
Supporting nomadic co-workers: an experience with a peer-to-peer
configuration management tool

Mattia Monga
Dipartimento di Informatica e Comunicazione

University of Milan, Italy

E-mail:mattia.monga@unimi.it

Abstract

Nowadays the Internet infrastructure is so pervasive that
it is common that people connect their laptop computer
from a range of different locations: office, home, the hotel
hosting them for a conference, or the meeting room where
they are working. This is sometimes called mobile comput-
ing and it forces the designers of applications to cope with
two new requirements: (1) users may connect to the network
from arbitrary locations (usually with different network ad-
dresses), and (2) they are not permanently connected. Thus,
connectivity is intrinsically transient, and machine discon-
nection is not an exceptional case, but the normal way of
operating. We investigated how collaborative work can be
supported in a mobile computing setting, where the notion
of permanent central server cannot be used. Support tools
for CSCW are normally based on a client-server architec-
ture, which appears to be unsuitable in a such a dynamic
environment. For this reason we experimented peer-to-peer
solutions, which do not rely on services provided by a cen-
tralized server. In particular, we have implemented a con-
figuration management tool – called PeerVerSy – which pro-
vide collaborative actions even when some of the collabo-
rating nodes are off-line.

1. Introduction

Until a couple of years ago people used to connect to
the Internet from their workstations located in their offices.
They composed their electronic artifacts on their computers
and they shared their work with others by exploiting the me-
diation of some Internet server. This scenario is still com-
mon and useful in several cases. However, nowadays net-
work connections are available in a range of different loca-
tions: offices, homes, hotels, meeting rooms, airplanes, etc.
Nevertheless, laptop users are often forced to work without
any Internet connection. Thus, network applications that

rely on servers are sometimes not desirable or even not fea-
sible.

The description of a real world scenario will clarify the
problem. Imagine two or three software companies are
working on some joint project. They meet together in a
conference center in order to plan future activities. Because
the future progress of work is still undecided they did not
set up any shared server. Moreover, they can connect each
one with any other thanks to the wireless connection pro-
vided in the conference room, but they are not able to con-
nect to their companies due to firewall restrictions. In such
a case, the use of a computer supported collaborative work
(CSCW) tool is not an option. These systems are normally
based on a client/server architecture and one of them should
probably be installed on the personal laptop of one of the
working people. Even in this case, consider the possible
drawback: what if the person in charge of the server has to
go home, where he cannot be reached by incoming connec-
tions? If the collaborative tool is some kind of configuration
management tool, the server machine keeps a repository of
all artifacts on which people is working, and if the server
vanishes all the work must stop, even if the person hosting
the server was personally responsible of just one single ar-
tifact.

This simple scenario should suffices to grasp why new
server-less application for collaborative work are needed. In
fact, certain architectural assumptions on the distributed in-
frastructure affect the way cooperative support is provided.
The client/server approach is possible, and suitable, in all
cases where a reliable and permanent network infrastruc-
ture is available to connect the participating nodes. In many
cases, instead, people would like to collaborate while they
are supported through a much looser architecture. Thus, the
reference architecture is a network of peers, each of which
contributes to the overall logical structure in an equivalent
way. Moreover, peers cannot be assumed to be always on-
line. The network connection is intrinsically intermittent,
as in the case of wireless connections. More specifically,

1

peers may dynamically join and leave an ad-hoc commu-
nity. They join it in impromptu meetings, where they syn-
chronize their works. Each peer, however, should continue
to provide its functionality even when it is in a disconnected
stage. The support infrastructure should handle connections
and disconnections in a seamless fashion.

This paper is organized as follows: Section 2 presents
PeerVerSy, our peer-to-peer versions system, Section 3 de-
scribe the experimental work we did in order to evaluate the
tool, Section 4 discusses related works and finally Section 5
draws some conclusions.

2. PeerVerSy: a peer-to-peer versions system

2.1. Software development in a mobile context

We focussed our investigation on the collaborative work
needed to produce software systems. Software developers
typically collaborate by exchanging and sharing a number
of files. Files are assigned to people according their re-
sponsibilities in the project. However, besides the person
in charge of a file, several other collaborators sometimes
need to view or modify it. In general, for each item we can
identify the role of anowner, i.e., the individual who has
created the artifact or who is in charge of carrying out the
work on it. Moreover, there is a number of other collabo-
rators involved in the project who need to manipulate items
that are not under their direct control, i.e., artifacts they do
not own.

In order to keep the system consistent, developers use
configuration managementtools [12]. The main idea is that
a reference version of the system is maintained in a cen-
tral repository. People work accordingly to the rule that one
has tocheck-outan artifact from the repository if s/he wants
to modify it. After the modification is performed, then the
new version is accepted in the repository with an opera-
tion calledcommitor check-in.According to this approach
the repository becomes the centralized mean of coordina-
tion among workers, thus check out and check in operations
can be controlled by enforcing agreed policies that ensure
consistency of the collaborative work.

In order to meet its requirements the repository has to be
accessible by all the workers, thus the traditional architec-
ture is based on a number of servers that provide the “repos-
itory service” to the client nodes that are in charge of the
work. This architecture relies on two assumptions:

1. no off-line cooperation:check out and check in oper-
ations are performed only while a network communi-
cation channel between a client and the server is avail-
able;

2. servers are always alive:repository servers are always

available on line when check in and check out opera-
tions are needed.

However, in amobile computingscenario these assump-
tions are too strong. In fact, collaborative applications for
nomadic users face two new requirements:

1. users connect to the network from arbitrary locations
(possibly with different network addresses)

2. they are not permanently connected, and, while dis-
connected, they want to work without virtually notice
the difference

In other words, no fixed network topology can be assumed
and machine disconnection is not an exceptional (or faulty)
case, but the normal way of operating: even by assuming the
reliability of the network, peoplewant to be off-line some-
times. The pure client-server paradigm, where some ma-
chines play the role of service providers for other machines,
appears to be unsuitable to enable the required dynamism,
because of the intrinsic dependency from what we called
server tyranny[1].

2.2. A tool for version management

Our approach is demonstrated by the tool for version
management we built. The tool is called PEERVERSY

and a working prototype can be downloaded fromhttp:
//sf.net/projects/peerversy/ .

In traditional, client/server version management tools
(for example CVS[7]), two (or more) persons may work on
the same artifact (a file): both are required to check out the
artifact from the server machines. Different control poli-
cies for concurrent work are possibile. An example ofopti-
misticconcurrency control[8] is depicted in Figure 1: Alice
and Bob are both working onfoo.c ; Alice finishes her
work and the new version is committed in the repository
(this becomes the new reference version); when Bob tries
to check in his own modified version he gets a conflict from
the server and he must merge his modifications with Alice’s
ones before trying a new check in.

This schema relies on the assumption that the server is
available when check-in and check-out operations have to
be performed. Alice and Bob have to be connected when
they do those operations, otherwise they get an error (and
the operation fails).

Instead we designPeerVerSy such that users might
freely accomplish their computations and collaborative ac-
tions as check in and check out also whenoff-line. An
automatic reconciliation step is performed when connec-
tion is established again, possibly arising conflicts. The
client/server approach assumes the availability of the net-
work infrastructure even in the frequent case that no con-
current work is done on a particular item. It is perfectly rea-
sonable and desirable that one could check in a file which

2

Figure 1. Optimistic CM with a central server

is under his/her control if no other developers want to ma-
nipulate it. Similarly, check out operations can be per-
formed also when the latest version of an artifact is avail-
able somewhere– not necessarily on repository servers– but
for example on the local file system or on the file system of
any connected node. However, these operations, while per-
formed in unthetered or even off-line mode, should be fully
compliant with the cooperative system policies. We base
our systems on change notifications: when a peer joins the
network, it notifies the changes made to its own items since
it went off-line. In this way, any cached copies kept by such
peers become invalid.

2.3. PeerVerSy implementation

The architecture of our system is quite simple. Every
node is functionally equivalent to any other and it holds a
(partial) replica of the repository. By replicating informa-
tion, it enables cooperation also when some nodes are not
available on-line. However, more machinery to compose
conflicts among different versions of configuration items is
needed. In order to settle conflicts we adopt a strategy sim-
ilar to the one used in the management of the distributed
database of the Domain Name System [10], in which the
data regarding associations between IP numbers and host
names are replicated on several DNS servers. Each DNS
server records some associations known with certainty (au-
thoritativeassociations) and some others simply as remem-
bered form previous accesses (cachedassociations). When-
ever a DNS server gets a request for a host for which it can-
not give an authoritative answer or that is not contained in
its cache, it queries the network, possibly ending up asking
the authoritative server, who knows the correct answer.

Thus, we needed a middleware able to simulate a shared

memory among the peers, also in the presence of discon-
nections. We chose PEERWARE [6, 2], developed at Po-
litecnico di Milano1, because it provides the abstraction of
aglobal virtual data structure(GVDS), built out of the local
data structures contributed by each peer. PEERWARE takes
care of reconfiguring dynamically the view of the global
data structure as perceived by a given user, according to the
connectivity state. The data structure managed by PEER-
WARE is organized as a graph composed of nodes and doc-
uments, collectively referred to as items. Nodes are essen-
tially containers of items, and are meant to be used to struc-
ture and classify the documents managed through the mid-
dleware. At any time, the local data structures held by the
peers connected to PEERWARE are made available to the
other peers as part of the global virtual data structure man-
aged (GVDS) by PEERWARE. This GVDS has the same
structure of the local data structure and its content is ob-
tained by “superimposing” all the local data structures be-
longing to the peers currently connected, as shown in Fig-
ure 2.

Changes in connectivity among peers determine changes
in the content of the global data structure constituting the
GVDS, as new local data structures may become available
or disappear. Nevertheless, the reconfiguration taking place
behind the scenes is completely hidden to the peers access-
ing the GVDS, which need only to be aware of the fact that
its content and structure is allowed to change over time. The
operations provided by PEERWARE together with a pub-
lish/subscribe engine on which PEERWARE itself relies on
(the distributed event dispatcher JEDI, see [5]) build the
framework needed to implement our configuration manage-

1Available for downloading at http://peerware.
sourceforge.net

3

Figure 2. The GVDS abstraction provided by Peerware

ment operations.
The main point is that by using PEERWARE we can ab-

stract from the actual network topology and perform ac-
tions onon-lineitems without knowledge on where they are
stored.

2.4. The algorithm

Reconciliation is based on the assumption that each peer
is theauthority for a set of items (itownsthem), and the
copy of an artifact owned by the authority is themaster
copy. In addition to the master copy, the others peers can
keep a local copy (replica) of the documents they do not
own in order to allows users to work on them even when the
authority is not reachable or when the peer is disconnected
from the network. In fact, a user can perform both check-
in and check-out operations also from the local copies of a
document and the only difference between the master copy
and a replica is that a check-in of a new version becomes
definitive and available for all users only when the author-
ity accepts the changes and updates the master copy.

At the beginning the authority is assigned to the peer that
inserts the document into the system, but because the choice
of the authoritative peer is critical, the bindings among au-
thorities and peers are not static and can be moved from a
peer to another one in order to improve the overall perfor-
mance of the system. For instance, if the nodeX is the
authority of the documentd butY is responsible for the last
ten check-ins, it is reasonable thatY will be promoted the
new authority ofd.

When a peer enters the community, a reconciliation step
is performed. More specifically, whenX gets connected,
for each itemi for which X is the authority,X notifies all
interested peers if a newer version ofi is made available. In

such a case, the peers that owns a replica ofi must update
their copies.

When a peerX wants to check-out a documentd whose
authoritative peer isA (6= X), if d is present in the local
repository ofX the operation boils down to getting a local
copy of d. Instead, ifd is not present in the local part of
repository under control ofX a network search is issued to
retrieve a valid copy. Only in the case that no copy is found
the check-out operation fails.

When a peerX wants to check-in a new version of a doc-
ument whose authoritative peer isA (6= X), X notifies its
requestA if is reachable:A can reject the proposal or accept
it, making it persistent in its local part of the repository as
the new master copy. IfA is not reachable byX the check-
in proposal is recorded in the local repository hosted byX
and whenA becomes eventually available, the proposal is
notified to it. In both cases, ifA has an item newer then the
one proposed byX a conflict arises and theX proposal is
refused. In this case,X must resolve the conflict and then
it can submit a new version.

An example with three peers is shown in Figure 3. Alice
is the authority for the artifactfoo.c , and she can check
out and check in it freely (no conflicts are ever raised for her
operations). Bob checksfoo.c and get the current version
from Charlie, Alice might be off-line without affecting the
operation. When a new version offoo.c is accepted in the
repository, any interested peer is notified about it when is
able to receive the notification (i.e., when it is on-line). A
check in request by Bob, is notified to the authority (Alice)
when she is available and, if all goes well, accepted, and
finally notified to all interested peers. Users are unaware
of the connectivity state of the other peers, thanks to the
underlying middleware.

4

Figure 3. Three peers collaborating by using PeerVerSy

3. Tool evaluation

In order to evaluate the effectiveness of our solution
in a real use case, we did a preliminary assessment of
PeerVerSy during a course of Software Engineering for
under-graduated students at Politecnico di Milano. The
experiment involved 20 students equipped with tablet-pcs
and a wireless LAN card. During the laboratory part of
the course, we required that students collaborate in small
groups to develop a software project. Each group of stu-
dents worked together into the wireless laboratory one day
a week for four weeks. When the lesson was over, they
were supposed to continue their work at home. Moreover,
they could meet together at the university campus or when-
ever and wherever they wanted, setting up an “ad hoc” net-
work in order to synchronize their local repository and to
exchange the last versions of the artifacts they were work-
ing on.

We found that the tool was extremely attractive from a
teacher perspective. In fact, it is often impossibile to set
up a server based configuration management tool: security
regulation of the laboratory imposes an high cost on set-
ting a central server accessed by a hundred students. In-
stead, our solution allows that students use their own ma-
chine, installing and configuring the program on their own
responsibility. We received also a positive feedback from
participating students, who were happy to be able to freely
cooperate wherever they want, and even work at home with-
out any Internet connection. However, we were not able to
evaluate the impact of the new tool on software develop-
ment. In fact, the students were not sufficiently skilled and
accustomed to configuration management to get a relevant
feedback on this.

Thus, in order to evaluate the effect of our server-less
policy on software development, we designed a simple sim-
ulation of a team of developers using PeerVerSy to coor-
dinate their work. In our simulation setting a numberN of
developers work on the same artifact. One of them is the au-
thority owning the artifact. Every peer is characterized by
two parameters: its attitude in being on-line and its attitude
in working on the artifact. The state machine modelling the
artifact is depicted in Figure 4.

Figure 5 shows the results of simulation in a setting with
5 peers, each of them having a work attitude of 0.2 (work-
ing 1 time out of 5 times units) and a on-line attitude of
0.5. The simulation was repeated with different values for
the authority attitude in being on-line (work attitude fixed
at 0.2). The graph shows the ratio between tried check-in
operations and successful ones. The ratio is getting better
as the authority goes online often. This is sensible, and it
confirms our intuition that if we could assume that some
node is always online (online attitude 1.0) the best possi-
ble system we could design is a server based one. Please
note that according our simulation in a server based system
like CVS, we should expect about a 25% of conflicts a team
composed by four developers (the authority does not count,
since its operations never fail in our approach)

Figure 6 shows the results of simulation in a setting with
5 peers, each of them having a work attitude of 0.2 (work-
ing 1 time out of 5 times units) and a on-line attitude of
0.5. The simulation was repeated with different values for
the authority attitude in being working. The graph shows re-
sults both for on-line attitude 0.5 and online attitude 1.0 (ap-
proximately analogous to a server based system). Choosing
an authority with a high attitude to work, compared with the
attitude of other peers, can greatly diminish conflicts.

5

Figure 4. States of an artifact

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1

R
at

io
T

rie
d/

S
uc

ce
ss

fu
l(

%
)

Figure 5. Percentual conflicts with 5 peers (work attitude 0.2, online attitude 0.5) related to authority
online attitude

6

24

26

28

30

32

34

36

38

40

42

0 0.2 0.4 0.6 0.8 1

R
at

io
T

rie
d/

S
uc

ce
ss

fu
l(

%
)

auth. online att. 0.5
auth. online att. 1.0

Figure 6. Percentual conflicts with 5 peers (work attitude 0.2, online attitude 0.5) related to authority
working attitude

Figure 7 shows the results of simulation obtained by
changing the number of the equivalent peers (work attitude
0.2 and online attitude 0.5) belonging to the team. Again,
the simulation confirms our intuition that the number of
conflicts is getting worse as the number of peers grows.
That is, as Fred Brooks has pointed out in his “The Mythi-
cal Man-month” [3], collaboration does not scale very well.
However, it is worth noting that keeping a node always on-
line improve slightly the situation (see the line with author-
ity attitude in being online equal to 1.0)..

4. Related work

Rational ClearCase Multisite [11] is a commercial prod-
uct that supports parallel software development with auto-
mated replication of project database. With Multisite, each
location has a copy (replica) of the repository and, at any
time, a site can propagate the changes made in its particular
replica to other sites. Nevertheless, each object is assigned
to a master replica and in general an object can be modified
only at its master replica. To avoid this restriction Multisite
uses branches. Each branch can have a different master and
since the branches of an element are independent, changes
made in different sites do not conflict. Our approach enables
a much more flexible access policy. Moreover, the replica
of the whole repository can be too expensive in a network
of laptop computers. In the best case is a waste of resources
since every developer typically modifies just a fraction of
the repository. PeerVerSy uses alazyreplication policy and

only artifacts actually used are replicated on a peer.
DVS [4] is a research system that allows one to dis-

tribute the configuration management repository over the
network, but it does not allow the replication of the informa-
tion. Even though the absence of replication contrasts with
our assumptions, it is interesting to make an architectural
comparison with DVS because it also makes a clear dis-
tinction between the configuration management application
and the underlying middleware. In fact, DVS has been im-
plemented on top of NUCM [13] (Network-Unified Config-
uration Management). NUCM defines a generic distributed
repository and provides a policy-neutral interface to realize
configuration management systems.

The philosophy of our solution is similar to the one
adopted by Co-Op [9]. They claim that each member of
the team must have a piece of the database that is neces-
sary for his/her activities. Thus, check-ins and check-outs
are possible also when people are off-line. They also claim
that exchange of information among the members of the
team should occur in separation from other sources of con-
trol activities and their solution uses e-mail2 to share change
scripts. During the check in, the file that has been modified
locally is compared with some locally available reference
version of the same file. In order for other members of the
project to be able to interpret the script, they all have to have
the same reference version of the file. It means that, before
a given version of a file may become a reference version,

2They suggest that their system can be used also by exchanging floppies
or by exploiting ftp. In any case users need to agree on a protocol or to set
up an infrastructure

7

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50

R
at

io
T

rie
d/

S
uc

ce
ss

fu
l(

%
)

auth. online att. 0.5
auth. online att. 1.0

Figure 7. Percentual conflicts related to the number of peers (work attitude 0.2, online attitude 0.5)

there has to be consensus about it among all the members of
the project: they design a proper algorithm at this end. Our
system aims at being more flexible: in particular we wanted
to be able to share items also if the sender did not know the
address of the possible recipients. In fact, the IP address of
any peer can be changed among different connections and
we do not want to rely on any server based infrastructure as
e-mail. The main advantage of the approach adopted by Co-
Op is that their mean of exchanging messages (i.e., e-mail)
is probably much more scalable in a WAN settings than a
peer-to-peer middleware. However, in the most common
LAN setting, our solution require far less infrastructure.

5. Concluding remarks

In this paper we have discussed how to build a tool sup-
porting cooperation to a networked team, without relying on
the existence of centralized repository servers. We do not
want to restrict the use of the system to the scenarios where
repository servers are always available on line. When the
topology of the network environment is not knowna priori,
peer-to-peersettings where all nodes are peers, i.e. they are
functionally equivalent and any could provide services to
any other. We found that such a solution has the following
advantages:

• absence tolerance:the absence of a single peer, be-
cause of a fault or a voluntary disconnection, can be
often compensated by the presence of other peers;

• ease of configuration:because in theory each peer acts
both as a client and as a server, it can customize the ser-

vices it provides according some commonly accepted
protocol, without requiring a centralized supervision;

These advantages are available at the cost of the loss of
the centralized control. However, we think that the achieved
flexibility is a real plus in most of the modern higly dynamic
scenarios.

Acknowledgements

The work described in this paper was done in collabora-
tion of prof. Carlo Ghezzi and Davide Balzarotti from Po-
litecnico di Milano. It was partially supported by a grant of
Microsoft Research.

References

[1] D. Balzarotti, C. Ghezzi, and M. Monga. Freeing cooper-
ation from servers tyranny. In E. Gregori, L. Cherkasova,
G. Cugola, F. Panzieri, and G. P. Picco, editors,Web En-
gineering and Peer-to-Peer Computing, volume 2376 of
LNCS, pages 235–246. Springer-Verlag, 2002.

[2] F. Bardelli and M. Cesarini. Peerware: un middleware per
applicazioni mobili e peer-to-peer. Master’s thesis, Politec-
nico di Milano, 2001.

[3] F. Brooks. The Mythical Man-Month: Essays on Software
Engineering (Anniversary Edition). Addison-Wesley Pub
Co, 1995.

[4] A. Carzaniga. Design and implementation of a distributed
versioning system. Technical report, Politecnico di Milano,
Oct. 1998.

8

[5] G. Cugola, E. Di Nitto, and A. Fuggetta. Exploiting an
event-based infrastructure to develop complex distributed
systems. InICSE98 proceedings, Kyoto (Japan), April 1998.

[6] G. Cugola and G. P. Picco. Peerware: Core middleware sup-
port for peer-to-peer and mobile systems. submitted for pub-
lication, 2001.

[7] Concurrent versions system.http://www.cvshome.
org/ .

[8] H. T. Kung and J. T. Robinson. On optimistic methods for
concurrency control.ACM Transactions on Database Sys-
tems (TODS), 6(2):213–226, 1981.

[9] B. Milewsky. Distributed source control system. InSoftware
Configuration Management (Lecture Notes), pages 98–107,
1997.

[10] P. Mockapetris. Rfc 1035 (standard: Std 13) domain names–
implementation and specification. Technical report, Internet
Engineering Task Force, November 1987.

[11] Rational Software Corporation, Maguire Road Lexington,
Massachusetts 02421.ClearCase MultiSite Manual (release
4.0 or later), 2000.

[12] W. F. Tichy. Programming-in-the-large: Past, Present, and
Future. InProceedings of the 14th International Conference
on Software Engineering, pages 362–367, May 1992.

[13] A. van der Hoek, A. Carzaniga, D. Heimbigner, and A. L.
Wolf. A reusable, distributed repository for configuration
management policy programming. Technical report, Uni-
versity of Colorado, Boulder CO 80309 USA, Oct. 1998.

9

