
Assessing Properties of Aspect-Based

Components

Giovanni Denaro Mattia Monga

June 17, 2001

1. Introduction

Distributed systems have to cope with the

issues related to concurrency, security, and

network dissemination. Di�erent proper-

ties of the system are relevant when dif-

ferent perspectives of a system are consid-

ered [3]. For example, as far as concur-

rency is concerned, the absence of dead-

locks [10] is a relevant property of a sys-

tem. Similarly, considering security is-

sues, one can be interested in verifying

that the least privilege principle [13] is

guaranteed. In principle, this properties

depend just on the code that implements

the speci�c concern, i.e., concurrency and

security. However, the relevant code is

generally scattered across all the compo-

nents of the system.

Aspect-oriented approaches aim at fac-

toring out those concerns that cross-cut

an entire software system, or parts of

it [7]. Aspect-oriented languages allow

to code solutions to scattered problems

in somewhat untangled units{ called as-

pects{, avoiding the scattering of relevant

code across multiple components [11]. As-

pects can be developed in isolation and

then woven into the functional code to ob-

tain a complete system.

In this paper we argue that the in-

creasing availability of the aspect tech-

nologies [6, 9] makes it feasible to analyze

speci�c properties focusing just on aspect

modules. This paper proposes the idea

that the analysis of aspect-oriented units

can be the source for derivation of veri�ca-

tion models. In our position, if an aspect

is really encapsulating a non-functional

concern of the system in a separated com-

ponent, it should be possible to discover

the relevant properties of the encapsulated

concern just by examining such compo-

nent. We suggest an approach to the gen-

eral problem and we show how it applies

in the case of proving deadlock freedom

of a concurrency aspect coded with As-

pectJ [6].

The rest of the paper is organized as fol-

lows: Section 2 sketches the proposed veri-

�cation approach. Section 3 illustrates the

simple experiment that exploits such an

approach. Finally, Section 4 draws some

considerations and remarks.

2. The Approach

The approach proposed in this paper an-

alyzes aspect-based software components

1

aiming at verifying safety properties re-

lated to speci�c concerns of software sys-

tems. In our perspective, aspects are inde-

pendent components, which can be woven

to di�erent (and possibly third party de-

veloped) software systems to evolve their

functionalities. The proposed approach

aims at assessing general properties of

aspects without considering the environ-

ments in which they can be used.

The aspect code is analyzed in order to

derive models that are suitable for apply-

ing formal veri�cation techniques. Prop-

erties related to the analyzed concerns

have to be formally speci�ed as well. A

proper formal technique is then applied in

order to either demonstrate that the spec-

i�ed properties hold or provide counter-

examples of undesired behaviors. The

steps of this approach, exempli�ed in the

case of aspects for concurrency related

concerns, are:

� select some general properties that

are relevant for a given concern of

software systems, e.g., deadlock free-

dom or liveness of states for concur-

rency;

� select a formal veri�cation technique

suitable for analysing the selected

properties of interest, e.g., model

checking;

� identify the aspect that encapsulate

the relevant code as far as the selected

properties are concerned, e.g. the as-

pect coding the synchronization pol-

icy;

� use the aspect code for deriving the

veri�cation model required for ap-

plying the selected formal technique,

e.g., PROMELA speci�cations [4] in

the case of model checking by means

of SPIN [5];

� specify, if needed, the selected prop-

erties with the proper formalism, e.g.,

linear temporal logic [12] for SPIN,

and run the veri�cation tools, e.g.,

SPIN;

� report on success of the veri�ca-

tion or analyze the provided counter-

examples, e.g., invalid executions

leading to deadlock states.

We experimented this approach in the

case of concurrency concerns described by

means of AspectJ [6]. The SPIN model

checker has been used to demonstrate

the deadlock freedom property for a sam-

ple aspect coding a synchronization pol-

icy. We derive the PROMELA model

needed by SPIN by examining the aspect

code with a systematic procedure. At the

end of the analysis we found a counter-

example that leads to a deadlock state,

thus proving that the investigated prop-

erty does not hold in general for the an-

alyzed aspect, although this does not ex-

clude that speci�c systems using this as-

pect may work correctly. We are well

aware that the achieved results are prelim-

inary, but we believe they are convincing

of the feasibility of the proposed approach.

Next Section 3 reports on the experiment.

3. Preliminary Experience

Listing 1 shows two software modules, ac-

tually two Java classes, which handle �le

and directory objects from a hypotheti-

cal �le system. In the former class (List-

ing 1.a), the method removeUseless()

is designed for removing �les that are

marked as useless. This method checks

if a given �le is indeed useless and, if this

test succeeds, removes it from the contain-

ing directory. In a concurrent system, this

2

operation must execute avoiding race con-

ditions among running threads. To this

end some synchronization code is needed.

In particular, the programmer needs to be

sure that, when a given �le is recognized

as useless, it does not get updated before

being actually removed and the correspon-

dent directory object does not get changed

(e.g., deleted) during the operation. A

possible implementation of this policy uses

two locks for both the involved directo-

ries and �les, and encloses the critical

sections in synchronized blocks. Similar

mechanisms are required for the method

updateDir() of the class User2 (List-

ing 1.b).

Listing 1: Code of the example

public class User1 f
public void removeUseless(File f)f
if (f.isUseless())f

Directory d = f.getDir();
d.removeFile(f);
System.out.println("Removed: "

+ f.getName());
g

g
g

// (a)

public class User2 f
public void updateDir(Directory d)f
Enumeration e = d.getFiles();
while(e.hasMoreElements())f
File f = (File)e.nextElement();
f.update();
System.out.println("Updated: " +

f.getDir().getName()
+ f.getName());

g
g

g
// (b)

In order to be synchronized, the sys-

tem containing the two classes User1 and

User2 can be evolved by applying the syn-

chronization policy coded in the aspect

shown in Listing 2. The used aspect-

oriented language is AspectJ [6]. In As-

pectJ the pointcut keyword declares ex-

pressions that identify a set of points of

the code (called join points). At these

points arbitrary code can be injected. For

each pointcut, an aspect also speci�es

the code to inject and the way of in-

jection, e.g., new code can be injected

around the code of the identi�ed join

point. In Listing 2, for instance, a point-

cut called file (Listing 2, line 4) is de-

clared that identi�es the points where the

method removeUseless() executes (List-

ing 2, line 7). The aspect code associ-

ated with the pointcut file locks the ac-

tual �le object (Listing 2, line 16) and re-

leases it when the wrapped functional op-

eration (Listing 2, line 19) is completed.

The pointcut file also identi�es the ex-

ecutions of the method update() (List-

ing 2, line 6) that are synchronized as well.

Analogous synchronization machinery is

provided by the pointcut dir (Listing 2,

line 24).

Listing 2: The concurrency aspect

1 aspect ConcurrencyAspectf
2
3 /� pointcut declarations �/
4 pointcut file(File f):
5 (instanceof(f)
6 && executions(void File.update()))
7 jj executions(void User1.removeUseless(f));
8 pointcut dir(Directory d):
9 (instanceof(d)

10 && executions(boolean
11 Directory.removeFile(File)))
12 jj executions(void User2.updateDir(d));
13
14 /� code to be woven when pointcuts occur �/
15 static around(File f) returns void: file(f)f
16 synchronized(f)f
17 System.out.println("locked: "
18 + f.getName());
19 proceed(f);
20 System.out.println("unlocked: "
21 + f.getName());
22 g
23 g
24 static around(Directory d)
25 returns boolean: dir(d)f

3

26 synchronized(d)f
27 boolean b;
28 System.out.println("locked: "
29 + d.getName());
30 b = proceed(d);
31 System.out.println("unlocked: "
32 + d.getName());
33 return b;
34 g
35 g
36 g

A running system that instances ob-

jects from classes User1 or User2 merged

with the aspect ConcurrencyAspect gets

locks on the involved �les and directo-

ries, potentially causing deadlock situa-

tions [8]. Therefore, a relevant property

for this software system is deadlock free-

dom, and it should be possible to limit

the scope of the analysis of this property

to the aspect code. It is worth noting

that the binding between the actual func-

tional code and the code of the aspect is

established by lines 5{7, 9{12 in Listing 2.

Therefore, these statements have to be ig-

nored in a general demonstration as the

one we aim at providing.

A formal proof of deadlock freedom

based on the aspect should address

the synchronization policy independently

from the actual functional code of the an-

alyzed system. In other words, if the same

aspect would be used to synchronize a dif-

ferent system, the previous demonstration

should still apply.

3.1. The model

In order to prove the deadlock freedom,

we modeled the aspect in Listing 2 in

PROMELA [4] (for the sake of complete-

ness the PROMELA speci�cation is re-

ported in Appendix A).

The procedure to derive the model can

be summarized as follows:

� The existing resources, �les and di-

rectories, are modeled with sets of

boolean variables that are set to

true when the corresponding object

is locked and to false otherwise. (see

Appendix A lines 6{7);

� The code related to each pointcut

is modeled with a PROMELA pro-

cess template. Actually, there are

two process template associated with

the pointcut directory and file

(respectively, Appendix A lines 42{

80 and lines 82{119). Each process

locks a given resource (Appendix A

lines 49{51 and lines 89{91) when it

starts executing and release it (Ap-

pendix A line 78 and line 117) when

it completes.

� The execution of the code associated

to pointcuts is modeled by activating

the corresponding process template.

� Since the code associated to di�er-

ent pointcuts is interwoven with func-

tional code, it can be executed by

simultaneous threads. The model

makes the conservative hypothesis

that between the locking and unlock-

ing of a given resource, every other

resource (including the one already

locked) could be requested by other

running threads. This is modeled by

repeatedly instancing other processes

chosen non-deterministically among

all the available ones (Appendix A,

lines 54{76 and lines 93{115). At

each activation the resource to be ac-

quired is chosen non-deterministically

as well (Appendix A, lines 64, 74, 103,

and 113).

� A bootstrap init process starts

the acquisition of locks by non-

deterministically activating the avail-

able process templates (Appendix A,

lines 14{40).

4

Once every possible interaction among

the pointcuts has been represented, the

model checker handles non-deterministic

choices by simulating all the possible state

sequences. For this reason, the number

of possible states needs to be bounded.

In our model this is achieved by limit-

ing the number of process activations (Ap-

pendix A, lines 3 and 4).

3.2. Deadlock freedom

The derived PROMELA model has been

analyzed with the model checker SPIN

and an invalid state has been discovered.

This is enough to conclude that the syn-

chronization policy coded by the aspect

may lead to a deadlock. SPIN also com-

puted the shortest path to the invalid

state. In the example, the simplest dead-

lock situation occurs with the sequence of

interactions [ptcutFile ! ptcutDir !

ptcutFile], when the �le object on which

the lock is acquired is the same in the �rst

and the third pointcut.

4. Conclusions

This paper suggests that models suitable

for verifying properties, which are relevant

for speci�c concerns of a software system,

can be derived from aspect-oriented units.

This approach has the advantage that the

system, but the aspect units, can evolve

without a�ecting the validity of the veri-

�ed properties. A preliminary assessment

of this approach has been performed in

the case of veri�cation of deadlock free-

dom of a concurrency aspect. The pro-

posed approach seems to be promising, al-

though further work is needed. Currently,

we are working on tuning the approach for

making it applicable to more realistic case

studies.

References

[1] T. S. Chow. Testing software design

modeled by �nite-state machines.

IEEE trans. on Software Engineer-

ing, SE-4, 3:178{187, 1978.

[2] S. R. Dalal, A. Jain, N. Karunanithi,

J. M. Leaton, C. M. Lott, G. C. Pat-

ton, and B. M. Horowitz. Model-

based testing in practice. In Pro-

ceedings of the 1999 International

Conference on Software Engineering,

pages 285{294. IEEE Computer So-

ciety Press / ACM Press, 1999.

[3] A. Finkelstein, J. Kramer, B. Nu-

seibeh, L. Finkelstein, and

M. Goedicke. Viewpoints: A

framework for integrating multiple

perspectives in systems develop-

ment. International Journal of

Software Engineering and Knowledge

Engineering, 1(2):31{58, 1992.

[4] G. J. Holzmann. Design and Valida-

tion of Computer Protocols. Prentice

Hall, 1991.

[5] G. J. Holzmann. The model

checker SPIN. IEEE Transactions

on Software Engineering, 23(5):279{

295, May 1997. Special Issue: Formal

Methods in Software Practice.

[6] G. Kiczales, J. Hugunin, M. Ker-

sten, J. Lamping, C. V. Lopes, and

W. G. Griswold. Semantic-based

crosscutting in aspectjTM . In P. Tarr,

W. Harrison, H. Ossher, A. Finkel-

stein, B. Nuseibeh, and D. Perry, ed-

itors, ICSE 2000 Workshop on Multi-

Dimensional Separation of Concerns

in Software Engineering, pages 69{

74, Limerick, Ireland, June 2000.

5

[7] G. Kiczales, J. Lamping, A. Mend-

hekar, C. Maeda, C. V. Lopes, J.-

M. Loingtier, and J. Irwin. Aspect-

oriented programming. In Pro-

ceedings of the European Confer-

ence on Object-Oriented Program-

ming (ECOOP), Finland, June 1997.

Springer-Verlag.

[8] D. Lea. Concurrent Programming

in Java. Addison-Wesley Longman,

1997.

[9] K. J. Lieberherr. Adaptive Object-

Oriented Software: The Demeter

Method with Propagation Patterns.

PWS Publishing Company, 1996.

[10] J. Magee and J. Kramer. Concur-

rency: State Models & Java Pro-

grams. Wiley, 1999.

[11] M. Monga. Towards Software Com-

ponents for Non Functional Aspects.

Phd program in computer and au-

tomation engineering, Politecnico di

Milano, Italy, Jan. 2001.

[12] A. Pnueli. The temporal logic of pro-

grams. In Proceedings of the 18th

IEEE Symposium on the Founda-

tions of Computer Science (FOCS-

77), pages 46{57, Providence, Rhode

Island, Oct. 31{Nov. 2 1977. IEEE,

IEEE Computer Society Press.

[13] J. H. Saltzer and M. D. Schroeder.

The protection of information in

computer systems. Proceedings of the

IEEE, 63(9):1278{1308, Sept. 1975.

A. The PROMELA model

1 #de�ne NDIRS 3
2 #de�ne NFILES 3
3 #de�ne MAXPROC 5
4 #de�ne MAXSPAWN 1

5
6 bool dirLocks[NDIRS];
7 bool fileLocks[NFILES];
8
9 typedef pointcutParam f

10 byte lock;
11 chan sync;
12 g;
13
14 initf
15 byte i = 0; byte j = 0;
16 byte spawned = 0;
17 chan wait1[MAXPROC] = [1] of f bit g;
18 chan wait2[MAXPROC] = [1] of f bit g;
19 pointcutParam r;
20
21 do

22 :: (spawned < MAXPROC) �>
23 atomic f
24 r.lock = i;
25 r.sync = wait1[spawned];
26 run pointcutDir(r);
27 spawned = spawned + 1;
28 g
29 :: (spawned < MAXPROC) �> i = (i + 1) % NDIRS

30 :: (spawned < MAXPROC) �>
31 atomic f
32 r.lock = i;
33 r.sync = wait2[spawned];
34 run pointcutFile(r);
35 spawned = spawned + 1;
36 g
37 :: (spawned < MAXPROC) �> j = (j + 1) % NFILES

38 :: break
39 od

40 g
41
42 proctype pointcutDir(pointcutParam p)f
43 byte i = 0; byte j = 0;
44 byte spawned = 0;
45 show chan wait[MAXSPAWN] = [0] of f bit g;
46 bool x;
47 pointcutParam r;
48
49 atomic f
50 (!dirLocks[p.lock]) �> dirLocks[p.lock] = true;
51 g;
52
53
54 do

55 :: (spawned < MAXSPAWN) �>
56 atomic f
57 r.lock = i;
58 r.sync = wait[spawned];
59 run pointcutDir(r);
60 spawned = spawned + 1;

6

61 wait[spawned�1]?x
62 g
63
64 :: (spawned < MAXSPAWN) �> i = (i + 1) % NDIRS

65 :: (spawned < MAXSPAWN) �>
66 atomic f
67 r.lock = j;
68 r.sync = wait[spawned];
69 run pointcutFile(r);
70 spawned = spawned + 1;
71 wait[spawned�1]?x
72 g
73
74 :: (spawned < MAXSPAWN) �> j = (j + 1) % NFILES

75 :: break
76 od;
77
78 dirLocks[p.lock] = false;
79 p.sync!true
80 g
81
82 proctype pointcutFile(pointcutParam p)f
83 byte i = 0; byte j = 0;
84 byte spawned = 0;
85 show chan wait[MAXSPAWN] = [0] of f bit g;
86 bool x;
87 pointcutParam r;
88
89 atomic f
90 (!fileLocks[p.lock]) �> fileLocks[p.lock] = true;
91 g;
92
93 do

94 :: (spawned < MAXSPAWN) �>
95 atomic f
96 r.lock = i;
97 r.sync = wait[spawned];
98 run pointcutDir(r);
99 spawned = spawned + 1;

100 wait[spawned�1]?x
101 g
102
103 :: (spawned < MAXSPAWN) �> i = (i + 1) % NDIRS

104 :: (spawned < MAXSPAWN) �>
105 atomic f
106 r.lock = j;
107 r.sync = wait[spawned];
108 run pointcutFile(r);
109 spawned = spawned + 1;
110 wait[spawned�1]?x
111 g
112
113 :: (spawned < MAXSPAWN) �> j = (j + 1) % NFILES

114 :: break
115 od;
116

117 fileLocks[p.lock] = false;
118 p.sync!true
119 g

7

