
POLITECNICO DI MILANO
Dipartimento di Elettronica e Informazione

DOTTORATO DI RICERCA IN INGEGNERIA INFORMATICA E AUTOMATICA

Towards Software Components for
Non Functional Aspects

Verso la realizzazione di componenti
software per gli aspetti non funzionali di

sistemi complessi

Tesi di dottorato di:
Mattia Monga

Relatore:
prof. Carlo Ghezzi

Tutore:
prof. Carlo Ghezzi

Coordinatore del programma di dottorato:
prof. Carlo Ghezzi

XIII ciclo

POLITECNICO DI MILANO

Dipartimento di Elettronica e Informazione
Piazza Leonardo da Vinci 32 I 20133 — Milano

POLITECNICO DI MILANO
Dipartimento di Elettronica e Informazione

DOTTORATO DI RICERCA IN INGEGNERIA INFORMATICA E AUTOMATICA

Towards Software Components for
Non Functional Aspects

Ph.D. Dissertation of:
Mattia Monga

Advisor:
prof. Carlo Ghezzi

Tutor:
prof. Carlo Ghezzi

Supervisor of the Ph.D. Program:
prof. Carlo Ghezzi

XIII edition

A mio padre

Ringraziamenti

Due anni e mezzo; tanto è durato il dottorato e le persone che in que-
sto periodo ho incontrato e che sento di dover ringraziare sono dav-
vero tante. Lo faccio in italiano, in primo luogo perché nel mio ingle-
se stentato i ringraziamenti fluirebbero naturali quanto un programma
imperativo su di una lisp-machine, e poi perché questa è la lingua in cui
per trent’anni ho parlato, scritto, letto, studiato, capito, imprecato: le
ragioni dell’intelletto possono adattarsi anche all’“esperanto dei vinci-
tori,” ma per quelle del cuore mi serve l’unica lingua di cui controllo le
sfumature.

Mark Twain ha detto una volta che gli unici cui spetti il diritto di
usare il “noi” editoriale sono i monarchi o gli afflitti da problemi di ver-
mi. Pur non rientrando, al momento, in nessuna delle due categorie,
le persone che hanno in qualche maniera contribuito alla maturazione
delle idee e alla realizzazione di questa tesi sono cosí tante che ho sen-
tito davvero il dovere di sfidare l’ironia del sagace umorista. Alcune le
voglio ricordare qui, ma molte altre ne dovrei ringraziare se la memoria
e lo spazio me lo permettessero.

Inizio dai colleghi che si sono succeduti nell’ufficio 160 (in rigoroso
ordine alfabetico): Alberto Coen, Alex Orso, Antonio Carzaniga, Da-
niela Gatti, Gianpaolo Cugola, Giovanni Denaro, Giovanni Vigna, Lu-
ciano Baresi, Matteo Pradella, Matteo Rossi, Matteo Valsasna, Ouejdane
Mejri, Vincenzo Martena. A loro spetta il privilegio di essere citati per
primi perché, pur costretti dalle circostanze a starmi vicini per parec-
chie ore al giorno, hanno saputo aiutarmi quando ne ho avuto bisogno,
deridermi quando mi sono preso troppo sul serio, ignorarmi quando,
piú spesso di quanto avrei voluto, ho concionato senza costrutto.

Corre l’obbligo di rinominare qui Gianpaolo Cugola, insieme a Gian
Pietro Picco e Carlo Ghezzi, che tanta parte hanno avuto nella mia ma-
turazione scientifica e professionale. Se questo lavoro ha qualche valore
lo si deve ai loro incalzanti “So what?”, ai loro preziosi suggerimenti e
alle loro pazienti e perspicaci revisioni.

Grazie a Mara. Ma ancora di piú grazie a Paola: forse un giorno
riuscirò a spiegarle quanta importanza ha avuto in quest’avventura.

i

Spero di saperle essere altrettanto vicino nei momenti difficili del suo
dottorato.

Riconoscenza infinita va naturalmente ai miei genitori, che oltre ad
avermi trasmesso l’amore per il sapere, mi hanno accompagnato, in-
coraggiato e accudito in piú di vent’anni di studi. Non posso, inoltre,
dimenticare mia zia Graziella, che ha sempre creduto in me molto di
piú di quanto meritassi. E Andrea, amico di sempre, che negli ultimi
tempi ho colpevolmente trascurato.

Permettetemi di concludere con un ringraziamento speciale alle
pubbliche istituzioni italiane. Una di queste, l’ENEA, ha generosamen-
te finanziato i miei studi di dottorato; un’altra, il Politecnico di Milano,
mi ha ospitato fornendomi uno spazio dove stare, professori compe-
tenti con cui collaborare e innumerevoli occasioni per crescere profes-
sionalmente; le rimanenti hanno permesso che potessi godere di tutti i
diritti di cui ogni uomo che nasce è titolare: mi piace pensare che il me-
rito sia di tutti coloro che, credendo nella necessità del consorzio civile,
hanno saputo sacrificarsi per il bene dell’Italia.

ii

Sommario

Trattare i singoli problemi che la realizzazione di un sistema complesso
pone, in maniera il piú possibile indipendente, è una tecnica fondamen-
tale nel lavoro di ogni progettista. Ogni problema complesso viene de-
composto in sotto-problemi piú semplici, le cui soluzioni vengono poi
aggregate per formare la soluzione completa. In particolare nello svi-
luppo del software si cerca di incapsulare tali soluzioni in componen-
ti sostanzialmente autonomi che possono essere sfruttati in occasioni
diverse.

La tecnica del “divide et impera” è comune a tutti le fasi dello svi-
luppo. In particolare, risulta assere uno strumento insostituibile per il
programmatore, il quale si aspetta di trovare nel linguaggio usato per
esprimere le soluzioni strutture adatte a realizzare una effettiva separa-
zione dei problemi. Di fatto qualsiasi linguaggio di alto livello fornisce
appositi costrutti per isolare linguisticamente parti di programma: nei
linguaggi tradizionali procedure e funzioni facilitano il ragionamento
di tipo top-down, nei linguaggi orientati agli oggetti l’incapsulamento
a livello di classe limita gli effetti del codice ad una parte ben definita
di dati e l’ereditarietà permette l’evoluzione incrementale dei compo-
nenti grazie alla possibilità di aggiungere funzionalità o di ridefinirne
le esistenti.

Anche la migliore suddivisione basata sulle funzionalità, però, è de-
stinata a fallire per l’esistenza di problematiche che risultano essere tra-
sversali all’intero sistema o ad alcune delle sue parti. Si pensi per esem-
pio alla sincronizzazione di operazioni concorrenti, alla distribuzione
dei componenti fra i nodi di una rete o all’implementazione della persi-
stenza delle informazioni o della sicurezza. Questo tipo di problemati-
che non facilmente incapsulabili sono state chiamate aspetti del sistema
e programmazione orientata agli aspetti è detto il recente filone di ricer-
ca che cerca di identificare i costrutti linguistici appropriati per espri-
merli in maniera separata. L’obiettivo è ovviamente di grande rilievo
perché lo sviluppo di ogni sistema non banale coinvolge il lavoro di
diverse persone, ciascuno con la propria visione degli obiettivi da rag-
giungere, e risulta fondamentale poter definire in maniera appropriata

iii

le rispettive responsabilità.
L’idea fondamentale dei linguaggi orientati agli aspetti è quella di

avere:

1. un’opportuna sintassi adatta a separare gli aspetti in unità con
caratteristiche di modularità;

2. un modo di dichiarare quali sono i punti di integrazione fra il codi-
ce funzionale e gli aspetti.

Un apposito motore, chiamato weaver, provvederà poi (a tempo di com-
pilazione o addirittura durante l’esecuzione) a “spalmare” gli aspetti
sul codice funzionale per ottenere il sistema completo.

Il problema principale di tali tecniche sembra essere la rinuncia ai
basilari principi dell’information hiding. Tale rinuncia rende difficile, se
non impossibile, trattare gli aspetti come componenti veramente inter-
cambiabili perché troppo legati alle peculiarità delle parti funzionali cui
sono legate.

La programmazione orientata agli aspetti ha una particolare ricadu-
ta sulle applicazioni distribuite. Infatti, la funzionalità dell’applicazio-
ne è percepita come sostanzialmente indipendente dall’effettiva distri-
buzione, dalla coesistenza di macchine differenti, dalla ridondanza dei
componenti, dai processi concorrenti che ne realizzano il funzionamen-
to, dalle politiche di sicurezza applicate, ecc. Sarebbe quindi auspica-
bile poter implementare l’applicazione come localizzata su di un’unica
macchina e poi estenderla applicando gli aspetti voluti, guadagnando
la possibilità di cambiarli liberamente.

Il contributo di questa tesi può essere cosí riassunto:

• sono stati analizzati diversi approcci alla programmazione orien-
tata agli aspetti, mettendone in luce i problemi che ostacolano la
possibilità di trattarli come veri componenti software;

• è stato proposto un nuovo linguaggio, chiamato Malaj, basato
sulle seguenti idee:

– gli aspetti che vale veramente la pena tentare di separare
sono in numero limitato;

– avendo in mente un aspetto ben preciso (per esempio la co-
ordinazione) permette di concepire costrutti ad hoc che sepa-
rano l’aspetto in maniera disciplinata e rispettosa dei princi-
pi dell’information hiding.

• sono stati definiti alcuni linguaggi specifici per la programmazio-
ne orientata agli aspetti nelle applicazioni distribuite:

iv

– la possibilità di coordinare funzionalità eseguite parallela-
mente;

– la possibilità di rilocare sezioni di funzionalità in diversi spa-
zi di indirizzamento;

– la possibilità di dichiarare e gestire le situazioni eccezionali;

• è stato mostrato che l’approccio seguito permette di chiarire la re-
lazione esistente fra aspetti e costrutti tipici dei linguaggi orientati
agli oggetti come l’ereditarietà.

v

vi

Contents

1 Introduction 1

2 Aspects of Complex Systems 5

3 Aspect Oriented Programming 11
3.1 AspectJ . 12
3.2 Problems and Pitfalls . 17
3.3 Recent Developments in AspectJ 21
3.4 AspectJ Ancestors . 27

4 Other Approaches to Separation and Composition of Con-
cerns 31
4.1 Subject-Oriented Programming and Hyper/J 31
4.2 Adaptive Programming 36
4.3 Design Patterns . 39

5 Malaj: a Multi Aspects LAnguage for Java 43
5.1 Synchronisation . 45
5.2 Relocation . 52
5.3 Exceptional Behaviour . 56
5.4 Considerations . 60

6 Conclusions 63

vii

Contents

viii

List of Figures

3.1 The basic idea of aspect-oriented programming 12
3.2 AspectJ software process 26
3.3 Ideal “parallel” process of software production 26

4.1 Hyper/J approach to separation of unencapsulable con-
cerns. 32

4.2 Adaptive approach to separation of concerns 37

5.1 AspectJ approach to separation of unencapsulable con-
cerns. 44

5.2 Malaj approach to non-functional aspect separation . . . 44
5.3 Malaj architecture . 61

ix

List of Figures

x

Listings

2.1 A method with synchronisation machinery 7
2.2 Another method with synchronisation machinery 7
2.3 Scattering of the synchronisation concern 9
3.1 An example of stack implementation 13
3.2 Implementation of a debugging routine for the stack in

Listing 3.1) . 13
3.3 Equivalent code generated by the AspectJ weaver 14
3.4 Implementation of synchronisation aspect for the stack

in Listing 3.1 (see also 3.5) 15
3.5 Support classes for synchronisation 16
3.6 Breaking encapsulation causes problem in program evol-

ution . 18
3.7 A Point class . 19
3.8 Two Trace aspects that rise a clash 20
3.9 An Window class . 22
3.10 An aspect to control the sequence of invocation of differ-

ent methods . 23
3.11 An extension of the Window (see Listing 3.9) class 23
3.12 An example of inheritance anomaly 24
3.13 A “portal” for a Library class 27
3.14 Coordination of the Stack class obtained with COOL . . . 28
4.1 A sample implementation for a synchronisation aspect

for the Stack of Listing 3.1 33
4.2 An example hyper-space 34
4.3 An example of concern mapping 34
4.4 An example of hyper-module 35
4.5 A sample aggregation of method results 35
4.6 Collaboration for synchronising a bounded data structure 38
4.7 Adaption of collaboration of Listing 4.6 to the Stack class 39
4.8 A solution to the “Stack” synchronisation problem based

on a design pattern by [40] 40
5.1 An example of a simplistic e-commerce application . . . 46
5.2 A Customer class . 47

xi

Listings

5.3 A Shop class . 48
5.4 A “guardian” for the Shop (see listings 5.3) class 50
5.5 A “guardian” for the Customer (see listings 5.2) class . . . 51
5.6 A “relocator” for the ECom application (see Listing 5.1) . 54
5.7 A “relocator” for the Customer class (see Listing 5.2) . . . 54
5.8 A “notary” for the Shop (see listings 5.3) class 58
5.9 A rescue clause . 59
5.10 Retry semantics . 59

xii

1 Introduction

Solution: The act of separating the
parts of any body, or the condition of
undergoing a separation of parts.

— Webster’s Revised Unabridged
Dictionary (1913)

Separation of concerns is a key engineering principle [18] applied
in analysis, design, and implementation of systems. Designers want to
think about one problem at a time and separation of concerns means
decomposing a system into parts, each of which deals with, and encap-
sulates a particular area of interest, called a concern.

Software engineers learned how decomposition of a complex sys-
tem into simpler sub-systems can make the problem tractable because
the complete solution can be built out of sub-solutions, found relatively
independently. In fact, most analysis and design notations and pro-
gramming languages provide constructs for organising descriptions as
hierarchical structures aggregating simpler modular units.

Moreover, the development of every non trivial system necessar-
ily involves many people, and it is crucial to entrust individuals with
precise responsibilities, according their skills, knowledge, and expert-
ise. In fact, multiple perspectives of the system must exist to cope with
different development phases, different issues, different stake-holders.
These different viewpoints [20] need an explicit representation in order
to make possible concurrently carrying out and integrating them in co-
herent analysis, design, implementation, testing and deployment arti-
facts.

Thus, smart techniques for expressing separate solutions to differ-
ent concerns and composing them in the final system are needed at
every stage of development. In particular, programming languages
need proper idioms to help implementors in applying good “divide
et impera” principles to their programs. Traditional programming lan-
guages have supported the partitioning of software in modular units
of functionality. Such parts are then assembled to get the desired func-
tionality of the whole system. The history of programming languages

1

1 Introduction

shows the evolution of linguistic constructs aimed at achieving isola-
tion of a concern: in imperative and functional languages procedures
and functions enable top-down reasoning. In object-oriented languages,
class encapsulation limits the effects of change to localised portion of
code and inheritance allows one to incrementally evolve a component
by adding new features or redefining existing features.

However, even optimal functional decompositions omit to encap-
sulate some concerns because they cross-cut the entire system, or parts
of it. As an example, suppose that a Java class is used to describe the
pure functionality of certain objects. Additional separate issues may
include the definition of:

• constraints on sequences of applicable operations (e.g., to get in-
formation from an object one must first apply a setup operation,
and then one of a set of assignment operations);

• synchronisation operations to constrain concurrent access to the
object (e.g., a consumer trying to read a datum from a queue must
be suspended if the queue is empty);

• how objects are distributed on the nodes of a network, either stat-
ically or through dynamic migration;

• security or accounting policies (e.g., to get information from an
object one must first ask some permission).

These kinds of separate issues that cannot be easily encapsulated in
functional modules have been called aspects [37]. Such concerns are
typically scattered over several units of encapsulation. Single mod-
ules become mix-ins of totally different concerns entangled in the same
piece of code. Aspect oriented programming is the emerging research field
born to identify appropriate linguistic means for isolating scattered
concerns.

The basic idea is having an aspect oriented language providing:

1. some syntactic sugar to separate aspect code in novel modular
units;

2. a way to declare join points that are the points in the functional
code where aspect code will merge with it.

An engine, called aspect weaver, is responsible for mixing — either at
compile time or at run time — functional and aspect code in order to
produce a running coherent system.

2

The best known representative proposal in this area is AspectJ [70,
71] from Xerox Parc. The language provides an aspect oriented ap-
proach in which an aspect is a first class entity similar to a Java class.
An aspect can have its own methods and attributes; furthermore it can
insinuate any arbitrary piece of code in the Java classes composing the
system. The join points between aspects and classes are method signa-
tures, that can be denoted also by using pattern matching, thanks to a
regular expression syntax. Insinuated code has to be executed either at
the very beginning or at the very end of the method acting as join point.
However, it may freely manipulate class data to obtain the desired be-
haviour.

This is a very powerful mechanism that puts total control in pro-
grammers’ hands, but it does not completely resolve the main issue
of separation of concern. In fact, classes and aspects have to be de-
signed together, because of the holes introduced in the information hid-
ing boundaries.

This thesis argues that the problem of separating every concerns, still
maintaining all the logical barriers between each of them, is not resolv-
able in its most general case and it proposes the less ambitious goal
of trying to separate some specific, although important, predetermined
concerns. In our vision, aspects should have their own separated pro-
duction cycle. However, breaking encapsulation makes this very diffi-
cult, if not impossible. Thus our proposal gives up some flexibility and
power in favour of understandability and ease of change.

We propose a new language, called Malaj, which has its roots in two
basic assumptions:

1. only a (relatively small) set of possible aspects is worth separating
from functional code;

2. having in mind a well defined aspect, it is possible to provide
ad hoc constructs addressing this particular issue in a disciplined
way.

Malaj constructs, thanks to their ad hoc nature, may have been care-
fully designed with “surgical” visibility on implementation secrets of
functional modules, thus their relation with traditional object oriented
code can be studied a priori. Furthermore, designing an aspect specific
language may provide programmers a new tool embodying appropri-
ate successful guidelines coming from the research work of experts of
the field.

We focus on the particular domain of distributed systems. Accord-
ing to the definition given in [12], a distributed system is a collection

3

1 Introduction

of automata whose distribution is transparent to the users so that the
system appears as one coherent machine. Users are not directly aware
of the network, namely there are several machines, with different loc-
ations, storage replication, load balancing, concurrent processes, net-
work failures, access protection, etc.. This makes it a perfect candidate
for aspect oriented programming, because functionality is perceived as
well separated issue, a goal to be reached notwithstanding any change
in other concerns.

Thus, we concentrate on three aspects of distributed systems:

synchronisation: the ability of coordinating parallel threads of func-
tionality;

network relocation: the ability of relocating the deployment status of
piece of functionality;

exceptional behaviour: the ability of coping with exceptional states
of the system.

The thesis is organised as follows: Chapter 2 presents the related
problems of entangling and scattering of concerns and their relevance
in modern software engineering; Chapter 3 details the approach fol-
lowed by AspectJ and its drawbacks and pitfalls; Chapter 4 surveys
other existing approaches; Chapter 5 describes Malaj, our aspect ori-
ented language; Chapter 6 concludes the thesis by summing up the
contribution of our work and envisioning improvements and further
research.

4

2 Aspects of Complex Systems

The astrologers call the evil influences
of the stars evil aspects.

— Francis Bacon

Separation of concerns is a very general and very powerful prin-
ciple that applies to any large and complex human activity. It is espe-
cially used in software to express the ability to identify, describe, and
handle important and critical facets of a software system separately.

Concerns are always related to a goal a stakeholder1 wants to achieve
with a software system or to anticipations or expectations he or she has
on a system. A concern can be seen as a perspective that is taken by
a stakeholder on a system. This is particularly true for systems which
deploy a number of different technologies. For instance, building the
software for controlling airplanes needs deep understanding of hard-
ware and physical issues.

Well organized software systems are partitioned in modular units
each addressing a well defined concern. Such parts are developed in
relative isolation and then assembled to produce the whole system. A
clean and explicit separation of concerns reduces the complexity of the
description of the individual problems, thereby increasing the compre-
hensibility of the complete system.

Some concerns are only relevant in certain development stages, even
though more often they are relevant during the complete software life
cycle. Separation of concerns supports evolution and maintenance, fa-
cilitates reuse, it also enables consistency checking and correspondence
between specification and implementation.

Even when the system is finished2 having different models corres-
ponding to different perspectives is a powerful tool useful for inferring

1With the term stakeholder we mean any person involved in the life cycle of the sys-
tem: the entrepreneur who organizes the business venture and assumes the risk for
it, the designer who sketches the system architecture, the programmer who writes
the code, one of the marketing people who sell the product, the end-user who ex-
ploits the software in his own business, the customizer who adapts it to specific
demands, etc.

2Of course, the notion of “finished system” is a controversial one: actually, complex

5

2 Aspects of Complex Systems

properties, deducting explanations of observed behaviors, or envision-
ing expected responses [54].

Separation and isolation are crucial if development of single parts
has to be carried out concurrently to reduce time to market: people
involved take different perspectives, exploit different development
strategies, and have different responsibilities [20]. Only elements that
are important for each stakeholder should be visible in her or his own
viewpoint.

During implementation phases programming languages need to
support programmers in isolating concerns and integrating them in co-
herent systems.

Traditionally, programming languages provide constructs to parti-
tion the software in modular units of functionality. Such parts are then
assembled to get the desired functionality of the whole system. Tra-
ditional languages provide procedures and functions. Object-oriented
languages break up programs in objects isolated by class encapsulation:
this boundary limits the influence of pieces of code to localised regions;
moreover, inheritance allows one to incrementally evolve components
by adding new features or redefining existing features.

However, sometimes a concern is not easily factored out in a func-
tional unit, because it cross-cuts the entire system, or parts of it. Syn-
chronization, memory management, network distribution, load balan-
cing, error checking, profiling, security are all aspects of computer prob-
lems that are unlikely to be separated in functional units. During last
years hard research work was carried on concurrency, network distri-
bution, security, etc. and skillful professionals in these areas are now
emerging. Ideally, we would like to entrust such experts to implement
the part of the system that impact on these aspects. However, it is typic-
ally not easy to give responsibility for these concerns to people different
from implementors of other parts of the system, because the relevant
code is often scattered across multiple components, tangled with other
unrelated code.

Scattering is a problem because it hinders the possibility to reason
about a concern in isolation, by temporarily ignoring what is currently
irrelevent. For example, it may be difficult to predict deadlock or to
detect deadlock when it occurs because it requires reasoning about two
or more units at a time. Suppose (see Listing 2.1) we have a method

systems are never completely finished. They can be defective because they do not
implement (or implement imperfectly) all the specifications given before building,
but also because they neither cope with all requirements rose during the building
process, nor with all needs that environmental changes impose. Here finished is to
be taken as “deployed on users’ machines”

6

public void removeUseless (Folder file){
synchronized (file){

if (file .isUseless ()){
Cabinet directory = file .getCabinet ();
synchronized (directory){

directory .remove (file);
}

}
}

}

Listing 2.1: A method with synchronisation machinery

public void updateFolders (Cabinet dir){
synchronized (dir){

for (Folder f = dir .first (); f != null; f = dir .next (f)){
synchronized (f){

f .update ();
}

}
}

}

Listing 2.2: Another method with synchronisation machinery

removeUseless () in a database class. This method is called during the
clean-up phase of the system. It receives a Folder object as parameter:
this object represents some folder in the database system. The method
controls the uselessness of the Folder by calling isUseless (). In
order to act on the Folder , the method acquires the object lock of
the Folder . If the Folder is really useless, the method simply re-
move the Folder from the Cabinet . The Cabinet can be found by
a getCabinet () method, and the Folder can be deleted by invoking
remove (). Just as with the Folder object, before it is possible act on
the Cabinet object it is necessary to lock it. Now, let us suppose we
have another method called updateFolders () (see Listing 2.2. This
method receives a Cabinet object that represents a cabinet in the sys-
tem. In order to act on this Cabinet , its object lock is needed. The act
of updating the Cabinet is done by looping through all the Folder s
in the Cabinet and calling the update () method. Again, the updating
of Folder s needs the Folder lock.

7

2 Aspects of Complex Systems

This code can cause a deadlock. Suppose that a thread T1 calls the
method updateFolders (). It acquires the lock L1 of the Cabinet .
Now assume the removeUseless () method is called by a thread T2. It
locks the Folder with a lock L2 and, after determining that it is indeed
useless, it proceeds in locking the Cabinet with its lock L1 in order to
delete the Folder . At this point T2 blocks and waits for the releasing
of the Cabinet object lock.

But when the Folder on which removeUseless () is working is
now accessed by updateFolders (), it tries to grab the object lock L2.
The deadlock situation arises because the removeUseless () method
has the Folder lock L2 and it is waiting for the Cabinet lock L1 to be
freed. In parallel the updateFolders () method holds the Cabinet
lock L1 and it is waiting for the Folder lock L2 to be freed. This an-
omalous situation is hard to detect, but it is common to find code like
this if it is written by people with no knowledge of each other work. A
solution to the deadlock situation involves a major redesign of the sys-
tem, with collaboration between the writer of removeUseless () and
the one of updateFolders ().

The problem dual to scattering is code tangling: modular units are
often mixins of pieces of code that addresses different, unrelated con-
cerns. For example, Listing 2.3 shows a synchronised Stack class. The
core code is composed by statements that implement the stack func-
tionality: a data structure in which elements can be accessed according
the last in, first out policy. But the class contains also statements (indic-
ated by // synch) that implement synchronisation among methods:
no concurrent calls to pop () and push () are allowed, calls to pop () wait
for elements in the stack, calls to push () wait for empty slots.

In the example functionality and synchronisation are tangled to-
gether, thus they have to be written at the same time. The same problem
applies to the code in Listings 2.1 and 2.2. Moreover, because between
the two there are no barriers of any kind, every change to one may have
side effects to the other.

Thus, the question is: “how non functional aspects, generally scattered
and tangled within functional component can be managed as components as
well?”. Information hiding and encapsulation is the traditional way
to introduce division of labor in software production, limiting the ef-
fects of change to localized portions of code, that become the bricks for
building the whole system, but we need some new ideas to consider
aspects real components, i.e., units of third-party composition [63].

8

package stack ;

interface Constants {
final int StackSize = 10;

}

public class Stack implements Constants {
synchronized // synch
public void push (Object o){

while (top == StackSize −1) try{ // synch
wait (); // synch

} catch (InterruptedException e){ // synch
e.printStackTrace (); // synch

}
elements [++top] = o;
if (top == 0) notifyAll (); // synch

}
synchronized // synch
public Object pop (){

Object ris ;
while (top == −1) try{ // synch

wait (); // synch
} catch (InterruptedException e){ // synch

e.printStackTrace (); // synch
}
ris = elements [top −−];
if (top == StackSize −2) notifyAll (); // synch
return ris ;

}

private int top = −1;
private Object [] elements = new Object [StackSize];

}

Listing 2.3: Scattering of the synchronisation concern

9

2 Aspects of Complex Systems

10

3 Aspect Oriented Programming

When the only hammer you have is
C++, the whole world looks as a
thumb.

— Keith Hodges

Software design processes and programming languages should mu-
tually support each other. In particular, the necessity to maintain soft-
ware imposes the two key principles of factoring and locality [22] in or-
der to make programs readable and easily modifiable as much as pos-
sible. Thus, the language should allow programmers to factor concerns
into one single unit and the effect of a language feature should be re-
stricted to a well defined, “local”, portion of the entire program.

Recently, some aspect oriented languages were proposed to make
aspects clearly identifiable from functional code, which is written by
using traditional constructs that are present in ordinary languages.

Aspect oriented languages (see Figure 3.1) provide support for writ-
ing encapsulated aspects thanks to constructs for:

1. syntactically isolating code for aspects;

2. identifying join points between aspect code and functional code;

Then, a weaver is responsible to mix — not necessarily at compile time
— aspects and functional code in order to produce the running system.

Syntactic isolation establishes which entities can be manipulated by
the weaver and scope rules among all program entities: how much does
each concern know about each other? This is crucial to understand the
coupling degree among the parts that compose the system.

The nature of the join points strongly affects the properties of the in-
tegration: its flexibility, the ability to understand the integrated system
in terms of its components, reusability of components, and the nature
and complexity of weaver and other supporting tools.

Integration, or weaving in the aspect oriented jargon, can be per-
formed in different ways and at different time of developing. in fact,
it can be done not just statically at compile, link, or even analysis time,
but also dynamically at run time.

11

3 Aspect Oriented Programming

weaver

Aspect

Join points

Scope boundaries

Aspect

Traditional unit

Traditional unit

Aspect isolation

Figure 3.1: The basic idea of aspect-oriented programming

3.1 AspectJ

The best known system implementing an aspect-oriented approach is
probably AspectJ [71, 70]. Designed and implemented at Xerox PARC,
it is aimed at managing tangled concerns in Java programs.

In AspectJ1 it is possible to define a first-class entity called aspect.
This construct is reminiscent of the Java class: it is a code unit with a
name and its own data members and methods.

In addition, aspects may introduce an attribute or a method in ex-
isting classes and advise that some code is are to be executed before or
after the execution of an existing class method.

For example, the aspect in Listing 3.2 adds a method main () to the
class in Listing 3.1 for testing purposes.

Join points are the calls to functional methods. It is possible to
schedule the execution of arbitrary code when the thread of compu-
tation enters in the called method (with before clause), or when it re-
turns normally from the method (after clause), when it returns with an
exception2 (catch clause), after any returning action (finally clause). Se-

1Following code and considerations refer to AspectJ v 3.0
2For the sake of precision: catch and finally clauses were introduced with AspectJ 0.4,

together with some small syntactical changes; nevertheless they fit smoothly in the
model of AspectJ 0.3, and for our considerations can be treated here. More “revolu-
tionary” improvements are discussed separately in Section 3.3.

12

3.1 AspectJ

package stack ;

interface Constants {
final int StackSize = 10;

}

public class Stack implements Constants {
public void push (Object o){

elements [++top] = o;
}
public Object pop (){

return elements [top −−];
}

private int top = −1;
private Object [] elements = new Object [StackSize];

}

Listing 3.1: An example of stack implementation

aspect TestStack {

introduce Stack {
public static void main (String [] args){

Stack s = new Stack ();
s .push (new Integer (5));
s .push (new Integer (23));
Integer i = (Integer)s .pop ();
i = (Integer)s .pop ();

}
}

}

Listing 3.2: Implementation of a debugging routine for the stack in List-
ing 3.1)

13

3 Aspect Oriented Programming

Object wovenMethod (Object [] parameters){
try{

beforeClause_code (parameters);
originalMethod_code (parameters);
afterClause_code (parameters , thisResult);

} catch (Exception e){
catchClause_code (parameters);

}
finally {

finallyClause_code (parameters);
}

}

Listing 3.3: Equivalent code generated by the AspectJ weaver

mantically, the concrete method code generated by the weaver is equi-
valent to Listing 3.3.

This mechanism can be used for coding synchronisation around the
Stack in Listing 3.1. Listing 3.4 shows how is possible to acquire a lock
before performing a push () or a pop () on the Stack and to release it
after operation. The implementation exploits services of a suitable class
Lock showed in Listing 3.5.

The association between aspect instances and objects is one-to-one.
However, this can be changed by using the keyword static, this way a
single aspect instance is associated to all the objects of a class. Aspect
code may refer to object instance by using the thisObject keyword
and to aspect instance by using thisAspect. Further, it is possible to
access the method where the junction between the aspect instance and
the object is done by using the keyword thisJoinPoint.

Classes are unaware of aspects, i.e. it is not possible to name an
aspect inside a class: this because aspects are conceptually a posteriori
with respect to classes, they are augmentation of a given functionality.
In the production cycle supported by AspectJ, aspects are downstream
from the writing of classes, that they assume existing and fixed.

Actually, some variance degree is allowed by the join point mechan-
ism. Join points are not requested to be specified with a unambiguous
method signature. Instead, it is possible to specify a set of methods by
using a special syntax. For example,

private ! static void ∗() & (ScreenA | ScreenB)

denotes the intersection of all private, non-static, void methods without
parameters and all the methods of the classes ScreenA e ScreenB .

14

3.1 AspectJ

aspect SyncStack {
advise void MyStack .push (Object o){

static before {
class NotFull implements Condition {

public boolean check (){
return top != StackSize −1;

}
}

l .acquireLockIf (new NotFull ());
}

static after {
l .releaseLock ();

}

}

advise Object MyStack .pop (){
static before{

class NotEmpty implements Condition {
public boolean check (){

return top != −1;
}

}

l .acquireLockIf (new NotEmpty ());
}

static after {
l .releaseLock ();

}
}

}

Listing 3.4: Implementation of synchronisation aspect for the stack in
Listing 3.1 (see also 3.5)

15

3 Aspect Oriented Programming

interface Condition {
boolean check ();

}

class Lock {
public synchronized void acquireLockIf (Condition c){

while (!c .check ()
|| (locker != null

&& locker != Thread .currentThread ())){
try{

wait ();
} catch (InterruptedException e){

e.printStackTrace ();
}

}
countLock ++;
locker = Thread .currentThread ();

}

public synchronized void releaseLock (){
if (locker == Thread .currentThread ()){

countLock −−;
if (countLock == 0){

locker = null;
notifyAll ();

}
}

}

private Thread locker = null;
private int countLock = 0;

}

Listing 3.5: Support classes for synchronisation

16

3.2 Problems and Pitfalls

The use of not and “wildcard” enables the possibility of denoting a
method that was not foreseen when the aspect was written.

Moreover, the weaver is aware of polymorphism. This way, every
aspect that introduces or advises some code in a class C keeps aug-
menting every class deriving from C.

3.2 Problems and Pitfalls

In principle, the various aspects should not interfere with functional
code, they should not interfere with one another, and they should not
interfere with the features used to define and evolve functionality, such
as inheritance.

Instead, coding systems with AspectJ is error prone. If aspects and
classes are not carefully design together, it is easy that unwanted clashes
occurs. For example:

1. Possible clashes between functional code and aspects. Usually such
clashes result from the need of breaking encapsulation of func-
tional units to implement a different aspect. In AspectJ aspect
code may access the private attributes of a class. This can be
useful in some situations but results in a potentially dangerous
breaking of class encapsulation. Imagine a situation (see List-
ing 3.6)in which a class Foo has a private variable i that needs to
be accessed by aspect Bar . Imagine also that subsequently class
Foo is changed by changing type of variable i from int to double.
This results in breaking the aspect code. In general, it is not pos-
sible to change the internals of a functional unit without changing
other aspects.

2. Possible clashes between different aspects. Suppose (see Listing 3.7)
that a class Point exists with two variables x and y and two
methods, setX () and setY (). Suppose we have developed an
aspect TraceBefore (see Listing 3.8) to trace the start of execu-
tion of methods of class Point and an aspect TraceAfter to
trace the end of execution of the same methods. The two aspects
work perfectly when applied individually (for example, to trace
the start of execution or to trace the end of it). Unfortunately, since
they introduce the same method (i.e., method print ()) with dif-
ferent definitions, they fail when applied together.

3. Possible clashes between aspect code and specific language mechan-
isms. One of the best known examples of problems that falls

17

3 Aspect Oriented Programming

class Foo{
private int i = 1;
public void method (){

System .io .println (i);
}

}

class DoubleFoo extends Foo{
private double i = 1.0;
public void method (){

System .io .println (i);
}

}

aspect Bar {
advise void Foo .method (){

static before {
i ++; // it does not work with a double !

}
}

}

Listing 3.6: Breaking encapsulation causes problem in program evolu-
tion

18

3.2 Problems and Pitfalls

class Example1 {
public static void main (String args []){

Point p =new Point ();
p.setX (1);
p.setY (1);

}
}

class Point {
int x ,y ;

public Point (){
x=y=0;

}
public void setX (int x){
this .x=x ;

}
public void setY (int y){
this .y=y ;

}
}

Listing 3.7: A Point class

19

3 Aspect Oriented Programming

aspect TraceBefore {
introduce private void

Point .print (String methodName) {
System .out .println ("Tracing method "

+methodName +" before ");
System .out .println ("x="+x+" y="+y);

}
advise void Point .setX (int i),

void Point .setY (int i) {
static before {

print (thisJoinPoint.methodName);
}

}
}
aspect TraceAfter {

introduce private void Point .print (String methodName) {
System .out .println ("Tracing method "

+methodName +" after ");
System .out .println ("x="+x+" y="+y);

}
advise void Point .setX (int i),

void Point .setY (int i) {
static after {

print (thisJoinPoint.methodName);
}

}
}

Listing 3.8: Two Trace aspects that rise a clash

20

3.3 Recent Developments in AspectJ

into this category is inheritance anomaly [47]. This term was first
used in the area of concurrent object-oriented languages [73, 3, 55]
to indicate the difficulty of inheriting the code used to imple-
ment the synchronisation constraints of an application written
using one of such languages. In the area of aspect-oriented lan-
guages, the term can be used to indicate the difficulty of inher-
iting the aspect code in the presence of inheritance. As an ex-
ample, consider class Window in Listing 3.9. Methods show() and
paint () cannot be called before method init () is called. This
behaviour is controlled by the aspect WindowSync . Now con-
sider class SpecialWindow in Listing 3.11. It redefines method
show() in such a way that it does not require a previous invoc-
ation of method init ()3. In principle, it should be possible to
"inherit" the WindowSync aspect just modifying the code asso-
ciated to method show() (e.g., replacing it with the empty se-
quence). Unfortunately, this is not possible and it is necessary
to rewrite entirely the aspect code (see aspect SpecialWindow -
Sync in Listing 3.12).

Thus, AspectJ gives aspects full control on internal details of their
associated functional classes. This results in violating the object-oriented
principles of protection and encapsulation, increasing the chance that
the different aspects could interfere with each other or with the func-
tional code.

3.3 Recent Developments in AspectJ

AspectJ is subject to active research and is evolving at a fast pace. Today
the current release (v. 0.7) has a number of new interesting features [58].

On one hand, the new version is more respectful of encapsulation
principles:

• aspect s are real units of encapsulation that must obey the same
access control rules as Java code when referring to members of
other units (however, there is the possibility to declare an aspect
as privileged bypassing all access control rules);

• aspect s may extend previously produced units, reusing their
code, and advises can be overridden;

3Note that this way of sub-classing Window is consistent with the object-oriented type
theory [44], which requires subclasses not to strengthen the precondition for re-
defined methods.

21

3 Aspect Oriented Programming

class Example2 {
public static void main (String args []){
Window w=new Window();
w.init ();
w.show;

}
}

class Window{
public void init (){

// ...
}

// Requires initialization
public void show(){

// ...
}
// Requires initialization
public void paint (){

// ...
}

}

Listing 3.9: An Window class

22

3.3 Recent Developments in AspectJ

class Example2 {
public static void main (String args []){
Window w=new Window();
w.init ();
w.show;

}
}

class Window{
public void init (){

// ...
}

// Requires initialization
public void show(){

// ...
}
// Requires initialization
public void paint (){

// ...
}

}

Listing 3.10: An aspect to control the sequence of invocation of different
methods

class SpecialWindow extends Window {
// This version of show does not
// need any initialization
public void show() {

// ...
}

}

Listing 3.11: An extension of the Window (see Listing 3.9) class

23

3 Aspect Oriented Programming

aspect WindowSync {
introduce boolean Window.initDone =false;
advise void Window.init (){

static after {
initDone =true;

}
}
advise void Window.paint (){

static before{
if (! initDone)
System .out .println ("Error : init never called ");

}
}

}

Listing 3.12: An example of inheritance anomaly

• declaration of join points is now separated (by using a pointcut
construct) from the definition of the actions attached to them: this
allows them to be reused and, from a conceptual viewpoint, gives
them a first-class entity status;

• conflicts among different aspect s are now disciplined by pre-
cedence rules: defaults can be changed by the programmer by
using the dominates keyword.

On the other hand, the weaving mechanism is now greatly improved.
Join points are no more restricted to be method calls and their granu-
larity is greatly refined.

• In version 0.7 arbitrary code may be introduced when an attribute
is referenced (keyword gets) or assigned to (keyword sets), and
it is possible to distinguish among method call, method recep-
tion, and method execution. This distinction arises from the dis-
patch mechanism of Java. A call is every call of static or non-static
method or constructor. In Java a non-static, non-private method
can be executed in two ways, with difference in the dispatch al-
gorithm.

The normal one is by using a call in the form

this .method ("parameters ");

In this case the actual method to be executed is found at run-time,
after the resolution of the object dynamically bounded to this.

24

3.3 Recent Developments in AspectJ

The actual class of this (which may be a derived class from the
one who defines the instruction showed above), and a method
with signature method (String) is searched starting in that class
and going up in the inheritance chain.

Another way for executing a method is by using a call in the form

super.method ("parameters ");

By so doing the compiler statically determines which method -
(String) to execute (the nearest one in the inheritance chain),
and at run-time that method is simply executed without any lookup
step. Therefore, code cannot be inserted between reception and ex-
ecution. AspectJ makes it possible to distinguish these two cases:
before or after join points receptions means before or after the
moment in which calls to a method with a particular signature is
run, but the particular implementation of that signature is not yet
determined, while before or after join points executions means
before or after the moment in which a particular implementation
of method signature is actually executed.

• A new keyword around allows the introduction of code that is
not executed neither before nor after a join point, but instead of it.

By exploiting these very powerful mechanisms, aspect program-
mers may insinuate arbitrary code between every instruction of func-
tional code, potentially changing its semantic in a totally arbitrary way.
The semantics of the resulting program is not easy to understand be-
cause of the subtleties of different constructs. This makes AspectJ a
low level tool, for coding aspects in a stage subsequent to the one in
which functional code was produced. The process supported by As-
pectJ is somewhat similar to the one sketched in Figure 3.2. Aspect
production conceptually follows class production, and aspect-oriented
programming becomes a new mechanism of evolution (indeed much
more powerful than inheritance) of actual components (classes or sets
of classes), of which some knowledge about implementation details is
needed.

However, the ideal process is one that encourages division of labour,
as showed in Figure 3.3. In this vision aspects becomes true compon-
ents that can be developed separately and with some degree of inde-
pendence: they can be later integrated by weaving them with functional
code and even reused in other, similar, contexts. However, this ap-
proach cannot be achieved by using AspectJ.

25

3 Aspect Oriented Programming

Aspect production

System developing team

Class production
evolution

by weaving

Knows implementation

Figure 3.2: “Serial” process of software production supported by As-
pectJ

Integration
by weaving

Class production

"Functional" developing team Aspect specific team

Knows some abstraction
Aspect production

Figure 3.3: Ideal “parallel” process of software production

26

3.4 AspectJ Ancestors

portal Library {
Book find (String title){

return:
Book : {copy title , author , isbn ;}

}
}

Listing 3.13: A “portal” for a Library class

3.4 AspectJ Ancestors

The creators of AspectJ, in an early version of their system 4, provided
two concern-specific languages: COOL, to control thread synchronisa-
tion; and RIDL, to program interactions among remote components.
With these two aspect oriented languages it was possible to define co-
ordinators and portals, which had total visibility of internal details of
objects, but did not have the permission to change their state. With
the constructor of portal, programmers could specify if data transfers
across site boundaries are made possible by copying objects or transfer-
ring a reference to them: for example the portal of Listing 3.13 asserts
that the Book object returned by the remote find () method of the class
Library must contain a clone of the fields title , author , and isbn
of the object computed by the functionality of the method.

With the constructor of coordinator programmers could specify self
and mutual exclusion between class methods and pre/post-conditions
on methods execution: for example, synchronisation of the Stack class
can be obtained by using the coordinator showed in Listing 3.14. Cur-
rently, COOL has been transformed in a coordination library, whose
features are woven into functional code by using the AspectJ engine.
Again, portals and coordinators have total control on class secrets and
there is no support to cope with inheritance or, in general, with evolu-
tion of classes.

This approach was abandoned by the AspectJ team because of its
lack of generality. With COOL and RIDL it was possible to address
only two specific concerns, while AspectJ is a tool of much lower level
designed to cope with all conceivable cross-cutting aspects. We think
that this ambitious goal represents also its weakness in achieving real
separation of concern. AspectJ gives programmers a mechanism to ma-
nipulate units of Java code in almost arbitrary ways. It is difficult to
encapsulate reusable manipulations because of their knowledge about

4For a detailed description see [45]

27

3 Aspect Oriented Programming

coordinator SyncStack : Stack {
selfexclusive{pop , push };
mutexclusive{pop , push };

cond boolean full = false;
cond boolean empty = true;

push : requires ! full ;
on_exit{

if (top == StackSize −1) full = true;
if (top == 0) empty = false;

}

pop : requires !empty ;
on_exit{

if (top == −1) empty = false;
if (top == StackSize −2) full = false;

}
}

Listing 3.14: Coordination of the Stack class obtained with COOL

28

3.4 AspectJ Ancestors

the details of functional code. In fact, in all the examples of AspectJ use
appeared in literature (see, for instance, [32]), the reusable part of the
code is encapsulated in ordinary classes. We suggest that anticipating
the nature of the aspects we want to deal with can be the key to enable
reuse, and in Chapter 5 we are going to propose a system supporting
aspect-oriented programming in which we take a different approach:
we define separate linguistic construct for specific aspect domains. This
way we hope to reduce the clashes with traditional linguistic features
and the need for breaking information hiding because the composition
among known aspects and functionality can be carefully designed.

29

3 Aspect Oriented Programming

30

4 Other Approaches to Separation
and Composition of Concerns

It were not best that we should all
think alike; it is difference of opinion
that makes horse-races.

— Mark Twain

4.1 Subject-Oriented Programming and Hyper/J

Subject-Oriented Programming was proposed [57] as an extension of
the object oriented paradigm to address the problem of handling dif-
ferent subjective perspectives on the objects to be modeled.

For example, the class representing Employee s for the adminis-
tration people would include attributes such as salary or social -
Security , whereas the human resource department would be inter-
ested in skills and experience .

Instead, one can have a class with all above attributes and “mark”
each of them with the concern to which pertain (for example, the at-
tribute skills could be marked as pertaining to the concern “human re-
source issues”).

The need for different perspectives may emerge from different us-
age contexts, but also from different development viewpoints: one of
the goals is the ability of adding unforeseen extensions to existing mod-
ules independently developed. A perspective is a system concern and
subjects become the representation of the concern after filtering and
composing modules. Furthermore, each subject constitutes a new di-
mension of the design process, each one should be, in principle, ortho-
gonal to each other.

Hyper/J [64] is a meta-language to define multiple dimensions of
concern within a software system written in Java. Hyper/J considers
the system as a set of Java declarations (methods, attributes and classes)
and provides:

31

4 Other Approaches to Separation and Composition of Concerns

1. a notation to map declaration units to arbitrary concerns and con-
cerns to concern dimensions: i.e., each unit is assigned to one or
more concern (see Figure 4.1);

2. a notation to describe various correspondences between declara-
tions and definitions;

3. an engine to bind together declarations and definitions according
to such correspondences.

functional code non-functional code

concern units

dimensions

hyperslices

Figure 4.1: Hyper/J approach to separation of unencapsulable con-
cerns.

Hyper/J considers the decomposition of the system in classes as a
dimension of concern (the ClassFile dimension), not really different
form others: its creators say that there is no tyranny of the dominant
decomposition [64]. The set of all declaration units form a hyperspace
from which the compiler can cut hyperslices containing all concerns
pertaining to a dimension. hyperslices can be generated declaratively
complete including in it all definitions needed for static checking. These
slices are eventually integrated in executable hypermodules by specify-
ing which definitions must be linked to abstract declarations.

As an example, we can define a hyperspace composed by concern
units of a package stack (see Listings 3.1, 4.1, and 4.2).

In this hyperspace each unit maps to exactly one concern, as
specified in Listing 4.3: for instance, every operation push be-
longs to the solution addressing the dimension of concern Features
and precisely the concern of implementing pure Functionality ;
instead, operation stack .Stack .main belongs to dimension of
Development issues and address the problem of Testing the
class. We can now build a hypermodule HSyncStack by merging

32

4.1 Subject-Oriented Programming and Hyper/J

package stack ;

public class SyncStack implements Constants {
public void push (Object o){

synchronized(lock){
while (top == StackSize −1) try{

lock .wait ();
} catch (InterruptedException e){

e.printStackTrace ();
}
innerPush (o);
if (top == 0) lock .notifyAll ();

}
}

public Object pop (){
synchronized(lock){

Object ris ;
while (top == −1) try{

lock .wait ();
} catch (InterruptedException e){

e.printStackTrace ();
}
ris = innerPop ();
if (top == StackSize −2) lock .notifyAll ();
return ris ;

}
}

private void innerPush (Object o) {}
private Object innerPop () { return null; }

private Object lock = new Object ();

private int top = −1;
private Object [] elements = new Object [10];

}

Listing 4.1: A sample implementation for a synchronisation aspect for
the Stack of Listing 3.1

33

4 Other Approaches to Separation and Composition of Concerns

hyperspace HStack
composable class stack .∗;
uncomposable class java .lang .∗, class java .io .∗;

Listing 4.2: An example hyper-space

package stack : Feature .Kernel // default
class stack .Stack : Feature .Kernel
class stack .SynchStack : Feature .Synch
operation stack .Stack .main : Development .Test
operation pop : Feature .Kernel
operation push : Feature .Kernel
field top : Feature .Kernel
field elements : Feature .Kernel
operation stack .SyncStack .innerPop : Feature .Synch
operation stack .SyncStack .InnerPush : Feature .Synch
field stack .SyncStack .popWait : Feature .Synch
field stack .SyncStack .pushWait : Feature .Synch
// class stack .Stack : ClassFile .Stack
// class stack .SyncStack : ClassFile .Stack
// interface stack .Constants : ClassFile .Constants

Listing 4.3: An example of concern mapping

the two (declaratively complete) hyperslices of Features and
Synchronisation .

Moreover, we specify that during merge the code of unit Features .-
Synch .innerPush has to be overridden by the code of Features .-
Functionality .push and the code of unit Features .Synch .inner -
Pop has to be overridden by the code of Features .Functionality .-
pop . The produced module is a regular Java class that can be integrated
in any application.

The power of composition mechanism is in the ability of specify-
ing how the merging of units is actually performed: it can be a simple
concatenation of their original definitions; it can be a reorder accord-
ing to before and after relationships; instead, the last operation unit
can override the preceding ones. Moreover, the value returned by a
merged operation unit can be synthetized using an arbitrary aggrega-
tion of original definitions, by defining a summary unit (see Listing 4.5.

Despite (or because) of this powerful in expressiveness, this elegant
approach presents some problems during the entire cycle of production

34

4.1 Subject-Oriented Programming and Hyper/J

hypermodule HSyncStack
hyperslices:

Features .Functionality ,
Features .Synch

relationships:
overrideByName;

equate operation
Features .Synch .innerPush ,
Features .Functionality .push ;

equate operation
Features .Synch .innerPop ,
Features .Functionality .pop ;

end hypermodule

Listing 4.4: An example of hyper-module

// in the hypermodule specification
set summary function

for action ExamplePkg .ExampleCls .check
to ExamplePkg .ExampleCls .summarizeCheck ;

// in a Java class

static void summarizeCheck (boolean[] returnResults){
for(int i =0; i <returnResults .length ; i ++){

if (! returnResults [i]){
return false ;

}
}
return true ;

}

Listing 4.5: A sample aggregation of method results

35

4 Other Approaches to Separation and Composition of Concerns

of software:

• Software creation. Dimensions are partitions of the hyperspace
composed by Java units: therefore, the declaration of these units
has to precede the separation (mapping) of concerns. Thus, de-
signers of the system receive no help from hyperspaces: they
have to generate a bunch of classes to cope with all concerns. It
is worth noting that it is not possible to assign the developing of
a dimension to a separated team.

• Software evolution. Hyper/J can be very helpful to re-engineer an
existing application, by identifying the different dimensions in-
volved in the software. Evolution seems easier, but what about
evolution of the evolved software? If designers do not want to
go back to square one, they need a “hyper-Hyper/J” to evolve
hypermodules.

• Software complexity. The overall intricacy of the system does not
diminish introducing different dimensions. There is no concep-
tual economy in the definition of dimensions of concern. Rela-
tions among software units become explicit, but their number do
not decrease.

4.2 Adaptive Programming

Another interesting approach is adaptive programming [41]. Lieberherr
et. al. envision a complete development process called Demeter in
which an application is built by adding “enhancements” to a simple
core program. Thus, if P is the initial program, Bi are behavioural
enhancements, S is a synchronisation policy, and D is a distribution
policy, the development of the application α1 can be viewed as:

α1 = P + B1 + B2 + · · ·+ Bn + S + D (4.1)

and a similar application α2 as:

α2 = P + B1 + B2 + · · ·+ Bn + S1 + D1 (4.2)

The problem is that the composition appearing in (4.2) may be com-
pletely different from the one in (4.1), thereby adaptions have to be
applied to enhancements in order to fit them in the composition.

α1 = P + A1(B1) + A2(B2) + · · ·+ An(Bn) + An+1(S) + An+2(D) (4.3)

36

4.2 Adaptive Programming

Functions Aj are called adapters.
The basic idea is to break up each enhancement in two parts: a gen-

eral, reusable, one, and a specific adapter to the current context. As
showed in Figure 4.2 the adapter is an intermediate layer responsible
for doing the “dirty” work of manipulating the secrets of the functional
code. Instead, the aspect code sees just a suitable abstraction of adapter,
and this is the key of its reusability.

boundary
encapsulation

functional code non-functional code

adapter collaboration

Figure 4.2: Adaptive approach to separation of concerns

The general part is called collaboration (see Listing 4.6).
Each collaboration has participants with an expected interface. The

code of the collaboration specifies how to use participants’ code to
achieve its purposes: typically it replaces some expected methods with
its own code. The expected interface is what the collaboration perceives
as an useful abstraction of functional code for its own goals.

The adapter (see Listing 4.7) makes real classes suitable to the
collaboration expected interface. It can freely make use of all features
of classes (also the private ones) and special constructs exist to predic-
ate on an entire graph of classes (traversal strategies1) to address the
cross-cutting problem.

What to put in the adapter or in the collaboration is a crucial design
decision. As AspectJ demonstrates, adapters can be empty, but this
limits the potential reusability of collaborations. Viceversa, small col-
laborations are harmless, but rarely useful.

Inheritance can be used among adapters, with special attention to
traversal strategies. The main problem here is that collaborations are

1Traversal strategies are graphs defined on a graph of classes G as any connected
subgraph of the transitive closure of G. The transitive closure of G = (V, E) is the
graph G∗ = (V, E∗) where E∗ = {(v, w) : ∃ a path from vertex v to vertex w in G}

37

4 Other Approaches to Separation and Composition of Concerns

collaboration BoundedDataStructure {
participant S {

expect void put (Object o);
expect Object take ();
expect int used ();
expect int length ();
protected boolean full =false;
protected boolean empty =true;
replace synchronized void put (Object o){

while (full) {
try{

wait ();
} catch (InterruptedException e) {};

expected(o);
if (used () == 1) {

notifyAll ();
}
empty = false;
if (used ()==length ()) {

full =true;
}

}
replace synchronized Object take (){

while (empty) {
try{

wait ();
} catch (InterruptedException e) {};

Object r = expected();
if (used () == length () − 1) {

notifyAll ();
}
full = false;
if (used () == 0) {

empty = true;
}
return r ;

}

Listing 4.6: Collaboration for synchronising a bounded data structure

38

4.3 Design Patterns

adapter BoundedDataStructureToStack {
Stack is BoundedDataStructure .S

with {
void put (Object o) {

push (o);
}
Object take () {

return pop ();
}
int used () {

return top +1;
}
int length () {

return Constants .StackSize ;
}

}
}

Listing 4.7: Adaption of collaboration of Listing 4.6 to the Stack class

“patterns” that one must use as are. No evolution is permitted, thus
programmers are forced to keep them extremely general. This is inten-
tional: Lieberherr team claims that this allows the exploitation of what
is called the Inventor Paradox [42]: sometimes it is more easy specializ-
ing (adapting) a general solution to a problem than finding a special-
ized solution. However, the hard part is finding the suitable general-
ization. It is also worth noting that adaptive programming techniques
are inherently static: composition of enhancements must be performed
before ordinary compilation.

4.3 Design Patterns

Design patterns are good solutions to recurring problems of object-
oriented design. Some smart solutions to some specific problems of
scattering and tangling were published in the literature. For example, a
well know pattern for separating synchronisation code from the func-
tionality by using inheritance is described in [40] and its exploitation
in the Stack example is showed in Listing 4.8: note that the solution
showed is based on the assumption that the attribute top of Stack
was declared protected, foreseeing its use in sub-classes.

39

4 Other Approaches to Separation and Composition of Concerns

package stack ;

public class SyncStack extends Stack {
public void push (Object o){

synchronized(lock){
while (top == StackSize −1) try{

lock .wait ();
} catch (InterruptedException e){

e.printStackTrace ();
}
super.push (o);
if (top == 0) lock .notifyAll ();

}
}

public Object pop (){
synchronized(lock){

Object ris ;
while (top == −1) try{

lock .wait ();
} catch (InterruptedException e){

e.printStackTrace ();
}
ris = super.pop ();
if (top == StackSize −2) lock .notifyAll ();
return ris ;

}
}

private Object lock = new Object ();
}

Listing 4.8: A solution to the “Stack” synchronisation problem based on
a design pattern by [40]

40

4.3 Design Patterns

Solutions based on design patterns — while elegant, because they
use only idioms based on inheritance and object composition to de-
couple and encapsulate the aspects of complex systems — present a
number of problems [1] that limit their effectiveness.

The first problem is known as object schizophrenia. This problem
arise when an object that conceptually is a single entity is split in one or
more objects for implementation reasons. For example, if an algorithm
is part of a given class and it needs to access some of the methods of the
class, it can simply refer to this. But if the algorithm was factored out in
an other class (as common in solutions based on the “strategy” pattern)
some added complexity is needed to provide the algorithm with data
and methods it needs from the original class.

Another problem is traceability. Given a concrete implementation
of a solution, it is usually unclear which design patterns were actually
exploited. The code implementing a pattern is itself intertwined with
other aspects and scattered over a number of components. This indirect
representation hinders maintenance, reuse and evolution. Moreover,
design patterns often increase the fragmentation and complexity of the
design by introducing extra methods and classes. That is, design pat-
terns sometimes can worst the illness they are supposed to cure.

Furthermore, there is the so called preplanning problem. Design pat-
terns can improve adaptability of software only if adaptations were an-
ticipated during the design phase. One of the goals of aspect oriented
programming is unanticipated evolution: for instance, we would like
to add the distribution aspect to an application conceived for a single
machine environment.

41

4 Other Approaches to Separation and Composition of Concerns

42

5 Malaj: a Multi Aspects
LAnguage for Java

To my taste the main characteristic of
intelligent thinking is that one is will-
ing and able to study in depth an as-
pect of one’s subject matter in isola-
tion.

— Edsger Dijkstra

In Chapter 3 we analysed AspectJ, probably the best-known, gen-
eral purpose aspect-oriented language. We argued that its “general-
purpose” approach provides the maximum expressive power at the ex-
pense of violating the object-oriented principles of protection and en-
capsulation, thus increasing the chance that the different aspects could
interfere with each other or with the functional code. All the prob-
lems discussed in Section 3.2 show that aspect-oriented programming
is still in its infancy. However, in our opinion, many problems might
result more from the linguistic choices made in developing AspectJ,
rather than from intrinsic limitations of the aspect-oriented approach.
In AspectJ (see Figure 5.1), aspects have full control on internal details
of their associated classes. This results in violating the object-oriented
principles of protection and encapsulation, thus increasing the chance
that the different aspects could interfere with each other or with the
functional code.

These theoretical considerations are supported by empirical studies
on programmers working with AspectJ [69]: these studies demonstrate
that programmers may be better able to understand an aspect-oriented
program when the effect of the aspect code has a well-defined scope. In
another paper, Kendall describes the problems that they had in under-
standing the relation among traditional constructs and aspect-oriented
ones [31].

43

5 Malaj: a Multi Aspects LAnguage for Java

boundary
encapsulation

functional code non-functional code

aspect

Figure 5.1: AspectJ approach to separation of unencapsulable concerns.

Our proposal, called Malaj1, as opposed to other approaches men-
tioned in the previous chapters is not a general purpose aspect oriented
language. It focuses on a well-defined set of aspects and provides a
different linguistic construct for each aspect. Figure 5.2 illustrates the
philosophy adopted: we aim at identifying some concern-specific rela-
tionships, emphasising the need for restricted visibility and for clear
rules of composition with traditional constructs.

functional code non-functional code

concern specific
relationships

encapsulation
boundary

Malaj

Figure 5.2: Malaj approach to non-functional aspect separation

Predefining the set of possible aspects an aspect-oriented language
should deal with, and then providing ad-hoc constructs to implement
these aspects, makes it feasible to provide limited visibility of the fea-

1the name Malaj was chosen after the Malay archipelago that comprises the Java is-
land, suggesting that functional code (Java) addresses just one concern of building a
system (though often the most important one), but other concerns need to be taken
in account in other islands of the mind.

44

5.1 Synchronisation

tures of the functional module to which the different aspects apply. As
the next sections will show, this approach offers a good compromise
between flexibility and power, on the one side, and understandability
and ease of change on the other. It does not allow programmers to use
the aspect-oriented language to code any conceivable aspect, but it lim-
its the problems encountered with a general purpose approach.

As its name suggests, Malaj is an aspect-oriented extension to Java.
Malaj is born to provide support to the aspects that arise when im-
plementing applications whose functionality is spread on a set of ma-
chines, communicating via a network. Such distributed systems of-
ten appear to end-users as one coherent system. Users are not directly
aware of the network, namely there are several machines, with differ-
ent locations, storage replication, load balancing, concurrent processes,
network failures, access protection, etc.. Thus, seems a sensible choice
to have separated aspects for addressing these issues, and plug them
in the core applications according needs, instead of tangling these con-
cerns in functional code. We have focussed on three important aspects
of distributed system, namely synchronisation, network relocation, and
exceptional behavior. In distributed system synchronisation is need be-
cause threads of control are executed concurrently. Network relocation
is the ability to change the network node where an object resides, in
order to exchange data, code or balance the system load. Exceptional
behavior management is indeed not peculiar to distributed systems,
nevertheless is important when you have components produced or de-
ployed by different parties.

To describe the Malaj constructs for aspect programming, the fol-
lowing sections refer to a common example: a very simplified elec-
tronic commerce system. The system (see Listing 5.1) is composed of
two main classes: Shop and Customer (see Listing 5.3 and Listing 5.2.

The Shop class provides methods to add and remove items from
the list of available articles. It also exports two methods to ask for the
price of a specific article and to deliver the article to a specific address
after it has been bought. Class Customer models the behaviour of an
e-commerce agent: it goes through a list of shops in search of a given
article looking for the best price. At the end of the process, it buys the
article. Finally, class EComcreates two customers and starts them.

5.1 Synchronisation

Synchronisation between the different units that compose an applic-
ation is a central aspect for any, non-trivial, software. According to

45

5 Malaj: a Multi Aspects LAnguage for Java

public class ECom{
private Shop[] shops ;
private Customer paul , john ;

public ECom(){
Shop[] shops = new Shop[5];
for(int i =0; i <5; i ++) {

shops [i] = new Shop();
// add new articles to shops [i]
shops [i].addArticle ("book ", 40−i);
shops [i].addArticle ("CD", 10+i);

}
paul = new Customer (shops , "paul home ","book ", 60);
john = new Customer (shops , "john home ","CD", 30);

}

public void startShopping (){
paul .start ();
john .start ();

}

public static void main (String [] args){
ECom e= new ECom;
e.startShopping ();

}
}

Listing 5.1: An example of a simplistic e-commerce application

46

5.1 Synchronisation

public class Customer extends Thread {
private Shop bestShop ;
private int bestPrice ;
private Shop[] shops ;
private String myAddress ;
private String desire ;
private int wallet ;

public Customer (Shop[] shops , String address ,
String article , int wallet) {

this .shops = shops ;
myAddress = address ;
desire = article ;
this .wallet =wallet ;
bestShop = null;
bestPrice = wallet ;

}

public void shopping (Shop s) {
int price = s .query (desire);
if (price <= bestPrice) {

bestShop = s ;
bestPrice = price ;

}
}
public void buy () {

if (bestShop != null) {
bestShop .deliver (desire , myAddress);
System .out .println ("I bought a "

+ desire +" at "+ bestShop);
}

}
public void run () {

for(int i =0; i <shops .length ; i ++) {
shopping (shops [i]);

}
buy ();

}
}

Listing 5.2: A Customer class

47

5 Malaj: a Multi Aspects LAnguage for Java

public class Shop {
private Hashtable goodies ;
public Shop() {

goodies =new Hashtable ();
}
public void addArticle (String article , int price) {

goodies .put (article , new Integer (price));
}
public void removeArticle (String article) {

goodies .remove (article);
}
public int query (String article) {

return ((Integer)goodies .get (article)).intValue ();
}
public void deliver (String article , String address) {

// deliver the article to the address specified
}
public boolean isEmpty () {

return goodies .isEmpty ();
}
public boolean hasArticle (String article) {

return goodies .containsKey (article);
}

}

Listing 5.3: A Shop class

48

5.1 Synchronisation

the WordNet Dictionary [5] synchronisation is “the relation that exists
when things occur at the same time”.

To express this aspect it is necessary to clearly state what happens
when a functional unit is invoked in a context where other functional
units can be invoked concurrently as well. When a service is requested
three cases may arise:

1. the call violates the synchronisation policy and an exception is
returned to the caller;

2. the call is suspended until some condition becomes true accord-
ing to the synchronisation policy;

3. the call may proceed because no synchronisation rules are viol-
ated.

To support this aspect, Malaj provides the guardian construct. Each
guardian is a distinct source unit with its own name, possibly coded
in a different source file. Each guardian is associated with a particu-
lar class (i.e., it guards that class) and expresses the synchronisation
constraints of a set of related methods of that class. Each class has at
most one guardian. Listing 5.4 and Listing 5.5 show respectively the
guardians for classes Shop and Customer mentioned above.

The Malaj core language is a reduced version of Java, which does
not include the features that are provided through the separately spe-
cified aspects. More specifically, the Java keyword synchronized can-
not be used in Malaj, and the same is true for the methods wait (),
notify (), and notifyall () of the standard Java class Object .

For each class C, the guardian G of C basically represents the set
of synchronized methods of C. As an example of the synchronized
statement see the guardian ShopGuardian in Listing 5.4. Gexpresses
also the conditions that, if not satisfied, result in an exception when m
is called (i.e., the deny guards), and the conditions that, if not satisfied,
result in suspending the caller of m(i.e., the suspend guards).

As an example of the deny and suspend statements, see methods
addArticle and deliver of guardian ShopGuardian in Listing 5.4,
respectively. Observe that deny guards are always considered before
suspend guards and they are considered in the order in which they ap-
pear in the code. This means that if different deny and suspend guards
are true, only deny guards are considered and among them the first is
taken and the exception it defines is returned to the caller.

A guardian may include also a set of local attributes and method
definitions to code guards that depend on state conditions (e.g., attrib-
ute elements of guardian ShopGuardian in Listing 5.4). Finally, for

49

5 Malaj: a Multi Aspects LAnguage for Java

guardian ShopGuardian guards Shop {
HashSet elements =new HashSet ();
synchronized {

addArticle , removeArticle ,
query , deliver

}
void addArticle (String article , int price):

deny A: (price <0) with new PriceTooLow ();
before {

elements .add (article);
}

void removeArticle (String article):
deny A: (!elements .contains (article))

with new ArticleNotFound ();
before {elements .remove (article);}

int query (String article):
deny A: (!elements .contains (article))

with new ArticleNotFound ();
void deliver (String article , String address):

suspend A: (!elements .contains (article));
}

Listing 5.4: A “guardian” for the Shop (see listings 5.3) class

50

5.1 Synchronisation

guardian CustomerGuardian guards Customer {
void Customer (Shop[] shops , String address ,

String article , int wallet):
deny A: (shops ==null || shops .length <1)

with new NotEnoughShops ();
B : (wallet <1) with new NotEnoughMoney ();

}

Listing 5.5: A “guardian” for the Customer (see listings 5.2) class

each method m of the guarded class, the guardian may introduce a
fragment of code to be executed before or after m (e.g., method add -
Article of guardian ShopGuardian in Listing 5.4).

An important point is that, in order to avoid breaking object en-
capsulation and to increase separation between the functional and syn-
chronisation aspects, guardian code — i.e., deny and suspend guards,
and before and after clauses — cannot access private elements of the
guarded class and has read-only access to the public, protected, and
package attributes of the guarded class.

The ultimate goal of Malaj to enable a separate production cycle for
aspects, which means that classes may evolve independently from re-
spective guardians. A precise relationship between the synchronisation
aspect and inheritance is needed, as stated by the following rules:

1. The guardian of a class C is inherited by all the extensions of C
that do not have a different guardian.

2. A guardian G1 always extends a parent guardian G. If not ex-
plicitly mentioned, the parent guardian of G1 is the guardian
malaj .Guardian , which is part of the Malaj library. G1 inher-
its all the synchronisation constraints specified by G and it may
add new guards, redefine existing ones, or remove them. To dis-
tinguish between added and redefined guards, each guard of a
given method mhas its own label (see Listing 5.4). A guard in G1
that has the same label of a guard in Gredefines it, otherwise it is
considered as a new guard.

3. The guardian of a class Cmust extend the guardian of the parent
class of C.

4. The guards redefined in G1 cannot be stricter than the original
ones. In fact, as the next point explains, a sub-guardian G1guards
a class that extends the class guarded by the parent guardian of

51

5 Malaj: a Multi Aspects LAnguage for Java

G1and, as observed by [44], the precondition of a sub-class cannot
be stronger than the precondition of the parent class to preserve
correctness of polymorphic calls.

5. To reduce the impact of inheritance anomaly2, the before and
after clauses of a guardian Gmay refer to the corresponding clauses
of the parent guardian through the statement super(). Similarly,
in redefining a guard it is possible to refer to the original guard
through the construct super().

5.2 Relocation

Distributed systems have to be aware of networks and code implement-
ing network awareness is typically dispersed among functional units,
thus representing a good candidate to be aspectified. In particular, pro-
grammers should be able to move objects among sites, in order to ex-
change data and code.

We identify two relationships to be maintained as objects move:

Ownership: if an object A owns an object B, then A is the only object
entitled to move B. By default, B follows A in its movements.

Interest: if an object A is interested in B, A has to be always able to
reach B, but A and B move completely independently.

If an object A does not own B and is not interested in it, it simply
does not care of B’s location, and even of its existence. Evidently, own-
ership implies interest. Each object may have at most one owner.

These relationships are inherently dynamic: they are subject to change
during program execution, as objects change their interest in other ob-
jects according to the programmers’ needs.

Malaj provides the relocator construct. Each relocator is a distinct
source unit with its own name, possibly coded in a different source file.
A relocator is associated with a particular class (i.e., it relocates the ob-
jects of that class). Relocation actions can be executed before or after the
execution of any method. To specify this, the relocator provides before
and after clauses that allow programmers to introduce the pieces of
code that will be executed before or after the execution of the method
(see example in Listing 5.6).

2Inheritance anomaly [47] problem appears when a new definition in a sub-class
forces to redefine all super-class operations to cope with new synchronisation con-
straints

52

5.2 Relocation

In order to preserve class integrity, within before and after clauses
one is not allowed to change attributes (i.e., the internal state of an ob-
ject can be changed only by using the methods it provides). However,
it is possible to:

• take or release the ownership of an object, by using the methods:

takeOwnership (Object owned)
throws ObjectOwnedException

releaseOwnership (Object owned)
throws NotOwnerException

Only the owner is allowed to release ownership and only objects
that have no owner can be arguments of takeOwnership (). By
default, each newly created object is owned by the object that has
created it.

• express or retract the interest in an object, by using the methods:

expressInterest (Object o)

retractInterest (Object o)

• fix the location of an owned object, by using the methods:

pin (Site s , Object owned)
throws NotOwnerException

unpin (Object owned)
throws NotOwnerException

Unpinned objects reside in the same site of their owner. Pin-
ning an object in a site different from the one in which it cur-
rently resides means moving it on a new location, together with
all owned objects that were not previously pinned.

• refer to variable and method definitions that are local to the relocator.

Listing 5.6 and Listing 5.5 show respectively the relocators for classes
EComand Customer introduced above. After creation of an EComin-
stance, some shops are distributed in a worldwide market .

Customer s pin () their wallet in a secure site (secureHome) and
query around for best prices.

53

5 Malaj: a Multi Aspects LAnguage for Java

relocator EComRelocator relocates ECom{
Site [] market ;
EComRelocator (){

market = new Site [shops .length ()];
for(int i =0; i <shops .length (); i ++){

// just an example ...
Site [i] = new Site ("host [i]");

}
after ECom(){

for(int i =0; i <shops .length (); i ++){
try{

this . takeOwnership (shops [i]);
this .pin (market [i], shops [i]);

}
catch(Exception e){

e.printStackTrace ();
}

}
}

Listing 5.6: A “relocator” for the ECom application (see Listing 5.1)

relocator CustomerRelocator relocates Customer {
Site secureHome = new Site ("home");

after Customer (){
try{

// Customer creates wallet
// next instruction is redundant
this . takeOwnership (wallet);
// pinned wallet doesn ’t follow me
this .pin (secureHome , wallet);

}
catch(Exception e){

e.printStackTrace ();
}

}
before void shopping (Shop s){

this .expressInterest (s);
}

}

Listing 5.7: A “relocator” for the Customer class (see Listing 5.2)

54

5.2 Relocation

The limited semantic of the relocation aspect, enables the definition
of simple rules for clarifying the relationship between this aspect and
inheritance, the following rules exist:

1. The relocator of a class C is inherited by all the extensions of C
that do not have a different relocator.

2. The relocator L1 of a class with a relocated ancestor (by relocator
L) may add before and after clauses for methods not considered
in L and may redefine L clauses.

3. To reduce the impact of inheritance anomaly, the before and after
clauses of a relocator L1 may refer to the corresponding clauses
of the parent relocator L through the statement super().

The model of distribution depicted by relocators, while simple, is
powerful enough to implement most frequently used relocation policies.
For example, in their system FarGo, Holder et al. use five basic types
of reference [30] between objects3 possibly located on different sites:

1. Link(α, β), meaning that α and β may or may not be located in
the same site and that relocation of α does not affect the location
of β and vice-versa. This is the same that neither α is interested
(thus it does not own) in β, nor β is interested in α.

2. Pull(α, β), meaning that α and β are located in the same site and
a relocation of α moves β. This can be obtained by stating that α
owns β and β is not pinned.

3. Duplicate(α, β), meaning that α and a copy of β are located in
the same site and a relocation of α moves the copy of β. With
γ = β.clone() this is equivalent to a Pull(α, γ)

4. Stamp(α, β), meaning that α and an instance of β’s type are loc-
ated in the same site and a relocation of α moves the instance
of β’s type. With γ = newβ.getClass() this is equivalent to a
Pull(α, γ)

5. BiDirectionalPull(α, β), meaning that α and β are located in the
same site and either a relocation of α moves β or a relocation of
β moves α. This can be obtained by stating that α owns β and β
owns α; after pinning α or β in a site they have to be unpinned
immediately.

3Actually, they speak about complets: a group of objects that is their unit of migration.

55

5 Malaj: a Multi Aspects LAnguage for Java

5.3 Exceptional Behaviour

Design by contract [48, 49] is a programming style popularised by Ber-
trand Meyer of programming based on the idea that the relationship
between a class and its clients may be seen as a formal agreement, ex-
pressing each party’s rights and obligations. Such a precise definition
of every module’s claims and responsibilities can be used also to decide
how to deal with run-time errors, i.e. with contract violations, defining
an exceptional behaviour alternative to the normal one (that is executed
when contracts are satisfied).

The basic idea of design by contract is that a specification of condi-
tions that are guaranteed to be valid before and after the execution of a
service should be made explicit. This can be done by using the so called
Hoare triples [29] specifying a service S as {P}S{Q}, meaning that any
execution of S, starting in a state where P holds, if the program ter-
minates, leads to state where Q holds. The precondition P expresses the
constraints under which a service will performed properly; The post-
condition Q expresses properties of the state resulting from the service
execution.

Preconditions and postconditions describe the properties of indi-
vidual services. There is also a need for expressing global properties
which must be preserved by a family of services. Such properties are
called class invariant, capturing the deeper semantic properties and in-
tegrity constraints characterizing a class. Invariants apply not only to
the methods actually present in a class, but also to any ones that might
be added later, thus serving as control over its future evolution. This
will be reflected in the inheritance rules. In the contract metaphor in-
variants are regulations that apply to all contracts within a certain cat-
egory.

To express the contractual aspect of a class, Malaj provides the notary
construct. Each notary is a distinct source unit with its own name, pos-
sibly coded in a different source file. Within a notary it is possible to
assert properties that some part of the class should satisfy at certain
stages of execution of its methods [2]. A notary may witnesses that:

1. a precondition is required to hold before a method is executed;

2. a postcondition is ensured to hold after a method execution;

3. a condition is always preserved by calling any method of the
class. This is merely a shortcut for a condition that otherwise ap-
peared in all preconditions and all postconditions.

56

5.3 Exceptional Behaviour

For each precondition it is possible to indicate an Exception to
be thrown if the condition does not hold when the method is called.
For each postcondition it is possible to indicate an Error to raise if the
condition is not true after the execution of the method (see Listing 5.8).
Using different exceptions or errors allows programmers to distinguish
the condition that does not hold. Preconditions and postconditions are
boolean expressions written by using only public features (according to
Meyer’s Availability rule [49]) of the class and they must not use neither
methods with side effects nor assignments. It is indeed possible, and
usually desirable, to define helpers to express complex conditions (for
example, the method wellFormed () in Listing 5.8). A postcondition
can refer to the return value of a method by using the keyword result.

Preconditions bind the client of a method: they define the condi-
tions under which a call is legitimate. It is an obligation for the cli-
ent and a benefit for the supplier. The postconditions bind the class:
it defines the conditions that must be ensured by the execution of the
method. It is a benefit for the client and an obligation for the supplier.
The benefits are, for the client, the guarantee that certain properties will
hold after the call; for the supplier, the guarantee that certain assump-
tions will be satisfied whenever the routine is called. The obligations
are, for the client, to satisfy the requirements as stated by the precondi-
tion; for the supplier, to do the job as stated by the postcondition.

To cope with contractual exceptions, notaries apply the principle
“You broke it, you buy it”. When a precondition fails to hold the respons-
ible for that is the client who called the method: the notary throws
an Exception that the client should manage and the service is not
provided. When a postcondition fails to hold the responsible is the sup-
plier and an Error is raised. However, it is possible to specify a rescue
clause in which some code tries to remedy to the situation restoring in-
variants or restoring preconditions to enable a retry (see Listing 5.9).
The resulting thread of control is equivalent to the one showed in List-
ing 5.10.

A precise relationship between this aspect and inheritance may be
derived from Meyer’s Assertion Redeclaration rule [48]: a routine re-
declaration may only replace the original precondition by one equal or
weaker, and the original postcondition by one equal or stronger. Prag-
matically:

1. the logical conjunction of require clauses of a notary N1 that
witnesses a class D derived from a class B witnessed by a notary
N is in logical or (||) with the logical conjunction of require
clauses of N;

57

5 Malaj: a Multi Aspects LAnguage for Java

notary ShopNotary witnesses Shop {
void addArticle (String article , int price):

before {
require (article != null) with new NullArticle ();
require (! article .equal (""))

with new EmptyArticle ();
}
after {

ensure (! isEmpty ()) with new EmptyShopError ();
ensure (!hasArticle (article)) with new ShopError ();

}
void removeArticle (String art):

before {
require (art != null) with new NullArticle ();
require (hasArticle (art)) with new EmptyArticle ();

}
after {

ensure (!hasArticle (article)) with new ShopError ();
}

int query (String art):
before {

require (article != null) with new NullArticle ();
require (hasArticle (art)) with new EmptyArticle ();

}
after {

ensure (result >= 0) with new PriceError ();
}

public static boolean wellFormed (String address){
// true if address is a true address

}
void deliver (String article , String address):

before {
require (article != null) with new NullArticle ();
require (wellFormed (address)) with new Address ();

}
after {

ensure (getCustomer (address).hasArticle (article))
with new ShippingError ();

}
always { true // default }

}

Listing 5.8: A “notary” for the Shop (see listings 5.3) class
58

5.3 Exceptional Behaviour

notary ShopNotary witnesses Shop {
public static boolean wellFormed (String address){

// true if address is a true address
}
void deliver (String article , String address):

before {
require (article != null) with new NullArticle ();
require (wellFormed (address)) with new Address ();

}
after {

ensure (getCustomer (address).hasArticle (article))
with new ShippingError ();

}
int retries = 0;
rescue (ShippingError e){

if (retries == 0){
String .upcase (address); // sometimes it works
retry ;

} // else fail
}

}

Listing 5.9: A rescue clause

void thread (){
boolean retry = false ;
do{

try{
method ();
if (! postcondition ()){

throw new Exception ();
}

}catch (Exception e){
System .out .println (stato);
// set retry according rescuer

}
} while(retry);

}

Listing 5.10: Retry semantics

59

5 Malaj: a Multi Aspects LAnguage for Java

2. the logical conjunction of ensure clauses of a notary N1 that
witnesses a class D derived from a class B witnessed by a notary
N is in logical and (&&) with the logical conjunction of ensure
clauses of N;

3. the always clause of a notary N1 that witnesses a class Dderived
from a class B witnessed by a notary N is in logical and (&&) with
the always clause of N;

5.4 Considerations

The three aspect languages described above share a common approach:
we gave up with the intent of separating every conceivable concerns,
and we are trying to separate some specific, although important, prede-
termined concerns, still maintaining all the logical barriers among each
of them, and the functional code. The ultimate goal is being able of
identifying some concern-specific relationships.

Aside this, the three languages are quite different, because the as-
pects they address are very different. Synchronisation is a “low-level”
issue: in fact, Java itself provides suitable (and sufficient) for obtaining
thread synchronisation. The problem is that by using simple Java state-
ments synchronisation and coordination become scattered over many
functional units: aspect-oriented programming aims at eliminating ex-
actly this. In a sense, synchronisation is a pure aspect, that has to be ap-
plied to pure functional code (i.e., Java code, cleaned from synchronized
statements). Relocation, instead, is performed by pieces of code that
could be dispersed all around functional code: the aspect language
helps in grouping these pieces, but the structure of the relationship
between functional and aspect code is not really specific. The most
different one is the aspect language addressing exceptional behavior.
In real life contracts are signed before services are served. Thus, con-
ceptually, this aspect precedes functional code and it serves as control
over the current use or future evolution (thanks to inheritance rules) of
the class. In fact, many existing proposals exist for adding “design by
contract” in a preprocessing step on Java code (see for example [2]).

Notwithstanding their differences, the three aspects can be imple-
mented by exploiting a common architecture. An architecture view of
the Malaj system is sketched in Figure 5.3. For each aspect Ai there is
a corresponding weaver Wi. The weaver takes in input an aspect A,
the class C to which A refers, and any other class needed for ordinary
Java compilation. The aspect A is transformed in a suitable Java class
α, from which aspect objects will be instatiated.

60

5.4 Considerations

The weaving phase produces also a class K equivalent to C (i.e., it
has the same interface of C), but instrumented to be able to use asso-
ciated aspect objects. The instrumentation of class K is independent
from the kind of aspect: the methods of K are the same methods of C
with an added part responsible of managing a list of aspects. For ex-
ample, if C has a method mc(), the class K has a method mk() acting
roughly as follow:

1. it examines the list of associated aspects by using reflection and
it decides which actions are to be taken to fulfill aspects’ before
directives;

2. it performs housekeeping actions on aspect list;

3. it execute the code of mc()

4. it examines the list of associated aspects by using refelection and
it decides which action are to be taken to fulfill aspects’ after dir-
ectives;

5. it performs other housekeeping actions on aspect list;

Finally, classes Ki and αj , that are ordinary Java classes, can be integ-
rated in the final program X .

C XKI

W1

W2

KIIK

A2

A1 α1

α2

Legenda:
A aspect
C class
K instrumented class
X final class
α instrumented aspect

Figure 5.3: Malaj architecture

61

5 Malaj: a Multi Aspects LAnguage for Java

This strategy is flexible enough for managing any kind of aspect,
provided that its effects can be reduced to “before” and “after” ac-
tions. This is the case of the three aspects actually present in Malaj and
seems a reasonable assumption also for the future plans of extensions.
Moreover, the list of aspects exists for the entire execution of the pro-
gram, thus aspects could be changed at run-time. The choice of having
a different weaver for each ad-hoc aspect languages is driven by the
goal of building Malaj as a collection of languages easily extendible:
adding a new language means just implementing a new weaver.

62

6 Conclusions

Will your long-winded speeches never
end? What ails you that you keep on
arguing?

— Job 16,3

Separation of concern is the main issue of all engineering works: in
fact, the human mind seems well suited to cope with just one problem
at a time. In particular, software engineers are accustomed to partition
software systems in modular units. Such parts are developed in relative
isolation and then assembled to produce the whole system. Separation
is useful and effective when issues are well localized and their handling
is explicit.

However, often some concerns are difficult to isolate, because they
spread among several units. Thus, several design decisions are not ad-
dressed in a specific module, but result as an implicit property of the
overall structure.

Cross-cutting concerns are termed aspects and aspect oriented pro-
gramming tries to identify proper linguistic mechanisms to factor out
different aspects of a program, which can be defined, understood, and
evolved separately. It pushes the idea of separation of concerns one
step forward with respect to existing programming language constructs,
which simply provide ways to encapsulate a single functionality in a
unit. Aspect oriented techniques, however, are still in their infancy.

The main contribution of this thesis is in understanding implica-
tions of adopting these new techniques: we showed that some of the
existing proposals have problems that hinder software evolution. Prob-
lems descend from the fact that these techniques exploit some form of
elusion of good information hiding principles. This is needed because
aspects are, by definition, intertwined with the functional code and full
generality requires that aspect composition should be possible at every
level of granularity.

Thus, no clean interface can be interposed among functionality and
aspects: if you have to mix fluids you cannot assemble them as Lego
bricklets. However, we claim that even if the problem has no solution

63

6 Conclusions

in general, it can be solved in particular cases. We focussed on a partic-
ular class of systems, namely distributed applications. In this domain
there are critical aspects, as concurrency, network relocation, exception
handling, that software engineers are willing to think separately, nev-
ertheless current state of the art forces to code them together with the
other features of the system.

We have designed three ad hoc aspect oriented languages for these
aspects, and we have found that predefining the set of possible aspects
to deal with, enables the definition of constructs with limited visibil-
ity of specific features of functional modules to which the different as-
pects apply. This is key to understand the properties of the composi-
tion between aspects and functionality and the relation with traditional
composition mechanisms as inheritance.

We think our approach offers a good compromise between flexib-
ility and power, on the one side, and understandability and ease of
change on the other. It does not allow programmers to code any pos-
sible concern, but it enables the comprehension of concern specific rela-
tions with functional code. Future work is needed to cover a spectrum
of concerns far beyond these three, and to complement the program-
ming support with a formal model that can be used to reason about
aspects interaction. Research work at the programming language level
should go hand-in-hand with experimental work, which should try to
assess the usefulness and usability of the languages.

We are convinced that the isolation of aspects by using ad hoc lan-
guages may have an impact also on testing activities. Verification of
software system is often performed by applying the following strategy:
(1) a model of application is derived from artifacts produce during im-
plementation (formal or semi-formal specifications, source code, doc-
umentation); (2) the model is exploited to infer interesting properties
of the system; (3) the model may be also used to generate a number
of test cases sufficient for having significant statistical evidence on the
correctness of the program.

Thereby, the derivation of the model (step (1)) is the critical phase
for achieving a successful verification. The ontology of the model is de-
pendent from the properties one wants to prove. For example, a Petri
net model is a suitable choice if interested in properties regarding con-
currency. Having different languages for different aspects should allow
one to derive the proper model more easily and naturally. Moreover, in
some cases, the integration test can be reduced to a unit test on the as-
pect.

The ultimate goal is finding a proper methodology for dealing with
aspect oriented units as true components: they should be deployed in-

64

dependently, implementors should be able to substitute them in ap-
plications according needs, and their composition should preserve the
safety of the system.

65

6 Conclusions

66

Bibliography

[1] Subject-oriented programming and design patterns. http://
www.research.ibm.com/sopcpats.htm . IBM Thomas J. Wat-
son Research Center, Yorktown Heights, New York.

[2] Jass. http://semantik.informatik.uni-oldenburg.de/
~jass , 1999. Jass is copyrighted by the Semantics Group, theoret-
ical informatics, department of informatics at Carl von Ossietzky
University of Oldenburg, Germany.

[3] G. Agha. Concurrent object-oriented programming. Communica-
tions of the ACM, 33(9):125–141, September 1990.

[4] Architecture Project Management, Cambridge, UK. The Advanced
Network Systems Architecture (ANSA), 1989.

[5] Cognitive Science Laboratory at Princeton University. Wordnet (r)
1.6. http://www.cogsci.princeton.edu/~wn/ , 1997. Avail-
able via DICT protocol at http://www.dict.org .

[6] S. Baker. CORBA Distributed Objects Using Orbix. Addison-Wesley,
Reading, MA, USA, 1997.

[7] L. M. J. Bergmans and M. Aksit. Composing software from mul-
tiple concerns: A model and composition anomalies. In ICSE 2000
Workshop on Multi-Dimensional Separation of Concerns in Software
Engineering, page 16, Limerick, Ireland, June 2000.

[8] T. Bolognesi. Toward constraint-object-oriented development.
IEEE Transactions on Software Engineering, 26(7):594–616, jul 2000.

[9] F. P. Brooks. The Mythical Man-Month: Essays on Software Engin-
eering. Addison-Wesley publishing company, USA, anniversary
edition, 1995.

[10] L. Cardelli and A. D. Gordon. Mobile ambients. In Maurice Nivat,
editor, Proceedings of the First International Conference on Foundations
of Software Science and Computation Structures (FoSSaCS ’98), Held as

67

Bibliography

Part of the Joint European Conferences on Theory and Practice of Soft-
ware (ETAPS’98), (Lisbon, Portugal, March/April 1998), volume 1378
of lncs, pages 140–155. sv, 1998.

[11] M. C. Chu-Carrol and S. Sprenkle. Software configuration man-
agement as a mechanism for multidimesional separation of con-
cerns. In Peri Tarr, William Harrison, Harold Ossher, Anthony
Finkelstein, Bashar Nuseibeh, and Dewayne Perry, editors, ICSE
2000 Workshop on Multi-Dimensional Separation of Concerns in Soft-
ware Engineering, pages 28–32, Limerick, Ireland, June 2000.

[12] G. Colouris, J. Dollimore, and T. Kindberg. Distributed Systems:
Concepts and Design. Addison Wesley, 2nd edition, 1994.

[13] G. Cugola, E. Di Nitto, and A. Fuggetta. Exploiting an event-
based infrastructure to develop complex distributed systems. In
Proceedings of the 20th International Conference on Software Engineer-
ing (ICSE98), Kyoto (Japan), April 1998.

[14] G. Cugola, E. Di Nitto, and A. Fuggetta. The jedi event-based
infrastructure and its application to the development of the opss
wfms. IEEE Transactions on Software Engineering (TSE), "To appear".

[15] G. Cugola, C. Ghezzi, and M. Monga. Coding different design
paradigms for distributed applications with aspect-oriented pro-
gramming. In WSDAAL (Workshop su Sistemi Distribuiti: Algoritmi,
Architetture e Linguaggi), L’Aquila, Italy, sep 1999.

[16] G. Cugola, C. Ghezzi, and M. Monga. Language support for
evolvable software: An initial assessment of aspect-oriented pro-
gramming. In Proceedings of International Workshop on the Principles
of Software Evolution, Fukuoka, Japan, jul 1999.

[17] G. Cugola, C. Ghezzi, M. Monga, and G. P. Picco. Malaj: A
proposal to eliminate clashes between aspect-oriented and object-
oriented programming. In Proceedings of International Conference on
Software: Theory and Practice, Bejing, China, August 2000.

[18] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[19] W. Emmerich. Engineering Distributed Objects. John Wiley & Sons,
Ltd., Baffins Lane, Chichester
West Sussex PO19 1UD, England, 2000.

68

Bibliography

[20] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and
M. Goedicke. Viewpoints: A framework for integrating multiple
perspectives in systems development. International Journal of Soft-
ware Engineering and Knowledge Engineering, 1(2):31–58, 1992.

[21] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding Code Mo-
bility. IEEE Transactions on Software Engineering, 24(5):342–361,
1998.

[22] C. Ghezzi and M. Jazayeri. Programming language concepts. John
Wiley & Sons, third edition, 1997.

[23] M. Grand. Patterns in Java, volume I. John Wiley & Sons, Inc., first
edition, 1998.

[24] M. Grand. Patterns in Java, volume II. John Wiley & Sons, Inc., first
edition, 1998.

[25] W. G. Griswold. Coping with software change using inform-
ation transparency. Technical Report CS98-585, Department of
Computer Science and Engineering, University of California, San
Diego, USA, 1998.

[26] P. Gruenbacher, A. Egyed, and N. Medvidovic. Dimensions of con-
cerns in requirements negotiation and architecture modeling. In
Peri Tarr, William Harrison, Harold Ossher, Anthony Finkelstein,
Bashar Nuseibeh, and Dewayne Perry, editors, ICSE 2000 Work-
shop on Multi-Dimensional Separation of Concerns in Software Engin-
eering, pages 50–54, Limerick, Ireland, June 2000.

[27] R. Guerraoui. Strategic directions in object-oriented program-
ming. ACM Computing Surveys, 28(4):691–700, dec 1996.

[28] W. Ho, F. Pennaneac’h, J. Jézéquel, and N. Plouzeau. Aspect-
oriented design with uml. In Peri Tarr, William Harrison, Har-
old Ossher, Anthony Finkelstein, Bashar Nuseibeh, and Dewayne
Perry, editors, ICSE 2000 Workshop on Multi-Dimensional Separation
of Concerns in Software Engineering, pages 60–64, Limerick, Ireland,
June 2000.

[29] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, oct 1969.

[30] O. Holder, I. Ben-Shaul, and H. Gazit. Dynamic layout of distrib-
uted applications in fargo. In Proceedings of the 21st International
Conference on Software Engineering, Los Angeles, CA, May 1999.

69

Bibliography

[31] E. A. Kendall. Reengineering for separation of concerns. In
Peri Tarr, William Harrison, Harold Ossher, Anthony Finkelstein,
Bashar Nuseibeh, and Dewayne Perry, editors, ICSE 2000 Work-
shop on Multi-Dimensional Separation of Concerns in Software Engin-
eering, pages 65–68, Limerick, Ireland, June 2000.

[32] M. A. Kersten and G. C. Murphy. Atlas: A case study in build-
ing a web-based learning environment using aspect-oriented pro-
gramming. Technical Report TR-99-04, Department of Computer
Science – University of British Columbia, 201-2366 Main Mall –
Vancouver BC Canada V6T 1Z4, apr 1999.

[33] G. Kiczales, J. de Rivières, and D. Bobrow. The Art of the Metaobject
Protocol. The MIT Press, 1991.

[34] G. Kiczales, J. Hugunin, M. Kersten, J. Lamping, C. V. Lopes, and
W. G. Griswold. Semantic-based crosscutting in aspectjTM . In
Peri Tarr, William Harrison, Harold Ossher, Anthony Finkelstein,
Bashar Nuseibeh, and Dewayne Perry, editors, ICSE 2000 Work-
shop on Multi-Dimensional Separation of Concerns in Software Engin-
eering, pages 69–74, Limerick, Ireland, June 2000.

[35] G. Kiczales and J. Lamping. Issues in the design and specifica-
tion of class libraries. ACM SIGPLAN Notices, pages 435–451, 1992.
OOPSLA’92.

[36] G. Kiczales, J. Lamping, C. V. Lopes, A. Mendhekar, and
G. Murphy. Open implementation design guidelines. In Proceed-
ings of the 19th International Conference on Software Engineering, Bo-
ston, MA, May 1997. IEEE.

[37] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented program-
ming. In Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), Finland, June 1997. Springer-Verlag.

[38] A. Lai, G. C. Murphy, and R. J. Walker. Separating concerns with
hyper/jTM : An experience report. In Peri Tarr, William Harrison,
Harold Ossher, Anthony Finkelstein, Bashar Nuseibeh, and De-
wayne Perry, editors, ICSE 2000 Workshop on Multi-Dimensional
Separation of Concerns in Software Engineering, pages 79–91, Lim-
erick, Ireland, June 2000.

[39] J. Lamping. Typing the specialization interface. ACM SIGPLAN
Notices, pages 201–214, 1993. OOPSLA’93.

70

Bibliography

[40] D. Lea. Concurrent Programming in Java. Addison-Wesley Long-
man, 1997.

[41] K. Lieberherr, D. Lorenz, and M. Mezini. Building modular object-
oriented systems with reusable collaborations. http://www.
ccs.neu.edu/research/demeter , 2000.

[42] K. J. Lieberherr. Adaptive Object-Oriented Software: The Demeter
Method with Propagation Patterns. PWS Publishing Company, 1996.

[43] K. J. Lieberherr, I. Holland, and A. J. Riel. Object-oriented pro-
gramming: an objective sense of style. In Proceedings of the Confer-
ence on Object-Oriented Programming Systems, Languages and Applic-
ations (OOPSLA’88), volume 23 of ACM SIGPLAN Notices, pages
323–334, 1988.

[44] B. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM
Transaction on Programming Languages and Systems, 16(6):1811–
1841, November 1994.

[45] C. V. Lopes. D: A Language Framework for Distributed Programming.
PhD thesis, Northeastern University, nov 1997.

[46] C. V. Lopes and G. Kiczales. Recent developments in AspectJTM .
In Serge Demeyer and Jan Bosch, editors, Object-Oriented Techno-
logy: ECOOP’98 Workshop Reader, volume 1543 of Lecture Notes in
Computer Science, pages 398–401. Springer, 1998.

[47] S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in
object-oriented concurrent programming languages. In G. Agha,
P. Wegner, and A. Yonezawa, editors, Research Directions in Concur-
rent Object-Oriented Programming, pages 107–150. MIT Press, Cam-
bridge, MA, 1993.

[48] B. Meyer. Object-oriented Software Construction. Prentice Hall, 1988.

[49] B. Meyer. Object-oriented Software Construction. Prentice Hall, New
York, NY, second edition, 1997.

[50] R. Miller and A. Tripathi. Issues with exception handling in object-
oriented systems. In Mehmet Akşit and Satoshi Matsuoka, editors,
ECOOP ’97 — Object-Oriented Programming 11th European Confer-
ence, Jyväskylä, Finland, volume 1241 of Lecture Notes in Computer
Science, pages 85–103. Springer-Verlag, New York, NY, June 1997.

71

Bibliography

[51] R. Milner. The polyadic π-calculus: A tutorial. In M. Broy, editor,
Logic and Algebra of Specification. Springer-Verlag, 1992.

[52] M. Monga. Ad-hoc constructs for non functional aspects. In WS-
DAAL (Workshop su Sistemi Distribuiti: Algoritmi, Architetture e Lin-
guaggi), Ischia, Italy, sep 2000.

[53] M. Monga. Concern specific aspect-oriented programming with
malaj. In Peri Tarr, William Harrison, Harold Ossher, Anthony
Finkelstein, Bashar Nuseibeh, and Dewayne Perry, editors, ICSE
2000 Workshop on Multi-Dimensional Separation of Concerns in Soft-
ware Engineering, page 101, Limerick, Ireland, June 2000.

[54] M. Monga and S. Novelli. Omissys: Managing temporal informa-
tion in multi-model diagnosis. Master’s thesis, Politecnico di Mil-
ano, June 1996. In Italian.

[55] O. Nierstrasz. Composing active objects. In P. Wegner G. Agha
and A. Yonezawa, editors, Research Directions in Concurrent Object-
Oriented Programming, pages 151–171. MIT Press, 1993.

[56] S. Oaks and H. Wong. Java Threads. O’Reilly & Associates, first
edition, 1997.

[57] H. Ossher, M. Kaplan, A. Katz, W. Harrison, and V. Kruskal. Spe-
cifying subject-oriented composition. Theory and Practice of Object
Systems, 2(3):179–202, 1996.

[58] Xerox PARC. Aspectj design notes. http://aspectj.org/
documentation/designNotes/changes.html , 2000.

[59] G. P. Picco. µCode: A Lightweight and Flexible Mobile Code
Toolkit. In K. Rothermel and F. Hohl, editors, Proc. 2nd Int. Work-
shop on Mobile Agents, volume 1477 of Lecture Notes in Computer
Science, pages 160–171, Stuttgart, Germany, 1998. Springer-Verlag,
Berlin.

[60] K. Rustan, M. Leino, and R. Stata. Checking object invariants.
Technical Report 1997-007, Digital Systems Research Center, jan
1997.

[61] M. Skipper. A model of composition oriented programming. In
Peri Tarr, William Harrison, Harold Ossher, Anthony Finkelstein,
Bashar Nuseibeh, and Dewayne Perry, editors, ICSE 2000 Work-
shop on Multi-Dimensional Separation of Concerns in Software Engin-
eering, pages 120–125, Limerick, Ireland, June 2000.

72

Bibliography

[62] R. Stata and J. V. Guttag. Modular reasoning in the presence
of subclassing. ACM SIGPLAN Notices, 30(10):200–214, October
1995. Proceedings of OOPSLA ’95 Tenth Annual Conference on Object-
Oriented Programming Systems, Languages, and Applications.

[63] C. Szyperski. Component Software — Beyond Object-Oriented Pro-
gramming. Addison Wesley Longman Limited, 1998.

[64] Peri Tarr and Harold Ossher. Hyper/JTM User and Installation
Manual. IBM Research, 2000. Also available at http://www.
research.ibm.com/hyperspace .

[65] J. Viega and D. Evans. Separation of concerns for security. In
Peri Tarr, William Harrison, Harold Ossher, Anthony Finkelstein,
Bashar Nuseibeh, and Dewayne Perry, editors, ICSE 2000 Work-
shop on Multi-Dimensional Separation of Concerns in Software Engin-
eering, pages 126–129, Limerick, Ireland, June 2000.

[66] G. Vigna. Mobile Code Technologies, Paradigms, and Applications.
PhD thesis, Politecnico di Milano, 1997.

[67] P. Wadler. A taste of linear logic. In Mathematical Foundations of
Computing Science, Gdansk, Poland, August 1993. Springer Verlag
LNCS 711.

[68] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A note on dis-
tributed computing. In Mobile Object Systems, volume 1222 of Lec-
ture Notes in Computer Science, pages 49–64. Springer-Verlag, Ber-
lin, 1997.

[69] R. J. Walker, E. L. Baniassad, and G. C. Murphy. An initial assess-
ment of aspect-oriented programming. In Proceedings of the 21st

International Conference on Software Engineering, Los Angeles, CA,
May 1999.

[70] XEROX Palo Alto Research Center. AspectJ: User’s Guide and
Primer, 1998.

[71] XEROX Palo Alto Research Center. AspectJ: User’s Guide and
Primer, 1999.

[72] Z. Yang and K. Duddy. CORBA: A platform for distributed object
computing. OSR, 30(2):4–31, April 1996.

[73] A. Yonezawa and M. Tokoro, editors. Concurrent Object-Oriented
Programming. The MIT Press, Cambridge, Mass., 1987.

73

