
Ad-hoc Constructs for Non Functional
Aspects

Mattia Monga

Politecnico di Milano – Dipartimento di Elettronica e Informazione
Piazza Leonardo da Vinci, 32 I 20133 Milano – Italy

monga@elet.polimi.it

June 2000

1 Malaj: A Multi Aspect
LAnguage for Java

Aspect-oriented programming [1] (AOP)
tries to provide linguistic mechanisms to
factor out design concerns, which can be
defined, understood, and evolved sepa-
rately from the functional core of the ap-
plication. A first approach to AOP can be
the definition of a general-purpose Aspect-
Oriented Language (AOL) with full visi-
bility of the internal details of its associ-
ated functional module. In our previous
work [2, 3] we analysed AspectJ [4] – an
AOP following this approach – and came
to the conclusion that it violates object-
oriented principles of protection and en-
capsulation, thus hindering reuse. An-
other approach, followed by Hyper/J [5],
is based on the idea of partitioning a soft-
ware system in small atomic units, that
can be aggregated according to different
dimensions of concern. We found that
the number of connections among units
increases the overall intricacy of the sys-

tem, again hindering comprehension and
evolution.

We claim that such limitations are in-
trinsic to all general solutions to the prob-
lem and we suggest to predefine the set
of aspects an AOL should deal with, pro-
viding ad-hoc AOLs (one for each aspect)
with constructs supporting limited visibil-
ity of certain features of the functional
module to which the different aspects ap-
ply. In our Malaj (Multi Aspect LAn-
guage for Java) we define an AOL spe-
cific for synchronisation and one specific
for distribution and mobility.

1.1 The Synchronisation
Aspect

Functional units should be programmed
without focusing on their synchronisation:
a second step could clearly state what hap-
pens when a functional unit is invoked.
Three cases may arise:

1. the call violates some precondition
and an exception is returned to the

1



caller (these conditions are named
deny guards);

2. the call violates some precondition
and the caller is suspended until
the condition becomes true (suspend
guards);

3. the call does not violate any precon-
dition and execution of the functional
unit may proceed.

Malaj provides the guardian construct
for expressing synchronisation constraints
of methods of a class. Each guardian
guards a class and each class has at most
one guardian.

For each class C, the guardian G of C ba-
sically represents the set of synchronized
methods of C.

A guardian may include also a set of lo-
cal attributes and method definitions to
code guards that depend on state condi-
tions. Finally, for each method m of the
guarded class, the guardian may introduce
a fragment of code to be executed before
or after m. Observe that, to avoid break-
ing object encapsulation and to increase
separation between the functional and
synchronisation aspects, guardian code
(i.e., deny and suspend guards, and
before and after clauses) cannot access
private elements of the guarded class and
has read-only access to the public and pro-
tected attributes of the guarded class.

1.2 The Relocation Aspect

Network aware programs have often the
need to relocate functional units among
sites. Relocation can be expressed inde-
pendently specifying objects deployment
and relationships to be maintained during
objects motion:

Ownership: if an object A owns an object
B, then A is the only object entitled

to move B. By default, B follows A
in its movements.

Interest: if an object A is interested in B,
A has to be always able to reach B,
but A and B move completely inde-
pendently.

If an object A does not own B and is
not interested in it, it simply does not care
of B’s location, and even of its existence.
Evidently, ownership implies interest.

These relationships are inherently dy-
namic: they are subject to change dur-
ing program execution, as objects change
their interest in other objects according to
the programmers’ needs.

Malaj provides the relocator con-
struct: it relocates the objects of a class.
Relocation actions can be executed before
or after the execution of any method. To
specify this, the relocator provides before
and after clauses that allow programmers
to introduce the piece of code that will be
executed before or after the execution of
the method.

In before and after clauses one is not
allowed to change attributes (i.e., the in-
ternal state of an object can be changed
only by using the methods it provides).
However, it is possible to:

• Take or release the ownership of an
object, by using the methods:

takeOwnership(Object owned)
throws ObjectOwnedException

releaseOwnership(Object owned)
throws NotOwnerException

Only the owner is allowed to re-
lease ownership and only objects that
have no owner can be arguments of
takeOwnership. Observe that, by
default, each newly created object is
owned by the object that created it.

2



• Express or retract the interest in an
object, by using the methods:

expressInterest(Object o)

retractInterest(Object o)

• Fix the location of an owned object,
by using the methods:

pin(Site s, Object owned)
throws NotOwnerException

unpin(Object owned)
throws NotOwnerException

Unpinned objects reside in the same
site of their owner.

• Refer to variable and method defini-
tions that are local to the relocator.

2 Conclusions

Encapsulation is the kernel of object-
orientation and each hole we make in its
boundaries has to be carefully designed,
because can destroy the whole framework.
Design criteria behind Malaj [6] were in-
spired by earlier experience with general-
purpose aspect oriented languages. We
think our approach offers a good compro-
mise between flexibility and power, on the
one side, and understandability and ease
of change on the other. It does not allow
programmers to code any possible con-
cern, but it enables the comprehension of
concern specific relations with functional
code. This would be impossible in gen-
eral. We envision Malaj as a collection of
concern-specific aspect languages, built on
top of a subset of the Java language. For
now we discussed how the synchronisation
and relocation aspects can be defined in
Malaj. But one ultimate goal is to cover
a spectrum of concerns far beyond these
two, and to complement the programming
support with a formal model that can be

used to reason about program construc-
tion and concerns interaction.

References

[1] G. Kiczales, J. Lamping, A. Mend-
hekar, C. Maeda, C. V. Lopes,
J.-M. Loingtier, and J. Irwin,
“Aspect-oriented programming,”
in Proceedings of the European
Conference on Object-Oriented Pro-
gramming (ECOOP), (Finland),
Springer-Verlag, June 1997.

[2] G. Cugola, C. Ghezzi, and M. Monga,
“Language support for evolvable soft-
ware: An initial assessment of aspect-
oriented programming,” in Proceed-
ings of International Workshop on
the Principles of Software Evolution,
(Fukuoka, Japan), July 1999.

[3] M. Monga, “Concern specific aspect-
oriented programming with malaj,” in
Proceedings of Workshop on Multi-
Dimensional Separation of Concerns
in Software Engineering (ICSE 2000),
(Limerick, Ireland), June 2000.

[4] XEROX Palo Alto Research Center,
AspectJ: User’s Guide and Primer,
1998.

[5] P. Tarr and H. Ossher, Hyper/JTM

User and Installation Manual. IBM
Research, 2000.

[6] G. Cugola, C. Ghezzi, M. Monga,
and G. P. Picco, “Malaj: A pro-
posal to eliminate clashes between
aspect-oriented and object-oriented
programming.” Accepted for publica-
tion in Proceedings of the 16th IFIP
World Computer Congress Interna-
tional Conference on Software: Theory
and Practice(ICS2000), Aug. 2000.

3


