard superposition calculus can decide the constraint
satisfiability problem for some computer science motivated theories (see [1]). It
is interesting to note that, under some technical assumptions, superposition cal-
culus can also become a satisfiability decision procedure for a theory of the kind⋃n

i=1 Ti, where Ti’s do not share function symbols and the constraint satisfiability
problem for each Ti is decidable by superposition (for this purpose, see [3]).

In the case of disjoint signatures, some attempts have been made to drop
the stable infiniteness limitation of the original Nelson-Oppen procedure: this
is mainly because many interesting theories, such as those admitting only finite
models, are not stably infinite. For example, in [32], an asymmetric procedure that
does not require stable infiniteness for the component theories is introduced: the
method works by propagating equality constraints as well as a minimal cardinality
constraint.

The ‘dual’ notion of stable infiniteness is stable finiteness: a Σ-theory T is
stably finite iff every T -satisfiable quantifier-free Σ-formula ϕ is satisfiable in a
model of T whose domain is finite.

The theory T is smooth iff for every quantifier-free Σ-formula ϕ, for every
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model M of T satisfying ϕ and for every cardinal number κ > |M| there exists
a model N of T satisfying ϕ such that |N | = κ; moreover, T is shiny iff (i)
T is smooth; (ii) T is stably finite; (iii) mincardT is computable (this is the
function that, once applied to a T -satisfiable conjunction Γ of Σ-literals, returns
the minimal cardinality k of a model satisfying Γ).

Theorem ([32]). Let T = T1∪· · ·∪Tn be the union of pairwise signature-disjoint
theories such that: (i) T1 is arbitrary; (ii) T2, . . . , Tn are shiny. If all the con-
straint satisfiability problems for T1, . . . , Tn are decidable, so does the constraint
satisfiability problem for T .

An interesting fact is that for every signature Ω, the empty Ω-theory is
shiny, thus immediately getting as a corollary the theorem in [18] cited above.

Another attempt to weaken the stable infiniteness requirement can be found
in [28]. This paper concerns theories of practical interest for software verification:
in this context, combination problems often involve a first theory S modeling a
certain data structure (such as lists, arrays, sets, multisets and so on) considered
as structured container for elements modeled by a second theory T . Unfortu-
nately, many of the theories used in the software verification area are not stably
infinite, like for instance the theory of integers modulo n or the theory of fixed-
width bit-vectors.

Relying on the notion of politeness of a theory S with respect to a theory T ,
a procedure that is able to combine a polite theory S with any theory T , regardless
whether T is stably infinite or not, is provided. Moreover, two drawbacks of
[32] are addressed: the NP-hard function mincardS is replaced by the function
witnessS ; furthermore, a generalization of the notion of a shiny theory (too strong
to include many practically relevant examples) is provided within a many-sorted
framework.

Instead of examining the union of two theories, it is possible to consider
their connection. Suppose that the theories T1 and T2 are many-sorted and that
they share some sorts as well as some functions and predicates; to obtain their
connection, one (i) renames the shared symbols, (ii) takes (disjoint) union of
symbols and axioms, and (iii) adds connecting function symbols, together with
axioms saying that they are interpreted as homomorphisms among the reducts
to the originally shared signature. In this way a new schema of combination is
obtained: under appropriate ‘algebraic’ conditions, explained in [5] and in [4],
decidability of constraint satisfiability problems transfers from the component
theories to their connection.

2 A Comprehensive Framework for Combination

Nelson-Oppen methodology can be pushed further in order to solve in a uniform
way as many problems as possible: when joined to model-theoretic results, it
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succeeds in dealing with various classes of combination problems, often quite far
from the originally intended application domain.

In this perspective, the Nelson-Oppen schema has been plugged into an
higher-order framework: in [22], type-theoretic signatures in Church’s style are
adopted. The choice of a higher-order framework is justified by the fact that quite
often the semantic specification language for decision problem is intrinsically
higher-order, even if in practice problems themselves are not really such. For
example, in the case of modal logic, decision problems are specified through so-
called standard translations: clearly, the problem of finding a structure satisfying
the standard translation of a modal formula is (at least in principle) higher-order
because the predicates symbols occurring in the problem are genuine second order
variables.

The interest of this approach relies on existence of tractable fragments of
general type theory whose ‘combination’ often turns out to be tractable too. To
develop the plan of plugging Nelson-Oppen procedure into a higher-order context,
a suitable notion of a fragment is needed. An algebraic fragment is a pair 〈L, T 〉
where T is a recursive set of terms (of the higher-order typed language L) which
(i) is closed under substitution of terms from T for terms from T , and (ii) contains
all variables of any type τ , which is either the type of some t ∈ T or the type of
a variable occurring free in some t ∈ T . An algebraic fragment can be endowed
with a class S of structures closed under isomorphisms, thus defining what we
call an interpreted algebraic fragment4 (or, sometimes, a fragment tout court)

Φ = 〈L, T,S〉.

In this framework, a constraint satisfiability problem for Φ is reformulated as the
problem of deciding whether a Φ-constraint (i.e. a finite conjunction of equations
and inequations between Φ-terms) is satisfiable in some structure M∈ S.

Let’s now analyze the problem of transferring decidability of constraints
satisfiability problems from given fragments Φ1,Φ2 - sharing a certain fragment
Φ0 - to their combination Φ1 ⊕ Φ2 (shared and combined fragments are defined
in the expected way). Our definition of a fragment is sufficient to substantially
reproduce Nelson-Oppen steps, but we still have to face termination and com-
pleteness issues: for these, additional hypotheses are needed. Such hypotheses
will be formulated as hypotheses that each of the Φ1,Φ2 separately must satisfy
with respect to Φ0.

In general, we say that a fragment Φ = 〈L, T,S〉 is an extension of Φ0 =
〈L0, T0,S0〉 iff L0 ⊆ L, T0 ⊆ T and all the L0-reducts of the structures from S
belong to S0.

Below, we shall need to consider simple expansions of an interpreted al-
gebraic fragment Φ0: these are the interpreted algebraic fragments of the kind
Φ0(A) = 〈L0(A), T0(A),S0(A)〉 obtained from Φ0 = 〈L0, T0,S0〉 by expanding

4The idea of using a class of models to introduce satisfiability problems (instead of specifying
syntactically a theory) is recent and seems to be promising (see also [18, 28]).
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the signature L0 with finitely many fresh constants A of appropriate types (T0

and S0 are accordingly ‘expanded’ to respectively T0(A) and S0(A) in the obvious
way).

In order to ensure termination, one can once again assume a suitable local
finiteness property for the shared fragment Φ0. However, local finiteness can be
weakened to noetherianity: a fragment Φ0 is noetherian iff, for every finite set of
variables x, every infinite ascending chain

Θ1 ⊆ Θ2 ⊆ · · · ⊆ Θn ⊆ · · ·

of sets of equation between Φ0-terms over the variables x is eventually constant
for Φ0-consequence (meaning that there is an n such that for all m and A ∈
Θm, we have M |= A for every M ∈ S0 such that M |= Θn). Noetherianity
notion is borrowed from algebra: in fact, conditional word problems arising in
computational algebra for suitable ‘noetherianly-behaved’ classes of structures
can be turned into constraint satisfiability problems for noetherian fragments in
our sense.

To exploit noetherianity of the shared fragment Φ0 in a combined constraint
satisfiability problem, we need the following definition.5 Φ is said to be a noethe-
rian expansion of Φ0 iff: (i) Φ0 is noetherian; (ii) Φ is an extension of Φ0; (iii)
a suitable relative compactness property is satisfied and (iv) there exists a com-
putational device enumerating (up to redundancy) the Φ0-positive clauses which
are Φ-consequences of a set of Φ-constraints Γ.

The T0-compatibility requirement in [20] is recaptured in the following way.
We say that Φ?

0 = 〈L0, T0,S?
0 〉 is a specialization of Φ0 = 〈L0, T0,S0〉 iff S0 ⊆ S?

0

and for every finite set A of constants of appropriate types, for every structure
M ∈ S0(A), there exists M′ ∈ S?

0 (A) such that M and M′ satisfy the same
Φ0(A)-closed atoms. Moreover, a fragment Φ = 〈L, T,S〉 extending Φ0 is com-
patible with respect to a given specialization Φ?

0 of Φ0 iff Φ? = 〈L, T,S?〉 is a
specialization of Φ, where S? contains exactly those L-structures from S whose
L0-reduct belongs to S?

0 .
To guarantee the completeness of the combination procedure in our con-

text, Craig Interpolation Theorem is replaced by powerful model-theoretic and
semantically driven tools, the so-called structural operations: a structural oper-
ation on a fragment Φ = 〈L, T,S〉 is a family of correspondences (varying A)
OA : S(A) → S(A) such that M and OA(M) satisfy the same Φ(A)-closed
atoms.

To be useful, these structural operations are required to admit an isomor-
phism theorem. Roughly speaking, an isomorphism theorem is a theorem saying
that the application of certain semantic operation makes L(A)-isomorphic two
structures which satisfy the same Φ(A)-atoms. An example of structural oper-

5This definition is explained here only in a qualitative way for space reasons, see [22] for
details. We remark that in case Φ0 is locally finite, the notion of a noetherian expansion
trivializes to that of an expansion.
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ations admitting an isomorphism theorem (for fragments consisting of all first-
order formulas interpreted in an elementary class) are ultrapowers: Keisler-Shelah
isomorphism theorem (see [15]) proves that two L(A)-models A and B are ele-
mentarily equivalent iff there is an ultrafilter U such that the ultrapowers

∏
U A

and
∏

U B are L(A)-isomorphic. Another example of isomorphism theorem, op-
erating on certain monadic first-order fragments, is given by disjoint unions (this
is the isomorphism theorem useful to get fusion decidability transfer results in
modal logic).

More formally, a collection O of structural operations for Φ = 〈L, T,S〉
admits a Φ-isomorphism theorem iff for every finite set of free constants A and
for every M,N ∈ S(A) satisfying the same Φ(A)-closed atoms, there exist two
operations O,O′ ∈ O such that the structures OA(M) and O′

A(N ) are L(A)-
isomorphic.

If Φ′ is an extension of the fragment Φ, the structural operation O is Φ′-
extensible iff the following happens: after applying O to the L(A)-reduct of a
certain Φ′(A′)-structureM, one is always guaranteed to obtain a structure that is
L(A)-isomorphic to the L(A)-reduct of a Φ′(A′)-structure N satisfying the same
Φ′(A′)-closed atoms as M.6 We can now state a general decidability transfer
result:

Theorem ([22]). Nelson-Oppen procedure decides combined constraint satisfia-
bility for Φ1⊕Φ2 under the assumption that: (i) Φ1,Φ2 have decidable constraint
satisfiability problems; (ii) Φ1,Φ2 are both noetherian extensions of their shared
fragment Φ0; (iii) Φ1,Φ2 are Φ0-compatible with respect to a specialization Φ?

0

of Φ0; (iv) there is a collection O of Φ?
1- and Φ?

2-extensible structural operations
admitting a Φ?

0-isomorphism theorem.

This general decidability transfer result covers as special cases, besides new
applications, the aforesaid extension of Nelson-Oppen procedure to non-disjoint
signatures, the fusion transfer for decidability of global consequence relation in
modal logic, and the fusion transfer of decidability of A-Boxes with respect to
T-Boxes axioms in local abstract description systems (see [11]); in addition, it re-
duces decidability of modal and temporal monodic fragments to their extensional
(i.e. non modal) and one-variable components (see [33]).

3 Combined word problems

Let us now turn to the first-order context and examine the case of combined
word problems. We wish to solve combined word problems in the union T1 ∪ T2

of two first-order theories T1 and T2 by adopting the usual black-box approach:
the first idea is that of using the Nelson-Oppen procedure as it is (purification
plus information exchange concerning shared equations), but this is inadequate,

6Here A ⊆ A′ denotes the set of those constants in A′ whose type is the type of a Φ-variable.
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because a new difficulty arises. This is because conditional word problems are
necessarily generated in non trivial cases of combination and it can happen that
the input algorithms are not able to handle them (they are supposed to solve
just plain word problems). However, even if combined word problems are more
difficult for the above-mentioned reason, there are two orthogonal results that
allows us to give positive solutions under suitable hypotheses (the general case is
known to lead to undecidability).

The first result is due to [7] (and, independently, to [17]). We suppose that
T1 and T2 are both equational theories (in the signatures Σ1 and Σ2 respectively)
and that they are also conservative extensions of a shared equational theory T0

in the signature Σ0 = Σ1 ∩ Σ2. Moreover, T1 and T2, must be constructible over
T0; this means that (for i ∈ {1, 2}) there exists a class Gi of Σi-terms (containing
variables and closed under renamings) such that every Σi-term factors (uniquely
modulo Ti) as u(g1, . . . , gn), where gi ∈ Gi and u is a Σ0-term. In order to obtain
a real algorithm for the solution of combined word problems, this factorization
must be effective.

Theorem ([7],[17]). If the equational theories T1 and T2 are both constructible
over a shared theory T0, then word problem decidability transfers from T1 and T2

to the combined theory T1 ∪ T2.

Both proofs are complex, although based on different techniques: the proof
given by [7] uses a careful and deep modification (based on transformation rules)
of the Nelson-Oppen procedure, whereas the proof by [17] makes use of Knuth-
Bendix completion over pushout presentations of categories with products. There
are many examples of theories fulfilling the constructibility hypothesis of the
above theorem: for instance, commutative rings with unit are constructible over
abelian groups, abelian groups endowed with an endomorphism are constructible
over abelian groups, differential rings are constructible over commutative rings
with unit, etc.

Instead of constructibility, the main ingredient of the second combination
result for word problems is the requirement of gaussianity of the shared equational
theory T0.

A first order formula is an e-formula if it is a conjunction of equations, and
a first order theory T is gaussian iff for every e-formula ϕ(x, y) one can effectively
determine an e-formula C(x) and a term s(x, z) with fresh variables z such that

T |= ϕ(x, y) ↔ [C(x) ∧ ∃z(y = s(x, z))] .

The formula C(x) is called the solvability condition of ϕ(x, y) with respect to y,
and the term s(x, z) a (local) solver of ϕ(x, y) with respect to y.

Among examples of gaussian theories we can mention the empty theory
in the empty signature and the theories of K-vector spaces,7 acyclic lists, and

7Here the property at issue is a consequence of the Gauss elimination algorithm, whence the
name ‘gaussian’.
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Boolean rings. In the latter case, classical results on boolean unification show
that the solver of the formula t(x, y) = 0 is z+ t(x, z) ∗ (1+ t(x, 1) ∗ t(x, 0)) ∗ (z+
1 + t(x, 1)).

The combination theorem now can be stated as follows (T1 and T2 are still
equational theories on signatures Σ1 and Σ2 respectively, and T0 is a shared
theory in the signature Σ0 = Σ1 ∩ Σ2):

Theorem ([9]). Word problem decidability transfers from T1, T2 to T1∪T2, under
the hypothesis that: (i) T0 is locally finite; (ii) T1 and T2 are both T0-compatible
conservative extensions of T0; (iii) T0 is gaussian.

The combination algorithm can be outlined as follows: first of all, two con-
vergent rewriting systems for Σ1- and Σ2-ground terms (with purification con-
stants) are induced by the Nelson-Oppen purification procedure; then the infor-
mation exchange of equations is turned into a rewrite rules exchange through
skolemized solvers; at the end of the exchange process, normalization by any of
the two final rewriting systems decides the input word problem. The termination
of this algorithm is guaranteed mainly by the assumption of the local finiteness
of the shared theory; moreover, the updating of the two rewriting systems is
designed in such a way that it keeps them convergent.

A corollary of this theorem is an unlimited fusion transfer of decidability for
(classical) modal logics: it is indeed a quite strong result, because the question
about decidability transfer was a long standing open problem for the non normal
case. We finally remark that the theorems described in this section both regain,
as particular case, the transfer decidability result for the disjoint signatures case,
see [26].

4 Implemented Systems for Combination

We have already hinted at some systems for satisfiability modulo theories: these
systems are able to deal with the problem of the satisfiability of boolean combina-
tions (not simply of conjunctions) of ground literals with respect to background
theories for which specialized decision procedures exist.8 Among such theories
there are the theory of lists, of arrays, and linear arithmetic; examples of systems
are the following:

– Argo-lib (http://www.matf.bg.ac.yu/~janicic/argo/);

– DPLL(T) (http://www.lsi.upc.es/~oliveras/);

– CVC Lite (http://verify.stanford.edu/CVCL/);

– haRVey (http://www.loria.fr/equipes/cassis/softwares/haRVey/);

8Such background theories have disjoint signatures in the existing implementations.
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– ICS (http://www.icansolve.com/);

– Math-SAT (http://mathsat.itc.it/);

– Tsat++ (http://argo.lira.dist.unige.it/drwho/Tsat/);

– UCLID (http://www.cs.cmu.edu/~uclid/).

The general idea is to integrate a boolean solver (usually based on DPLL
algorithm) with a satisfiability procedure for a theory T (see for example [31]).
The systems are based on a cycle consisting of the following steps: (a) the input
formula ϕ which has to be tested for satisfiability modulo T is ‘abstracted’ into
a propositional formula ϕp; (b) the boolean solver enumerates the propositional
assignment satisfying ϕp that can be ‘re-instantiated’ as a conjunction of literals;
(c) each conjunction of literals is checked for T -satisfiability. The advantage of this
idea is that the satisfiability procedure is not invoked whenever the inconsistency
can be detected at a propositional level.

The above schema is usually refined to minimize the (generally unavoid-
able) exponential blow-up determined by the exponentially many calls to the
decision procedure for T : suppose that the satisfiability procedure, besides re-
turning messages establishing the satisfiability status for the input set of literals,
it is also capable of return a ‘minimal’ (as far as possible) subset π of them which
is still unsatisfiable (this set is called conflict set). One can use the negation of
the (abstraction of the) conflict set to lead the DPLL procedure to ‘prune’ all
the satisfiable propositional assignments that are eventually unsatisfiable modulo
the theory T : this technique is very useful in practice, and makes these systems
well-performing.

Nevertheless, this approach implies some further difficulties whenever it is
used in a combination context, in particular with respect to the generation of
the conflict set. Given two satisfiability decision procedures for T1 and T2 both
capable of generating conflict sets, and a satisfiability procedure for the theory
T = T1 ∪ T2 built up by the Nelson-Oppen combination schema, the problem of
generating conflict sets for T immediately arises. In fact, the purification process
naturally enlarge the signature introducing new constants: in order to map the
conflict set on the extended signature to a subset of the original set of literals
on the signature of T one needs to ‘track’ the equalities exchanged by the two
procedures.

Recently, a new approach overcomes the complexity of building conflict
sets and has the further advantage of avoiding backtracking when handling non-
convex theories. In this approach, called Delayed Theory Combination (see [13]),
the idea is to use DPLL to generate a propositional assignment not only for (the
abstraction of) the input formula, but also for (the abstraction of) the Robinson
diagram over the shared signature (extended by the symbols introduced by the
purification step, if necessary). The communication between the satisfiability pro-
cedures is no more necessary, because it is done via the SAT solver which guesses
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(an abstraction of) a Robinson diagram and passes the resulting conjunction of
literals to both procedures so that they can agree on the shared variables. The
generation of the Robinson diagrams is lead by the decision procedures (using
conflict sets technique described above) to avoid the investigation of all possible
(exponentially many) Robinson diagrams.

For further information about implemented systems for combination and
initiatives on this area, it is possible to consult the web page of the Satisfiabil-
ity Modulo Theory Library (http://combination.cs.uiowa.edu/smtlib/). A
library of examples and a benchmark suite for system evaluations are available;
moreover, the competition SMT-COMP is periodically organized.
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