
A Dynamo for Computers: How Open
Source Can Help Software Markets

Revision 2.1

Mattia Monga

August 29, 2000

1 Digital Physics

As the role of computers expands in every day life, the demand for software is increasing
enormously. In 1998 in US about 2,400,000 of people was working as software specialist
(1% of total US population) and a 700,000 units shortage was estimated [Jon99]. The
need for software is much greater than its production and its quality is often far from
what users would like to have.

How does industry cope with scarcity of goods? The recipe was suggested by Adam
Smith in “The Wealth of Nations”: a market regulated by property rules. In these days
is generally accepted that the invisible hand of distributed interests is able to bring us
plenty of goods on our tables1. In this view the economy of a product results from three
factors:

1. the peculiarities of the product;

2. the infrastructures that build the market in which the product is exchanged;

3. the property rules that regulate the market.

Software is a digital good with the following peculiarities that affect its commercial
properties:

• replication possible at no cost;

• ease of modification;

• marginal costs of production for modified artifacts near to zero.
1“It is not from the benevolence of the butcher, the brewer, or the baker that we expect our dinner,

but from their regard to their self-love, and never talk to them of our own necessities but of their
advantages”

1

Some researchers identify the principal cause of software crisis in an immaturity of
its market [Bae98, Cox92, Cox95]. They suggest that software industry suffers from its
product anomalies and they envision a software components market where components
instances–rather than code–are rent, bought, sold and exchanged in the same way “hard”
goods are [MK90, Cox96].

Traditional licences (as everybody knows, software is never really sold, but the pro-
ducer give buyers a licence to use it) tend to limit the impact of these anomalies: repli-
cation is restricted to backup copies, modification is not allowed and hindered by hiding
source code and distribution of modified copies is strictly prohibited.

In this paper we take a different approach: nor the software anomalies, neither the
market structure is the cause of software scarcity, but we indicate the problem in property
rules: what is effective and desirable for atoms, not necessarily is effective or desirable
for bits too. We are going to show that licences that exploit software peculiarities
getting over with (intellectual) property rules (open source licences) can produce more
and better software, without changing the market infrastructures.

The model we have in mind resembles the one accepted for electro-magnetic induc-
tion, as synthesised in Moglen’s Metaphorical Corollary to Faraday’s Law2:

Wrap the Internet around every person on the earth, then spin the planet,
and software is going to flow in the network. [Mog99]

Software production is an essential creative activity, and like philosophy in the ancient
Athens or arts in Italy during Renaissance, is fostered by:

1. a large community interconnected as much as possible (wrapping);

2. a way to give a wage to community members (spinning);

3. as few hurdles as possible in sharing knowledge and results (resistance of conduc-
tors).

If we want to produce as much software as our society requires, we have to build a
metaphorical dynamo able to transform wages in software, leveraging on the Internet
wiring. In this paper we try to explain why open source licences can increase the con-
ductance of the Internet (Section 2) and how open source business models can pay
programmers’ work (Section 3).

2 Licensing Software

Software is not an artifact one can buy: the author sells users the right to use it,
according to the restrictions expressed in a selling agreement called licence. The property
rules regulating bits are licence agreements. In all western countries computer programs

2This is analogous to Faraday’s law: “The line integral of the electric flux around a closed curve is
proportional to the instantaneous time rate of change of the magnetic flux through a surface bounded
by that closed curve”

∮
E = −

∮
dφ(B)

dt
and its corollary known as Felici’s law i = − 1

R
dφ(B)

dt
where i

is the electric current intensity and R the resistance of the medium

2

are protected by copyright laws3: in the European Union software is considered “literary
work” and its protection is regulated by the “Berne Convention for the Protection of
Literary and Artistic Works” and a specific Directive [eec91]. The Directive clarifies
that the term ‘computer program’ (subjected to copyright protection) is to be intended
as including the preparatory design material, but not the ideas and principles which
underlie any element of it.

Licences regulate users’ acts with respect of licensed software. In particular:

Use: the loading, displaying, running, transmitting or storing of the computer program.

Copy: the permanent or temporary reproduction of a computer program by any means
and in any form, in part or in whole.

Modification: the translation, adaption, arrangement and any other alteration of a com-
puter program.

Distribution: any form of distribution to the public, including the rental, of the computer
program.

Some national laws limits the restrictions that licences can pose (for example [eec91]
states that back-up copies cannot be prohibited and modification for achieving interop-
erability with other programs is allowed), nevertheless this is an excerpt from Microsoft
Windows 2000 Professional End-User Licence Agreement:

You may permit a maximum of ten computers or other electronic devices to
connect to the Workstation Computer to utilise the services of the Product
solely for file and print services, Internet information services, and remote
access (including connection sharing and telephony services).

As you can see the Product can be used solely in the way prescribed by the copyright
holder. Furthermore, modifications are made nearly impossible by giving users only a
binary form of the program: the design material, the source code and, often, even the
format of output files are not distributed.

Hardware Market Licences, of course, could also permit users to copy, change and
distribute the software and its intermediate artifacts. And indeed in the early days
of computer industry, they were used to do so. Throughout 1960’s and 1970’s IBM
distributed4 its software accompanying it with source code and encouraging its customers
to share improvements and adaptions. At that time IBM was the dominant computer
manufacturer and it needed as much software as possible to sell its hardware.

3In US computer programs can also be patented. See http://www.freepatents.org for more informa-
tion

4Initially the software was sold together with hardware, i.e., customers payed just for hardware (the
only thing real engineers could buy) and the software was a free plus from IBM, but this policy was
found unfair and US antitrust ordered the“unbundling” of the software, charging for it separately

3

Software Market With the advent of commodity hardware (PCs and cheap worksta-
tions) software market emancipated itself from the hardware one and novel software
firms began to rest their incomes solely on the number of copies licensed. Releasing
software is the mean to get returns on investments an even slightly modified versions of
programs were released as new products: programmers work was primarily targeted to
make applications perceived as new rather to create real new functionalities. Software
providers began to cut the costs of interoperability and documentation, in favour of
time to market, while at the same time excluding competitors. Users lost in freedom
and quality, while developers as a community lost in productivity: each work was forced
to reinvent the wheel5.

Furthermore, most of developers were both users and programmers and they lost
their ability both to change tools to improve their work and to increase the effectiveness
of their products leveraging on users’ improvements.

Free Software In 1984 Richard Stallman6, a programmer of Massachusetts Institute of
Technology (MIT) decided that the licence system was posing unacceptable limitations
to his freedom of work and think. He founded Free Software Foundation and started
the GNU7 Project: an initiative to build a complete software system, from operating
system to end-user applications, entirely distributed under the term of GNU General
Public Licence (GPL) [Fou91]. This licence allows copy, modification and redistribution
of the “human readable” version (i.e., the source code and all artifacts needed to build
the “machine readable” binary form) of a program, on the condition that redistribution
is made under the same terms of GPL itself. This condition, called copyleft, uses
copyright rules to prevent the propriety of programs, resulting in software that is free, in
the sense that it cannot have tyrants. It is worth noting that the GPL does not prohibit
to sell licences, but allowing the existence of resellers, it limits the revenues from that
activity. As we see in Section 3 profits have to exploited from other sources.

GNU software started with a core of utilities (an editor, a C compiler and a set of
classical text processing tools) and became very popular among developers. Its popular-

5See analogies with the history of the formula for solving cubic equations. The first person able to
algebraically solve cubic equations was Scipione Del Ferro around year 1510. However, the only
person he told of his discovery was his student Fior. Fior was challenged by Niccolò Tartaglia to
a debate about solving equations. Each was to write thirty questions for the other to solve. Fior
submitted thirty questions of cubic type believing that his opponent would be unable to solve them.
Tartaglia submitted a variety of questions of which Fior was able to work very few. However,
inspiration hits Tartaglia the night of the debate on a method for solving cubic equations. With this
new method he solved all of Fior’s problems in less than two hours. Tartaglia was declared the winner.
After many months and much convincing, Girolamo Cardano got Tartaglia to reveal his method for
solving cubics. In 1545 Cardano published Tartaglia’s rule for solving cubic equations in Ars Magna,
much to Tartaglia’s annoyance. Cardano gave Tartaglia full credit, but in those days, practitioners
of mathematics got their fame by being able to solve problems no one else could, and if every reader
of Cardano’s work could solve a cubic, Niccolo’s reputation would be worthless. Tartaglia spent the
rest of his life trying to discredit Cardano [VdW85]. The effect for the community of mathematicians
was that an important discover was delayed for thirty years.

6Richard Stallman is the creator of the well known text editor emacs.
7GNU’s Not UNIX: see http://www.gnu.org.

4

ity was due mainly to its “portability”–i.e., its ability to be changed for using it on any
platform–and its adaptability to users’ needs. Two factors contributed to its worldwide
spread and adoption:

1. the rise of a global cheap and permeating interconnection among its users (the
Internet);

2. the apparition of some free kernels8 (Linux and FreeBSD).

The existence of free kernels meant that it became possible to build a system solely
based on free software and the diffusion of Internet allowed easy sharing of the improved
versions of software.

Free Software Market Nowadays the GNU project has its own kernel (the Hurd), and
estimated GNU/Linux9 users are more than ten millions. The running infrastructure
of the Internet (its mail transports, web servers, and FTP servers) are almost all free
software, and there are free desktop managers, free applications for office and personal
productivity, together with lots of tools for the developers’ community. The role of soft-
ware is increasingly an enabler for other computer activities [O’R99]. The free software
concept begins to be popular outside the technicians’ commonwealth. However, it is of-
ten misunderstood as software you can get at no cost. This is a dangerous misconception
that can imply two equally erroneous beliefs:

1. Software has negligible production costs: every IT manager knows software costs
are enormous, and usually its maintenance is even more costly.

2. Free software people are hopeless utopians: the effectiveness of free software projects10

in building the Internet itself is a proof of concreteness of their ideas.

For coping with misunderstanding and the so called FUD11, a new term for free
software was forged: open source software (OSS). Proposers intend to have a word for
talking about free software and its economic perspectives without scandalising managers.
They give also a definition of the features of licences that can be considered free, i.e.,
open source. The Open Source Initiative (http://www.opensource.org) has now a
certification mark, ‘OSI Certified’. When the Open Source Initiative has approved the
license under which a software product is issued, the software’s provider is permitted to
use the OSI Certified certification mark for that open source software.

8The kernel is the main part of an operating system.
9GNU system based on Linux kernel.

10It is worth noting that the major application protocols of the Internet are best implemented by free
software programs: STMP (mail protocol) by Sendmail, DNS (domain names services) by BIND,
HTTP (web protocol) by Apache

11Fear, Uncertainty, and Doubt: confusing arguments diffused by who has interest in conserving the
status quo.

5

2.1 Open Source Licences

The Open Source Definition [Per99] specifies which liberties a licence must permit to
qualify itself as OSS:

Use: no restrictions can be posed on the kind of users or fields of endeavour: the software
must be usable by anyone for any end.

Copy: any number of copies of the software must be allowed without royalties or other
fees.

Modification: anyone must be permitted to make derived works from the software: for
this is key that distribution is accompanied by unobfuscated source code and all
the scaffolding needed to produce the binary version.

Distribution: no restrictions can be posed on giving away copies and derived works, nor
on the means used for such distribution. It must be always possible to license
derived works under the same terms of the original one.

The Eulero-Venn diagrams of Figure 1 show that not all free downloadable software
is really free software and a survey of compliance to Open Source Definition of the most
popular licence models is summarised in Table 1. The table also shows if a licence gives
a warranty that modified copies should be distributed under the same terms of originals:
i.e., a free program cannot become not free (copyleft, see Section 2).

Table 1: Conformance of some licences to Open Source Definition

Licence Use Copy Modification Distribution OSS copyleft
public
domain

free free free free yes can be re-
licensed by
anyone

semi-free
software

no-profit no-profit no-profit no-profit no often

freeware or
freely redis-
tributable

free free no not modi-
fied

no no

shareware free for
limited
time

free no no-profit no no

proprietary
software

restricted restricted no no no no

GNU Gen-
eral Public
Licence
(GPL)

free free free free yes yes

continued on next page

6

continued from previous page

Licence Use Copy Modification Distribution OSS copyleft
GNU
Lesser Gen-
eral Public
Licence
(LGPL)

free free free free yes permits
linking with
non-free
modules

Berkeley
Source Dis-
tribution
(BSD),
MIT X
Consor-
tium, and
Apache
Licences

free free free BSD and
Apache
require that
every ad-
vertisement
mentions
original
developers

yes no

Artistic free free free not clear:
the single
program
cannot be
sold, but
aggregates
can

yes no

Netscape
Public
Licence
(NPL)

free free free free no licencers
can use
contributed
code in
their pro-
prietary
versions

Mozilla
Public
Licence
(MPL)

free free free free yes weak

Qt Public
Licence
(QPL)

free free only by
patches

free yes no

IBM Public
Licence

free free free free yes yes

continued on next page

7

continued from previous page

Licence Use Copy Modification Distribution OSS copyleft
Sun Com-
munity
Source
License

free free free no no no

Apple Pub-
lic Source
License

free free free free, but
can be
revoked by
licencers

no no

Figure 1: Software categories

2.2 Open Source Development

Fulfilling the demand for software of our society is a difficult task. Software development
is a creative activity, inherently complex, costly, and time consuming. Often, as noted
by Fred Brooks [Bro95], men and work-time are not interchangeable: you cannot simply
add more programmers to a project to end it earlier. This is because the cost of the
coordination of the team increases with the square of the number of involved people,
while effort profused can increase just linearly. The gestation of a baby lasts nine months,
even if two women collaborate to it. But a network of friends can greatly alleviate
mother’s problems. Opening the source code enable the grow of an helping community
that can decrease the costs of software production, redistributing them among more

8

principals. In this section we show how actors can take advantage of the peculiarities of
the open source development model during the process of software release.

2.2.1 Skills Detection and Project Management

A serious problem project managers has to face with is hiring good and motivated
programmers. People who externally participate to an open source project (that is
users that improve and adapt code) is skilled ‘by construction’. In fact, this can even
be a problem: only skilled people can contribute to development. However, the skills
required are very different: all users become beta-testers, some can do customisation,
most talented ones act as co-developers.

The real problem is the cost of coordination: according to Brooks’ Law [Bro95]
these are proportional to the square of the number of involved people, however, there
is an important difference with respect to proprietary software production: they do not
burden only the core team, but they are distributed among all interested parties. Open
source development teams are generally composed by a large set of contributors with
a smaller set of core individuals. They often resemble (except for scale) the “surgical”
teams envisioned in [Bro95], as an extremely productive organisation.

2.2.2 Requirements

Every good work of software starts by scratching a developer’s personal itch [Ray98].
This is often the case of free software programs: they start with a core set of features
needed by the first “buyer” and expand to scratch all itches of people in the same problem
space. The advantages of this approach are twofold: the development become naturally
incremental, teams can grow much more complex entities than they can build [Bro95].
Furthermore added features are localised and engineered by their real effectiveness: no
theoretically use cases focus, but real users drive the development and single features
are often autonomous with respect of core program. Requirements and features are kept
consistent by a release-feedback cycle that can be an order of magnitude faster than
proprietary one.

The effect of open source on effectiveness of software results particularly evident in
environments where users are hard to satisfy. Even when original developers lose interest
in their software, the program can survive (i.e. can still “scratch their emerging itches”)
if an adequate mass of users continue to exist. Starting an open source project can be
very difficult, but if you are able to build a flywheel of collaborating users, benefits can
be expected.

2.2.3 System Analysis, Design, and Implementation

The main goal of system architects of an open source program is to simplify the structure
of the software as much as possible. The success of the product is tightly coupled to its
design elegance. The end goal is always to obtain a network of collaborative users as wide
as possible: comprehensibility, uniformity, modularity, changeability are all key factors
for program diffusion. Linux kernel and Emacs editor, for instance, are so ubiquitous

9

thanks to their clever design: they can be easily customised and expanded understanding
a little of their internal intricacies because of their component approach; their code (not
really a trivial one, Linux consists in about 10 millions of lines of C code) is easy to
study, modify, port to different platforms and also re-engineer: Linux Real Time and
XEmacs are branches of evolution heavily re-designed.

Furthermore, exploration of design space can be carried on in parallel by different,
possibly competing, teams and only successful solutions reach the code base. Again, the
problem can be coordination, that is the ability to get the right information to the right
people at the right time [HGM98]: mailing lists are the main channel of communication,
but in a big project the retrieval and management of information can be heavy and lot
of opportunities could be lost.

2.2.4 Test

“Giving enough eyeballs all bugs are shallow” [Ray98]. This over-cited sentence sum-
marise the Linus12 law: debugging is a parallelisable activity and require low costs of
coordination. Users become a legion of beta-testers that can not just diagnose prob-
lems, but also resolve them. Again, Linux kernel is an instructive example: dozens of
security bugs in its network modules were resolved a few hours after someone discovered
them, and now it is known as one of the most secure kernel on the market. According
to [MKL+98] the failure13 rate of utilities on the proprietary versions of UNIX ranges
from 15% to 43%, while the failure rate for Linux is 9% and for the GNU utilities is only
6%. Interestly enough, the proprietary versions of UNIX do not correct all the bugs14

reported in a eight years older analogous study [MFS90]: unfortunately that report did
not contain data about Linux nor GNU utilities. Open source programs in the long run
can be much stabler than their proprietary counterparts, but, it is important to note,
that testing is not just debugging, and formalised procedures of testing are unaffordable
by the open source community in the large and have to be relegated to single users (or
ad hoc firms, see Section 3), because of, again, coordination costs.

2.2.5 Commercial Distribution

In an open source world there are much less barriers between developers and end-users.
Acquisition costs are normally very low and often a lot of documentation is available.
Software houses often distribute even their proprietary as shareware to take advantage
of the same benefits.
12Named after Linus Torvalds, the creator of Linux kernel.
13In the paper “failure” means a crashing with core dump or hanging (looping indefinitely)
14Network utilities are exceptional regard to this: in [MFS90] study only two programs crashed, no one

crashed in [MKL+98] study. The power of interconnection in improving quality of software seems
evident.

10

3 Open Source Markets

As noted in Section 2, open source licences do not prohibit to sell the right to use,
copy, modify, and redistribute, but giving up with the monopoly allowed by traditional
licences, such sale is rarely profitable and development costs of open source software
cannot be paid back by its sale value. But software has an enormous economic value as
a tool: it embodies knowledge of how to accomplish some purpose [Bae98]. Therefore, it
is feasible exploiting software use value–instead of sale value–to generate programmers
wages, leveraging on a continuing exchange of value between vendor and customers.
Indeed, only sale value is decreased by abandoning the proprietary software model: use
value can even increase, because widespread use fosters standards adoption, bug fixes,
and addition of new features. New business models funded by software use value were
exploited [Ray99] by open source enterprises.

3.1 Indirect Sale Value

Some of them raise profits from indirect sale value. Rather than bits, this kind of firms
sells:

Services: The core assets are the brains and skills of employees Their ability to use
and “customize” open source software is provided to solve customers problems.
The added value of assembling, testing, customizing a program is sold together
with open source software and the main part of customers may evaluate more
efficient to hire experts than to develop in-house skills. This is the model adopted
also by lawyers15: national laws are free and accessible by everyone, but they
provide expertise and ability to adapt general rules to individual cases, and people
pay for these services. The exchange of value between the business company and
customers is continuous, because it is related to the real use of the software: as
long as the software is used it should be kept in synchronization with user needs
and the value of such synchronization it will be available to be shared between
the customizer and the customer. Red Hat Inc. (http://www.redhat.com) has
the largest market share of GNU/Linux CDs. Although the same CDs are sold
by CheapBytes at $1.99, RedHat can sell its ones at $49.95 because they give to
customers also 90 days of on-line support. Many traditional business models for
proprietary software can be applied thanks to the high satisfaction of customers
with respect of packaged products (no customization at all can be sold, if the
product satisfies customers perfectly), and monopolies force customer satisfaction.

Accessories: Often, getting the software itself is not enough. Computers, printed manu-
als, training courses, skill certifications and even gadgets16 are all atoms that could
be bought by bits users. The more the software is freely available, the more the
users will pay for accessories.

15As noted by Eric Raymond, typically, they are not doomed to starvation
16http://copyleft.net sells T-shirts and merchandise related to open source programs

11

Contents: Software can be a mean for enjoying contents: online services, but also multi-
media CD, etc.. If the enabler program is free it is likely to be ported and enhanced
to new platforms by someone willing to use it on her machine and the market of
contents may expand.

Brand: Drinking water flows out from our taps at negligible costs. Nevertheless we often
buy branded water, sold in bottles. http://counter.li.org/ keeps a record of
GNU/Linux users that want to register themselves. Of the current (May 2000)
143956 registered users 24.4% got it from the net, 43.75% bought a CD with a
brand on it, and the rest got it by other means (friends, magazines, etc.). The
added value of having a well known set of programs and someone that has tested
them together is recognized and payed by users. A firm can also sell certifications
of compliance to branded standards.

Hardware: Hardware companies have often to write and maintain software needed to
operate their products. Device drivers and configuration tools for printers, pe-
ripheral boards, etc. are not profit centers, but rather cost centers. Opening the
software can alleviate maintenance and porting costs and increase interoperability
among different systems.

One might argue that these business models are practicable also with proprietary
licenses. In fact this is not entirely true:

• customization and services for packaged software become profitable in quasi mo-
nopolized markets: Microsoft and SAP can play in these markets because of their
market share.

• Training courses and certification programs are not well accepted when knowledge
is perceived as proprietary. What did they learn if their work environment is about
to change?

• Quality of proprietary software is certified by owner itself: why people should
trust certifications? Open source software quality can be assured by third party
companies.

Therefore, although practicable, these business models appear to be much more
profitable if the software is distributed freely.

3.2 Other Business Models

Sometimes companies whose core business is different from software can find useful to
use open source licenses for tactical purposes:

Platform: Netscape Communications Inc. revenues are mainly from services related to
its server-side software. This business was threatened by Microsoft, that could
drive out Netscape changing client-side rules of the game. In 1998 Netscape ef-
fectively denied Microsoft the possibility of a web browser monopoly releasing

12

its browser to open source community. This model (called loss leader model
in [Ray99]) seems to be the best comprehended open source model and several
traditional software houses have adopted it for some of their product in the last
months.

Cost sharing: When a project is critical for complexity and reliability, open source may
pool efforts into improving a common code base: parallel development efforts and
massive parallel peer review can increase enormously code effectiveness. Scientific
research leverage on the same model to obtain better and better theories.

Risk spreading: Open source software never dies. A closed program dies with its pro-
ducer. The source code of an open source program is released to the public and
until there is an user, it is feasible to get a programmer working on it, maintaining
it, customising it, improving it. Users can spend more for an open source program
because they reduce the risks attached to their investments17.

Process benefits As stated in 2.2 open source licenses can be beneficial on the software
production cycle refining requirements, improving involved skills, modular design
and quality of testing procedures, but on the other hand it is necessary to cope
with increasing coordination costs.

3.3 Open Source Models Essence

If, as stated in [Por93], customer satisfaction is the main requirement for survival of
firms, open source software must eventually increase the value of a company in the soft-
ware market, because users definitely benefit from free software peculiarities. However,
it is obvious that different actors of the software market benefit differently from the in-
troduction of open source licenses. We try to summarize different effects in the following
table:

From Table 3.3 appears clearly that the introduction of open source licenses might
damage the revenues of software houses, because they lose their role of intermediation
in aggregate value for developers. Simple users, hackers and developers tend to form a
community on their own, skipping intermediation, and software firms have to find a new
role, producing much more added value to be profitable. Figure 2 shows value exchange
in the case of a traditional proprietary software house (without a monopolistic position
in the market) and an open source company like Red Hat. The money exchange between
customers and the business firm is aggregated in space in the first case and in time in
the second. Developers are remunerated by money, but also by fame in the case of open
17Let me describe a little personal experience: I was using an open source e-mail client (TkRat) and I

was not happy because new messages were not easily distinguished from old ones. So I decided to
spend a couple of hours looking in the source code for a way of coloring message headers according
flag criteria. After some work I was able to modify the program according to my desires. But this
posed a problem: for any new version of the program released by the original author, I needed to add
my features. So I decided to return my patches to the author, hoping he incorporated them in the
code base. He did, and now those featured are likely to be maintained by the open source community
forever.

13

Actor Advantages Disadvantage
Customer with-
out any hacking
skill

freedom of use
freedom of copy
freedom of distribution
freedom from software producers
common standards
program are more robust
security cannot be based on obscu-
rity

Are there any disadvan-
tages?

Hacker All the advantages of ordinary users
freedom of change source code
more accurate documentation
personal satisfaction
they can work as free-lances

none

Traditional devel-
oper (payed by a
software firm)

design elegance
less pressing deadlines

increasing costs of coor-
dination

Software house deeper testing
widening of the market
easier skills detection
spreading of maintenance risks

loosing of monopoly
constraints
no profits from sell
value
less barriers on competi-
tors entry
change of business
model

Table 2: Pro et contra

14

source. In the open source case the market is much more tightly coupled: the software
tend to be the tangle that weaves together market actors. The more the software is
an infra-structural one, the it can be the conductor for value exchanges; the more
the software is inert (think about a perfect end-user application), the more the software
house can ask for money for its–proprietary–role of conveyer of value. This also explains
way open source licenses began to raise profits with the diffusion of the Internet: much
more software becomes an infra-structural one in a world wide network environment.

Figure 2: Value exchanges in an open source software market

4 Conclusions

Satisfying the demand for software of our society is a challenging task. We need re-
liable software that help us in solving our everyday problems. Software production is
overwhelming complex and it is not easily increased simply adding new labour power.
Traditional licences, based on monopolistic exploiting of intellectual property rules, hin-
der the interconnection between developers’ and users’ skills. Instead, with open source
licenses (see Section 2.1) customer satisfaction is reached by increasing reliability and
matching to users’ needs, leveraging mutual collaboration among core programmers and
hacking users. Developers compensate the loss of customer control with benefits gained
along the way of software release (see Section 2.2. Software houses do not need to be

15

charity organisations, they just have to get their profits also from different assets (see
Section 3). Nothing new: sharing feedback and cross-fertilization among research, profes-
sional and didactic activities is the traditionally way knowledge is exchanged. Software
revolution just showed that knowledge can be digitally packed.

References

[Bae98] Howard Baetjer. Software as capital: an economic perspective on software
engineering. The Institute of Electrical and Electronics Engineers, Inc., I
edition, 1998.

[Bro95] Frederick P. Brooks. The Mythical Man-Month: Essays on Software En-
gineering. Addison-Wesley publishing company, USA, anniversary edition,
1995.

[Cox92] Brad Cox. What if there is a silver bullet and the competition gets it first?
Journal of Object-Oriented Programming, June 1992.

[Cox95] Brad Cox. “No silver bullet” reconsidered. American Programmer, November
1995.

[Cox96] Brad Cox. Superdistribution: Object as Property on the Electronic Frontier.
Addison Wesley, Reading, Mass., 1996.

[eec91] Council directive 91/250/eec of 14 may 1991 on the legal protection of com-
puter programs. Official Journal of the Council of European Communities
L122, may 1991. Community legislation in force.

[Fou91] Free Software Foundation. Gnu general public license.
http://www.gnu.org/copyleft/gpl.htm, June 1991.

[HGM98] H. Holz, S. Goldmann, and F. Maurer. Working group report on coordinating
distributed software development. In Proceedings of 7th International Work-
shop on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE’98). IEEE Press, April 1998.

[Jon99] Copers Jones. The Euro, Y2K, and the US software labor shortage. IEEE
Software, May/June 1999.

[MFS90] Barton Miller, Lars Fredriksen, and Bryan So. An empirical study of the re-
liability of unix utilities. ftp://grilled.cs.wisc.edu/technical papers/fuzz.pdf,
1990.

[MK90] Ryoichi Mori and Masaji Kawahara. Superdistribution: The concept and th
architecture. The Transactions of IEICE, (73), July 1990.

16

[MKL+98] Barton Miller, David Koski, Cjin Pheow Lee, Vivekananda Maga-
nty, Ravi Murthy, Ajitkumar Natarajan, and Jeff Steidl. Fuzz revis-
ited: A re-examination of the reliability of unix utilities and services.
ftp://grilled.cs.wisc.edu/technical papers/fuzz-revisited.pdf, February 1998.

[Mog99] Eben Moglen. Anarchism triumphant: Free software and the death of copy-
right. http://emoglen.law.columbia.edu/my pubs/anarchism.html, August
1999.

[O’R99] Tim O’Reilly. Hardware, software, and infoware. In Chris DiBona, Sam
Ockman, and Mark Stone, editors, Open Sources: Voices of the Open Source
Revolution, pages 189–196. O’Reilly & Associates, Sebastopol, CA, first edi-
tion, January 1999.

[Per99] Bruce Perens. The open source definition. In Chris DiBona, Sam Ockman,
and Mark Stone, editors, Open Sources: Voices of the Open Source Revolu-
tion, pages 171–188. O’Reilly & Associates, Sebastopol, CA, January 1999.

[Por93] Michael E. Porter. Il vantaggio competitivo. Edizioni comunità, Milano, iv
edition, 1993. Original Title: Competitive advantage.

[Ray98] Eric S. Raymond. The cathredal and the bazaar.
http://www.tuxedo.org/ esr/writings/cathedral-bazaar/, November 1998.

[Ray99] Eric S. Raymond. The magic cauldron.
http://www.tuxedo.org/ esr/writings/magic-cauldron/, June 1999.

[VdW85] B.L. Van der Waerden. A History of Algebra. Springer-Verlag, New York,
1985.

17

